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Abstract
We benchmark the quantum processing units of the largest quantum annealers to date,
the 5000+ qubit quantum annealer Advantage and its 2000+ qubit predecessor D-
Wave 2000Q, using tail assignment and exact cover problems from aircraft scheduling
scenarios. The benchmark set contains small, intermediate, and large problems with
both sparsely connected and almost fully connected instances. We find that Advan-
tage outperforms D-Wave 2000Q for almost all problems, with a notable increase
in success rate and problem size. In particular, Advantage is also able to solve the
largest problems with 120 logical qubits that D-Wave 2000Q cannot solve anymore.
Furthermore, problems that can still be solved by D-Wave 2000Q are solved faster by
Advantage. We find, however, that D-Wave 2000Q can achieve better success rates
for sparsely connected problems that do not require the many new couplers present
on Advantage, so improving the connectivity of a quantum annealer does not per se
improve its performance.
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1 Introduction

Quantum annealing is a quantum computing paradigm that relies on quantum fluctu-
ations to solve optimization problems [1–10]. In September 2020, D-Wave Systems
has released a quantum annealer with a 5000+ qubit quantum processing unit (QPU)
called Advantage [11]. This system has more than twice as many qubits as its prede-
cessor D-Wave 2000Q and an increase in qubit connectivity from 6 to 15 by using
the Pegasus topology [12–15]. High expectations have been placed on its computa-
tional power, and first independent studies have become available [16–23]. For such a
rapidly developing technology, it is an important task for independent researchers to
study progress and test new developments.

Conceptually, there are three classes of benchmarks for quantum annealers:

(1) Comparison with detailed real-time simulations of quantum annealing systems
based on solving the time-dependent Schrödinger equation [24, 25] or the time-
dependent master equation [5, 6, 26–30].

(2) Direct QPU benchmarks (including comparison with other quantum annealing
systems and optimization problem solvers) for problems of intermediate size that
may or may not need embeddings and solve either real-world or artificial problems
[11, 31–41].

(3) Benchmarks of hybrid solvers that use a combination of QPUs and CPUs or GPUs
to solve large-scale application problems [12, 18, 42, 43].

The experiments reported in this paper focus on benchmarking the bare QPU perfor-
mance, thus belonging to benchmarking class (2).

We assess the progress in quantum annealing technology by benchmarking both
Advantage and D-Wave 2000Q with exact cover problems. The exact cover problem
is an NP-complete problem [44] that has become a prominent application to study
quantum annealing [45–49] and gate-based quantum computing [50–54]. In our case,
the exact cover problems represent simplified aircraft scheduling scenarios. They are
derived from the tail assignment problem [55] (see [53] for more information), which
belongs to the class of set covering and partitioning problems that is covered in a
tremendous amount of literature on both applications and solution techniques in oper-
ations research (see e.g., [56, 57]). Related aircraft assignment problems on quantum
annealers have been studied in [58–60].

The essence of the present exact cover problems is shown in Fig. 1a. In this case, we
are given 40 flight routes. Each route contains several out of 472 flights. The task is to
find a selection of flight routes such that all 472 flights are covered exactly once. On the
quantum annealer, each route is represented by a qubit. If a route is to be selected, the
corresponding qubit ends up in the state |1〉 after the measurement. Eventually, each
selected route shall be assigned to one airplane. We remark that solving the problem
with a given set of routes is a simplification of the general case.

The difficulty of the problem for a quantum computer can be seen by the following
counting argument: For 40 routes (i.e., 40 qubits), the number of possible selections
is 240 ≈ 1012. For 120 routes (i.e., 120 qubits), which are the largest problems that
are solved in the present benchmark set, the number of selections already grows to
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(a)

(b) (c) (d)

Fig. 1 Visualization of the exact cover problem with 40 logical qubits (instance 0). a Boolean matrix A
defining the exact cover problem instance (see Eq. (13)). For each of the 40 routes, the matrix A indicates
all flights that are covered by this route. The exact cover problem is to find a selection of routes (i.e., a subset
of rows of the matrix A) such that all 472 flights are covered exactly once (meaning that the sum of the
selected rows contains only ones). For this problem, rows belonging to this solution are indicated with blue
boxes. The full solution is given by the ground state |0100001010010101000000101000100000000000〉
(the rightmost qubit corresponds to route 0). (b) Coupler graph of the Ising formulation of this problem
(cf. Eq. (2)), where each nonzero Ji j corresponds to a black line between the 40 qubits. With 711 out of

all
(40
2
) = 780 couplers being nonzero, this problem is almost fully connected (see also Appendix C). A

distribution of the values of the Ising parameters of this problem is shown in (c) for the qubit biases hi
given by Eq. (10) and (d) for the couplers Ji j given by Eq. (11))

1036. Hence, exact cover problems are well suited for benchmarking the Advantage
and D-Wave 2000Q QPUs.

We find that Advantage outperforms D-Wave 2000Q on almost all problems in the
present benchmark set up to 120 logical qubits. Advantage can embed and solve larger
problems. Furthermore, the time-to-solution on Advantage is at least roughly a factor
of two shorter. Advantage scores better success rates for all problems with almost
all-to-all connectivity. Only some problems with a very sparse qubit connectivity have
sometimes higher success rates on D-Wave 2000Q.

The remainder of this paper is structured as follows. In Sect. 2, we describe the
mathematical details associated with the exact cover problems under investigation. In
Sect. 3, we present and discuss the results that Advantage and D-Wave 2000Q have
produced for both small-scale and large-scale exact cover problems. Section 4 contains
our conclusions.

2 Methods

This section presents the mathematical details behind the problems under investiga-
tion and how they are solved on the quantum annealers. We first outline the type of
optimization problems that Advantage and D-Wave 2000Q can solve, including the
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important distinction between physical and logical qubits. Then, we describe the tail
assignment and exact cover problems under investigation, alongwith their formulation
on the D-Wave 2000Q and Advantage QPUs.

2.1 QUBO and Ising problems

TheQPUsproduced byD-WaveSystems are designed to solve binary quadraticmodels
(BQMs), i.e., quadratic optimization problems over discrete variables that can each
take two different values. BQMs are typically formulated as quadratic unconstrained
binary optimization (QUBO) models or Ising models:

QUBO : min
xi =0,1

⎛

⎝
∑

i≤ j

xi Qi j x j + C1

⎞

⎠ , (1)

Ising : min
si =±1

⎛

⎝
∑

i

hi si +
∑

i< j

Ji j si s j + C2

⎞

⎠ , (2)

where the indices i and j range over all qubits. In the QUBO model in Eq. (1), the
problem is defined by the QUBO matrix Q with values Qi j ∈ R, and the binary
problem variables are xi = 0, 1. In the Ising model in Eq. (2), the problem is defined
by the biases hi ∈ R and the couplers Ji j ∈ R, and the problem variables are si = ±1.
An example distribution of hi and Ji j of the problems under investigation is shown in
Fig. 1c and d, respectively.

It is worth mentioning that on the D-Wave QPUs, all problems are internally con-
verted into Ising models and (if the autoscaling feature is on) rescaled by a constant
factor such that hi ∈ [−2, 2] and Ji j ∈ [−1, 1] [61]. (Note that these ranges might be
different for future QPUs.) To convert between QUBO and Ising formulation, we use
the quantum annealing convention (see also [62])

xi = 1 + si

2
, (3)

so that xi = 0 (xi = 1) maps to si = −1 (si = 1). Note that in the literature on
gate-based quantum computing, also the alternative xi = (1− si )/2 is often used [63]
(which would result in a change of sign for the qubit biases, hi �→ −hi ).

The constantsC1 andC2 in Eqs. (1) and (2) do not affect the solution of the problem.
However, they can be used to shift the energy (i.e., the value of the objective function
at the solution). We use it to shift the energy of the ground state to zero so that we can
conveniently determine the success rate by counting all solutions with energy zero.

2.2 Physical and logical qubits

Many problems may require nonzero couplers Qi j or Ji j between different qubits i
and j that do not physically exist on the QPUs. For instance, the 40-qubit problem
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sketched in Fig. 1b has almost all-to-all connectivity. In this case, solving the problem
on a QPU requires the concept of embedding the problem on a QPU.

Conventionally, the qubits that physically exist on a QPU are called physical qubits.
On a D-Wave 2000Q QPU, the 2000+ physical qubits are connected in a Chimera
topology [7]. This means that each physical qubit is connected to 6 other physical
qubits on average. On an Advantage QPU, the Chimera topology has been upgraded
to the Pegasus topology [11]. This means that nearly all of the 5000+ physical qubits
are connected to 15 other physical qubits, increasing the connectivity by a factor of
2.5.

Whenproblems require a larger connectivity thanprovidedby theQPU, the effective
connectivity between the qubits can be increased by combining several physical qubits
into a logical qubit. The QUBO and Ising models in Eqs. (1) and (2) are typically
formulated in terms of such logical qubits, and not the underlying physical qubits. The
physical qubits that form a logical qubit are called a chain. To ensure that physical
qubits within a chain function as a single logical qubit, the couplers Ji j between them
are set to a reasonably large, negative value called chain_strength. If a chain
between two qubits breaks (i.e., if the product of the Ising variables is si s j = −1), a
penalty of 2 × chain_strength is added to the energy.

We define the chain_strength in terms of the relative chain strength
RCS ∈ [0, 1] according to

chain_strength = RCS × max_strength, (4)

where max_strength = max
({|hi |} ∪ {∣∣Ji j

∣∣}) is the maximum absolute value of
all hi and Ji j . For instance, for the problem sketched in Fig. 1, max_strength
would be 119.5.

An embedding is amapping from each logical qubit to a chain of physical qubits. An
important property of embeddings are the chain lengths. In our experience, embeddings
with too large chains may result in a poor quality of the solutions produced by a QPU.
In Appendix C, we provide more details on the specific chains encountered in the
embeddings (see Fig. 7).

The D-Wave Ocean SDK [64] provides algorithms to automatically generate qubit
embeddings with a given value for chain_strength. Still, when using a QPU,
finding and characterizing embeddings is an important step and may considerably
affect the quality of the solution. For this reason, as part of the present benchmark,
we systematically investigate different embeddings and relative chain strengths in
Sect. 3.1.

Note that the Pegasus topology is an extension of the Chimera topology, so that a
Chimera graph can be natively embedded in a Pegasus graph (see Appendix B and
also [18]). We made use of this relation for the experiments presented in Appendix B.
For all other experiments, the embeddings onto the Chimera and Pegasus topologies
were generated independently using the D-Wave Ocean SDK.
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2.3 Tail assignment problem

The problem instances considered in this work are derived from the tail assignment
problem [55]. The tail assignment problem is a fundamental component of aircraft
assignment problems, i.e., the problem of assigning flights to individual airplanes,
identified by their tail number. The objective is to minimize the overall cost subject to
certain constraints such as minimum connection times, airport curfews, maintenance,
and preassigned activities. The general role of tail assignment problems in aircraft
scheduling and their relation to the column generation technique [65] and the branch-
and-price algorithm [66] is described in detail in [53].

We consider a simple form of the tail assignment problem given by

minimize
R−1∑

r=0

cr xr , (5)

subject to
R−1∑

r=0

Ar f xr = 1 ∀ f = 0, . . . , F − 1, (6)

where r = 0, . . . , R − 1 enumerates all flight routes, f = 0, . . . , F − 1 enumerates
the flights, xr ∈ {0, 1} are the Boolean problem variables with xr = 1 if route r is to be
selected, cr is the cost of selecting route r , and A ∈ {0, 1}R×F is the Boolean problem
matrix with Ar f = 1 if flight f is contained in route r (see Fig. 1a for an example
of the matrix A). Further models for the tail assignment problem can be found in [51,
53, 55, 60].

A BQM version of the tail assignment problem given by Eqs. (5) and (6) is

min

x∈{0,1}N

(
λ
cT 
x +

(
AT 
x − 
b

)2)
, (7)

where the number of qubits N = R is given by the number of flight routes, 
c =
(c0, . . . , cR−1)

T contains the costs, and 
b = (1, . . . , 1)T is an F-dimensional vector
of ones. Note that the scaling factor λ in Eq. (7) is the inverse of the penalty multiplier
that would determine the scale of the constraint A
x = 
b in Eq. (6). It was put in front of
the objective function 
cT 
x so that the exact cover version of the problem corresponds
to λ = 0 (see Sect. 2.4).

We obtain the QUBO formulation of the tail assignment problem by multiplying
out the square in Eq. (7) and collecting all terms into the general QUBOmodel Eq. (1).
An outline of the calculation is given in Appendix A. After doing this, we can read
off the entries of the QUBO matrix as

Qi j =
{

(2AAT )i j (i < j)

(AAT )i i − (2A
b)i + λci (i = j)
, (8)

C1 = 
bT 
b. (9)
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Note that the qubit indices i, j ∈ {0, . . . , N − 1} correspond to the previous route
index r ∈ {0, . . . , R − 1}.

Finally, the Ising formulation of the tail assignment problem is found by using
Eq. (3) to replace the qubit variables xi by spin variables si in the QUBO model
Eq. (1). After collecting linear, quadratic, and constant terms, we find the expressions
for the coefficients of the Ising model Eq. (2):

hi =
∑

j

1

2
(AAT )i j − (A
b)i + 1

2
λci , (10)

Ji j = 1

2
(AAT )i j , (11)

C2 = C1 +
∑

i< j

1

2
(AAT )i j

+
∑

i

1

2
((AAT )i i − (2A
b)i + λci ). (12)

These expressions hold for general values of A and 
b. (Details on the calculation can
also be found in Appendix A.) A characteristic distribution of the biases hi and the
couplers Ji j is shown in Fig. 1c and d, respectively.

2.4 Exact cover problem

The exact cover problem is an NP-complete set partitioning problem [44]. In matrix
form, it can be written as

min
xr =0,1

F−1∑

f =0

(
R−1∑

r=0

Ar f xr − 1

)2

, (13)

and its purpose can be directly understood from Fig. 1a: The selection of routes (i.e.,
rows) with xr = 1 has to be such that each flight f in the problem matrix A is covered
exactly once.

The exact cover problem corresponds to the feasibility version of the tail assignment
problem given by the sole constraints in Eq. (6), without the objective function in
Eq. (5). Formally, the exact cover problems are obtained by setting λ = 0 in Eq. (7),
which yields Eq. (13).

Hence, theQUBO(Ising) coefficients of the exact cover problemare givenbyEq. (8)
(Eqs. (10) and (11)) for λ = 0 (see also [47]). Note that the explicit expressions for
the constants in Eqs. (9) and (12) are not relevant for the solution of the problem on
the quantum annealer. However, it is convenient to add them to the resulting energies
to ensure that the energy minimum is zero, because then we can determine the success
rate by counting the occurrences of samples with energy zero.

Theproblemshavebeengeneratedusing the columngenerationmethodas described
in detail in [53]. Additional properties of the exact cover problems, including the

123



  141 Page 8 of 22 D. Willsch et al.

Fig. 2 Success rates for exact
cover problems with 30–40
qubits (instance 0) as a function
of the relative chain strength
(bottom axis) on a D-Wave
2000Q and b Advantage with
default annealing time 20μs.
The scan of the relative chain
strength is repeated for 10
different, randomly generated
embeddings (represented by
different colors) and with 10
repetitions each to gather
statistics. Markers indicate the
corresponding standard
deviation above and below the
mean. Filled areas between the
markers are guides to the eye.
The curves for the success rates
as a function of the RCS are
representative of the other
problem instances 1, 2, and 3
characterized in Appendix C

(a) (b)

number of logical couplers and physical qubits used in the generated embeddings, can
be found in Appendix C.

3 Results

In this section, we present the benchmark results for Advantage and D-Wave 2000Q.
We first consider small and intermediate exact cover problems with 30–40 logical
qubits and almost full connectivity, with a focus on comparing different embeddings
and annealing times. Then, we proceed to large exact cover problems with up to 120
logical qubits, with a focus on the success rate and the time that it takes the QPUs
to solve the problems. We note that all considered problem sizes, although large for
current quantum annealers, are still small for classical solvers and can be solved
within a few minutes using, for instance, a linear programming solver. For the sake
of completeness, we also present results for tail assignment problems with λ �= 0
(cf. Eq. (7)) in Appendix D.

The experiments reported in this section were performed in August and Septem-
ber 2020 using the solver DW_2000Q_VFYC_6 for D-Wave 2000Q and the solvers
Advantage_beta and Advantage_system1.1 for Advantage. We stress that
the goal of the present study was to compare the different QPUs under equivalent

123



Benchmarking advantage and D-Wave 2000Q... Page 9 of 22   141 

Fig. 3 Success rates as a
function of the annealing time
on a D-Wave 2000Q and b
Advantage, averaged over 10
repetitions. Different markers
indicate different problem
instances: 0 (markers with error
bars), 1 (pluses), 2 (crosses), 3
(circles). For each instance, the
runs in each panel are performed
with the same embeddings and
relative chain strengths,
characterized in Fig. 7 in
Appendix C. For instance 0
(highlighted in color), these
parameters correspond to the
best configuration of the
corresponding panel in Fig. 2.
Additionally, for instance 0, the
standard deviation from the 10
repetitions is indicated by the
filled areas between the error
bars

(a) (b)

conditions. For this reason, we did not make use of any post-processing features to
solely improve the quality of the results. Unless otherwise stated, all QPU settings
were left at their default values.

3.1 Densely connected problems with 30–40 qubits

The problems with N = 30, 32, 34, 36, 38, 40 qubits and almost full connectivity
(cf. Appendix C) are exact cover problems from aircraft scheduling scenarios with
472 flights. Each qubit represents a flight route that contains some of the 472 flights
(cf. Fig. 1). We remark that by construction, the ground state of each problem instance
is unique and contains 9 qubits in state |1〉. We obtain the success rate by counting the
number of samples with energy zero. (Note that the value of the constant Eq. (12) can
be used to shift the energy accordingly.)

3.1.1 Characterizing embeddings and chain strengths

For each problem with N = 30, 32, 34, 36, 38, 40 qubits, we generate 10 different
embeddings on both D-Wave 2000Q and Advantage. For each embedding, we scan
the RCS (cf. Eq. (4)). The results are shown in Fig. 2.
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We see that the results on Advantage (Fig. 2b) are generally much better than on
D-Wave 2000Q, especially for larger problems. The reason for this is that the 30–40
qubit problems are almost fully connected (cf. Figs. 1b and 6). Hence, in such cases,
the user can clearly profit from the much larger connectivity between qubits on the
Pegasus topology.

This observation is in line with the fact that the chains on Advantage for the same
problem are much shorter (see Fig. 7b). We also see that for increasing problem size,
generating multiple embeddings and tuning the chain strengths is crucial to obtain
good results when using the bare QPUs.

3.1.2 Varying the annealing time

Next, we study the influence of the annealing time on the success rate. The reason
is that for a quantum annealer, the annealing time is a central parameter with an
expectable influence on the success rate: From the adiabatic theorem [67], comparably
long annealing times are expected to lead to reasonable success rates. Given that the
system is not completely isolated from an environment, however, long annealing times
may lead to an increasing influence of noise on the system and thus in fact degrade
the performance. Therefore, experiments beyond the default annealing time are vital
for reliable benchmarks of quantum annealers.

We first select the best embedding and relative chain strength for each problem,
based on the results from the previous section. For problem instance 0, for example,
this configuration corresponds to the position of the peaks in each panel in Fig. 2.
For the selected configuration, we then replace the default annealing time of 20μs
by 20 different, logarithmically spaced annealing times in the QPU annealing time
range [1μs, 2000μs]. The results for the 30–40 qubit problems and all four problem
instances are shown in Fig. 3.

Comparing D-Wave 2000Q and Advantage, we can make the following observa-
tions: First, Advantage reaches highermaximumsuccess rates, typically for the longest
annealing time. Second, the success rates onAdvantage are already reasonable for short
annealing times. This means that Advantage is typically faster than D-Wave 2000Q
(see also the comparison of QPU access times in Fig. 4b in the following section).
Finally, the fluctuations over 10 repetitions are smaller on Advantage (see the filled
areas in Fig. 3). We note that this observation also holds for the three instances whose
statistics are not indicated in Fig. 3 (gray markers). Thus, we conclude that Advantage
shows a demonstrable advantage over D-Wave 2000Q.

3.2 Large problems with 50–120 qubits

In this section, we consider exact cover problems of a larger size with 50 to 120
logical qubits. The goal is to assess the performance of the QPUs for larger but more
sparsely connected problem instances. For each problem size, we consider six problem
instances. Each corresponds to an aircraft scheduling problem of the type sketched in
Fig. 1a with 535 flights. As before, the ground state of these exact cover problems is
unique and known. It has 40 qubits in state |1〉.
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(a)

(b)

Fig. 4 Solution of exact cover problems with 50–120 logical qubits on both D-Wave 2000Q (yellow) and
Advantage (blue). Shown are (a) the success rate as a function of the number of logical qubits and (b) the
QPU access time (which mainly consists of programming, annealing, and readout times [68]) . Different
markers indicate different problem instances: 0 (crosses), 1 (squares), 2 (circles), 3 (up-pointing triangles),
4 (down-pointing triangles), 5 (diamonds). The embedding and the relative chain strength for these runs
was selected using the same procedure as in Sect. 3.1

These large problems require many more physical qubits so that their embedded
versions can occupy a large part of the QPUs. For this reason, the success rates may be
smaller, and especially D-Wave 2000Q may not be able to solve the largest problems
anymore.

Indeed, as Fig. 4a shows, only Advantage can solve five out of the six 120 qubit
instances. The success rates for the 80 and 100 qubit instances are comparable for
D-Wave 2000Q and Advantage. Only for the 50 and 60 qubit instances, we see that
D-Wave 2000Q yields sometimes better success rates than Advantage.

The reason for this can be understood by studying the number of couplers required
for these problems: As shown in Fig. 6 in Appendix C, the 50 and 60 qubit problems
need comparably little couplers, so they have a sparser connectivity. Therefore, many
of the physical couplers present in the Pegasus topology onAdvantage are not required.
In other words, the problems can already be embedded well enough on the Chimera
topology. This observation is in line with a similar observation for Advantage reported
in [18].

We conjecture that in this case, the additional unused connections between qubits
onAdvantagemay disturb the annealing process (additional experimental evidence for
this conjecture is given inAppendixB), because even if they are not used, they still exist
physically. The reason for our conjecture lies in a well-known physical mechanism:
If two subsystems of a larger system are coupled, the system’s Hamiltonian contains
a corresponding interaction term. For flux qubits manufactured by D-Wave Systems,
this interaction is often mediated by tunable interqubit inductive couplers [5]. Such an
interaction is always on, due to the existence of a physical link between the subsystems,
even if its scale is very weak or if the coupler is “programmed to zero.” During
the time evolution (which may take comparably long for an annealing process), the
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wave function of the system typically develops an error over time, which may have a
detrimental impact on the function of a quantum computer. The effect can be easily
observed for a system of coupled spins, for example the NMR quantum computing
system [69]. Furthermore, it can also be found in superconducting qubit systems; see,
e.g., the cross talk experiment in [70], the performance of two-qubit gates mediated
by a coupler such as the resonator in [71] or the flux-tunable transmon in [72], or
the theoretical study on Z Z couplings in [73]. We leave a detailed simulation of the
present system for future research.

Finally, the large problems may require more time on the QPUs, so that they are
well suited to compareQPU run times betweenD-Wave 2000Q andAdvantage. Unless
mentioned otherwise, the same number of reads and annealing times have been used
for D-Wave 2000Q and Advantage to ensure a fair comparison. The timing results are
shown in Fig. 4b.

For 50–80 qubits, the annealing time is less than or equal to 20μs, so for 1000
reads it does not make up a significant fraction of the QPU access time. Under these
conditions, we see that D-Wave 2000Q still needs at least twice as long to solve the
problem. Thus, we infer that it is a speedup in programming and readout times [68]
that make Advantage faster than D-Wave 2000Q.

For problems with 100 and 120, the annealing time needs to be significantly
increased to find the ground state, which is visible in the QPU access times. For
instance, problem instance 5 for 100 qubits on D-Wave 2000Q (the single yellow
diamond at 100 qubits in Fig. 4b) corresponds to an annealing time of 200μs. The
same annealing time is required for problem instances 1, 2, 3, and 5 for 120 qubits
on Advantage (the blue cluster at 120 qubits in Fig. 4b). Still, Advantage solves these
problems faster than D-Wave 2000Q solves the corresponding 100 qubit problem.
Only instance 4 for 120 qubits stands out (the blue down-pointing triangle in Fig. 4b):
Here, an annealing time of 2000μs was required to find a solution. In order not to
exceed the maximum run time on Advantage, the number of reads was reduced to 400.
Thus, 400× 2000μs = 0.8 s makes up the largest part of the QPU access time in this
case.

4 Conclusion

In this paper, we have benchmarked the performance of the 2000+ qubit quantum
annealer D-Wave 2000Q and the 5000+ qubit quantum annealer Advantage. The
benchmark suite consists of intermediate and large exact cover problems from air-
craft scheduling scenarios with both sparse and dense logical qubit connectivity.

We observed a considerable increase in performance on Advantage. First, Advan-
tage was able to solve exact cover problems with up to 120 logical qubits that were
unsolvable on D-Wave 2000Q. Second, the success rates produced by Advantage were
almost always higher. Third, Advantage is approximately twice as fast as D-Wave
2000Q in terms of both programming and readout times. Additionally, the required
annealing times to solve a problem on Advantage are often shorter. Finally, the fluc-
tuations in success rates over several repetitions on Advantage were smaller.
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A large part of the increase in performance can be attributed not only to the larger
number of physical qubits, but rather to the increase in qubit connectivity: Every
qubit in the Pegasus topology is connected to 15 other qubits, as compared to 6 other
qubits in the Chimera topology used in D-Wave 2000Q. We observed chain lengths in
the embeddings that were roughly smaller by a factor of two. We could only observe
better performance onD-Wave2000Q for problemswith very sparse qubit connectivity
or when using the same embedding on D-Wave 2000Q and Advantage. The sparse
problems could already be well embedded on the Chimera topology. We conclude that
increasing the number of couplers does not necessarily improve the performance of
a quantum annealer. Instead, whether an improvement or a degradation is observed
depends on the connectivity of each problem instance. On the one hand, increasing
the number of couplers allows to embed bigger problem instances, and it may also
reduce the required chain length and thus the chain strength. On the other hand, we
observed that if only a few couplers are needed, it may be better to use a processor
with lower connectivity (see also [18]).

We also observed that, when the same embedding is used on the D-Wave 2000Q
processor with connectivity 6 and the Advantage processor with connectivity 15, the
results on the D-Wave 2000Q processor are significantly better (see Appendix B), sug-
gesting that the additional couplers introduce additional noise if they are not needed.
In particular, this supports the conclusion that for our experiments, the better embed-
dings (and not a reduced noise level) are the reason for the improved performance of
Advantage over D-Wave 2000Q. Thus, a higher connectivity only yields an advantage
if the embedding of the problem can actually be improved. An interesting project for
future work would be a systematic study of the question whether, for a given embed-
ding, there is some “minimal improvement” required to overcome the influence of
additional unused couplers to also yield an improvement in the success probability.

When using the bare QPUs, it is essential to scan several embeddings and chain
strengths to find optimal results. Furthermore, it is important to tune the annealing time.
We note that besides the bare QPUs, we have also submitted all exact cover problems
of our benchmark set to D-Wave’s hybrid solver services, which use a combination
of QPUs and classical solvers to solve much larger problems [12]. All exact cover
problems could be solved by the hybrid solvers hybrid_v1 (using D-Wave 2000Q)
and hybrid_binary_quadratic_model_version2 (using Advantage) on
September 14, 2020. See [18] for more detailed benchmarks of the hybrid solvers
with problems of up to 12000 variables.

Our benchmark study confirms the consistent increase in both size and performance
of quantum annealers over the past years. For the future, it is an interesting question
whether D-Wave Systems will prove capable of keeping up the steep progress of
doubling qubit numbers and increasing performance and qubit connectivity at the
same time.
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Appendix A: Derivation of QUBO and Isingmodels

In this appendix, we outline the derivation of theQUBO and Ising coefficients from the
BQM in Eq. (7) for the tail assignment and exact cover problems under investigation.

To obtain the QUBO formulation, we first multiply out the square in Eq. (7),

(
AT 
x − 
b

)2 =
(

AT 
x − 
b
)T (

AT 
x − 
b
)

(A1)

= 
xT AAT 
x − 
bT AT 
x − 
xT A
b + 
bT 
b (A2)

=
∑

i j

xi (AAT )i j x j −
∑

i

(2A
b)i xi + 
bT 
b. (A3)

After splitting the first sum into three parts,
∑

i j = ∑
i< j +∑

i> j +∑
i , and exchang-

ing i ↔ j in the second part (since the matrix AAT is symmetric), we obtain the upper
triangular coefficients of the QUBO matrix, Qi j = (2AAT )i j for i < j , and the first
part of the diagonal coefficients (AAT )i i . The second sum in Eq. (A3) yields, after
using xi = xi xi , the remaining part of the diagonal coefficients. The last term yields
the constant contribution to the QUBO model. Combining this with the linear term
λ
cT 
x in Eq. (7), we obtain all coefficients of the QUBO model

∑
i≤ j xi Qi j x j + C1,

Qi j =
{

(2AAT )i j (i < j)

(AAT )i i − (2A
b)i + λci (i = j)
, (A4)

C1 = 
bT 
b = F . (A5)
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To obtain the coefficients hi and Ji j of the corresponding Ising model, we replace
the qubit variables by spin variables, xi = (1 + si )/2 (cf. Eq. (3)),

∑

i≤ j

xi Qi j x j =
∑

i≤ j

(1 + si )

2
Qi j

(1 + s j )

2
(A6)

=
∑

i< j

(1 + si )

2
(2AAT )i j

(1 + s j )

2
+

∑

i

(1 + si )

2
((AAT )i i − (2A
b)i

+ λci )
(1 + si )

2
(A7)

=
∑

i< j

1

2
(AAT )i j si +

∑

i> j

1

2
(AAT )i j si +

∑

i

1

2
(AAT )i i si

−
∑

i

(A
b)i si +
∑

i

1

2
λci si (A8)

+
∑

i< j

1

2
(AAT )i j si s j (A9)

+
∑

i< j

1

2
(AAT )i j +

∑

i

1

2
((AAT )i i − (2A
b)i + λci ), (A10)

where we used that the matrix AAT is symmetric and that s2i = 1. Note that this
calculation does not make use of prior knowledge about the values of A and 
b.

We can then identify the coefficients of the Isingmodel
∑

i hi si +∑
i< j Ji j si s j +C2

as

hi =
∑

j

1

2
(AAT )i j − (A
b)i + 1

2
λci , (A11)

Ji j = 1

2
(AAT )i j , (A12)

C2 = C1 +
∑

i< j

1

2
(AAT )i j +

∑

i

1

2
((AAT )i i − (2A
b)i + λci ). (A13)

Appendix B: Additional experiments for the conjecture about unused
couplers

Based on the results for the sparse 50–120 qubit problems presented in Fig. 4, we
formulated the conjecture that the additional couplers physically present onAdvantage
may disturb the results if they are not needed. One might wonder whether the effect
could be mitigated by using logical chains with redundant physical qubits in the
embeddings.

To provide additional support for our conjecture from the dense 30–40 qubit prob-
lems, we perform the following experiments: We take the best Chimera embedding
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Fig. 5 Additional experiments to study the conjecture about unused couplers. Shown are the maximum
success rates found for each embedding and relative chain strength, using the best Chimera embedding
on D-Wave 2000Q (yellow squares), the same Chimera embedding but used on Advantage (blue crosses),
and the best Pegasus embedding on Advantage (green circles). Additionally, for “Chimera on Advantage,”
solid blue circles and error bars indicate the mean and standard deviation, respectively, over all different
positions where the Chimera embedding can be placed on the Pegasus graph of Advantage (i.e., over all
possible values of �x , �y, and z in Eq. (B1))

found for D-Wave 2000Q (for problem instance 0, these correspond to the maxima in
Fig. 2a) and use this same embedding to solve the problem on Advantage.

Since the Pegasus graph on Advantage is quite large, it can embed the Chimera
subgraphs in several different places (cf. Fig. 2 in [18]). We run experiments for
all possible relative displacements �x ∈ {−15, . . . , 15}, �y ∈ {−15, . . . , 15}, and
z ∈ {0, 1, 2} that generate valid embeddings. Physical qubits qC ∈ {0, . . . , 2048− 1}
on the Chimera graph are mapped to physical qubits qP ∈ {0, . . . , 5760 − 1} on the
Pegasus graph using the formula

qP = 60 + 180x + y + 60z

+ 15(qC mod 4) +
{
0 (if qC mod 8 = 0, 1, 2, 3)

3060 − 179(x − y) − 120z (if qC mod 8 = 4, 5, 6, 7)
,

(B1)

where x = (qC mod 128)/8� + �x , y = qC/128� + �y, and z = 0, 1, 2 denote
the corresponding unit cell within the graphs. (This formula has been obtained by
comparing and relating the different physical qubit labels on D-Wave 2000Q and
Advantage; the same result can also be achieved using tools from D-Wave NetworkX
[74].)

The results are shown in Fig. 5. For each valid embedding, we scan the relative
chain strengths (analogously to Fig. 2). We only consider results for the best relative
chain strengths found for each embedding. As expected from Fig. 2, the best Pegasus
embeddings on Advantage (green circles) outperform the best Chimera embeddings
onD-Wave 2000Q (yellow squares). However, theChimera embeddings onAdvantage
(blue crosses) perform significantly worse than onD-Wave 2000Q. In particular, as the
blue circles with error bars show, this worse performance is independent of (�x ,�y,z),
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Fig. 6 Number of logical couplers required for the exact cover problems in the present benchmark set.
The intermediate problems with 30–40 qubits contain 4 different problem instances for each problem size
(left). The large problems with 50–120 qubits contain 6 different problem instances (right). Note that after
the embedding, the numbers of physical qubits and couplers required on the QPUs may be much larger
(cf. Fig. 7a)

i.e., independent of where the Chimera embeddings are placed on the larger Pegasus
graph.

We draw two conclusions from these results: First, the better overall performance on
Advantage can be tied most strongly to the improved connectivity of the device, which
causes the best embeddings to have much shorter chain lengths (cf. Fig. 7b). Second,
when the same embeddings (and thus the same chains) are used on both devices,
the main difference lies in the many additional unused physical qubits coupling to the
chains. Therefore, the significantly worse performance shown in Fig. 5 provides direct
support for the conjecture that the extra couplers on Advantage can negatively impact
the performance if they are not needed.

Appendix C: Exact cover problem details

In this appendix, we provide details on the exact cover problems used in the present
benchmark set. For each problem instance, Fig. 6 shows the number of couplers
required between the qubits. Note that the 30–40 qubit problems require almost all-
to-all connectivity.

In Fig. 7, we provide details on the generated embeddings for the intermediate
30–40 qubit problems. In Fig. 7a, we list the number of physical qubits required in the
embeddings on D-Wave 2000Q and Advantage. As these problems require almost full
connectivity, the number of physical qubits is much larger than the number of logical
qubits, especially on D-Wave 2000Q. We see that D-Wave 2000Q needs more than
twice as many physical qubits, but also the slope as a function of the logical qubits is
steeper. This is reasonable as also the number of logical couplers increases (cf. Fig. 6),
and with sparser connectivity on the Chimera topology, more physical qubits need to
be chained into a logical qubit.

This trend is also visible when looking at the chain lengths shown in Fig. 7b: While
the chains on Advantage stay almost constant for increasing problem sizes, the chains
onD-Wave 2000Qgrow longer on average. Especially for 40 qubits, chains onD-Wave
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(a)

(b)

(c)

Fig. 7 Details on the optimal embeddings found for the intermediate exact cover problems with N =
30, 32, 34, 36, 38, 40 logical qubits on D-Wave 2000Q (yellow) and Advantage (blue). For each N , the
four problem instances 0, 1, 2, and 3 are shown from left to right on the bottom axes. (a) Number of
physical qubits needed for the best embeddings; (b) lengths of the corresponding physical qubit chains
(cf. Sect. 2.2), where the markers with error bars indicate the mean and the standard deviation, and crosses
indicate the maximum chain lengths; (c) optimal relative chain strengths, taken from the positions of the
corresponding peaks in Fig. 2

2000Q can be up to 19 physical qubits long. Such chains are almost always broken
and may lead to a wrong value for the logical qubit that they represent (cf. Sect. 2.2).

In Fig. 7c, we plot the relative chain strengths that produced the best results. For
each N = 30, 32, 34, 36, 38, 40, the first point (instance 0) corresponds to the peak
with the optimal success rate in the corresponding panel in Fig. 2.

Appendix D: Tail assignment problems with � �= 0

The tail assignment problem introduced in Sect. 2.3 contains an objective function that
represents the cost associated with each flight route (cf. Eq. (5)). Depending on the
magnitude of these cost terms, the multiplier λ in the BQMversion of the problem (see
Eq. (7)) has to be adjusted to put a reasonable weight on the objective function with
respect to the constraints. Therefore, we test several values of λ for a 25-qubit problem.
For each λ, we generate 10 embeddings (cf. Sect. 2.2) and evaluate the success rate
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(a) (b)

(d)(c)

Fig. 8 Success rates for the tail assignment problem on D-Wave 2000Q (filled markers) and Advantage
(unfilled markers) as a function of the relative chain strength RCS given by Eq. (4) (see legend). Each run
is performed for 10 different embeddings (bottom axis). For a given embedding, the markers indicate the
mean and the standard deviation for 10 repetitions using the same embedding. The formulation of the tail
assignment problem given by Eq. (7) for 25 qubits is solved for decreasing values of the scaling factor (a)
λ = 10−5, (b) λ = 5 × 10−6, (c) λ = 10−6, (d) λ = 2 × 10−7

on D-Wave 2000Q and Advantage. The unique ground state was found using both a
linear program solver and exact enumeration of all 225 states on a GPU. We remark
that the 25-qubit tail assignment problem solved in this section is the same problem
that was investigated as the largest problem instance in [51].

The results as a function of the embedding are shown in Fig. 8. We see that for
relatively large λ, the success rates for D-Wave 2000Q fluctuate strongly as a function
of the embedding. In such cases, it may become possible to violate some of the con-
straints to obtain a better value of the objective function (cf. Eq. (7)). However, as λ

approaches zero (Fig. 8b–d) and the problem approaches its exact cover version, most
embeddings yield the optimal solution with unit probability, especially on Advantage
(unfilled markers).
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