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Abstract
In the conventional lattice percolation models, bonds or sites are open at ran-
dom, whereas in reality there is often interplay of percolation and the kinet-
ics under consideration. An interesting and practically important example is
hydrocarbon conversion occurring in a reactor containing ∼1 mm-sized porous
pellets with catalytic nanoparticles deposited at walls of the nanopores. Such
catalytic heterogeneous reactions are often accompanied by coke formation
deactivating catalytic nanoparticles and blocking pores for reactant diffusion,
so that one needs to remove coke from time to time e.g. via reaction with oxy-
gen. Herein, I first present generic coarse-grained Monte Carlo simulations of
coke formation in a single pellet with the emphasis on the reaction regime influ-
enced by reactant diffusion in pores. Then, the obtained coke distributions are
used for similar simulations of coke removal. This combination of the models
has allowed me to illustrate qualitatively new spatio-temporal regimes of the
processes under consideration. For example, the removal of coke can be slow
in the beginning, due to blocking of oxygen diffusion near the external pellet-
gas interface and preventing its penetration to the central part of a pellet, and
then fast when the pathways for diffusion to the center become to be open.
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1. Introduction

The conventional lattice percolation models imply that bonds or sites are open with certain
probability p which is considered to be a governing parameter [1, 2]. The percolation prob-
ability P is defined for lattices of large size (in the limit L →∞) as the probability that a
single site or bond is connected with infinite number of other sites or bonds via open path-
ways. With increasing p, there is a critical threshold, pc, at which the infinite percolation cluster
makes its first appearance so that P > 0. During the past two decades, this classical percola-
tion concept has been expanded in various directions (see e.g. [3] and references therein). One
of them includes introduction of more complex (e.g., off-lattice) models and/or general rules
for generation of open links as e.g. in continuum, explosive, and gradient percolation (see
e.g. [4, 5] and references therein). Another general direction with numerous potential applica-
tions is associated with the studies of various physical, chemical, or biological spatio-temporal
kinetic processes where percolation appears or disappears locally and then appreciably influ-
ences kinetics, i.e., there is interplay of kinetics and percolation. For example, fluid flowing
through porous media may carry small solid particles which may attach to the walls and change
the permeability of the medium, and then these changes may in turn influence percolation and
deposition behaviors as a negative feedback [6]. Among more specific applications of current
interest, one can refer to the percolation models aimed at various aspects of COVID-19 (see
e.g. [7, 8]).

Spatio-temporal kinetic processes are abundant in chemistry in general and heterogeneous
catalysis in particular. From the perspective of applications, heterogeneous catalysis with reac-
tions occurring in reactors containing mm-sized porous pellets with catalytic nanoparticles
(CNPs) deposited at walls of the pores is widely considered to be the most or at least one of
the most important branches of chemistry, because it is inherent for the large-scale chemical
industry [9, 10]. In particular, ∼80% of all chemical industrial processes includes heteroge-
neous catalysis, and it contributes directly or indirectly to ∼35% of the world’s GDP [11].
In the context of basic studies, heterogeneous catalytic reactions (HCRs) occurring at the
gas- or liquid-support interface are especially interesting due to their complexity related to
lateral adsorbate–adsorbate interaction, surface heterogeneity, and spontaneous and adsorbate-
induced surface restructuring (reviewed e.g. in [12–14]), especially in the practically important
case of supported CNPs (reviewed e.g. in [15, 16]). Under such conditions, the applicability
of the analytical models based on the mean-field kinetic equations introduced by analogy with
the mass-action law for the gas-phase reactions is limited. The applicability of the simplest
MC lattice-gas models is limited as well. All these complications make, however, the kinet-
ics of HCRs much richer and physically more interesting. Nowadays, the analytical and MC
approaches to describing the kinetics of HCRs are well developed [12–17] and the correspond-
ing studies often benefit from the use of the ab initio methods (e.g. DFT) in order to characterize
the energetics of HCRs [15, 18, 19].

One of the important and challenging problems in heterogeneous catalysis is catalyst deac-
tivation. It may occur via poisoning of CNPs by adsorption of impurities from the feed stream
[9], sintering or, more specifically, Ostwald ripening and/or agglomeration of CNPs [9, 20],
or actual loss of catalytic species [9]. In reactions occurring with participation of hydrocar-
bons, the catalyst deactivation is often related to the formation of coke which not only reduces
the activity of CNPs but also blocks the reactant supply via pores [9, 21], so that many cata-
lysts need regeneration by burning off coke via reaction with oxygen [22]. The coke formation
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and removal are complex processes representing interesting examples of the already men-
tioned interplay between kinetics and percolation, or, more specifically, between reaction and
percolation.

2. Specifics of coke formation and removal

Typically, the length scale of catalytic reactors is ∼cm in laboratory experiments and ∼m in
industrial systems [10]. In applications, CNPs are usually located in porous pellets (with the
length scale of ∼mm) at the walls of pores. The fine structure of pellets and size of pores
are diverse. There are regular (e.g., zeolites), amorphous mesoporous, and hierarchical porous
structures (reviewed in [23]). Almost all mesoporous materials often used in industrial het-
erogeneous catalysis (e.g., silica, alumina, zirconia, or ceria) are amorphous [23]. The size
distribution of pores in such catalysts is often bimodal including nanopores, 4–10 nm, and
pores of larger sizes up to ∼10 μm [23, 24]. Physically, this means that a pellet can be viewed
as an array of heterogeneous nanoporous (4–10 nm) regions of ∼30 μm size which are inter-
connected and partly separated by large pores (with size up to ∼10 μm). The total surface
area of nanopores is much larger than that of large pores, and accordingly the catalysis occurs
primarily at CNPs located at the walls of nanopores.

In applications, catalytic reactors typically operate at steady-state conditions. This means
that the consumption of reactants during catalytic reaction inside pores is counterbalanced by
reactant diffusion in pores. This balance can result in the appearance of the gradients in reactant
concentration on different length scales. To scrutinize various scenarios of this interplay, one
needs to know how the coefficient of reactant diffusion in porous media depends on their struc-
ture in general and on the pore-size distribution in particular. The corresponding experimental
and theoretical studies are numerous (reviewed in [25]). For bimodal mesoporous materials
used in catalysis, accurate models are still lacking. By analogy with the diffusion in solids
with grains (reviewed in [26]), one of the ways to interpret reactant diffusion in this case is to
use the simplest additive expression for the effective diffusion coefficient,

Deff = Dl f + Dn(1 − f ), (1)

where Dn and Dl are the coefficients of diffusion in nanopores and large pores, respectively, and
f is the volume fraction of the latter pores. Taking into account that f � 1, the ratio of the two
contributions to Deff is Dl f /Dn. In large pores, diffusion is molecular; whereas in nanopores,
diffusion is often of the Knudsen type, and accordingly Dl � Dn. Thus, the ratio Dl f /Dn can
be in a wide range. With this reservation, this ratio is usually considered to be small so that the
diffusion is controlled by nanopores.

At the level of pellets, the role of reactant diffusion in catalytic reactions is characterized by
the effectiveness factor defined as the ratio of the average reaction rate to the rate calculated
in the limit when the diffusion limitations are negligible. For the simplest first-order reaction
running in a spherical pellet of radius R in the absence of complicating factors (such as coke),
the text-book Thiele expressions for the reactant concentration and the effectiveness factor
are [27]

c(r)
c(R)

=
R sinh(r/λ)
r sinh(R/λ)

and η =
3
φ

[
cosh φ

sinh φ
− 1

φ

]
, (2)

where r is the radial coordinate, λ ≡ (Deff/keff)1/2 is the scale of the diffusion length (keff is
the effective reaction rate constant), and φ = (keffR2/Deff)1/2 is the corresponding modulus. A
similar expression for η is available for cylindrically shaped pellets. In other cases, η should
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Figure 1. Fraction of the pore space filled by coke as a function of normalized time
(t0.5 corresponds to ϕ = 0.5) during coke removal according to the first-order model
(equation (3)), shrinking-core model (equation (4)), and nucleation and growth model
(equation (5)).

usually be calculated numerically (see e.g. [28]). In fact, expression (2) for η can be used for
estimates in various situations provided R is identified with the scale of the pellet size (below,
R can be identified with L/2). In the case of rapid diffusion (φ � 1), the reactant distribution
in pellets is nearly uniform so that η 	 1. In the case of slow diffusion (φ � 1), the reactant
concentration is relatively high near the external pellet-gas interface and drops inside so that
η 	 3/φ � 1. In fact, η characterizes percolation of a pellet by reactant in the context of the
interplay of diffusion and reaction. The difference between η and the conventional percolation
probability, P, is that the former always tends to zero with increasing the lattice size.

The formation and subsequent removal of coke take place primarily in nanopores. Chem-
ically, the coke formation accompanying catalytic conversion of hydrocarbons represents a
complex polymerisation reaction, whereas the coke removal can be viewed as a burn-off reac-
tion occurring with participation of oxygen [21, 29]. In industrial reactors, both these processes
depend on the spatio-temporal interplay of reaction itself, reactant diffusion, and coke forma-
tion or removal on all the length scales mentioned above, and the complete analysis of the
kinetics of these processes should be done at the level of a whole reactor. The corresponding
calculations are now available only for models with highly simplified reactant transport (see,
e.g., [22, 30]). For more complex models, as usual, one should first clarify what may happen
inside a porous pellet provided the reactant concentrations at the external pellet-gas interface
are fixed. This is discussed and simulated below.

The rate of the coke formation depends on the reactant distribution in pellets, and accord-
ingly the coke-formation kinetics depend on whether the main reaction occurs in the kinetically
or diffusion-limited regimes (with φ � 1 or φ � 1, respectively). One of the first analytical
models allowing one to describe various reaction regimes implies that the carbon (or poison)
deposition in a pellet results in formation of a core–shell structure with a catalytically inactive
shell, so that the reactant diffuses through this shell, and the main reaction occurs in a shrink-
ing catalytically active core (section 6.2.2.2 in [9]). In fact, this model is suitable for poisoning
rather than for carbon formation because the latter process can occur not only at the core–shell
interface. The first phenomenological kinetic models taking percolation during the coke forma-
tion more explicitly into account were proposed for the kinetically limited regime of the main
reaction (reviewed, e.g., in [29, 31]). For example, one can view the free space in a porous
solid as a set of relatively large nanovoids interconnected by relatively small nanonecks with
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the corresponding size distributions, so that voids and necks form a three-dimensional (3D)
network. Pore blockage can be assumed to be caused primarily by blockage of necks and to be
described by introducing the time-dependent critical radius, rc(t) (with e.g. rc(t) = vt or wt1/2,
where v and w are the corresponding rate constants), so that the necks with r < rc(t) are either
literally blocked by coke or not fully blocked by coke but associated with inaccessible clusters
of voids. The main reaction can be considered to occur only in accessible clusters of voids. The
fraction of necks with r < rc(t) can be calculated by using the neck-size distribution, and then
the model can be formalized mathematically in terms of the conventional bond percolation
theory [31].

In more recent theoretical studies, a pellet is represented as the 2D network of cylindri-
cal pores and the main reaction and coke formation occurring in these pores are described
analytically taking explicitly the reactant diffusion via each pore into account [32]. There
are also recent studies based e.g. on (i) lattice Boltzmann simulations of multicomponent
reaction–diffusion and coke formation in a catalyst with hierarchical pore structure [33], (ii)
DFT-backed molecular dynamics method [34], and (iii) population balance theory [35]. Taken
together, such models allow one to describe reactions running in various reaction regimes.

One could expect that the coke distribution in pellets, predicted by the kinetic models of the
pore blockage by coke, would naturally be used as the initial condition for the kinetic models
describing coke removal. This is, however, not the case. One of the reasons of this state of
the art is that in the former models taking percolation into account the final coke distribution
is complex and not described analytically, and accordingly its use in the latter models is far
from straightforward. In fact, the latter models are now highly simplified. For example, the
analysis of decoking process in reactors is often based on the analysis of O2 transport in reac-
tor including diffusion and coke removal in pellets, and the latter is described by using the
reaction–diffusion equation with the first-order expression for the burn-off reaction rate and
constant (coke-independent) Deff [22, 30].

Under isothermal conditions with constant O2 concentration in pores, the simplest temporal
first-order equation for the fraction of the pore space filled by coke in a pellet is

ϕ = exp(−kt), (3)

where k is the lumped burn-off rate constant (including O2 concentration). Other conventional
kinetic models were used in this context as well [36, 37]. For example, one of the apparently
relevant models implies that the coke removal in a spherical pellet occurs at the interface of
the shrinking coke core, so that

ϕ = (1 − kt)3. (4)

Another conventional model is based on the assumption that the coke removal starts at ran-
domly located centers and then the corresponding spherical reaction fronts move linearly, so
that

ϕ = exp(−kt3). (5)

The kinetics predicted by equations (3)–(5) are shown in figure 1.
Below, using the coarse-grained lattice-gas model, I first present generic kinetic MC sim-

ulations of the coke formation in a porous pellet with the emphasis on the case when the
main reaction is influenced by diffusion (in terms of the Thiele modulus, this means that
φ 	 1 or φ � 1). Then, the obtained coke distributions are used for similar simulations of the
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Figure 2. MC kinetics of coke formation in a 3D lattice with L = 100: fractions of sites
occupied by reactant (R) and coke (C) are shown as a function of time for r/ktot = 10−3

(open circles) and 10−2 (filled circles). Each kinetic curve exhibited here and below in
figures 3, 5 and 8 was obtained by using one MC run. In all the cases, the fluctuations
are fairly low because the number of lattice sites is large, 106.

Figure 3. Snapshots of the 100 × 100 cross-section of the main 100 × 100 × 100 lattice
at its middle (along one of the directions) during the MC run with r/ktot = 10−3 (figure 2,
open circles) at rt = 10 (a), 100 (b), and 500 (c). Reactant, R, and coke, C, are shown
by filled and open circles, respectively.
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Figure 4. As figure 3 for the MC run with r/ktot = 10−2 (figure 2, filled circles).

coke removal. Thus, both processes are described consistently. The corresponding MC algo-
rithms take the specifics of the processes into account. Basically, the algorithms are similar and
represent realization of one of the standard general algorithms for lattice MC simulations [38].

One of the key simplifications employed in the models is that the allowed diffusion jumps
are considered to occur between the lattice sites with the same rate. Due to this simplification,
the models can be qualitatively applicable to catalysts with the bimodal pore-size distribu-
tion provided the reactant diffusion is controlled by nanopores (4–10 nm) so that large pores
are negligible. In the opposite less-probable regime when the reactant diffusion is globally
controlled by large pores (with size up to ∼10 μm) partly separating heterogeneous regions
(of ∼30 μm size) with nanopores, the models can be applicable to such regions. In real-
ity, nanopores and larger pores can be important simultaneously. Theoretically, this case is
interesting as well. The corresponding MC simulations are, however, beyond my current goals.

In principle, the models used below can be qualitatively applicable not only to coke forma-
tion and removal but also to other reactions occurring e.g. with formation of some immobile
reaction product.

3. MC simulations of coke formation in a pellet

In the employed coarse-grained model, a porous pellet is represented by a cubic L × L × L
lattice (simulations for pellets of other e.g. spherical or cylindrical shapes can be performed by
analogy, and it does not influence the main qualitative conclusions). Each lattice site forming
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Figure 5. MC kinetics of coke removal in a 3D lattice with L = 100: fractions of sites
occupied by reactant (R) and coke (C) are shown as a function of time for r/ktot = 10−3

(open circles) and 10−2 (filled circles). The initial C distribution is with weak C gradients
(as exhibited in figure 3(c)).

porous space can be vacant or occupied by a reactant, R (hydrocarbon), or coke, C. By analogy
with the simplest Thiele model (equation (2)), the main first-order reaction is considered to
result in disappearance of R,

R → Ø, (6)

and the products of this reaction are not tracked. The coke formation is mimicked in a lumped
way by the simplest first-order reaction as well,

R → C. (7)

R is allowed to diffuse via jumps to nearest-neighbour (nn) sites, whereas C is immobile.
Initially (at t = 0), the L × L × L lattice is considered to be free of R and C.

To mimic the R supply at the boundaries, the sites adjacent to the L × L × L lattice (these
sites mimic the gas phase outside a pellet) are considered to be partly occupied by R with
the prescribed average coverage, θadj (as in the grand-canonical distribution). Practically, this
means that in simulation after selection such a site is considered to be vacant with probability
1 − θadj or occupied by R with probability θadj. The R jumps between adjacent sites and bound-
ary sites of the L × L × L lattice are considered to occur with the same rate as those inside the
lattice. The rate constants of steps (6) and (7) and diffusion jumps are designated as kr, kc, and
kd, respectively.

In this model, each site physically represents a void, and the main simplification is that a site
can be in three discrete states (vacant or occupied by R or C). In reality, the main reaction and
coke formation occur in a nanopores, and the latter process is continuous, i.e., includes many
polymerization acts. Despite this difference, the model is physically reasonable as the simplest
coarse-grained approximation and can be especially useful in order to scrutinize the interplay
of the diffusion-limited reaction kinetics and coke-related percolation. This is the case because
(i) the main reaction in the model represents the lattice version of the conventional first-order
reaction (as in the Thiele model (equation (2))) and correctly describes the reactant distribution
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Figure 6. Snapshots of the 100 × 100 cross-section of the main 100 × 100 × 100 lattice
at its middle during the MC run with r/ktot = 10−3 (figure 5, open circles) at rt = 15
(a), 25 (b), and 35 (c). Reactant, R, and coke, C, are shown by filled and open circles,
respectively.

during the diffusion-influenced regimes, and (ii) the rate of the coke formation can in general
be considered to be just proportional to the local reactant concentration and accordingly is in
this case described correctly despite the discreteness of the site states. (The simplicity of this
model and the model used below in section 4 is to some extent similar to that of the celebrated
ZGB MC model [39].)

With the specification above, the MC simulations consist of sequential trials of realisation of
one of possible events at one of the randomly chosen sites at the (L + 2) × (L + 2) × (L + 2)
lattice (this lattice includes the main L × L × L lattice and adjacent sites). In such simula-
tions, one should use dimensionless probabilities of various kinetic steps. Such probabilities
are introduced by dividing the rate constants of kinetic steps by suitably chosen rate constant,
k∗ which should be equal or larger that the sum of the specific rate constants [38]. The choice
of k∗ is not unique, and accordingly the introduction of the specific probabilities is not unique
either. Often, the convenient choice of k∗ is to set it equal to the sum of the specific rate con-
stants, i.e., to ktot = kr + kc + kd in the model under consideration. Following this line, I define
the specific probabilities as the ratios of kr, kc, and kd to ktot. Then, the algorithm I use is as
follows:

(a) A site located on the whole (main + adjacent) lattice is chosen at random. If this site is on
the main lattice, the following actions depend on its state and are performed as described
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Figure 7. As figure 6 for the MC run with r/ktot = 10−2 (figure 5, filled circles) at
rt = 25 (a), 50 (b), and 75 (c).

in items (b), (c), and (e) below. If this site is on the adjacent lattice, it is considered to be
vacant with probability 1 − θadj or occupied by R with probability θadj, and after identifi-
cation of its state the following actions are performed as described in items (b), (d), and
(e) below.

(b) If the site chosen is vacant or occupied by C, a trial ends.
(c) If the site selected belongs to the main lattice and is occupied by R, steps (6) and (7), or

diffusion jump is realized with probabilities kr/ktot, kc/ktot, and kd/ktot. For diffusion, one
of the nn sites is chosen at random and the jump is performed provided the latter site is
vacant.

(d) If the site selected is adjacent to the main lattice and occupied by R, the diffusion jump is
realized with probability kd/ktot as described in (c).

(e) After each MC trial, the dimensionless MC time is incremented by ΔtMC = |ln(ρ)|/(L +
2)3, where 0 < ρ � 1 is a random number. (The use of |ln(ρ)| is related to the fact that
each kinetic event represents a Poisson process.)

On average, we have 〈|ln(ρ)|〉 = 1, and accordinglyΔtMC = 1 corresponds to (L + 2)3 MC
trials. In the present simulations, as usual, ΔtMC = 1 is identified with one MC step. To con-
vert tMC into real time, t, it should be divided by ktot. Real time is needed if a model is used to
describe/fit real kinetics. My goal is rather to show theoretically general trends in the kinetics.
In the latter case, it is convenient to multiply t by a suitably chosen rate constant. One of the
options which is often employed is to multiply t by ktot, i.e., to use tMC. In the simulations
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Figure 8. MC kinetics of coke removal in a 3D lattice with L = 100: fractions of sites
occupied by reactant (R) and coke (C) are shown as a function of time for r/ktot = 10−3

(open circles) and 10−2 (filled circles). The initial C distribution is with appreciable C
gradients (as exhibited in figure 4(c)).

presented below, the diffusion is fast compared to reaction steps (6) and (7) (this limit is
expected to correspond to reality), and tMC is related primarily to diffusion. In chemistry, the
dimensionless time is, however, customarily associated with reactions. Following this line, I
introduce the rate constant r = kr + kc characterizing steps (6) and (7) and use rt ≡ rtMC/ktot

as the dimensionless time in order to exhibit the results.
MC runs were performed on a 3D lattice with L = 100 and θadj = 0.1. As already men-

tioned, the main lattice was initially (at t = 0) free of R and C. The main reaction (with
kr/r = 0.9) was appreciably faster than the coke formation (with kc/r = 0.1) and much slower
(3 or 2 orders of magnitude) than R diffusion.

Typical MC kinetics of the coke formation or, more specifically, fractions of sites occu-
pied by R and C are shown in figure 2. In terms of the percolation theory, the latter fraction
characterizes, in a lumped way, blocking the lattice sites. The former fraction divided by θadj

characterizes, also in a lumped way, accessibility of sites. Thus, basically, such kinetics charac-
terize the loss of percolation of a pellet by reactant in the context of the interplay of diffusion,
reaction, and coke formation.

The kinetics exhibited (figure 2) were calculated with r/ktot = 10−3 and 10−2. In both these
cases, the kinetics are apparently simple. In particular, the R and C concentration monotonously
decreases and increases, respectively. The percolation threshold is not well manifested. The
effect of percolation on the kinetics is, however, appreciable in both cases and especially for
slower R diffusion (with r/ktot = 10−2). This is manifested in the fact that only a part of the
lattice sites (0.40 for r/ktot = 10−3 and 0.20 for r/ktot = 10−2) is filled by C in the end.

Typical lattice snapshots for the kinetics with faster R diffusion (r/ktot = 10−3) are shown
in figure 3. In terms of the Thiele modulus (equation (2)), r/ktot = 10−3 corresponds to φ 	 1.
This means that the regime of the main reaction is between kinetically and diffusion-limited.
In this case, the gradients in the R and C concentration are nearly negligible in the beginning
(figure 3(a)). In the end, the gradients in the C concentration are observed on the length scale
comparable with the lattice size (figure 3(c)).
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Figure 9. Snapshots of the 100 × 100 cross-section of the main 100 × 100 × 100 lattice
at its middle during the MC run with r/ktot = 10−3 (figure 8, open circles) at rt = 10
(a), 20 (b), and 30 (c). Reactant, R, and coke, C, are shown by filled and open circles,
respectively.

Typical lattice snapshots for the kinetics with slower R diffusion (r/ktot = 10−2) are exhib-
ited in figure 4. In this case, r/ktot = 10−2 corresponds to φ > 1, and accordingly the main
reaction occurs in the diffusion-limited regime. In this case, R and C are distributed primarily
near the lattice boundary.

In the absence of coke, the reactant distributions shown in figures 3 and 4 for a cubically
shaped pellet are qualitatively similar to those predicted analytically (equation (2)) for a spher-
ical pellet. The analytical expression for the reactant distribution in a cubically shaped pellet
(as in the model under consideration) can be obtained as well, but it is cumbersome and not
instructive. In the presence of coke, the corresponding analytical expressions are lacking.

4. MC simulations of coke removal in a pellet

As noticed in section 2, one of the goals of my work was to perform consistent simulations
of coke formation and removal. Following this line, I used the C distributions obtained in the
end of the MC kinetics of coke formation (figures 3(c) and 4(c)) as the initial condition for
simulations of coke removal. The latter process is represented as reaction between R (oxygen)
and C located in the nn sites,

R + C → Ø. (8)
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Figure 10. As figure 9 for the MC run with r/ktot = 10−2 (figure 8, filled circles) at
rt = 10 (a), 30 (b), and 50 (c).

The MC algorithm of these simulations was similar to that described in section 3. The only
difference is that now there is no step (6) whereas step (7) is replaced by (8). The latter step is
realized provided the site chosen is occupied by R. In such cases, one of the nn sites is selected
at random, and if this site is occupied by C, step (8) is realized with probability r/ktot, where
r is the rate constant corresponding to this step, and ktot = r + kd is a sum of the two rate
constants. The simulations were performed on the same lattice (L = 100) as in section 3 with
similar kinetic parameters, θadj = 0.1 and r/ktot = 10−3 and 10−2.

Typical MC kinetics of the coke removal or, more specifically, fractions of sites occupied
by R and C are presented in figures 5 and 8. As already noticed in section 3, the former frac-
tion divided by θadj characterizes accessibility of sites whereas the latter fraction characterizes
blocking the lattice sites. Thus, such kinetics show restoration of percolation of a pellet via
reactant diffusion and reaction with coke.

In particular, the kinetics calculated by using the initial C distribution with weak C gradi-
ents (figure 3(c)) are exhibited in figure 5. Examples of the lattice snapshots corresponding
to the kinetics with the selected values of r/ktot are shown in figures 6 and 7. In both cases,
the dependence of the reaction timescale on R diffusion is rather weak (figure 5). The process
is slow in the beginning as long as it occurs near the lattice boundary (figures 6(a) and 7(a)).
Afterwards, after reducing C concentration near the lattice boundary and increasing R perco-
lation to the central part of the lattice, the process becomes rapid (figures 6(b) and (c) and 7(b)
and (c)).
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For the initial C distribution with appreciable C gradients (figure 4(c)), the results are
shown in figures 8–10. The corresponding kinetics calculated also with r/ktot = 10−3 and
10−2 (figure 8) are qualitatively similar to those exhibited in figure 5. Examples of the lattice
snapshots illustrating these kinetics are given in figures 9 and 10.

5. Conclusion

The studies of percolation occurring in the course of various physical, chemical, or biological
spatio-temporal kinetic processes are just beginning. Herein, I have presented generic coarse-
grained MC simulations of two processes of this category. The first one is coke formation in
the course of heterogeneous catalytic reaction running in a porous pellet with the emphasis
on the case when this reaction is influenced by reactant diffusion in pores. The obtained coke
distributions were used for similar simulations of burning off coke via reaction with oxygen.

Despite its simplicity, the model employed for coke formation is different compared or at
least not fully identical to the already available models (briefly reviewed in section 2). Thus, the
results obtained in the framework of this model are complementary to those published earlier.
The diversity of models in this area is a consequence of the complexity of the process under
consideration.

In the context of the experimental and theoretical studies (briefly reviewed in section 2), the
current simulations of the coke removal are most interesting, because in the earlier studies this
process was described by employing the first-order model [22, 30] or other phenomenologi-
cal analytical models based on the assumption that initially the coke distribution in a pellet is
uniform or that all the porous space is fully filled by coke [36, 37]. These models are not appli-
cable in the cases when the main reaction inducing the coke formation is influenced or limited
by reactant diffusion so that the final coke distribution is not uniform (section 3), and accord-
ingly the initial coke distribution in the process of catalyst regeneration is not uniform either
(section 4). Such regimes are common in practice. The MC simulation presented (section 4)
show the specifics of the spatio-temporal kinetics in this case. In particular, the removal of coke
is predicted to be slow in the beginning, due to blocking of oxygen diffusion near the external
pellet-gas interface and preventing its penetration to the central part of a pellet, and then to
be fast when the pathways for diffusion to the center become to be open. These kinetics are
apparently similar to those predicted by two conventional phenomenological models. One of
them is the classical nucleation and growth model (equation (5) and figure 1). Another more
formal model is based on the axiomatic description of the kinetics by using the temporal power-
low equation, dϕ/dt = −k(1 − ϕ)n, with n > 0. Physically, however, these conventional phe-
nomenological models and the MC model under consideration are completely different. Taken
together, the results presented (especially those shown in section 4) help to form the concep-
tual basis in the area under consideration. The identification of the predicted kinetic features
(section 4) in experiments is now not straightforward because the initial distribution of coke in
reactions influencing by diffusion is still poorly characterized.

Finally, I can articulate that the model employed is qualitatively applicable to pellets with
the bimodal pore-size distribution provided the reactant diffusion is controlled by nanopores
(4–10 nm). If the reactant diffusion in a pellet is globally controlled by large pores (with size
up to ∼10 μm) partly separating heterogeneous regions (of ∼30 μm size) with nanopores, the
model can be applicable to such regions. In the latter case, the apparent kinetics of coke forma-
tion and removal can be appreciably influenced by the distribution of sizes of these regions (by
analogy e.g. with oxidation of nm-sized soot spherules [40]). The model does not, however,
describe the interplay of diffusion via nanopores and large pores. This interplay can be impor-
tant even if the reactant diffusion in a pellet during the main reaction in the absence of coke is
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controlled by nanopores. If these pores are blocked by coke near the external pellet-gas inter-
face, the large pores may be still operative. The corresponding channel of reactant diffusion
towards the center of a pellet can be slow, but at the long timescale it can appreciably influence
the coke distribution in a pellet. The subsequent kinetics of coke removal will be influenced as
well. Such effects merit attention and are expected to be scrutinized in the nearest future both
experimentally and theoretically.
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