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Abstract

The microresonator comb (microcomb) is a laser source that generates
equally spaced coherent lines in the spectral domain. Having a chip-scale
size and the potential of being low cost, it has attracted attention in
multiple applications. Demonstrations have included high-speed optical
communications, light detection and ranging, calibrating spectrographs
for exoplanet detection and, optical clocks. These experiments typically
rely on the generation of a dissipative Kerr soliton (DKS) — a tempo-
ral waveform that circulates the microresonator without changing shape.
However, these DKS states have thus far been limited in certain tech-
nical aspects, such as energy efficiency, which are essential for realizing
commercial microcomb solutions.

This thesis studies the dynamics of DKSs in microresonators aiming
at developing a reliable and high-performing microcomb source. The
investigation will cover DKSs found both in the normal and anomalous
dispersion regime of silicon nitride microresonators. The performance
of microcombs in terms of line power is numerically explored in single-
cavity arrangements for telecommunication purposes. DKSs generated
in linearly coupled microcavities are investigated, revealing exotic dy-
namics and improved performance in terms of power efficiency and DKS
initiation. These studies facilitate reliable energy-efficient microcombs,
bringing the technology a step closer to commercial use.

Keywords: nonlinear optics, dissipative solitons, dissipative Kerr soli-
tons, microresonators, microcombs, optical frequency combs
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Chapter 1

Introduction

In 2005, John L. Hall and Theodore W. Hänsch shared half of the Nobel
prize in physics for their contributions to precision spectroscopy [1, 2].
Their work in the late 90s and early 2000s would lead to dramatic im-
provements to atomic clocks [3,4], but a key element to their success was
the development of an optical frequency comb (OFC).

In contrast to the continuous wave (CW) laser, which outputs light
at a single discrete frequency, an OFC is a laser source that outputs
a discrete series of equally spaced lines in the frequency domain [5].
A critical feature of these comb lines is that they have a fixed phase
relationship with each other. As such, they typically correspond to a
train of optical pulses in the time domain, with a repetition rate (frep)
equal to the comb line separation. The absolute optical frequency of each
comb line (fn) is represented by fn = nfrep + fceo, where fceo stands for
carrier-envelope offset frequency, caused by a constant phase slippage
between consecutive pulses. Thus, the absolute frequency of each comb
line can be determined if both frep and fceo are known.

While frep is usually easily measured as a radio frequency (RF) beat-
note between comb lines, measuring fceo comprises a considerable chal-
lenge, which was one of the main achievements of the Nobel awarded
OFC. It required an octave-spanning comb spectrum, accomplished by
broadening a mode-locked laser (MLL) via the Kerr effect in a highly
nonlinear fiber (HNLF). By implementing a self-referencing technique,
the fceo of the octave-spanning comb was made available as an RF beat-
note [6] such that the absolute frequency of each comb line could be
determined and stabilized with remarkable precision. Utilizing the comb
lines as a series of optical references, this enabled the determination of
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Chapter 1. Introduction

optical frequencies with orders of magnitude higher precision and lower
hardware complexity compared to previous technologies, facilitating the
development of optical clocks [7].

The research field of OFCs has since expanded at an incredible rate.
OFCs are now studied within multiple application domains, e.g. as an
astrocomb [8], where a spectrograph calibrated with an OFC captures the
Doppler shift of stars for exoplanet detection; for dual-comb spectroscopy
[9], a technique useful both for spectroscopy and light detection and
ranging (LIDAR) where two OFC combs are used to map an optical
spectrum onto a narrower RF spectrum; in RF photonics [10], e.g. to
generate low noise microwave signals; and in optical telecommunications
[11], replacing multiple CW lasers for carrier generation and enabling
enhancements in terms of spectral efficiency and signal processing. Note
that the need for self-referencing, and the optimal comb characteristics in
general, varies on a case by case basis. For example, atomic clocks require
self-referencing with high stability and an octave-spanning spectrum [6,
12]. In contrast, optical telecommunications require a relatively narrow
and flat spectrum with high line power [11].

Different sources can be employed as an OFC. One is the MLL, which
generates synchronized optical pulses by periodically introducing absorp-
tion to a laser cavity, where the line spacing of the generated OFC is de-
fined by the length of the laser cavity [13]. Having existed since the early
60’s [14], the MLL is well established and commercially available. The
electro-optic comb (EOC) is another OFC source which is easily assem-
bled using commercially available components primarily developed for
telecommunications. It is generated by modulating a CW laser with an
RF tone via electro-optic modulation (EOM), typically using a cascade
of phase and intensity modulators [15]. It is flexible in terms of tunabil-
ity since the center frequency can be changed by tuning the wavelength
of the laser and the line spacing can be changed by tuning the frequency
of the RF tone. The spectrum can be broadened to an octave in a highly
nonlinear fiber, but excess phase noise originating from the RF clock
is often an obstacle for self-referencing. Recent experiments have over-
come this obstacle by filtering the lines of the EOC in an optical cavity,
achieving self-referencing at a stability comparable to the MLL [16,17].

With the MLL and the EOC readily available as table-top solutions,
an increasing effort has been spent on realizing chip-scale OFCs [18].
Such devices promise a dramatic reduction in size with co-integration of
other optical components at a potential low cost, e.g. by using fabrication
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methods compatible with complementary metal–oxide–semiconductor
(CMOS) processes [19]. Miniaturization enables new opportunities, es-
pecially in settings outside of the laboratory. While progress has been
made in making chip-scale MLLs [20] and EOCs [21], another prominent
candidate is the microresonator frequency comb (microcomb) [22,23].

First demonstrated in the mid 2000s [24, 25], the microcomb is gen-
erated in a microresonator by employing the Kerr effect to convert input
power from a CW laser to other comb lines [26]. The generated lines are
confined to the resonances of the cavity, where four-wave mixing (FWM)
allows energy transfer to evenly spaced and coherent comb lines. Such
dynamics are in fact not limited to microresonators since larger scale
cavities, such as optical fiber resonators, can also feature Kerr frequency
comb generation [27, 28]. A thorough investigation into the physics of
Kerr nonlinear resonators has led to the realization of coherent micro-
combs exhibiting several distinct intra-cavity waveforms in the form
of dissipative Kerr solitons (DKSs). Among those are the anomalous
DKSs [28, 29] and soliton crystals [30], both found in anomalous dis-
persion cavities, but also the less known normal DKS (sometimes called
mode-locked dark pulse), found in normal dispersion cavities [31]. These
waveforms have been used for microcomb demonstrations in applica-
tions [22], such as optical clocks [32], optical telecommunication [33–35],
dual-comb spectroscopy [36, 37], distance range measurements [38, 39]
and astrocombs [40].

Tremendous improvements have been made in the integration of mi-
crocombs over the last years, with DKSs demonstrated in multiple ma-
terial platforms [19], such as LiNbO3 [41], Si3N4 [42, 43], SiO2 [44] and
AlN [45]. Recent efforts have made crucial steps towards integrated
optical systems, promising reliable co-integration of microcombs with
lasers [46–48] and other optical components [49, 50]. The investigation
of DKS dynamics has also led to improvements on several fronts, such
as DKS initiation [51–54], low noise performance [55], high bandwidth
engineering [45, 56] and low power operation [57]. Promising as these
experiments were, the microcomb still requires more development to be
established as a competing OFC solution.

One persisting challenge of DKSs is the limited conversion efficiency,
i.e. the portion of input optical CW power converted to comb lines at
other frequencies. Having low power conversion efficiency translates into
lower wall-plug energy efficiency and low optical signal to noise ratio,
which is unfavorable for most applications. This low efficiency is espe-
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Chapter 1. Introduction

cially problematic for the DKSs in anomalous single-cavity structures,
where the conversion efficiency is fundamentally limited [58]. The DKS
generated in the normal dispersion regime offers much higher conversion
efficiency but at the cost of a more uneven spectrum [53, 59], a char-
acteristic not desirable for astrocombs and telecommunications. Multi-
ple different approaches have been suggested and demonstrated, such as
pulsed pumping [40, 60, 61], microresonator nesting in laser cavities [62]
and Pockels microcombs [63]. Yet another architecture is to use an ar-
rangement of linearly coupled microcavities [52, 53, 64], an arrangement
which will be thoroughly analyzed for DKS generation in this thesis.

1.1 This thesis

This thesis focuses on the dynamics of microresonator frequency combs
with the practical goal of realizing reliable designs with high conver-
sion efficiency and flat spectral distribution of power. Much emphasis
is put on linearly-coupled microcavities (photonic molecules) since such
arrangements can enhance the dynamics of DKSs in several ways, in-
cluding improved conversion efficiency and reliable initiation. For this,
both simulations and experimental measurements are conducted using
microrings fabricated in silicon nitride.

In Paper A, single-mode microresonators are studied, where both
anomalous and normal DKSs are numerically simulated over a large pa-
rameter space in order to discover optimized designs for optical telecom-
munication applications.

The study in Paper B quantifies the requirements of OFCs in
wavelength-division multiplexed (WDM) optical fiber links. It also fea-
tures a theoretical comparison between EOCs and microcombs.

Paper C features a careful experimental and numerical investigation
of the initiation process of a normal DKS from a CW laser in a single
microcavity containing two linearly coupled waveguide modes.

In Paper D, power efficient microcombs are experimentally demon-
strated from two linearly coupled normal-dispersion microresonators.
Numerical simulations and experiments verify that a DKS circulates the
main cavity. The existence regime of these microcombs is found to be
considerably larger compared to the normal DKS generated in a single-
mode cavity.

Paper E is a short extension to Paper D, demonstrating back-
wards initiation of a DKS in linearly-coupled normal-dispersion microres-
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1.1. This thesis

onators.
In Paper F, a single DKS is experimentally generated in an anomalous

dispersion microresonator with vastly improved performance in terms of
power efficiency. Such enhancements were enabled by shifting the CW
pumped resonance in the microcavity through linear coupling to an aux-
iliary cavity. Exotic effects were also demonstrated, such as backwards
initiation and DKS operation with a blue detuned pump laser.

1.1.1 Thesis outline

Chapter 2 serves as a brief introduction to the soliton dynamics in non-
linear waveguides. Chapter 3 discusses the cold cavity dynamics of mi-
croresonators, both for single microcavities and linearly coupled cavities.
In Chapter 4, the microcomb generation and soliton dynamics micro-
cavites are described, while Chapter 5 discusses microcomb generation
in linearly-coupled microrings. Finally, Chapter 6 is the future outlook.
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Chapter 2

Solitons and nonlinear
propagation

An essential part for generating DKSs in microresonators is the circula-
tion of light through a nonlinear waveguide. For the silicon nitride waveg-
uide considered in this thesis, such propagation has dynamics similar to
optical fibers, which involves the Kerr effect and group velocity disper-
sion. These dynamics can be modelled using the nonlinear Schrödinger
equation (NLSE). The NLSE predicts the existence of solitons in optical
fibers [65], and with the right modifications, it can be used to predict
the dynamics of DKSs in microresonators.

In the next section, the NLSE will be briefly introduced. It is then
employed in the following two sections to describe the basic dynamics of
classical solitons and dissipative solitons.

2.1 Optical propagation in nonlinear dielectric
waveguides

The purpose of an optical waveguide is to spatially confine a beam of
light as it is propagated from one place to another. A good example
is the optical fiber, which carries data in the form of modulated light
between cities and continents, forming the backbone of today’s internet
infrastructure [66]. Another example are the silicon nitride waveguides
we use in this thesis. Such waveguides feature two dielectric materi-
als, a core and a cladding, where the core has a higher refractive index.
This refractive index difference provides the means to guide the optical
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Chapter 2. Solitons and nonlinear propagation

light beam along the length of the waveguide. Intuitively, we can un-
derstand this process using the ray-optics approximation, which predicts
the confinement of light to the core due to total internal reflection at the
dielectric boundaries. A more accurate description can be derived from
Maxwell’s equations, where the waveguide is found to support a finite
number of waveguide modes, with each mode having a specific electric
field distribution and propagation constant [67].

To model the pulse propagation in Kerr nonlinear waveguides we use
the NLSE. Here, we give a brief overview of the NLSE, leaving the details
of the derivation to the literature [68, 69]. The NLSE describes the evo-
lution of a slowly varying electric field envelope (A) in a single waveguide
mode (with single polarization) which is guided along the z-axis. The z-
component of the electric field is typically neglected in the case of optical
fibers, but it has a considerable impact in high confinement waveguide,
resulting in a modified nonlinear coefficient [70]. The characteristics of
the propagation appear as constants (e.g. loss, dispersion, nonlinearity)
that modify the electric field envelope as a scalar. The NLSE is given by

∂A

∂z
= iγ|A|2A− α

2
A− β1

∂A

∂t
− iβ2

2

∂2A

∂t2
, (2.1)

where α is the propagation loss for each unit of length, β1 is the inverted
group velocity. The group velocity dispersion (GVD) is described by β2,
where anomalous dispersion (β2 < 0) signifies that higher frequencies go
faster than lower frequencies, while normal dispersion (β2 > 0) signifies
the opposite. The Kerr effect is depicted by the nonlinear coefficient, γ,
which can manifest in several nonlinear effects, such as self-phase mod-
ulation (SPM), cross-phase modulation (XPM), and four-wave mixing
(FWM). Other effects such as higher-order dispersion, the Raman effect
and self-steepening have been left out of the equation above since they
are not essential for the discussion in this thesis. The electric field en-
velope is normalized such that |A|2 = P , where P is the optical power.
The normalized electric field can be found as

E(z, t) = A(z, t)ei(β0z−ω0t) (2.2)

where β0 is the phase constant.
Because of the nonlinear term, the NLSE is not easy to analytically

integrate. However, it is relatively simple to simulate. The simulations in
this work will be based on either the split-step method [68] or the Runge-
Kutta method in the interaction picture [71], but both methods simulate

8



2.1. Optical propagation in nonlinear dielectric waveguides

Figure 2.1: The plot in a (b) shows the temporal structure of single bright
(two dark) soliton after 100 km lossless propagation in an optical fiber, i.e.
the pulse is only affected by the Kerr effect and GVD (γ = 0.002 (Wm)−1,
β2 = ±20 ps2/km). The corresponding spectra are shown in c and d for bright
and dark solitons respectively, where f is the optical frequency and f0 = ω0/2π
is the center frequency of the soliton. In the simulation, these waveforms prop-
agate without change to temporal and spectral power profiles. Note that the
bright soliton features a constant phase, while the dark solitons exhibit a π
phase shift. Two dark solitons are simulated to avoid simulation artifacts.

propagation by taking small enough steps such that the nonlinear and
linear portion of the NLSE can be applied separately. For simplification,
the β1 is often removed from the equation by assuming a reference frame
moving at group velocity.

The NLSE predicts several nonlinear phenomena, such as the spec-
tral broadening of optical pulses [72], optical pulses emerging from a
perturbed CW wave through modulational instability [73], and the bal-
ancing of GVD and Kerr nonlinearity to allow a soliton to propagate
long distances [74]. Such solitons are the topic of the next section.

9



Chapter 2. Solitons and nonlinear propagation

2.2 Introduction to soliton dynamics

Solitons were first observed as translational waves in a water canal by
J.S. Russell in the early 1800s [75]. They are defined as waves that travel
through time and space at a constant velocity while maintaining their
shapes [76]. This first definition was based on the the Korteweg-de Vries
equation [77], which describes the nonlinear dispersive dynamics found
in different energy conservative systems, such as shallow-water waves
and plasma physics [78]. Solitons have since been found as solutions
to a variety of nonlinear partial differential equations covering multiple
disciplines of physics [79]. The NLSE is one such system which not only
describes optical propagation in Kerr-nonlinear waveguides, but also self-
focusing in Kerr nonlinear media [80] and the dynamics of deep-water
waves [81,82].

The first description of temporal solitons in optical fibers came in
1973 [74,83], with bright solitons appearing in the anomalous dispersion
regime [84], and dark solitons in the normal dispersion regime [85]. As a
demonstration, we simulate examples in an optical fiber only featuring
the Kerr nonlinearity and GVD (see figure 2.1), initiating the solitons
from mathematical closed-form expressions [68]. These solitonic pulses
propagate unchanged because of a balance between the GVD and SPM.
The source of this balance is that the SPM generates a positive chirp in
a negative slope of the intensity distributed pulse and a negative chirp in
the positive slope of a pulse. For the bright soliton, this means that lower
frequencies will appear on the leading edge, but the anomalous GVD
corrects this chirp since the higher frequencies move faster. A similar
story can be told about the dark soliton, only with higher frequencies
appearing on the trailing edge. A key difference between the these two
types of solitons is the sharp phase transition at the center of the dark
soliton. Thus the dark soliton requires a background with an appropriate
change of phase [85,86].

In a lossless fiber, a soliton can in principle propagate indefinitely. It
was for this reason that much effort was spent on studying solitons for
carrying data in fiber optical telecommunications [65]. In such systems,
losses of the fiber become significant at longer distances, causing the
soliton to become wider and shrink in amplitude [87]. Thus, various
gain elements were often employed such that the average system would
be effectively lossless while maintaining similar soliton dynamics. One
of the main obstacle in these systems was the timing jitter caused by the
Gordon-Haus effect [88], with the telecommunications field eventually
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2.3. Dissipative solitons

abandoning the solitons in favor of WDM systems [66]. Interestingly,
recent studies have considered the employment of a different type of
soliton — the dissipative soliton — for the generation of optical carriers
in future telecommunication systems [35]. Such waveforms are the topic
of the next section.

2.3 Dissipative solitons

The dissipative soliton (DS) thrives in systems which exhibit continuous
energy exchange. As such, the DS is not only reliant upon a balance
between nonlinearity and dispersion, but it also depends on the balance
between gain and loss [89]. Much like the classical solitons, the DSs
are generic structures that appear not only in optical systems [90], but
also other branches of physics such as fluid mechanics [91] and plant
ecology [92].

Mode-locked lasers (MLLs) can support DSs in the form of an op-
tical temporal pulse circulating the laser cavity. Such DSs exist as a
balance between the GVD, nonlinearity, amplification and cavity losses.
The series of pulses coupled out of the laser cavity correspond to a fre-
quency comb in the spectral domain. The MLL features amplification
in a resonant cavity, often with other added elements such as spectral
filters, saturable absorbers and a Kerr medium. As such, a wide range of
MLL configurations are possible, enabling a variety of DS dynamics [90].
This includes bright and dark DS waveforms that are similar to the fiber
solitons [93,94], soliton molecules [50], dissipative soliton resonances [95]
and soliton explosions [96].

Kerr nonlinear resonant cavities can also maintain a DS when driven
by a CW laser, for example in optical fiber cavities [28] or microres-
onators [29]. The gain of such DSs is supplied via parametric amplifica-
tion from a CW input pump over a broad spectrum which compensates
for the losses [22]. The use of the Kerr effect to supply gain is perhaps
the main reason why these waveforms have become known as dissipative
Kerr solitons (DKS). As such, the power of the center wavelength needs
to be kept at a high enough level so that it can maintain the DKS. In
the frequency domain, the DKS corresponds to a frequency comb, often
named ’Kerr frequency comb’. Here, Kerr frequency combs generated in
microresonators will be referred to as ’microcombs’.

DKSs are in principle not limited to CW driven cavities. Here we
run a little test to demonstrate that a laser cavity can support a DKS

11
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through saturated amplification of the center wavelength of the DKS.
Figure 2.2a shows the layout of a simple cavity with such an amplifier,
where the gain profile does not reach other resonant modes of the cavities.
Thus, the other frequency components of the DKS have to gain energy
through parametric amplification. A simulation was conducted by solv-
ing equation 2.1 (β2 = ±200ps2/km, γ = 0.002 (Wm)−1, α = 0.9km−1)
for a full roundtrip of propagation (L = 20cm). In each roundtrip, a por-
tion of power was coupled from the cavity (θ = 0.002) and the amplifier

would amplify the CW wave according to A′(f0) = A(f0)e
Psat

αL+θ

Psat+|A(f0)|2 .
Figures 2.2b-d show the generation of a dark pulse in the normal dis-
persion regime, with Psat = 7.4 W , initiating from two dark solitons
similar to figure 2.1b. The anomalous DKS is displayed in figures 2.2e-g,
with Psat = 1.5 W , and initiating from a bright soliton similar to fig-
ure 2.1a. For the anomalous DKS to stabilize, a constant phase offset
of 0.0017 radians to the center wavelength was needed every roundtrip.
The amplitude of the anomalous DKS waveform has a sech shape similar
to the fiber soliton in figure 2.1. However, unlike the fiber soliton, the
waveform also includes a CW background and a non-flat phase profile.
This change in phase profile is a consequence of the interaction between
frequencies through FWM [97]. The normal DKS waveform is distinctly
different from its fiber soliton counter part in figure 2.1, both in phase
and amplitude. It takes the form of a dark pulse carved out of a CW
background with ripples at the bottom, with the phase value switching
in unison with the amplitude. This type of structure has been described
as an interlock between two switching waves [98].

This short analysis demonstrates the difference in dynamics between
the DS and the classical soliton in figure 2.1. Furthermore, it shows that
DKSs are not limited to microcavities, and can be generated in laser
cavities using the right configuration.
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2.3. Dissipative solitons

Figure 2.2: a) shows a layout of a laser cavity which can be used to generate
a DKS. b) shows the evolution of a dark DKS from initiation, c) shows the
temporal features and d) shows the spectrum. e) shows the evolution of a
bright DKS from initiation, f) shows the temporal features and g) shows the
spectrum.
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Chapter 3

Microresonators and photonic
molecules

Microresonators are small, typically sub-millimeter sized optical cavities.
Much like other resonators, their operation is based on light recirculation
which allows build-up of optical intensity at the resonant frequencies of
the cavity. As such, they can be used in a variety of applications [99,100],
including optical filters [101], sensors [102], modulators [103].

In this chapter, we will introduce the linear dynamics of microres-
onators, aiming at cavities that enable microcomb generation. While
this study focuses on integrated microring resonators in silicon nitride,
much of it will apply to optical resonators in general. In fact, much of the
resonator physics had been described in Fabry-Perot cavities [104], and in
fiber resonators [105,106], long before the realization of microresonators.
The first section will cover the dynamics of one microring supporting a
single waveguide mode, i.e. the dynamics that enable the DKSs in Pa-
per A. The second section will introduce the dynamics of linearly coupled
microresonators, often called photonic molecules, which were employed
for generating a DKS in Papers C-F.

3.1 Characteristics of a single microring res-
onator

Typically, a microring resonator features a bus waveguide with a ring
waveguide placed in close proximity (see Figure 3.1). The distance is
short enough such that the evanescent field of the mode in both waveg-
uides overlap, such that one mode induces a weak perturbation to the
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Chapter 3. Microresonators and photonic molecules

Figure 3.1: A basic layout of the microring resonator: A bus waveguide
coupled to a ring waveguide.

other. This leads to periodic exchange of power between the two waveg-
uides [107], where the coupling rate can be engineered by changing the
distance between waveguides or the length of coupling interaction. As-
suming weak coupling over a short distance of interaction, the coupling is
approximated to occur in a single point [108] using the following coupling
matrix: [

Eout

E2

]
=

[
r it
it r

] [
Ein

E1

]
, (3.1)

where t and r are real values representing the coupling coefficients relat-
ing the output optical field (Eout) to the input optical fields (Ein) and
the optical fields in the cavity before and after the coupling regime (E1

and E2). The coupler is assumed to be lossless, such that r2 + t2 = 1.
The fields E1 and E2 are also related by the optical propagation over
a full roundtrip through the microring waveguide. Such propagation is
described by equation 2.1 without the nonlinear effect:

∂E

∂z
= −α

2
E + iβ(∆ω)E (3.2)

where α is the intrinsic propagation loss, β(∆ω) = β0 + β1∆ω +
β2/2(∆ω)2 + · · · is the frequency dependent propagation constant of
the microring waveguide expanded around the reference frequency ωref ,
ω is the angular frequency and ∆ω = ω − ωref . The phase constant
β0 describes how the optical field accumulates phase at ω = ωref as it
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3.1. Characteristics of a single microring resonator

Figure 3.2: a) shows a microring transmission spectrum according to equation
3.4, using parameters a = 0.9978, r = 0.995, β0 = 0, β1 = 6.67 ps/km, β2 =
1000 ps2/km and L = 1.5 mm. The x-axis shows the offset frequency (df)
with regards to the centered resonance. The inset shows a closer look at the
center resonance. b) shows a measured spectrum of a microresonator with
characteristics similar to those in a).

travels around the microring. Solving this equation, we relate the optical
fields in the microring with

E1 = E2e
(−α/2+iβ(∆ω))L, (3.3)

where L is the roundtrip length of the microring.
The system of equations formed by equation 3.1 and equation 3.3

describes the linear response of the microring. Using these equations,
the power transmission can be derived as [109,110]

T (∆ω) =
|Eout(∆ω)|2

|Ein(∆ω)|2
=

a2 − 2ra cos(β(∆ω)L) + r2

1− 2ra cos(β(∆ω)L) + (ra)2
, (3.4)

where a2 = e−αL is the roundtrip attenuation of optical power. The
equation describes the presence of resonances in the transmission spec-
trum located at the longitudinal modes of the cavity (see figure 3.2a).
The resonance locations are defined by β(∆ω)L = 2πµ, where µ is the
longitudinal mode number. The resonance separation, also called free
spectral range (FSR), typically has a small spectral variation due to
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GVD and higher order dispersion. The resonances can be characterized
based on their width and depth, which are factors governed by the cavity
losses.

Equation 3.4 is extremely useful for experimental characterization
since the transmission is relatively easy to measure. This is typically
done using a calibrated frequency-swept laser as an input optical field,
while the output power is measured using a photodiode [111,112]. A plot
of such a measurement is displayed in Figure 3.2b. The measurement
shows how the resonance depth has a wavelength dependence. Thus,
when characterizing the microcavity, we cannot apply equation 3.4 to
all resonances at the same time. Rather, we consider each resonance
individually.

In the next subsection, we will take a closer look at how cavity losses
can be characterized from the width and depth of each resonance. The
second subsection discusses the wavelength dependence of the propaga-
tion constant and how to characterize the dispersion of microcavities.

3.1.1 Cavity losses and Q factors

The transmission profile of a resonance is influenced by the cavity losses,
both intrinsic losses (a) and coupling losses (r). The impact of the losses
is seen in the full width at half maximum (ωFWHM ) and depth (described
by R) of the resonance (see figure 3.3). For the purpose of analysing these
characteristics, it is useful to approximate the cosine term of equation
3.4 with cos(x) ≈ 1 − x2/2, which holds fairly well when cavity losses
are low. The result is a Lorentzian shaped function

T =
(βL)2 +R(Γ/2)2

(βL)2 + (Γ/2)2
, (3.5)

R =
(r − a)2

(1− ra)2
, Γ = 2

(1− ra)√
ra

= 2π
ωFWHM

ωFSR
=

2π

F
. (3.6)

where F is the finesse of the cavity, describing the sharpness of reso-
nances with regards to FSR. With prior knowledge of the FSR, finding
the FWHM and resonance depth is enough to determine the intrinsic
and extrinsic loss parameter values, a and r. Figures 3.3a-c show res-
onance examples under the conditions of over coupling (a > r), under
coupling (a < r) and critical coupling (a = r). The figures show that the
resonance depth is impacted by the difference between a and r, where
the critically coupled resonance completely shuts off the transmission.
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3.1. Characteristics of a single microring resonator

Figure 3.3: a) shows the transmission spectrum of a single resonance with
overcoupled conditions a > r. The full width half maximum and resonance
depth are indicated in the plot. b) shows a resonance with undercoupled con-
ditions a < r. c) shows a resonance with critical coupling conditions a = r.

The FWHM increases as the overall losses increase. Thus, the FWHM
in Figures 3.3a-b remains the same because they have the same overall
roundtrip losses, while Figure 3.3c has a narrower resonance due to lower
amount of total losses.

Note that a and r are tangled in the equations, such that it is not pos-
sible to tell from the transmission spectrum if the resonance is undercou-
pled or overcoupled, as displayed by Figures 3.3a-b. Only in the critically
coupled case (see figure 3.3c) is this problem resolved, because a = r. To
reliable resolve this issue, one needs to record both the phase and power
response of resonance, which requires coherent detection [109, 112]. In
practice, when there is a large difference between a and r, this can be
resolved using prior knowledge of the design, which was the approach
taken when characterizing the microrings in papers C-F.

The losses in resonator cavities are commonly represented by the
quality factor (Q), which describes the number of optical cycles experi-
enced by an optical field in the resonator cavity before the intrinsic and
extrinsic losses reduce its energy by a factor 1/e. It relates to extrinsic
and intrinsic losses through

Q =
ω0

ωFWHM
=

ω0F
ωFSR

≈ ω0ngL
√
ra

2(1− ra)c0
, (3.7)

where ω0 is the frequency at center of resonance, ng is the group in-
dex and c0 is the speed of light in vacuum. The quality factor is often
described as a combination between the extrinsic and intrinsic quality
factors (Qi and Qe). Assuming low intrinsic and extrinsic losses, these
can be approximated as
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Q−1 ≈ Q−1
i +Q−1

e , (3.8)

Qi =
ω0ngL

√
a

2(1− a)c0
, Qe =

ω0ngL
√
r

2(1− r)c0
. (3.9)

The quality factor carries much significance when it comes to buildup of
power in the microcavity. Such buildup of power is essential for micro-
combs, since they operate through the Kerr effect. The power buildup
factor at center of resonance can be found as [110]

|E1(∆ω)|2

|Ein(∆ω)|2
=

(1− r2)a2

(1− ra)2
∝ at2Q2

r
. (3.10)

By approximating t2 ∝ Q−1
e and assuming that both intrinsic and ex-

trinsic losses are low (r, a ≈ 1) we get

|E1(∆ω)|2

|Ein(∆ω)|2
∝ Q2

Qe
. (3.11)

Thus, the quality factors limit the amount of buildup allowed in the
microcavity. Since the coupling rate can be managed in design, realizing
microcomb operation at low power levels will ultimately be limited by
the intrinsic losses. For silicon nitride microresonators, these intrinsic
losses are usually dominated by scattering due to sidewall roughness of
the waveguides [113]. Reducing the impact of these losses [43], was an
essential part of realizing the low-power microcombs in Papers D-F.

3.1.2 Dispersion in microresonators

Microcomb generation is sensitive to the location of resonances. In par-
ticular, the FSR and GVD affect important microcomb dynamics, such
as the repetition rate and number of lines generated. Thus, it is im-
portant to design the length of the cavity and the cross-section of the
microring waveguide to optimize these parameters, as is discussed in
Paper A. After fabrication, the design can then be evaluated from the
resonance distribution. Such distribution is defined by the propagation
constant through

β(ω−ωref ) = β0+
β1
1!
(ω−ωref )+

β2
2!
(ω−ωref )

2+ · · · = 2πµ/L, (3.12)

where µ is an integer number describing the longitudinal mode num-
ber. The resonance frequencies (ω = ωµ) are found as solutions to this
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equation for each integer value µ. The FSR can be calculated using
ωFSR = 1/β′(ω − ωref )L, where β′(ω − ωref ) is the derivative of the
propagation constant. As a simple approximation, the FSR can be as-
sumed to be a fixed value ωFSR = 1/β1L. For higher accuracy we need
to take the GVD and higher order dispersion into account, as they lead
to spectral variations in the FSR (see figure 3.4).

The phase constant, β0, describes the acquired phase of the optical
field per length at frequency ωref . The acquired phase over a whole
roundtrip will be β0L = n2π + ϕ, where n is an integer number and
ϕ·ωFSR/2π is the separation between ωref and ω0. It is common practice
to set ωref = ω0 when characterizing microcavities, which effectively sets
β0 = 0.

Equation 3.12 can be applied in a straightforward manner to char-
acterize devices based on their experimentally measured transmission
spectrum. The resonance frequency ωµ is determined by finding the cen-
ter of resonance (see figure 3.4a-b). We assign mode numbers to the
resonances centered near our reference frequency ωref . The length of the
cavity L is determined from the designed microring layout. The only
missing parameters in equation 3.12 are the β parameters, which can be
found through polynomial fitting.

It is worth noting that there exists another approach to define disper-
sion of microresonators which is commonly employed in the microcomb
community [114, 115], which was used in Papers C-F. This approach
maps the resonance locations according to

ωµ = ω0 +D1µ+
D2

2!
µ2 + · · ·, (3.13)

where D1/2π is the FSR of the cavity and D2/2π describes a linear
change in FSR. We can relate these parameters to equation 3.12 with
D1 = 2π

β1L
and D2 = −D3

1L
2π β2 [115]. The dispersion profile is often

visualized using the integrated dispersion Dint = ωµ − ω0 − D1µ. An
example of such a visualization is given figure 3.4c, where normal GVD
can be observed as a negative parabolic curvature.

The propagation constant is impacted by more factors than frequency
and cavity length. The temperature of the resonator can also have a sig-
nificant impact on the location of resonances. In silicon nitride micror-
ings, such temperature dependence is mainly due to the thermo-optic
effect [116–118], which causes the refractive index to linearly increase
with temperature. As a consequence, the center frequency of the reso-
nance spectrum shifts on the scale of −1 GHz/◦C and the FSR shifts
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Figure 3.4: a) shows a microring transmission spectrum according to equation
3.4 with ωref = ω0, and using parameters a = 0.99, r = 0.968, β0 = 0,
β1 = 6.67 ps/km, β2 = 100000 ps2/km and L = 1.5 mm. The GVD causes
the FSR to change with frequency, which means that the mode numbers are
not appearing at equally spaced frequencies. The GVD is rather exaggerated
for illustration purposes, such that this uneven separation becomes noticeable
when displaying only a few resonances. b) shows the variation in propagation
constant with frequency, with effects of β1 and β0 subtracted. It shows clearly
the positive parabolic curve caused by the normal GVD term, but this curve
becomes negative when anomalous dispersion is considered. The red markings
correspond to the location of the resonances. c) shows the dispersion profile of
the same cavity using the integrated dispersion.

changes on the scale of −1MHz/◦C [119]. The benefit of such tempera-
ture dependence is that it allows tuning of the microcomb operation by
placing a heater on the microcavity, which was an essential feature in
Papers D-F. However, this also comes with a cost, since microresonators
typically need to be thermally stabilized to avoid drifts in microcomb
frequencies.
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Figure 3.5: Two embodiments of photonic molecules using microrings, with a)
showing linear coupling between two waveguide modes propagating in the same
ring, and b) showing the interaction between two linearly coupled microrings,
each with single-mode operation.

3.2 Linear dynamics of photonic molecules

Introducing linear coupling between resonant structures results in
avoided mode-crossings — a splitting in the longitudinal modes of the
cavities similar to split energy levels of diatomic molecules [21,120]. Due
to this analogy, coupled photonic cavities are often referred to as photonic
molecules. Such structures allow dynamics and enhancements beyond
that of a single resonator structure, enabling opportunities in several
research fields such as microwave photonics [121], topological photon-
ics [122,123] and microcombs [124,125].

Here, we discuss the linear dynamics of diatomic photonic molecules,
focusing on microring structures for microcomb generation. There are a
few different approaches to realize such linear coupling between modes.
One approach is to employ a single physical resonator with coupling
between waveguide modes (see figure 3.5a), where the modes can be
either co-propagating or counter-propagating. While these waveguide
modes are orthogonal in theory, they will often exhibit perturbations
due to small discontinuities in the waveguide cross section, leading to
linear coupling (κ) between the two modes [126,127]. Such perturbations
often appear due to sidewall roughness of the microring waveguide. This
can introduce resonance-splits which are typically unwanted, since they
can impede or distort the generation of soliton microcombs [115, 128].
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However, there are other cases where the sidewall roughness induced
mode-splitting has been of benefit. In [129], such mode-splitting enabled
deterministic generation of a single DKS in the anomalous dispersion
regime. Also, in normal dispersion waveguides, such a mode-split is
essential for the generation of dark DKS from a CW laser as was shown
in paper C.

The design in paper C had some practical weaknesses. One weakness
is that the sidewall roughness is a parasitic effect that is hard to engineer
in practice. This can be overcome by engineering variations in the ring
waveguide, e.g. by using Bragg gratings in the ring structure [54]. A
second weakness is that both waveguide modes share the same physical
space, such that any changes to the refractive index of the waveguides
will affect both modes in a similar manner. This means that it is ex-
tremely challenging to tune the dispersion of each resonant mode family
separately.

Another approach for realizing photonic molecules is to use linearly
coupled microrings (see figure 3.5b). Such structures offer more control
over the design parameters, as the coupling between cavities can be easily
controlled by changing the proximity of the two microrings. Furthermore,
the thermal coupling between the two cavities is minimal, allowing the
resonances of the two modes to be tuned separately via heaters on the
two resonators [130]. This feature was essential for generating DKS
microcombs in papers D-F.

In the following subsections, we will discuss the fundamental dynam-
ics of linearly-coupled resonators.

3.2.1 Dispersion profile of photonic molecules

Let us consider two weakly coupled resonators using either design in
figure 3.5. Instead of using the spatial dependence (as in equation 3.2),
we consider a time dependence eζ

(1)t and eζ
(2)t for the two resonators, as

it gives a more intuitive picture of the coupling dynamics. Such a system
can be modelled by [107,131]

∂E1

∂t
= iζ(1)E1 + iκE2,

∂E2

∂t
= iκE1 + iζ(2)E2, (3.14)

where κ is the coupling coefficient between modes in cavity 1 and 2, and
ζ(a) = i1/τa + ω(a) with decay rate τ and frequency ω for mode a. The
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Figure 3.6: a) shows the interaction between resonances of linearly-coupled
resonant cavities. The supermodes (ω+ and ω−),the uncoupled modes (ω(1)

and ω(2)) and the coupling factor κ are marked in the figure. b) shows the
distribution of resonances (blue) of two linearly coupled cavities, using cavity
1 as a reference (Dint = ω − ω0-D

(1)
1 n). The dashed lines show where the

resonances would be located in absence of coupling. Periodic mode crossings
appear due to the mismatch in FSR between ω(1) and ω(2). For each crossing we
have the modes of ω(1)

n interacting with ω
(2)
n−1, ω

(2)
n and ω

(2)
n+1 where indicated

in the figure. c) the resonance separation of cavity 2 is changed so that it
is roughly 5 times larger than that of cavity 1. This reduces the number of
resonances experiencing frequency shifts in cavity 1.

coupling allows the resonant fields to exchange power, breaking the or-
thogonality between them. One of the consequences is that the resonant
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frequencies of E1 and E2 will not be defined by ζ(1) and ζ(2) indepen-
dently. To determine the resonant frequencies, a new basis is found for
the perturbed system with orthogonal modes named supermodes. These
supermodes define the locations of the resonances of the coupled system,
written as a superposition of the orthogonal modes of the unperturbed
system. The resonance locations of the supermodes can be derived from
equation 3.14 as [107]

ζ± =
ζ(1) + ζ(2)

2
±

√(
ζ(1) − ζ(2)

2

)2

+ |κ|2, (3.15)

with an example displayed in figure 3.6a. The losses will have negligible
impact on the resonance locations and are thus not included in the exam-
ple, hence ζ is replaced by ω. The uncoupled (κ = 0) resonance locations
in each resonator is labelled with ω(1,2). We tune the location of ω(2) to
modify the distance between the two resonances. In the uncoupled case,
the resonances are unaffected by each other’s proximity, as is indicated
by the dashed lines. When the coupling is turned on (κ = 2GHz) we see
that the supermodes are shifted compared to the uncoupled case. How-
ever, the shift is only significant when the difference between resonant
frequencies (|ω(1) − ω(2)|) is not much larger than the coupling rate (κ).
Note that even though the uncoupled modes 1 and 2 cross, the super-
modes avoid each other at the crossing. It is for this reason that they are
often referred to as an avoided mode-crossing. At ω(1) = ω(2), we reach
the minimum distance between resonances, ω+ − ω− = 2κ. This fact is
extremely useful when experimentally estimating the linear coupling be-
tween microrings in Paper D. Using the microring heaters, the coupling
rate was measured by tuning the resonances of the two microrings until
minimum frequency separation was reached.

Let us now investigate how equation 3.15 impacts the dispersion pro-
file of linearly-coupled resonators. For this we consider resonance distri-
bution ω

(1)
n and ω

(2)
m , where n and m are the longitudinal-mode numbers

of resonators 1 and 2. The resonances are distributed with a normal GVD
using equation 3.13, with parameters ω

(1)
0 = ω

(2)
0 , D(1)

1 /2π = 100 GHz,
D

(2)
1 /2π = 104GHz, D(1)

2 /2π = D
(2)
2 /2π = −20MHz, and κ = 2GHz.

The resonance locations of the coupled system are plotted as an inte-
grated dispersion profile in figure 3.6b. The dashed lines show the dis-
persion of the resonators in absence of coupling, revealing the negative
curvature of ω

(1)
n due to normal GVD. The resonances of the coupled
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system form not only one, but multiple mode crossings in an evenly
spaced pattern. This is due to the walk-off in FSR between the two
resonator modes, where the mode separation between mode crossings
is approximately D

(1)
1 /(D

(1)
1 − D

(2)
1 ). This FSR walk-off can be easily

engineered in coupled microrings by changing length mismatch of the mi-
crorings. Looking closely at each mode crossing, we see that resonances
are shifted significantly from the uncoupled case, forming the supermode
pattern discussed in figure 3.6a. This shifting of the cavity resonances
was essential for realizing the phase-matching required for DKS initiation
in the normal dispersion regime in Papers C-E.

In figure 3.6c, we again consider the same coupled resonators, but
with a drastically larger FSR in cavity 2 (D(2)

1 /2π = 520 GHz). As a
result, only one in every 5 resonances in resonator 1 experience a signif-
icant shift due to coupling. This approach is extremely useful to realize
a shift in one resonance of a cavity without affecting the others, as was
the case in paper F.

3.2.2 Transmission response of photonic molecules

Having discussed the distribution of photonic molecule resonances, we
now investigate how the spectral power response of such devices may
look like. For this, we apply the rate equations from perspective of the
propagation constant (β), which was used to solve the propagation of
linearly coupled waveguide modes in Paper C. The rate equations are
written as

∂E1

∂z
= iρ1E1 + iκzE2,

∂E2

∂z
= iκzE1 + iρ2E2, (3.16)

where ρn = iαn + β(n) and κz is the coupling rate over distance be-
tween cavities. According to our simulations, this coupling rate can be
approximately linked to the temporal coupling rate from equation 3.14
as κz ≈ κ · 2π(L2D

(1)
1 D

(2)
1 )−1/2. The propagation constants of the su-

permodes are found as

ρ± =
ρ1 + ρ2

2
±

√(
ρ1 − ρ2

2

)2

+ |κz|2. (3.17)
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Figure 3.7: a) shows the coupled-mode dispersion profile of the same system
as figure 3.6b, using the formalism of equation 3.17. b) shows a resonance profile
of cavity 1 with κ = 0. c) is a resonance transmission with power coupled from
the bus waveguide into both waveguide modes (θ1 = 0.03, θ2 = 0.05) and with
κ/2π = 2GHz. The shaded lines connect the resonances to the dispersion
profile in a), indicating to which mode they belong. The resonances of the two
modes are shown to shift across one another due to the difference in group
velocity. d) shows a zoom-in to the center of the resonance transmission in
c). In contrast to the uncoupled resonance in b), the mode-coupling causes
the resonances to shift off center and change in extinction ratio. Finally, e)
and f) show a similar response as c) and d), with θ2 = 0. The effect is that
the resonances corresponding to mode 2, seen in a) as the diagonal uncoupled
mode, will disappear when located far away from resonances of mode 1

Let us assume negligible losses such that ρ ≈ β. The location of these
resonances will not be defined by the uncoupled modes, but rather the
supermodes as β+L = 2πn and β−L = 2πm, where n and m are integer
numbers. An example of the distribution of the resonances is shown
in figure 3.7a, using the same dispersion and coupling configuration as
figure 3.6b. The model successfully predicts the presence of supermodes
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3.2. Linear dynamics of photonic molecules

with resonances appearing in the same location as in figure 3.6b.
We now study the transmission response of these resonances assuming

a system with two linearly coupled waveguide modes in a single micror-
ing. Such systems can allow direct coupling from the bus waveguide to
either waveguide mode, as was the case in Paper C. The transmission
response of these resonances can be modeled using a system combining
equation 3.14 with a coupling matrix describing a directional coupler
between the bus waveguide and the two modes of the microcavity, with
the model detailed in Paper C. This system is numerically solved to
display a transmission spectrum of the microcavity in figure 3.7. The
dispersion parameters and coupling are the same as in figure 3.7a, with
α1 = α2 = 9.2 m−1 and the power coupling ratio to mode 1 and 2
is θ1 = 0.03 and θ2 = 0.05. In absence of coupling, both modes β(1)

and β(2) are centered at ω0, with a resonance of β(1) displayed in figure
3.7b. Turning on the coupling between modes results in the transmission
spectrum is displayed in 3.7 c-d. It shows resonances whose locations are
described by the dispersion profile in figure 3.7a. Far away from the mode
crossing, the resonances of the cavities are not impacted by the mode
coupling. These can be used to characterize the cavities separately us-
ing the single-mode model from section 3.1 to retrieve the dispersion and
losses. However, moving closer to the center of the mode-crossing, we see
that the extinction ratio and shape of the resonances starts to change,
which is evident when comparing figure 3.7d to figure 3.7b. Thus, it
is challenging to use the shifted resonances to characterize each cavity
individually. However, the mode-crossing is useful for identifying the
coupling coefficient, e.g. through fitting of the resonance distribution
near the avoided mode crossing with equation 3.14. Alternatively, in the
special case when β(1) = β(2) as is the case for the resonances displayed
in figure 3.7 d, the resonance difference can be used to determine the
coupling coefficient.

Another interesting case is presented in figure 3.7e-f, where the cou-
pling between bus waveguide and mode 2 has been turned off (θ2 = 0).
This describes the coupled microring system in paper D, where cavity
1 is the main ring and cavity 2 is the auxiliary ring. In this case, the
resonances of cavity 2 only appear when coupled with the resonances
of cavity 1. An intuitive explanation of this phenomenon is that with
θ2 = 0, cavity 2 is reliant on cavity 1 to supply power. Therefore, in
places where cavity 1 is not resonant, no power can be coupled to cavity
2. This effect made the dispersion profile of cavity 2 challenging to deter-
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Figure 3.8: A basic layout of two linearly coupled microrings

mine in paper D, where only the FSR was estimated. A simple solution
to this problem is to include a second bus waveguide which is weakly
coupled to cavity 2. This allows the second microring to be directly
characterized.

A system with two linearly-coupled microrings can also be modelled
using a point coupling scheme instead of a rate equation. Such a scheme
was used for the simulations in Papers D-F. The coupling regimes of the
two coupled rings can be approximated with matrices:[

Eout

E2

]
=

[
r1 it1
it1 r1

] [
Ein

E1

]
, (3.18)

[
E6

E4

]
=

[
r2 it2
it2 r2

] [
E5

E3

]
, (3.19)

where the input and output fields are depicted in figure 3.8.
For the next step, we make the assumption that the two rings have the

same physical length. This is a somewhat crude approximation, since the
FSR difference between the two cavities is typically achieved by changing
the cavity length. However, by modifying the group index instead, we can
manipulate the optical propagation length to catch the FSR difference of
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the cavities. Using this approximation requires the propagation constant
of the cavity to be adjusted accordingly to project the correct dispersion
and losses per roundtrip. For the microcomb generation in papers D-
F, this approximation was acceptable, since small variations in GVD or
propagation losses of the auxiliary cavity did not have significant impact
on the simulated microcomb dynamics.

The propagation in the microrings is derived in a manner similar to
equation 3.3.

∂En

∂z
= −αn

2
En + iβ(n)(∆ω)En, (3.20)

where n stands for the mode in ring n. Using a procedure similar to [132],
the transmission can be derived as

T =
Eout

Ein
=

r1 −Ka1e
iβ(1)L

1−Kr1a1eiβ
(1)L

, (3.21)

K =
r2 − a2e

iβ(2)L

1− r2a2eiβ
(2)L

, (3.22)

where an = e−αnL/2. This model was used with the same parameters as
presented in figure 3.7e, with the same overall coupling between modes
per roundtrip. The resulting transmission spectrum is virtually iden-
tical to figure 3.7e, suggesting that this point-coupling model can be
used interchangeably with equation 3.17. However, we expect such in-
terchangeability only to be valid when the coupling rate is small, i.e.
when mean-field approximations can be applied.
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Chapter 4

Soliton generation in
microresonators

Adding Kerr nonlinearity to the microresonator dynamics introduces a
range of optical effects not available in the linear regime. Other than
microcomb generation, this includes dynamics such as resonance shifts
due to SPM and XPM which can be employed in all-optical logic gates
[133,134] and third harmonic generation which can be employed for CW
generation at new wavelengths [135, 136] and in 2f-3f self-referencing
[137]. Here we give a brief introduction to some of the Kerr nonlinear
effects found in microresonators, with special focus on DKSs. The first
section covers nonlinear dynamics in a single-mode cavity. The second
section is about DKS generation in microresonators.

4.1 Nonlinear dynamics in a single cavity

The modeling of the Kerr nonlinear operation in a single-mode microres-
onator can be described in two parts: A nonlinear propagation over a full
roundtrip and a coupling regime exchanging optical power between bus
waveguide and ring. This system of equations is known in some fields as
the Ikeda map [138,139]. These equations include a modified NLSE and
the coupling matrix from equation 3.1[

Aout

A2

]
=

[
r iρ
iρ r

] [
Ain

A1

]
, (4.1)

∂A

∂z
= iγ|A|2A− α

2
A+ iβ0A− iβ2

2

∂2A

∂t2
. (4.2)

33



Chapter 4. Soliton generation in microresonators

Figure 4.1: A basic layout of the microring resonator: a bus waveguide cou-
pled to a ring waveguide.

The phase constant, β0, describes how the pump frequency accumulates
phase as it circulates the cavity. Over a full roundtrip it effectively
causes a constant phase offset, δ0 = 2πµ−β0L, which is often called the
detuning parameter. Note, that this constant phase shift is applied to all
frequency components of A, while the phase of Ain is kept constant. The
coupling between bus waveguide and ring is often presented in terms of
power as θ = ρ2.

Defining the internal field (A) in a time window spanning the dura-
tion of a cavity roundtrip, a full roundtrip of the intracavity field can
be easily simulated. This is done by first applying the coupling equation
and then simulating propagation through the full length of the ring by
solving equation 4.2 with the split-step method. Realistically, such a
field will include noise due to the quantized nature of light, which can
be included in the simulation by adding a photon with a random phase
into each spectral bin onto the laser [140,141].

4.1.1 The Lugiato-Lefever equation

The Ikeda map can be approximated as a single equation, which is some-
times called the Lugiato-Lefever equation (LLE). As such, it provides an
extremely useful tool for mathematical analysis of Kerr nonlinear mi-
crocavities with DKS dynamics. It is named after the authors who first
derived it to describe the optical spatial field in a nonlinear cavity [142],
but it was later shown that it also applies for temporal fields [143].
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4.1. Nonlinear dynamics in a single cavity

To derive the LLE, the intracavity field is assumed not to change sig-
nificantly over the span of a single roundtrip, a condition that is typically
valid when considering high Q factors and low amount of phase shifts ex-
perienced by the optical field per roundtrip [143]. As such, the nonlinear
propagation through the length of the cavity (L) can be approximated
by

A
(n)
1 = A

(n−1)
2 + L

∂A
(n)
1

∂z
, (4.3)

where n presents the number of roundtrips. The coupling regime gives

A
(n−1)
2 = A

(n−1)
1 (1− θ/2) + i

√
θAin, (4.4)

where, assuming that the coupling rate is low, the approximation√
1− θ ≈ 1 − θ/2 has been applied. Combining equations 4.3 and 4.4,

and substituting 4.2 leads to the LLE equation:

∂A

∂τ
=

A(n) −A(n−1)

tR
=

1

tR

[
(−σ − iδ0 − L

iβ2

2

∂2

∂t2
+ iLγ|A|2)A+ i

√
θAin

]
, (4.5)

where σ = θ+αL
2 and tR is the roundtrip time, and τ is the slow time.

This equation is often normalized [144], as was done in Paper F. The LLE
has been widely used to investigate the dynamics of nonlinear cavities,
such as bistability [143, 145], existence regimes of waveforms [145–147],
modulational instability [140, 148] and dissipative Kerr solitons [27, 58,
149].

4.1.2 Bistability

The LLE can be used to describe a CW intracavity field of the cavity in
presence of the nonlinear phase shift [143]. Assuming steady-state, the
LLE is reduced to

i
√
θAin = (σ + iδ0 − iγL|A|2)A. (4.6)

Multiplying each side of the equation with its conjugate results in [144]

θ|Ain|2 = (σ2 + δ20 + γ2L2P 2 − 2δ0γLP )P, (4.7)

where P = |A|2 is the intracavity power. This describes a third order
polynomial in terms of P , which can be easily solved numerically. Then,
by taking the angle of 4.6, the angle of the intracavity field is found as
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Chapter 4. Soliton generation in microresonators

Figure 4.2: Solutions for the intracavity power assuming CW steady-state,
with blue and red show the contrast between linear and nonlinear regime. The
parameters were set as Pin = 20mW , σ = 0.0024, θ = 0.004 and L = 1.5mm.

∠A = ∠(iAin)− ∠(σ + iδ0 − iγL|A|2). (4.8)

The power levels of the CW steady-state solutions of a resonant cavity
are plotted in figure 4.2. It shows how the resonances of the cavity
become ’tilted’ in the presence of a nonlinear phase shift. This leads to
three possible solutions for the intracavity field, with one of them being
unstable in presence of small perturbations [146]. These solutions were
used to define the CW background when initiating DKSs in Papers A-B.

4.1.3 Modulational instability

The bistability analysis above only considered CW solutions. However,
in the presence of small perturbations (e.g. noise), the microcavity can
exhibit modulational instability (MI). This occurs when the CW field
of power P provides parametric amplification to other frequency com-
ponents which outweighs the cavity losses. As a result, new frequency
components can be generated in the resonances of the cavity. Degenerate
FWM leads to the parametric oscillations [23,24,150], with two or more
comb lines being generated. The spacing of the generated comb-lines
can be equidistant due to cascaded FWM, forming oscillating waveforms
commonly named Turing rolls [146, 151], which are displayed in figure
4.3. These waveforms typically have a very low number of lines gener-
ated, much lower than typical DKSs. Thus, they are more suitable for
applications that are not reliant on spectral coverage, such as efficient
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4.1. Nonlinear dynamics in a single cavity

Figure 4.3: a) shows the temporal features of Turing rolls, with b) showing the
corresponding spectrum. Parameters used were θ = 0.005, β2 = −100 ps2/km,
L = 1.5 mm, FSR = 100 GHz, α = 0.5 m−1, γ = 1 (Wm)−1, δ0 = 0, Pin =
10mW .

generation of CW lasers at new frequencies [152, 153] and generation of
oscillations in the microwave or THz regime [154].

The presence of MI and Turing rolls are an essential part of DKS ini-
tiation when pumping with a CW laser. With adequate CW power, such
DKS initiation can be achieved in anomalous GVD microrings by tuning
the CW laser into resonance from the blue side towards the red [29,155].
This is enabled by the fact that the existence regimes of Turing rolls and
bright DKS are linked, either directly or through an intermediate chaotic
regime [146, 156]. Figure 4.4a-b shows the evolution of the intracavity
temporal field during such DKS initiation. As the detuning of the laser
increases (i.e. the frequency is shifted towards the red) the intracavity
power builds up, eventually leading to MI which generates Turing rolls
and then chaotic states. At a certain detuning, where the CW steady-
state resolves into bistability, the chaos subsides, with multiple bright
DKSs appearing as shown in figure 4.4c-d. The presence of MI near the
existence regime of DKSs is thus essential for initiation from a CW laser.

DKS initiation in the normal GVD regime also requires MI. However,
due to the lack of phase matching in single-mode waveguides, MI will
be extremely hard to achieve. The phase-matching condition for MI,
assuming negligible higher-order dispersion, can be derived from the LLE
as [140]

∆Ω2
m = 2

δ0 − 2γLP

β2L
, (4.9)

where ∆Ωm signifies the offset between CW pump and the frequency
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Figure 4.4: a) shows the evolution of the temporal field in an anomalous
microring as the detuning is linearly scanned. It shows the generation of Turing
patterns at δ0 = 0, chaos at δ0 = 0.005 rad and solitons appearing after δ0 =
0.01 rad. b) shows the corresponding evolution of the averaged intracavity
power (blue) and the CW steady-state solutions. c) shows the temporal field
at δ0 = 0.02 rad, with d) showing the corresponding spectrum. Parameters
used were θ = 0.005, β2 = −100 ps2/km, L = 1.5 mm, FSR = 100 GHz,
α = 0.5m−1, γ = 1 (Wm)−1, Pin = 20mW .
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4.1. Nonlinear dynamics in a single cavity

where phase matching occurs. Note that the numerator (δ0−2γLP ) sets
a limitation to the sign of the GVD. MI is accessible in the anomalous
GVD regime when (δ0 < 2γLP ), which only requires δ0 = 0 to be
fulfilled. However, in the normal dispersion regime, the requirement
is (δ0 > 2γLP ), where Turing rolls can only be found using excessive
pump power and high detuning [146]. Furthermore, the existence regime
of normal DKSs and MI are not linked, since normal DKSs exist in the
regime where (δ0 < 2γLP ). Normal DKSs are thus virtually impossible
to initiate in single-mode normal GVD microrings when pumping with
a CW laser.

One way of achieving phase matching in normal GVD waveguides
is to introduce a mechanism which shifts the resonances of the cavity,
affecting the detuning factor and the GVD profile of the cavity. Note
that in this case the detuning factor should be determined by the offset
from the CW pumped resonance, rather we use the ’comb detuning’
introduced in Paper F. Such shifts can be accomplished using linearly
coupled cavities [31, 52, 53, 157, 158], as was discussed in section 3.2.
This was a key factor in Paper C-E, where such mode-coupling eased
the phase-matching condition, allowing a DKS to be generated from
MI. Other systems and dynamics can also enable DKS initiation in the
normal GVD regime, such as second harmonic generation [159] and self
injection-locking [55,160]. We will revisit the topic of normal dispersion
CW initiation in section 5.3.

Phase matching is not the only condition for MI. A second condition
requires the intracavity power to rise beyond the gain threshold of the
parametric oscillations [24,161]. This intracavity threshold is defined by
Pth = σ/(γL). Assuming critical coupling, this sets a threshold input
power described by [140]

Pin,th =
1

γL

(
σ2 + (δ0 − σ)2

)
, (4.10)

where σ = θ+αL
2 ≈ ω0ngL

2c0Q
. This sets a 1/Q2 dependence for the input

power to achieve MI, underlining once again the importance of minimiz-
ing the losses of the cavity to realize low power operation. Thus, demon-
strations of low-power operation of microcombs depend on realizing mi-
crocavities with high quality-factors [46,47]. Indeed, high quality-factors
were one of the key factors in Paper D and Paper F to realize microcomb
generated with laser power of 5 mW or lower. Note however that the
threshold also depends on the nonlinear parameter γ, which means that
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the intrinsic Q requirements are somewhat relaxed in the case of highly
nonlinear materials. For example, the microcombs generated with the
one of the lowest threshold power achieved to date involved AlGaAs mi-
croresonators with mediocre Q-factors combined with an exceptionally
high nonlinear index [57].

4.2 DKS generation in microresonators

The Ikeda map and LLE can support a DKS as a double balance of
GVD with SPM and cavity losses with parametric amplification. Such a
state was theoretically described in an anomalous cavity as early as the
90’s [27,145]. However, it was not until 2010 that this waveform was first
experimentally demonstrated in an anomalous nonlinear fiber cavity [28]
and in microresonators a few years later [29]. The anomalous DKS is
essentially a bright pulse which sits on top of a CW background defined
by the lower level of the CW bistability (see figure 4.5). The spectrum
has a smooth envelope, with a line separation equal to the rate at which
the DKS circulates the cavity. Both the temporal and spectral ampli-
tudes of the bright DKS can be derived as a hyperbolic secant from the
LLE [29, 58, 144]. Such studies have shown that solitons can only exist
with the CW laser far red-detuned from resonance center, as is indicated
by the figure 4.4. Due to the amount of CW power bypassing the cavity,
this leads to a fundamentally limited conversion efficiency (the output
power of the generated frequencies excluding the pump divided by the
input CW power [59]) which can cause a lack of power in the gener-
ated comb lines. This was the main inspiration for Paper F, where the
hindrance in conversion efficiency was mitigated by shifting the pumped
resonance towards the red-side, allowing the pump to operate near center
of resonance while the comb lines experience high red-detuning. Other
methods to improve conversion efficiency have been demonstrated, such
as microresonator nesting in laser cavities [62], pulsed pumping [60] and
normal GVD DKSs [31].

The anomalous DKS can be initiated through MI using a CW laser
by scanning the CW laser frequency across resonance from the blue side
towards the red, as was shown in figure 4.4. Typically such initiation does
not deterministically result in a single DKS. It is more likely, as indicated
by figure 4.4c, that multiple DKSs (multi-DKS) are generated. The
conversion efficiency of such multi-DKS states increases with the number
of DKSs circulating the cavity. The resulting spectrum (see figure 4.4d) is
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Figure 4.5: a) shows the temporal features of a anomalous DKS, with b)
showing the corresponding spectrum. Parameters used were θ = 0.005, β2 =
−100 ps2/km, L = 1.5 mm, FSR = 100 GHz, α = 0.5 m−1, γ = 1 (Wm)−1,
δ0 = 0.02, Pin = 20mW .

rather uneven which is typically undesirable for applications that require
flatter distribution such as astrocombs [8] and optical telecommunication
[Paper B]. Many approaches have been implemented to deterministically
achieve a single DKS, such as employing the thermal phase shift [51] or
interaction with a higher-order spatial mode [129].

The results of Papers E-F were interesting in the context of DKS
initiation, as bi-directional initiation was possible, i.e. scanning the laser
into resonance from either the blue side or the red side. Such dynamics
are not available in a single-mode microresonators without added effects,
such as the photorefractive effect [41] or interaction with a CW laser
cavity [162]

DKS states can also be maintained in a single-mode normal-GVD mi-
croresonator. The temporal waveform of such normal DKSs are rather
different from the anomalous DKS, forming a dark pulse on a CW back-
ground with oscillations at the bottom that decay towards the middle
(see figure 4.6) [31, 163]. These waveforms are sometimes named plati-
cons due to the high-power CW background [164]. The CW background
and the bottom ripples are closely related to the CW steady-steady state
solution of the bistability, where the normal DKS appears to switch be-
tween these two states. As such, it has been described as two switching
waves, which move towards each other until their oscillatory tails lock
together [98,165]. A peculiar result of this is that the resulting pulse can
exist in different states depending on how these oscillatory tails lock to-
gether, with each state having varying widths and a different number of
ripples at the bottom of the pulse [147]. Switching between these states
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was observed in Paper C as a change in the number of oscillations in the
comb spectrum.

The spectrum of a normal DKS is distinctly different from the anoma-
lous DKS. It displays a number of ripples that are somewhat linked to
the ripples in the temporal field. Thus, the spectrum is much less even
compared to the anomalous DKS. However, the conversion efficiency of
these waveforms is usually higher than 20% [31], much higher than their
anomalous GVD counterpart. This is mainly due to the fact that the nor-
mal DKS can be operated with the CW pump effectively located closer
to center of resonance [31]. Much of this converted power is concentrated
near the pump frequency, but Paper A showed that the overall comb-line
power of the normal DKS was nonetheless higher than the anomalous
DKS. This makes the normal DKS more attractive for optical telecom-
munication experiments, which is why they were employed in Papers I
and M.

Demonstrations of normal DKSs typically require advanced dynamics
for CW initiation. The problem lies in that the normal DKS cannot be
initiated from a CW laser in a single-mode normal-GVD microring due
to a lack of MI, as was discussed in section 4.1.3. Normal DKS thus
require a perturbed GVD profile to achieve the phase matching required
for MI, i.e. by employing an avoided mode-crossing [31,158].

The first experimental demonstrations of a normal DKS generated
by pumping a resonance in a mode-crossing enabled by two linearly-
coupled guided modes in the same microring cavity [31,158,163]. These
have been useful in demonstrating the dynamics of dark DKS, such as
in Paper C, where it was shown that normal DKSs are generated deter-
ministically by simply tuning a CW laser into resonance from the blue
side. However, as discussed in section 3.2, the coupled waveguide modes
offer limited control over the linear mode-coupling strength and loca-
tion of the avoided mode-crossing. If either of these factors are not set
correctly, a DKS might not be attainable. Furthermore, if the avoided
mode-crossing is not tunable, a DKS is generally only achieved when
pumping one specific resonance. This difficulty is perhaps the reason
why normal DKS have not been used as commonly in demonstrations
compared to the anomalous DKS.

Other efforts of normal DKS generation have featured linearly cou-
pled microresonators, where the avoided mode-crossing can be moved
separately via microheaters on each microring [130]. Microcombs from
such a design were first demonstrated in [31], with [53] showing later
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improvements. Paper D demonstrated unequivocally a DKS in linearly
coupled microresonators, while uncovering distinctive dynamics such as
an extended existence regime and normal DKS existence in absence of
CW bistability. A more recent alternative to the linearly coupled micror-
ings is to involve coupling to the CW laser cavity, which can result both
in self-injection locking and initiation in the normal dispersion regime
with remarkable reduction of frequency noise [55].

Microresonators support a wide range of DKS states and dynam-
ics beyond the ones mentioned above. DKSs with oscillating tempo-
ral amplitude, often named breathers, have been observed in both the
anomalous and normal GVD regime [166–168]. Higher order dispersion
impacts the spectral shape of the DKS, which can introduce dispersive
waves [169–171] and quartic solitons [172]. The Raman effect can cause
a self-frequency shift to the DKS envelope [173,174] and enable the gen-
eration of Stokes solitons [175,176]. Soliton crystals can be generated in
the anomalous-GVD with the assistance of a mode-crossing [30,177,178].
Such mode-crossings can be generated by employing photonic molecules,
which is the topic of the next chapter.
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Figure 4.6: a) shows the temporal characteristics of a normal DKS in the
form of a dark pulse circulating in a single-mode normal dispersion cavity. b)
shows the bistability for the same cavity, with a vertical dashed line indicating
the detuning at which the normal DKS operates. The red lines drawn between
a) and b) show that the upper and lower power levels of the dark pulse are
strongly linked to the upper and lower branch of the bistability, where the
normal DKS can be considered to switch between. c) shows how the dark pulse
is formed from an initial condition of a dark square pulse with amplitudes and
phase corresponding to the CW bistability solutions. d) shows the spectrum
that corresponds to the dark pulse. Parameters used were θ = 0.005, β2 =
100 ps2/km, L = 1.5 mm, FSR = 100 GHz, α = 0.5 m−1, γ = 1 (Wm)−1,
δ0 = 0.0141, Pin = 20mW .
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Chapter 5

Nonlinear dynamics in
photonic molecules

As the physics of a DKS generated in a single-mode cavity has steadily
become better understood, the microcomb research field has been mov-
ing towards more complex systems, such as a microcomb-laser hybrids
[62, 179], pulsed pumping [60, 180] and self-injection locking [46, 160].
Photonic molecules offer yet another approach to increase the complexity
and enhance Kerr microcomb generation. These enhancements include:
Causing a dispersive wave which can stabilize soliton crystals [30], re-
duce phase noise [181] and enable deterministic DKS generation [54,129];
facilitate MI in the normal GVD allowing enhanced signal generation
[182] and DKS initiation [31, 52, 158, 183, 184]; improve conversion effi-
ciency [64,183]; and introduce exotic DKS dynamics in diatomic photonic
molecules [125,185,186], and cascaded microrings [124,187]. Papers C-F
provide extensive modelling and analysis of photonic molecules, focus-
ing on comb initiation and conversion efficiency. Here, we provide extra
analysis that further explain the dynamics in these papers. In the first
section, we discuss CW steady-state solutions in photonic molecules, and
how the relative locations of the resonances effect comb generation. In
the second section, we discuss the validity of applying a fixed frequency
shift to a pumped resonance to emulate the coupling interaction with
an auxiliary cavity. In the third section, we show how a shifted pump
resonance allows DKS initiation in the normal dispersion regime.
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5.1 Power buildup in Kerr-nonlinear photonic
molecules

To analyze Kerr nonlinear photonic molecules, we combine the LLE
(equation 4.5) with the coupled mode formalism from equation 3.16
[183,184], resulting in

∂A1

∂z
= (−σ1/L− iδ1/L− i

β
(1)
2

2

∂2

∂t2
− iγ1|A1|2)A1 + iκzA2 + i

√
θAin/L

∂A2

∂z
= (−σ2/L− iδ2/L− d

∂

∂t
− i

β
(2)
2

2

∂2

∂t2
− iγ2|A2|2)A2 + iκzA1,

(5.1)

where A1 and A2 are the temporal fields of cavity 1 (main) and 2 (aux-
iliary). The walk-off factor, d, signifies the offset group velocity between
the two cavities. Note that cross-phase modulation is sometimes added
between A1 and A2 when their geometrical mode-space significantly over-
lap. Assuming CW steady-state conditions, we greatly simplify these
equations as

0 = (−σ1/L− iδ1/L− iγ1|A1|2)A1 + iκzA2 + i
√
θAin/L

0 = (−σ2/L− iδ2/L− iγ2|A2|2)A2 + iκzA1. (5.2)

The fact that we have Kerr nonlinearity in both cavities makes this
system significantly more complex compared to the single-mode case in
equation 4.6, supporting up to 9 steady-state solutions. Such features
have been studied in numerous coupled cavity systems [183, 188–190].
Here, we use these equations to examine the power buildup in the pho-
tonic molecule resonances. This helps us understand how we should
configure our photonic molecule resonances in order to get microcomb
generation in the main cavity.

The comb generation in Papers D-F relied on the pumping of a reso-
nance which was red-shifted due to coupling interaction with the auxil-
iary cavity. Figure 5.1a, shows an example of how the CW steady-state
power would typically look like for such an arrangement. Relatively low
CW power was used, which only leads to bistable resonance-splits. The
red-shifted resonance has significantly more buildup of power in the main
cavity compared to the auxiliary cavity. This difference is enabled by the
fact that the uncoupled auxiliary resonance (marked by a green dotted
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5.1. Power buildup in Kerr-nonlinear photonic molecules

Figure 5.1: The CW steady-state solutions for the nonlinear coupled cavities
for two different configurations. The left (right) column shows the main (auxil-
iary) intracavity power. The blue (green) dashed line shows the resonance loca-
tion of the main (auxiliary) mode in absence of coupling (i.e. κz = 0). a) shows
has the uncoupled auxiliary mode shifted 0.5 GHz towards the blue side com-
pared to the uncoupled main mode. b) has the auxiliary mode shifted to the red
side by the same amount. The CW laser frequency is given by f , with f1 being
the location of the uncoupled main resonance. Parameters used for the steady
state solutions were Pin = 20mW , θ = 0.005, L = 1.5mm, FSR1 = 100GHz,
FSR2 = 104GHz, α1 = α2 = 0.5m−1, γ1 = γ2 = 1(Wm)−1, κz = 20.54rad/m

line in the figure) is slightly blue shifted compared to the main reso-
nance. This difference in power level means that comb generation can
be enabled in the main cavity while the auxiliary cavity remains under
MI threshold. If we tune the uncoupled auxiliary resonance to the red
side of the uncoupled main resonance, the situation is reversed, with the
red-shifted resonance having dominant power buildup in the auxiliary
cavity (see figure 5.1b). This configuration enables DKS generation in
the auxiliary cavity [64,183]. It is for this reason that the DKS dynamics
in Papers C-F all required the auxiliary resonance to be located on the
blue side of the main resonance. It also underlines the need for the cavity
heaters in Papers D-F, which helped configuring these power dynamics
to ensure comb generation in the main cavity.
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Figure 5.2: The CW steady-state solutions for of the main cavity when con-
sidering a photonic molecule configuration (red) and a single cavity resonance
with a constant resonance shift (blue). The offset between the uncoupled aux-
iliary resonance and uncoupled main resonance is given by (∆f). In a-b) we
consider no intrinsic losses, with ∆f being the only difference between the two
figures. The cross marks the frequency where the two configurations give the
same solution. In c-d) show the same as a-b), but with intrinsic included in all
cavities. Other parameters are the same as in figure 5.1a.

5.2 Replacing the auxiliary cavity with a con-
stant frequency shift

From the viewpoint of the main cavity, the interaction with the auxiliary
cavity can be approximated as frequency shift applied to the main cavity
mode. This approach was extremely useful in Paper F to investigate
the conversion efficiency dynamics of photonic molecules, where for each
simulated DKS state generated in a photonic molecule we could typically
replace the auxiliary cavity with a constant phase shift applied to the
pump per roundtrip. However, we cannot consider the fixed resonance
shift as a complete replacement for the photonic molecule dynamics. To
illustrate this, in figure 5.2, we compare the the main cavity CW-steady
state solutions of a single resonator with a fixed resonance shift. Figure
5.2a, which includes no intrinsic losses, shows that the single-cavity with
a fixed resonance shift qualitatively matches the photonic molecule, but
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it is not a one-to-one match. In fact, ignoring the unstable middle branch,
the two systems only show an exact match for one frequency. This is
because the shift introduced auxiliary cavity is dynamical, depending
on offset between the uncoupled longitudinal modes of the two cavities.
This offset effectively increases as power builds up in the main cavity
due to the nonlinear phase shift, which in turn decreases impact from
the auxiliary cavity. This effect can be countered by simply moving the
position of the auxiliary longitudinal modes (see figure 5.2c), allowing a
match between the two systems at other laser frequencies.

In figures 5.2c-d, we add intrinsic losses to the cavities. Now we also
see a mismatch in power between the shifted single-cavity and the pho-
tonic molecule. This is due to the fact that the auxiliary cavity introduce
not only a frequency shift, but also extra losses from the viewpoint of the
main cavity. This underlines the importance of realizing high-Q cavities.

5.3 DKS initiation in the normal dispersion
regime

The method of red-shifting the pump resonance to approximate the im-
pact of the auxiliary cavity was used in Paper F to analyze the phase-
matching and parametric amplification. The same mechanism can also
enable DKS generation in the normal dispersion regime [31, 158, 164].
Here, we do a brief analysis of the initiation of normal GVD micro-
combs with a red-shifted resonance. The analysis is similar to previous
work [158], where the comb detuning (as defined in paper F) is linked
to the parametric gain conditions introduced in section 4.1.3. For this,
we consider a single cavity with the parameters defined in figure 4.6.
The CW pump frequency is scanned into resonance from the blue side
towards the red side while recording the peak intracavity power and
conversion efficiency. In addition, we record the threshold conditions for
parametric gain as described in section 4.1.3, which are repeated here
for convenience:

∆Ω2
m = 2

δc − 2γLP

β2L
, Pth = σ/(γL), (5.3)

where δc is the comb detuning. According to these equations, a para-
metric gain is possible where ∆Ω2

m > 0 and P > Pth, where P is the
intracavity power. The results of the simulations are displayed in figure
5.3. Figure 5.3a-b displays a build up of power as the laser is scanned
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into resonance shifted by 0.002 radians per roundtrip, with rise in con-
version efficiency showing where a comb is eventually generated. The
comb initiation is only realized where both of the parametric gain con-
ditions are met, suggesting that the equations above do indeed predict
the conditions for DKS initiation in the normal GVD regime. Note
however that the existence regime of the DKS is rather narrow, which
would make it hard to obtain in practice. The red-shift of the pump
resonance is now increased to 0.01 radians per roundtrip (figure 5.3c-d).
This eases the parametric gain conditions, allowing the DKS comb to
be initiated at a much lower intracavity power and providing larger ex-
istence range. These results suggest that the comb initiation in normal
dispersion resonators with shifted pump resonance is indeed predicted by
the parametric gain conditions. It also suggests that the key mechanism
in the extended existence of normal DKSs in paper D was enabled by
the strong red-shift of the pumped resonance.

The DKS’s temporal power distribution and spectral distribution is
displayed in figure 5.3e-f. These waveforms are symmetric, similar to the
DKSs in reference [164], which employed a similar approach of pump res-
onance shift. Such waveforms can in principle be realized experimentally
using normal GVD photonic molecule configuration with a mismatch in
microring sizes, similar to paper F. This is demonstrated in appendix A.
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CW steady state

Figure 5.3: a) shows the a laser frequency scan into pump resonance which
has been red-shifted by 0.002 radians per roundtrips. It displays the peak intra-
cavity power (Pmax), conversion efficiency and the CW steady state solutions.
b) shows the corresponding phase-matched frequency Ωm and the difference
between threshold power and peak intracavity power. The thresholds of each
axis are indicated by the dashed lines. c-d) are the same as a-b, only with a
red-shift of 0.01 radians per roundtrip. The intracavity DKS state marked by
’x’ is shown in e) with the corresponding output spectral envelope shown in f).
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Chapter 6

Future outlook

This thesis has focused on the study of DKS dynamics in microres-
onators, with emphasis on linearly coupled cavities and high efficiency
microcombs. Here, I highlight some areas that in my opinion deserve to
be explored in the future.

• Papers A-B investigated the scaling of conversion efficiency of
DKSs in single-cavity microresonators, showing that the normal
dispersion has a slight benefit over the anomalous dispersion
in terms of power-per-line. With the introduction of photonic
molecules in Papers D-F, new dynamics are added which affect
the scaling of comb power. The practical limitations of such en-
hancements have not been defined so far, and it is unclear if the
normal dispersion or anomalous dispersion will be ultimately more
beneficial. It would be interesting to resolve these uncertainties
with a numerical study.

• The dynamics of the photonic molecule system is considerably more
complicated than the single-mode system. For example, apart from
the improved conversion efficiency, we found exotic dynamics such
as DKS initiation with backwards scanning of the CW laser, DKS
operation with the CW laser detuned to either side of pump res-
onance and extended existence regimes in terms of detuning and
pump power. The parameter space of such photonic molecules has
not been fully explored, and other useful dynamics are potentially
yet to be discovered in such structures.

• The simple idea of shifting the pumped resonance to improve con-
version efficiency presented in Paper F could in principle be im-
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plemented in systems other than the photonic molecules, e.g. in-
teraction with a laser cavity or coupling to other frequency modes
via harmonic generation. It would be interesting to do a numerical
study, preferably supported by experimental evidence, to demon-
strate that this conversion efficiency enhancement is indeed uni-
versal and can occur in multiple different systems.

• Some of the previous work in the microcomb research field has
involved co-integration of microresonators with lasers [48], with
self injection locking of the pump laser to the soliton microcomb
[46, 47]. Other studies have involved co-integration of other op-
tical components [49], aiming at fully integrated microcomb sys-
tems [37, 49, 50]. The improved power efficiency demonstrated in
Papers D-F would be useful in such co-integration schemes as it can
relax the requirements in terms of laser power, optical losses and
photodiode sensitivity. A demonstration of high-efficiency DKS co-
integrated with other optical components would be an interesting
future project.

• The photonic molecule demonstrated in Papers D-F had high ef-
ficiency, typically covering a 20-80 nm span around the 1550 nm
pump. To achieve self-referencing, this bandwidth would need to
be extended by an order of magnitude to reach an octave span. A
demonstration of an reproducible octave spanning microcomb with
dramatically improved conversion efficiency would be of interest for
microcomb community in general.
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Summary of Papers

Paper A

Superchannel engineering of microcombs for optical communi-
cations,
Journal of the Optical Society of America B, 36, 8, 2013-2022, 2019.

Here, we conduct a numerical investigation into the performance of
DKSs in both normal and anomalous dispersion single-mode cavities
for generating frequency carriers for fiber optical communications. We
discuss the benefits of using multiple narrow microcomb sources, each
constituting a superchannel, compared to using a broad microcomb
source. We discover that the line power of anomalous and normal DKSs
follow the same scaling in terms of input power and number of lines
generated, showing that normal DKSs can offer up to 3 dB higher line
power compared to the anomalous DKS.

My contributions: I conducted the simulations, I wrote the paper
with support from co-authors, I presented the work at CLEO 2018

Paper B

Laser Frequency Combs for Coherent Optical Communications,
Journal of Lightwave Technology, 37, 7, 1663-1670, 2019.

In this work, we explore the benefits and tradeoffs of using
frequency combs in optical communications. The study involves
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data-link performance with regards to important comb characteristics,
such as line power, linewidth and line spacing. Furthermore, we
discuss how the coherence can be utilized to simplify the hardware
of the data receiver. Finally we compare the performance of electro-
optic combs with microresonator combs in terms of minimum line power.

My contributions: I conducted the microcomb simulations in the
last section of the paper.

Paper C

Switching dynamics of dark-pulse Kerr comb states in optical
microresonators,
Physical Review A, 103, 1, 013513, 2021.

In this work, we investigate the dynamics of DKS comb generation
in the normal dispersion regime, both experimentally and numerically.
Spectrally probing the pump resonance as the DKS is generated, we
discover that an extra resonance appears once the comb is initiated. We
find that the two resonances are closely linked to the bistability of the
cavity. We also find that the DKS spectrum exhibits switching between
different states. Numerical simulations accurately replicated the comb
spectra, showing that the different states correspond to dark pulses with
different number of oscillations.

My contributions: I conducted single-mode simulations to verify
the VNA scans, I assisted with lab measurements, I presented the part
of the work that featured hot cavity spectroscopy at CLEO EU 2019.

Paper D

Dissipative Kerr solitons in photonic molecules,
Nature Photonics, 15, 4, 305-310, 2021.

Here, we demonstrate DKS generation in linearly-coupled normal
dispersion microrings. Using a microheater on one of the rings to
control the coupling interaction, we demonstrate that these structures
can generate DKSs with high conversion efficiency at low input power
in a reproducible manner. We show through numerical simulations
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that the dynamics of these DKSs are enabled by the linear coupling of
two cavities. We numerically demonstrate that this design offers DKSs
with a larger existence regime compared to normal dispersion DKSs in
single-mode cavities.

My contributions: I conducted the lab experiments, I simulated
microcombs dynamics numerically, I assisted with numerical character-
ization, I wrote parts of the paper, I presented a part of the work at
CLEO 2020.

Paper E

Bidirectional initiation of dissipative solitons in photonic
molecules,
Conference on Lasers and Electro-Optics Europe and European Quantum
Electronics Conference, ef_5_1, 2021.

We find that the photonic molecule configuration from Paper D allows
initiation of solitons by tuning the CW laser into resonance from the red
side. This is enabled by the fact that dissipative solitons exist on the
blue side of cavity resonance in absence of bistability.
My contributions: I conducted the lab experiments and numerical
simulations. I presented the work at CLEO EU 2021.

Paper F

Power efficient soliton microcombs,
Submitted to a journal, preprint available at arXiv:2202.09410

We demonstrate a single DKS in an anomalous cavity with vastly
improved conversion efficiency with excellent phase noise stability. This
was achieved by shifting of the pumped resonance in the DKS cavity us-
ing a photonic molecule arrangement. The dynamics were demonstrated
both experimentally and in numerical simulation. Other interesting dy-
namics, such as operating a soliton below the modulational instability
limit, backwards initiation and operating the soliton with the CW laser
blue detuned to the pumped resonance.

My contributions: I came up with idea, conducted the lab exper-
iments and numerical simulations. I wrote large portions of the paper.
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Appendices

Appendix A – Initiation of DKS states in photonic
molecules

DKSs can be generated in linearly coupled microresonators in fairly re-
liable manner by using a CW laser in combination with cavity heaters.
The purpose of this section is to provide a technical guide for finding
and initiating DKS states in photonic molecule microresonators.

General setup

It is important when working with microresonator chips to have a stable
environment with minimal fluctuation in temperature and a steady cou-
pling of optical power to the chip. In this work, the chip is placed on a
temperature controlled surface (see figure 7.1a). This allows us to main-
tain a constant temperature of the overall chip which reduces the impact
of temperature drifts in the environment that might cause the resonances
to drift in frequency location. The chip is typically fixed place, e.g. by
using vacuum suction or by clamping it down with an elastic material.
The heater circuits of the microrings are coupled to a power supply using
probes. Typically, the voltage resolution of the power supply should be
in the range of 1 mV, with the ability to apply up to 500 mW of electrical
power to the circuit. The waveguides on the chip are optically coupled
using lensed fibers, with typical coupling losses of 1.5-3 dB per facet.

To characterize the initiation of DKSs, we need a setup which allows
us to control the frequency location of the CW pump laser relative to
the resonances of the photonic molecule. We also need a way to monitor
the resonances and the converted power of the DKS states. Figure 7.1b
shows a typical setup which can be used to find DKS states. It involves a
CW laser which can be tuned in wavelength, e.g. using a piezo actuator.
A polarization controller is used to adjust the polarization of the laser
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Figure 7.1: a) shows a chip which contains microresonators coupled to lensed
fibers and heater probes. The chip is placed on a metallic plate which is tem-
perature stabilized. b) shows a typical setup for microcomb generation. In this
example the CW laser is swept in wavelength by applying a ramp function to
a piezo actuator in the laser cavity. A voltage Vaux is applied to the auxiliary
heater. The output of c) shows the oscilloscope response as the piezo voltage
is linearly tuned down, which approximately corresponds to a linear scan in
frequency from the blue side towards the red. The frequency scan speed is
roughly 0.2 GHz/ms in this case. The transmitted power and converted power
are proportional to the measured voltage.

to match the desired polarization of the resonator. A combination of
an erbium doped fiber amplifier (EDFA) and a tunable attenuator are
employed to control the input laser power. A portion of the output from
the microresonator is coupled to an optical spectrum analyzer (OSA) to
monitor the spectrum of generated microcombs. The throughput is also
detected in an oscilloscope (OSC) using a photodiode. This allows us to
observe the resonances of the microcavity as we scan the laser frequency.
The converted power is also recorded in the oscilloscope, allowing us
to monitor if a comb is being generated during laser frequency scans.
This requires an optical filter that suppresses the laser frequency, but
allows the frequencies of generated comb lines to be passed through.
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The passband of this filter can be configured in a variety of ways, e.g. as
a notch filter which suppresses only the pump or a bandpass filter which
passes a selected portion of the comb spectrum. The control voltage for
the CW laser frequency tuning (e.g. piezo voltage) is typically measured
in the oscilloscope to give a reference for the direction of the frequency
scan. Although not included here, it also useful to measure the frequency
scanning of the laser, e.g. using beating with a self-referenced laser as
was done in Paper D-F.

Figure 7.1c, shows a typical oscilloscope reading when scanning the
laser frequency across the resonance from the blue side towards the red.
It shows the decrease in piezo voltage, which indicates an increase in
wavelength. It also shows resonances in the transmitted trace, and a rise
in converted power, which indicates comb generation. This trace allows
us to verify if there are comb states being generated, and how far into
the resonances we need to tune to attain them.

To demonstrate how we can use this system for DKS generation,
we look at an example of a normal-GVD photonic molecule in the next
section.

DKS initiation using a normal-GVD photonic
molecule

Here we look into the initiation of a DKS in normal-GVD linearly-
coupled microrings. For this demonstration, we use a design with micror-
ings of vastly mismatched sizes. The main cavity has near 50 GHz FSR
while the auxiliary cavity has an FSR near 480 GHz. This will enable
similar dynamics as in section 5.3, where we only induce a shift to the
pumped resonance. The procedure to generate DKSs in this configura-
tion is similar to the arrangement of similar sized rings used in Paper D.
Prior to high power pumping, this device had been characterized with
high intrinsic Q factors (>5 million) with most of the resonances having a
Lorentzian profile. This characterization is an important step, since low
intrinsic Q can impede the DKS generation, especially when scattering
causes coupling to the counter-propagating mode. It is also important
to verify that the heaters work by measuring the resistance across the
heater circuit, and by testing that resonances of the cavities shift when
applying voltage to the heater circuit. The power across the heaters
should be kept below 500 mW to reduce the chances of a burning the
circuit.
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1: Converted power
2: Transmitted power
3: Piezo voltage

Figure 7.2: The response of the laser frequency scan as the auxiliary resonance
is tuned across the main resonance by increasing the auxiliary heater voltage.
The laser frequency is reduced by approximately 2 GHz in a 10 ms time span.
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Figure 7.3: Comb states found when tuning into the resonances at the in-
dicated auxiliary resonance voltages. The configuration of the cavities is the
same as the frequency scans in figure 7.2 which have the same auxiliary voltage.

Having identified the quality of the sample, we place it in the setup
of figure 7.1. We turn the laser frequency scan on, and tune the center of
the frequency scan (or tune the voltage of the main cavity heater) until
we see a resonance in the transmitted trace in the oscilloscope. Now
we tune the auxiliary heater voltage until a second resonance appears in
the oscilloscope (see figure 7.2). We tune the auxiliary resonance across
the main resonance and observe the changes in transmitted power and
converted power. If no converted power is observed, then we increase
the input CW power. As a rule of thumb, the DKSs are easiest to find
when setting the laser 5-10 dBm above MI threshold.

Having established that we can tune the auxiliary resonance across
the main resonance, with clear indications of converted power in the os-
cilloscope, it is now time to attempt DKS initiation. The aim is to bring
the auxiliary resonance into close proximity to the main resonance, caus-
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ing the main resonance to red-shift. This is the key ingredient to DKS
initiation in the normal dispersion regime, as was discussed in section 5.3.
For this, we want to investigate an auxiliary voltage span starting from
a point where the auxiliary resonance is far on the blue side compared
to the main resonance, and ending at a spot where the two resonances
have a minimal distance between each other. This would correspond
to voltages 2.18V-2.32V in figure 7.2. The process is simply to fix the
auxiliary voltage, turn off the laser frequency scan, and tune the laser
slowly into resonance from the blue side towards the red until a comb
state is generated. This is repeated for the different auxiliary voltages,
while maintaining a fixed main heater voltage, until we have good pic-
ture of what comb states are generated as the interaction between the
two cavities is changed.

In figure 7.3, we show three comb states using three different config-
urations using 2.18V, 2.29V and 2.32V applied to the auxiliary cavity,
each corresponding to the frequency scan of equal voltage in figure 7.2.
At 2.18V, we have the auxiliary resonance located far on the blue-side
of the main cavity, which results in a multi-FSR comb. For the CW ini-
tiation at 2.29V we have the auxiliary resonance pushed much closer to
the main resonance, which increases the interaction of the two resonances
causing a mode-split. The red-shifted resonance has more power buildup
in the main cavity, and enough red-shifting to allow a single-DKS with
a spectral envelope similar to figure 5.3f-e. At 2.32V, we have pushed
the auxiliary resonance too far, such that the CW initiation leads to
comb generation in the auxiliary cavity. This is due to the fact that the
red-shifted resonance in the mode-split corresponds to dominant power
buildup in the auxiliary cavity, as was discussed in section 5.1.

These examples show that single-DKS generation in the normal dis-
persion photonic molecules can be generated by tuning the CW laser into
the red-shifted resonance of the mode-crossing. Note however that the
exact configuration of the mode-crossing may differ from one photonic
molecule design to another. For example, the single-DKS generation
demonstrated in the supplementary of Paper D had a different separa-
tion between the two resonances.

In some cases, the a single-DKS is not attainable by just tuning
the laser into resonance in the manner described here. Thankfully, we
can apply another approach in such cases, demonstrated in figure 7.4.
Essentially, we initiate a multi-FSR comb with the auxiliary resonance
further towards the blue side of the main resonance. We then fix the laser
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Figure 7.4: Tuning the auxiliary resonance closer to the main resonance allows
a multi-FSR comb state (top figure) to be turned into a single-DKS state

frequency and tune the auxiliary heater voltage, inducing the desired red-
shift to the pumped resonance. This allows the comb state to gradually
change from from a multi-FSR state to a single-DKS state. Such an
approach was demonstrated in a previous paper [52], using two cavities
of similar sizes. Note that in some cases, the laser frequency (or main
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cavity heater) has to be tuned in unison with the auxiliary heater voltage
to end up with the desired DKS state.

Finally, it is worth mentioning that these are not the only methods
to attain DKS states in normal-dispersion photonic molecules. Paper E
demonstrated backwards initiation, which was also a viable option for
the sample tested here. CW initiation can also be done with a fixed
laser frequency, tuning the heaters of the main and auxiliary cavity to
modify the detuning between laser and resonances. The use of feedback
to the laser frequency (or cavity heaters) to lock the comb power can
also be useful when initiating the DKS [191,192]. It allows us counteract
thermal shifts which often occur when going from one soliton state to
another.

DKS initiation using a anomalous-GVD photonic
molecule

The DKS initiation in photonic molecules using anomalous dispersion
requires us to find a main cavity resonance which interacts with a auxil-
iary resonance. For this we follow steps similar to the normal dispersion
regime, where we scan the auxiliary resonance across the main cavity
and observe how it affects the comb initiation. In contrast to the nor-
mal dispersion, shifting the pumped resonance typically obstructs comb
initiation. Thus, we initiate a comb with the auxiliary resonance far
away from the main cavity, and only tune the auxiliary resonance close
to the main resonance after comb initiation to reach a single DKS, as
was discussed in Paper F.

In figure 7.5, we show an initiation process in an anomalous photonic
molecule with a similar design as the devices in Paper F. Figure 7.5a
shows the oscilloscope of the laser frequency sweep, revealing a large
separation between the resonances of the two cavities, with a comb state
generated in the main resonance on the red-side. By stopping the the
laser frequency sweep, and tuning the laser slowly into resonance from
the blue side towards the red, we initiate the first comb state displayed in
figure 7.5b. This state has the characteristics of a multi-DKS state. To
reduce the number of DKSs in the cavity, we tune the auxiliary voltage
such that the auxiliary resonance shifts closer to the main resonance. The
increased interaction between the resonances allow the number of DKSs
in the cavity to be reduced until we arrive at a single DKS state. The
laser frequency and the main heater voltage can often be maintained
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fixed during this process. In other cases, the laser frequency or main
heater voltage have to be manipulated to allow the transition to a single
DKS state. Locking the converted power to a fixed value using feedback
to the laser frequency (or main cavity heater) can be useful in these
cases, as it allows the laser frequency to be shifted automatically as the
auxiliary voltage is tuned.
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Figure 7.5: a) shows an oscilloscope measurement of a laser frequency scan
probing an anomalous-dispersion photonic molecule. The frequency offset
shows the change in laser frequency. b) shows the evolution of the generated
comb-state as the auxiliary voltage is gradually increased. The comb-state
state at 4.335 V was attained by tuning the laser into resonance using the
same configuration as in a).

68



References

[1] J. L. Hall, “Nobel Lecture: Defining and measuring optical frequen-
cies,” Reviews of Modern Physics, vol. 78, no. 4, pp. 1279–1295,
2006.

[2] T. W. Hänsch, “Nobel Lecture: Passion for precision,” Reviews of
Modern Physics, vol. 78, no. 4, pp. 1297–1309, 2006.

[3] D. J. Jones, “Carrier-Envelope Phase Control of Femtosecond
Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Sci-
ence, vol. 288, no. 5466, pp. 635–639, 2000.

[4] R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J.
Wadsworth, and P. S. J. Russell, “Optical Frequency Synthe-
sizer for Precision Spectroscopy,” Physical Review Letters, vol. 85,
no. 11, pp. 2264–2267, 2000.

[5] S. T. Cundiff and J. Ye, “Colloquium : Femtosecond optical fre-
quency combs,” Reviews of Modern Physics, vol. 75, no. 1, pp.
325–342, 2003.

[6] S. A. Diddams, K. Vahala, and T. Udem, “Optical frequency
combs: Coherently uniting the electromagnetic spectrum,” Sci-
ence, vol. 369, no. 6501, p. eaay3676, 2020.

[7] S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W.
Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, “An
27Al+ quantum-logic clock with systematic uncertainty below
10−18,” Physical Review Letters, vol. 123, no. 3, p. 033201, 2019.

[8] R. A. McCracken, J. M. Charsley, and D. T. Reid, “A decade of
astrocombs: recent advances in frequency combs for astronomy,”
Optics Express, vol. 25, no. 13, p. 15058, 2017.

69



REFERENCES

[9] I. Coddington, N. Newbury, and W. Swann, “Dual-comb spec-
troscopy,” Optica, vol. 3, no. 4, pp. 414–426, 2016.

[10] X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lez-
ius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin,
G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave
signals with zeptosecond-level absolute timing noise,” Nature Pho-
tonics, vol. 11, no. 1, pp. 44–47, 2017.

[11] L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur,
V. Torres-Company, J. Schröder, and P. Andrekson, “Frequency
Comb-Based WDM Transmission Systems Enabling Joint Signal
Processing,” Applied Sciences, vol. 8, no. 5, p. 718, 2018.

[12] T. Fortier and E. Baumann, “20 years of developments in opti-
cal frequency comb technology and applications,” Communications
Physics, vol. 2, no. 1, p. 153, 2019.

[13] H. Haus, “Mode-locking of lasers,” IEEE Journal of Selected Topics
in Quantum Electronics, vol. 6, no. 6, pp. 1173–1185, 2000.

[14] L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He–Ne
laser modes induced by synchronous intracavity modulation,” Ap-
plied Physics Letters, vol. 5, no. 1, pp. 4–5, 1964.

[15] V. Torres-Company and A. M. Weiner, “Optical frequency comb
technology for ultra-broadband radio-frequency photonics,” Laser
& Photonics Reviews, vol. 8, no. 3, pp. 368–393, 2014.

[16] K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and
S. B. Papp, “Electronic synthesis of light,” Optica, vol. 4, no. 4,
pp. 406–411, 2017.

[17] D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quin-
lan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light
with subcycle control,” Science, vol. 361, no. 6409, pp. 1358–1363,
2018.

[18] L. Chang, S. Liu, and J. E. Bowers, “Integrated optical frequency
comb technologies,” Nature Photonics, vol. 16, no. 2, pp. 95–108,
2022.

70



REFERENCES

[19] A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-
based frequency combs,” Nature Photonics, vol. 13, no. 3, pp. 158–
169, 2019.

[20] S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K.
Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20
GHz passively mode-locked quantum dot laser directly grown on
Si with 4.1 Tbit/s transmission capacity,” Optica, vol. 6, no. 2, pp.
128–134, 2019.

[21] M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer,
R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic fre-
quency comb generation in a lithium niobate microring resonator,”
Nature, vol. 568, no. 7752, pp. 373–377, 2019.

[22] T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky,
“Dissipative Kerr solitons in optical microresonators,” Science, vol.
361, no. 6402, p. eaan8083, 2018.

[23] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams,
“Microresonator-Based Optical Frequency Combs,” Science, vol.
332, no. 6029, pp. 555–559, 2011.

[24] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-
Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q
Toroid Microcavity,” Physical Review Letters, vol. 93, no. 8, p.
083904, 2004.

[25] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth,
and T. J. Kippenberg, “Optical frequency comb generation from a
monolithic microresonator,” Nature, vol. 450, no. 7173, pp. 1214–
1217, 2007.

[26] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erk-
intalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye,
X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel
generation of optical sources,” Physics Reports, vol. 729, pp. 1–81,
2018.

[27] S. Wabnitz, “Suppression of interactions in a phase-locked soliton
optical memory,” Optics Letters, vol. 18, no. 8, pp. 601–603, 1993.

71



REFERENCES

[28] F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Hael-
terman, “Temporal cavity solitons in one-dimensional Kerr media
as bits in an all-optical buffer,” Nature Photonics, vol. 4, no. 7, pp.
471–476, 2010.

[29] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev,
M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in
optical microresonators,” Nature Photonics, vol. 8, no. 2, pp. 145–
152, 2014.

[30] D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B.
Papp, “Soliton crystals in Kerr resonators,” Nature Photonics,
vol. 11, no. 10, pp. 671–676, 2017.

[31] X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E.
Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr
combs in normal-dispersion microresonators,” Nature Photonics,
vol. 9, no. 9, pp. 594–600, 2015.

[32] Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles,
D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen,
M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Holl-
berg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching,
S. B. Papp, and M. T. Hummon, “Architecture for the photonic
integration of an optical atomic clock,” Optica, vol. 6, no. 5, pp.
680–685, 2019.

[33] A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H.
Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M.
Weiner, and V. Torres-Company, “High-order coherent communi-
cations using mode-locked dark-pulse Kerr combs from microres-
onators,” Nature Communications, vol. 9, no. 1, p. 1598, 2018.

[34] M. Mazur, M.-G. Suh, A. Fulop, J. Schroder, V. Torres-Company,
M. Karlsson, K. Vahala, and P. Andrekson, “High Spectral Effi-
ciency Coherent Superchannel Transmission With Soliton Micro-
combs,” Journal of Lightwave Technology, vol. 39, no. 13, pp. 4367–
4373, 2021.

[35] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle,
M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Ander-
son, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg,

72



REFERENCES

and C. Koos, “Microresonator-based solitons for massively parallel
coherent optical communications,” Nature, vol. 546, no. 7657, pp.
274–279, 2017.

[36] M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Mi-
croresonator soliton dual-comb spectroscopy,” Science, vol. 354, no.
6312, pp. 600–603, 2016.

[37] C. Bao, Z. Yuan, L. Wu, M.-G. Suh, H. Wang, Q. Lin, and K. J. Va-
hala, “Architecture for microcomb-based GHz-mid-infrared dual-
comb spectroscopy,” Nature Communications, vol. 12, no. 1, p.
6573, 2021.

[38] M.-G. Suh and K. J. Vahala, “Soliton microcomb range measure-
ment,” Science, vol. 359, no. 6378, pp. 884–887, 2018.

[39] P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts,
S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Ran-
del, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical
ranging using microresonator soliton frequency combs,” Science,
vol. 359, no. 6378, pp. 887–891, 2018.

[40] E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu,
M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cec-
coni, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J.
Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nature
Photonics, vol. 13, no. 1, pp. 31–35, 2019.

[41] Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen,
H. Wang, K. Vahala, and Q. Lin, “Self-starting bi-chromatic LiNbO
3 soliton microcomb,” Optica, vol. 6, no. 9, p. 1138, 2019.

[42] J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J.
Engelsen, and T. J. Kippenberg, “High-yield, wafer-scale fabrica-
tion of ultralow-loss, dispersion-engineered silicon nitride photonic
circuits,” Nature Communications, vol. 12, no. 1, p. 2236, 2021.

[43] Z. Ye, K. Twayana, P. A. Andrekson, and V. Torres-Company,
“High-Q Si 3 N 4 microresonators based on a subtractive processing
for Kerr nonlinear optics,” Optics Express, vol. 27, no. 24, p. 35719,
2019.

73



REFERENCES

[44] M.-G. Suh and K. Vahala, “Gigahertz-repetition-rate soliton mi-
crocombs,” Optica, vol. 5, no. 1, p. 65, 2018.

[45] X. Liu, Z. Gong, A. W. Bruch, J. B. Surya, J. Lu, and H. X.
Tang, “Aluminum nitride nanophotonics for beyond-octave soliton
microcomb generation and self-referencing,” Nature Communica-
tions, vol. 12, no. 1, p. 5428, 2021.

[46] B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson,
“Battery-operated integrated frequency comb generator,” Nature,
vol. 562, no. 7727, pp. 401–405, 2018.

[47] B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N.
Wang, J. He, T. Liu, W. Xie, J. Guo, D. Kinghorn, L. Wu, Q.-X.
Ji, T. J. Kippenberg, K. Vahala, and J. E. Bowers, “Integrated
turnkey soliton microcombs,” Nature, vol. 582, no. 7812, pp. 365–
369, 2020.

[48] C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Pe-
ters, W. Xie, Z. Zhang, J. Riemensberger, J. Selvidge, T. J. Kip-
penberg, and J. E. Bowers, “Laser soliton microcombs heteroge-
neously integrated on silicon,” Science, vol. 373, no. 6550, pp. 99–
103, 2021.

[49] A. Rao, G. Moille, X. Lu, D. A. Westly, D. Sacchetto, M. Geisel-
mann, M. Zervas, S. B. Papp, J. Bowers, and K. Srinivasan,
“Towards integrated photonic interposers for processing octave-
spanning microresonator frequency combs,” Light: Science & Ap-
plications, vol. 10, no. 1, p. 109, 2021.

[50] C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Mono-
lithic lithium niobate photonic circuits for Kerr frequency comb
generation and modulation,” Nature Communications, vol. 10,
no. 1, p. 978, 2019.

[51] H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer,
V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and
T. J. Kippenberg, “Universal dynamics and deterministic switch-
ing of dissipative Kerr solitons in optical microresonators,” Nature
Physics, vol. 13, no. 1, pp. 94–102, 2017.

74



REFERENCES

[52] X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. Qi, and
A. M. Weiner, “Normal-dispersion microcombs enabled by control-
lable mode interactions,” Laser & Photonics Reviews, vol. 9, no. 4,
pp. L23–L28, 2015.

[53] B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao,
C. Joshi, M. Lipson, and A. L. Gaeta, “Turn-key, high-efficiency
Kerr comb source,” Optics Letters, vol. 44, no. 18, pp. 4475–4478,
2019.

[54] S.-P. Yu, D. C. Cole, H. Jung, G. T. Moille, K. Srinivasan, and S. B.
Papp, “Spontaneous pulse formation in edgeless photonic crystal
resonators,” Nature Photonics, vol. 15, no. 6, pp. 461–467, 2021.

[55] W. Jin, Q.-F. Yang, L. Chang, B. Shen, H. Wang, M. A. Leal,
L. Wu, M. Gao, A. Feshali, M. Paniccia, K. J. Vahala, and J. E.
Bowers, “Hertz-linewidth semiconductor lasers using CMOS-ready
ultra-high-Q microresonators,” Nature Photonics, vol. 15, no. 5,
pp. 346–353, 2021.

[56] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair,
C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet,
T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y.
Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theog-
arajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers,
S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer
using integrated photonics,” Nature, vol. 557, no. 7703, pp. 81–85,
2018.

[57] L. Chang, W. Xie, H. Shu, Q.-F. Yang, B. Shen, A. Boes, J. D.
Peters, W. Jin, C. Xiang, S. Liu, G. Moille, S.-P. Yu, X. Wang,
K. Srinivasan, S. B. Papp, K. Vahala, and J. E. Bowers, “Ultra-
efficient frequency comb generation in AlGaAs-on-insulator mi-
croresonators,” Nature Communications, vol. 11, no. 1, p. 1331,
2020.

[58] C. Bao, L. Zhang, A. Matsko, Y. Yan, Z. Zhao, G. Xie, A. M.
Agarwal, L. C. Kimerling, J. Michel, L. Maleki, and A. E. Willner,
“Nonlinear conversion efficiency in Kerr frequency comb genera-
tion,” Optics Letters, vol. 39, no. 21, pp. 6126–6129, 2014.

75



REFERENCES

[59] X. Xue, P.-H. Wang, Y. Xuan, M. Qi, and A. M. Weiner, “Mi-
croresonator Kerr frequency combs with high conversion efficiency,”
Laser & Photonics Reviews, vol. 11, no. 1, p. 1600276, 2017.

[60] J. Li, C. Bao, Q.-X. Ji, H. Wang, L. Wu, S. Leifer, C. Beichman,
and K. Vahala, “Efficiency of pulse pumped soliton microcombs,”
Optica, vol. 9, no. 2, p. 231, 2022.

[61] M. H. Anderson, R. Bouchand, J. Liu, W. Weng, E. Obrzud,
T. Herr, and T. J. Kippenberg, “Photonic chip-based resonant su-
percontinuum via pulse-driven Kerr microresonator solitons,” Op-
tica, vol. 8, no. 6, p. 771, 2021.

[62] H. Bao, A. Cooper, M. Rowley, L. Di Lauro, J. S. Totero Gongora,
S. T. Chu, B. E. Little, G.-L. Oppo, R. Morandotti, D. J. Moss,
B. Wetzel, M. Peccianti, and A. Pasquazi, “Laser cavity-soliton
microcombs,” Nature Photonics, vol. 13, no. 6, pp. 384–389, 2019.

[63] A. W. Bruch, X. Liu, Z. Gong, J. B. Surya, M. Li, C.-L. Zou,
and H. X. Tang, “Pockels soliton microcomb,” Nature Photonics,
vol. 15, no. 1, pp. 21–27, 2021.

[64] X. Xue, X. Zheng, and B. Zhou, “Super-efficient temporal solitons
in mutually coupled optical cavities,” Nature Photonics, vol. 13,
no. 9, pp. 616–622, 2019.

[65] A. Hasegawa, “An historical review of application of optical soli-
tons for high speed communications,” Chaos: An Interdisciplinary
Journal of Nonlinear Science, vol. 10, no. 3, pp. 475–485, 2000.

[66] P. J. Winzer, D. T. Neilson, and A. R. Chraplyvy, “Fiber-optic
transmission and networking: the previous 20 and the next 20
years [Invited],” Optics Express, vol. 26, no. 18, p. 24190, 2018.

[67] G. P. Agrawal, Fiber-Optic Communication Systems. John Wiley
& Sons, Inc., 2010.

[68] G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. Elsevier, 2012.

[69] R. W. Boyd, Nonlinear Optics, 3rd ed. Academic Press, 2008.

[70] V. P. Tzolov, N. Godbout, S. Lacroix, and M. Fontaine, “Nonlinear
self-phase-modulation effects: a vectorial first-order perturbation
approach,” Optics Letters, vol. 20, no. 5, p. 456, 1995.

76



REFERENCES

[71] J. Hult, “A Fourth-Order Runge–Kutta in the Interaction Pic-
ture Method for Simulating Supercontinuum Generation in Op-
tical Fibers,” Journal of Lightwave Technology, vol. 25, no. 12, pp.
3770–3775, 2007.

[72] F. Shimizu, “Frequency Broadening in Liquids by a Short Light
Pulse,” Physical Review Letters, vol. 19, no. 19, pp. 1097–1100,
1967.

[73] A. Hasegawa, “Generation of a train of soliton pulses by induced
modulational instability in optical fibers,” Optics Letters, vol. 9,
no. 7, p. 288, 1984.

[74] A. Hasegawa and F. Tappert, “Transmission of stationary non-
linear optical pulses in dispersive dielectric fibers. I. Anomalous
dispersion,” Applied Physics Letters, vol. 23, no. 3, pp. 142–144,
1973.

[75] J. S. Russell, “Report of the fourteenth meeting of the British
Association for the Advancement of Science,” York, 1844 (London
1845), pp. 311–390.

[76] N. J. Zabusky and M. D. Kruskal, “Interaction of "Solitons" in a
Collisionless Plasma and the Recurrence of Initial States,” Physical
Review Letters, vol. 15, no. 6, pp. 240–243, 1965.

[77] D. J. Korteweg and G. de Vries, “XLI. On the change of form of
long waves advancing in a rectangular canal, and on a new type of
long stationary waves,” The London, Edinburgh, and Dublin Philo-
sophical Magazine and Journal of Science, vol. 39, no. 240, pp.
422–443, 1895.

[78] H. Washimi and T. Taniuti, “Propagation of Ion-Acoustic Soli-
tary Waves of Small Amplitude,” Physical Review Letters, vol. 17,
no. 19, pp. 996–998, 1966.

[79] A. Scott, F. Chu, and D. McLaughlin, “The soliton: A new concept
in applied science,” Proceedings of the IEEE, vol. 61, no. 10, pp.
1443–1483, 1973.

[80] “Exact theory of two-dimensional self-focusing and one-
dimensional self-modulation of waves in nolinear media,” Soviet
journal of experimental and theoretical physics, vol. 34, no. 1,
p. 62, 1972.

77



REFERENCES

[81] A. Cazaubiel, G. Michel, S. Lepot, B. Semin, S. Aumaître,
M. Berhanu, F. Bonnefoy, and E. Falcon, “Coexistence of solitons
and extreme events in deep water surface waves,” Physical Review
Fluids, vol. 3, no. 11, p. 114802, 2018.

[82] B. M. Lake, H. C. Yuen, H. Rungaldier, and W. E. Ferguson, “Non-
linear deep-water waves: theory and experiment. Part 2. Evolution
of a continuous wave train,” Journal of Fluid Mechanics, vol. 83,
no. 1, pp. 49–74, 1977.

[83] A. Hasegawa and F. Tappert, “Transmission of stationary nonlin-
ear optical pulses in dispersive dielectric fibers. II. Normal disper-
sion,” Applied Physics Letters, vol. 23, no. 4, pp. 171–172, 1973.

[84] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental
Observation of Picosecond Pulse Narrowing and Solitons in Optical
Fibers,” Physical Review Letters, vol. 45, no. 13, pp. 1095–1098,
1980.

[85] A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston,
E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experi-
mental Observation of the Fundamental Dark Soliton in Optical
Fibers,” Physical Review Letters, vol. 61, no. 21, pp. 2445–2448,
1988.

[86] J. E. Rothenberg and H. K. Heinrich, “Observation of the forma-
tion of dark-soliton trains in optical fibers,” Optics Letters, vol. 17,
no. 4, p. 261, 1992.

[87] K. Blow and N. Doran, “The asymptotic dispersion of soliton pulses
in lossy fibres,” Optics Communications, vol. 52, no. 5, pp. 367–
370, 1985.

[88] J. P. Gordon and H. A. Haus, “Random walk of coherently ampli-
fied solitons in optical fiber transmission,” Optics Letters, vol. 11,
no. 10, p. 665, 1986.

[89] N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Op-
tics to Biology and Medicine, ser. Lecture Notes in Physics. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, vol. 751.

[90] P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked
lasers,” Nature Photonics, vol. 6, no. 2, pp. 84–92, 2012.

78



REFERENCES

[91] O. Thual and S. Fauve, “Localized structures generated by subcrit-
ical instabilities,” Journal de Physique, vol. 49, no. 11, pp. 1829–
1833, 1988.

[92] P. Parra-Rivas and C. Fernandez-Oto, “Formation of localized
states in dryland vegetation: Bifurcation structure and stability,”
Physical Review E, vol. 101, no. 5, p. 052214, 2020.

[93] T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced
modulational instability laser revisited: normal dispersion and
dark-pulse train generation,” Optics Letters, vol. 27, no. 7, pp.
482–484, 2002.

[94] L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Optics
Letters, vol. 9, no. 1, pp. 13–15, 1984.

[95] W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev,
“Dissipative soliton resonances,” Physical Review A, vol. 78, no. 2,
p. 023830, 2008.

[96] S. T. Cundiff, J. M. Soto-Crespo, and N. Akhmediev, “Experi-
mental Evidence for Soliton Explosions,” Physical Review Letters,
vol. 88, no. 7, p. 073903, 2002.

[97] Y. H. Wen, M. R. E. Lamont, S. H. Strogatz, and A. L. Gaeta,
“Self-organization in Kerr-cavity-soliton formation in parametric
frequency combs,” Physical Review A, vol. 94, no. 6, p. 063843,
2016.

[98] P. Parra-Rivas, D. Gomila, E. Knobloch, S. Coen, and L. Gelens,
“Origin and stability of dark pulse Kerr combs in normal dispersion
resonators,” Optics Letters, vol. 41, no. 11, pp. 2402–2405, 2016.

[99] K. J. Vahala, “Optical microcavities,” Nature, vol. 424, no. 6950,
pp. 839–846, 2003.

[100] I. Chremmos, O. Schwelb, and N. Uzunoglu, Eds., Photonic Mi-
croresonator Research and Applications, ser. Springer Series in Op-
tical Sciences. Boston, MA: Springer US, 2010, vol. 156.

[101] J. Hryniewicz, P. Absil, B. Little, R. Wilson, and P.-T. Ho, “Higher
order filter response in coupled microring resonators,” IEEE Pho-
tonics Technology Letters, vol. 12, no. 3, pp. 320–322, 2000.

79



REFERENCES

[102] E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto,
“Sensor based on an integrated optical microcavity,” Optics Letters,
vol. 27, no. 7, p. 512, 2002.

[103] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale
silicon electro-optic modulator,” Nature, vol. 435, pp. 325–327,
2005.

[104] A. Perot and C. Fabry, “On the Application of Interference Phe-
nomena to the Solution of Various Problems of Spectroscopy and
Metrology,” The Astrophysical Journal, vol. 9, p. 87, 1899.

[105] L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber
resonator,” Optics Letters, vol. 7, no. 6, p. 288, 1982.

[106] P. Urquhart, “Compound optical-fiber-based resonators,” Journal
of the Optical Society of America A, vol. 5, no. 6, p. 803, 1988.

[107] H. Haus and W. Huang, “Coupled-mode theory,” Proceedings of
the IEEE, vol. 79, no. 10, pp. 1505–1518, 1991.

[108] A. Yariv, “Universal relations for coupling of optical power be-
tween microresonators and dielectric waveguides,” Electronics Let-
ters, vol. 36, no. 4, pp. 321–322, 2000.

[109] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos,
S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van
Thourhout, and R. Baets, “Silicon microring resonators,” Laser &
Photonics Reviews, vol. 6, no. 1, pp. 47–73, 2012.

[110] J. E. Heebner and R. W. Boyd, “Enhanced all-optical switching
by use of a nonlinear fiber ring resonator,” Optics Letters, vol. 24,
no. 12, pp. 847–849, 1999.

[111] P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J.
Kippenberg, “Frequency comb assisted diode laser spectroscopy for
measurement of microcavity dispersion,” Nature Photonics, vol. 3,
pp. 529–533, 2009.

[112] K. Twayana, Z. Ye, Ó. B. Helgason, K. Vijayan, M. Karls-
son, and V. Torres-Company, “Frequency-comb-calibrated swept-
wavelength interferometry,” Optics Express, vol. 29, no. 15, p.
24363, 2021.

80



REFERENCES

[113] M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and
T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based
on the Damascene reflow process: fabrication and loss origins,”
Optica, vol. 5, no. 7, pp. 884–892, 2018.

[114] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin,
R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal
formation dynamics and noise of Kerr-frequency combs in microres-
onators,” Nature Photonics, vol. 6, no. 7, pp. 480–487, 2012.

[115] T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L.
Gorodetsky, and T. J. Kippenberg, “Mode Spectrum and Temporal
Soliton Formation in Optical Microresonators,” Physical Review
Letters, vol. 113, no. 12, p. 123901, 2014.

[116] A. Arbabi and L. L. Goddard, “Measurements of the refractive
indices and thermo-optic coefficients of Si_3N_4 and SiO_x using
microring resonances,” Optics Letters, vol. 38, no. 19, p. 3878, 2013.

[117] K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal
and Kerr nonlinear properties of plasma-deposited silicon nitride/
silicon dioxide waveguides,” Optics Express, vol. 16, no. 17, pp.
12 987–12 994, 2008.

[118] X. Jiang and L. Yang, “Optothermal dynamics in whispering-
gallery microresonators,” Light: Science & Applications, vol. 9,
no. 1, p. 24, 2020.

[119] X. Xue, Y. Xuan, C. Wang, P.-H. Wang, Y. Liu, B. Niu, D. E.
Leaird, M. Qi, and A. M. Weiner, “Thermal tuning of Kerr fre-
quency combs in silicon nitride microring resonators,” Optics Ex-
press, vol. 24, no. 1, p. 687, 2016.

[120] M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Rei-
necke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Opti-
cal Modes in Photonic Molecules,” Physical Review Letters, vol. 81,
no. 12, pp. 2582–2585, 1998.

[121] Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Inte-
grated microwave photonic filters,” Advances in Optics and Pho-
tonics, vol. 12, no. 2, p. 485, 2020.

81



REFERENCES

[122] L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photon-
ics,” Nature Photonics 2014 8:11, vol. 8, no. 11, pp. 821–829, 2014.

[123] M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev,
D. N. Christodoulides, and M. Khajavikhan, “Topological insulator
laser: Experiments,” Science, vol. 359, no. 6381, 2018.

[124] S. Mittal, G. Moille, K. Srinivasan, Y. K. Chembo, and M. Hafezi,
“Topological frequency combs and nested temporal solitons,” Na-
ture Physics, vol. 17, no. 10, pp. 1169–1176, 2021.

[125] A. Tikan, J. Riemensberger, K. Komagata, S. Hönl, M. Churaev,
C. Skehan, H. Guo, R. N. Wang, J. Liu, P. Seidler, and T. J. Kip-
penberg, “Emergent Nonlinear Phenomena in a Driven Dissipative
Photonic Dimer,” Nature Physics, vol. 17, no. 5, pp. 604–610, 2020.

[126] T. Klaassen, J. de Jong, M. van Exter, and J. P. Woerdman,
“Transverse mode coupling in an optical resonator,” Optics Let-
ters, vol. 30, no. 15, pp. 1959–1961, 2005.

[127] J. Zhu, S. K. "Ozdemir, L. He, and L. Yang, “Controlled manipu-
lation of mode splitting in an optical microcavity by two Rayleigh
scatterers,” Optics Express, vol. 18, no. 23, pp. 23 535–23 543, 2010.

[128] S.-W. Huang, H. Liu, J. Yang, M. Yu, D.-L. Kwong, and C. W.
Wong, “Smooth and flat phase-locked Kerr frequency comb gener-
ation by higher order mode suppression,” Scientific Reports, vol. 6,
no. 1, p. 26255, 2016.

[129] C. Bao, Y. Xuan, D. E. Leaird, S. Wabnitz, M. Qi, and A. M.
Weiner, “Spatial mode-interaction induced single soliton genera-
tion in microresonators,” Optica, vol. 4, no. 9, p. 1011, 2017.

[130] S. A. Miller, Y. Okawachi, S. Ramelow, K. Luke, A. Dutt, A. Farsi,
A. L. Gaeta, and M. Lipson, “Tunable frequency combs based on
dual microring resonators,” Optics Express, vol. 23, no. 16, pp.
21 527–21 540, 2015.

[131] W.-P. Huang, “Coupled-mode theory for optical waveguides: an
overview,” Journal of the Optical Society of America A, vol. 11,
no. 3, pp. 963–983, 1994.

82



REFERENCES

[132] K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-
ring resonator for optical FDM transmission systems,” Journal of
Lightwave Technology, vol. 9, no. 6, pp. 728–736, 1991.

[133] S. Pereira, P. Chak, and J. E. Sipe, “All-optical AND gate by use of
a Kerr nonlinear microresonator structure,” Optics Letters, vol. 28,
no. 6, p. 444, 2003.

[134] N. Moroney, L. D. Bino, M. T. M. Woodley, G. N. Ghalanos, J. M.
Silver, A. O. Svela, S. Zhang, and P. Del’Haye, “Logic Gates Based
on Interaction of Counterpropagating Light in Microresonators,”
Journal of Lightwave Technology, vol. 38, no. 6, pp. 1414–1419,
2020.

[135] T. Carmon and K. J. Vahala, “Visible continuous emission from a
silica microphotonic device by third-harmonic generation,” Nature
Physics, vol. 3, no. 6, pp. 430–435, 2007.

[136] J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Har-
monic generation in silicon nitride ring resonators,” Optics Express,
vol. 19, no. 12, p. 11415, 2011.

[137] V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippen-
berg, “Self-referenced photonic chip soliton Kerr frequency comb,”
Light: Science & Applications, vol. 6, no. 1, pp. e16 202–e16 202,
2017.

[138] K. Ikeda, “Multiple-valued stationary state and its instability of
the transmitted light by a ring cavity system,” Optics Communi-
cations, vol. 30, no. 2, pp. 257–261, 1979.

[139] T. Hansson and S. Wabnitz, “Frequency comb generation beyond
the Lugiato–Lefever equation: multi-stability and super cavity soli-
tons,” Journal of the Optical Society of America B, vol. 32, no. 7,
pp. 1259–1266, 2015.

[140] V. Torres-Company, D. Castelló-Lurbe, and E. Silvestre, “Com-
parative analysis of spectral coherence in microresonator frequency
combs,” Optics Express, vol. 22, no. 4, pp. 4678–4691, 2014.

[141] J. M. Dudley and S. Coen, “Coherence properties of supercon-
tinuum spectra generated in photonic crystal and tapered optical
fibers,” Optics Letters, vol. 27, no. 13, pp. 1180–1182, 2002.

83



REFERENCES

[142] L. A. Lugiato and R. Lefever, “Spatial Dissipative Structures in
Passive Optical Systems,” Physical Review Letters, vol. 58, no. 21,
pp. 2209–2211, 1987.

[143] M. Haelterman, S. Trillo, and S. Wabnitz, “Dissipative modulation
instability in a nonlinear dispersive ring cavity,” Optics Communi-
cations, vol. 91, no. 5-6, pp. 401–407, 1992.

[144] S. Coen and M. Erkintalo, “Universal scaling laws of Kerr fre-
quency combs,” Optics Letters, vol. 38, no. 11, pp. 1790–1792,
2013.

[145] I. V. Barashenkov and Y. S. Smirnov, “Existence and stability
chart for the ac-driven, damped nonlinear Schrödinger solitons,”
Physical Review E, vol. 54, no. 5, pp. 5707–5725, 1996.

[146] C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stabil-
ity analysis of the spatiotemporal Lugiato-Lefever model for Kerr
optical frequency combs in the anomalous and normal dispersion
regimes,” Physical Review A, vol. 89, no. 6, p. 063814, 2014.

[147] P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, “Dark
solitons in the Lugiato-Lefever equation with normal dispersion,”
Physical Review A, vol. 93, no. 6, p. 063839, 2016.

[148] T. Hansson, D. Modotto, and S. Wabnitz, “Dynamics of the mod-
ulational instability in microresonator frequency combs,” Physical
Review A, vol. 88, no. 2, p. 023819, 2013.

[149] S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling
of octave-spanning Kerr frequency combs using a generalized mean-
field Lugiato–Lefever model,” Optics Letters, vol. 38, no. 1, p. 37,
2013.

[150] A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S.
Ilchenko, and L. Maleki, “Low Threshold Optical Oscillations in
a Whispering Gallery CaF2 Resonator,” Physical Review Letters,
vol. 93, no. 24, p. 243905, 2004.

[151] A. Coillet and Y. Chembo, “On the robustness of phase locking in
Kerr optical frequency combs,” Optics Letters, vol. 39, no. 6, pp.
1529–1532, 2014.

84



REFERENCES

[152] N. L. B. Sayson, T. Bi, V. Ng, H. Pham, L. S. Trainor, H. G. L.
Schwefel, S. Coen, M. Erkintalo, and S. G. Murdoch, “Octave-
spanning tunable parametric oscillation in crystalline Kerr mi-
croresonators,” Nature Photonics, vol. 13, no. 10, pp. 701–706,
2019.

[153] J. R. Stone, G. Moille, X. Lu, and K. Srinivasan, “Conversion
Efficiency in Kerr-Microresonator Optical Parametric Oscillators:
From Three Modes to Many Modes,” Physical Review Applied,
vol. 17, no. 2, p. 024038, 2022.

[154] S.-W. Huang, J. Yang, S.-H. Yang, M. Yu, D.-L. Kwong,
T. Zelevinsky, M. Jarrahi, and C. W. Wong, “Globally Stable Mi-
croresonator Turing Pattern Formation for Coherent High-Power
THz Radiation On-Chip,” Physical Review X, vol. 7, no. 4, p.
041002, 2017.

[155] M. R. E. Lamont, Y. Okawachi, and A. L. Gaeta, “Route to stabi-
lized ultrabroadband microresonator-based frequency combs,” Op-
tics Letters, vol. 38, no. 18, pp. 3478–3481, 2013.

[156] J. A. Jaramillo-Villegas, X. Xue, P.-H. Wang, D. E. Leaird, and
A. M. Weiner, “Deterministic single soliton generation and com-
pression in microring resonators avoiding the chaotic region,” Op-
tics Express, vol. 23, no. 8, pp. 9618–9626, 2015.

[157] Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf,
J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of
mode coupling in normal-dispersion silicon nitride microresonators
for Kerr frequency comb generation,” Optica, vol. 1, no. 3, pp. 137–
144, 2014.

[158] J. K. Jang, Y. Okawachi, M. Yu, K. Luke, X. Ji, M. Lipson, and
A. L. Gaeta, “Dynamics of mode-coupling-induced microresonator
frequency combs in normal dispersion,” Optics Express, vol. 24,
no. 25, pp. 28 794–28 803, 2016.

[159] X. Xue, F. Leo, Y. Xuan, J. A. Jaramillo-Villegas, P.-H. Wang,
D. E. Leaird, M. Erkintalo, M. Qi, and A. M. Weiner, “Second-
harmonic-assisted four-wave mixing in chip-based microresonator
frequency comb generation,” Light: Science & Applications, vol. 6,
no. 4, pp. e16 253–e16 253, 2017.

85



REFERENCES

[160] N. M. Kondratiev, V. E. Lobanov, E. A. Lonshakov, N. Y.
Dmitriev, A. S. Voloshin, and I. A. Bilenko, “Numerical study
of solitonic pulse generation in the self-injection locking regime at
normal and anomalous group velocity dispersion,” Optics Express,
vol. 28, no. 26, p. 38892, 2020.

[161] A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and
L. Maleki, “Optical hyperparametric oscillations in a whispering-
gallery-mode resonator: Threshold and phase diffusion,” Physical
Review A, vol. 71, no. 3, p. 033804, 2005.

[162] A. S. Voloshin, N. M. Kondratiev, G. V. Lihachev, J. Liu, V. E.
Lobanov, N. Y. Dmitriev, W. Weng, T. J. Kippenberg, and I. A.
Bilenko, “Dynamics of soliton self-injection locking in optical mi-
croresonators,” Nature Communications, vol. 12, no. 1, p. 235,
2021.

[163] W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Sei-
del, A. B. Matsko, and L. Maleki, “Generation of a coherent near-
infrared Kerr frequency comb in a monolithic microresonator with
normal GVD,” Optics Letters, vol. 39, no. 10, pp. 2920–2923, 2014.

[164] V. Lobanov, G. Lihachev, T. J. Kippenberg, and M. Gorodetsky,
“Frequency combs and platicons in optical microresonators with
normal GVD,” Optics Express, vol. 23, no. 6, pp. 7713–7721, 2015.

[165] S. Coen, M. Tlidi, P. Emplit, and M. Haelterman, “Convection
versus Dispersion in Optical Bistability,” Physical Review Letters,
vol. 83, no. 12, pp. 2328–2331, 1999.

[166] C. Bao, J. A. Jaramillo-Villegas, Y. Xuan, D. E. Leaird, M. Qi,
and A. M. Weiner, “Observation of Fermi-Pasta-Ulam Recurrence
Induced by Breather Solitons in an Optical Microresonator,” Phys-
ical Review Letters, vol. 117, no. 16, p. 163901, 2016.

[167] M. Yu, J. K. Jang, Y. Okawachi, A. G. Griffith, K. Luke, S. A.
Miller, X. Ji, M. Lipson, and A. L. Gaeta, “Breather soliton dy-
namics in microresonators,” Nature Communications, vol. 8, no. 1,
p. 14569, 2017.

[168] C. Bao, Y. Xuan, C. Wang, A. Fülöp, D. E. Leaird, V. Torres-
Company, M. Qi, and A. M. Weiner, “Observation of Breathing

86



REFERENCES

Dark Pulses in Normal Dispersion Optical Microresonators,” Phys-
ical Review Letters, vol. 121, no. 25, p. 257401, 2018.

[169] J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Obser-
vation of dispersive wave emission by temporal cavity solitons,”
Optics Letters, vol. 39, no. 19, p. 5503, 2014.

[170] C. Milián and D. Skryabin, “Soliton families and resonant radia-
tion in a micro-ring resonator near zero group-velocity dispersion,”
Optics Express, vol. 22, no. 3, p. 3732, 2014.

[171] C. Bao, H. Taheri, L. Zhang, A. Matsko, Y. Yan, P. Liao, L. Maleki,
and A. E. Willner, “High-order dispersion in Kerr comb oscilla-
tors,” Journal of the Optical Society of America B, vol. 34, no. 4,
p. 715, 2017.

[172] H. Taheri and A. B. Matsko, “Quartic dissipative solitons in optical
Kerr cavities,” Optics Letters, vol. 44, no. 12, p. 3086, 2019.

[173] M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer,
M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman Self-
Frequency Shift of Dissipative Kerr Solitons in an Optical Microres-
onator,” Physical Review Letters, vol. 116, no. 10, p. 103902, 2016.

[174] C. Milián, A. V. Gorbach, M. Taki, A. V. Yulin, and D. V.
Skryabin, “Solitons and frequency combs in silica microring res-
onators: Interplay of the Raman and higher-order dispersion ef-
fects,” Physical Review A, vol. 92, no. 3, p. 033851, 2015.

[175] Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons
in optical microcavities,” Nature Physics, vol. 13, no. 1, pp. 53–57,
2017.

[176] T. Tan, Z. Yuan, H. Zhang, G. Yan, S. Zhou, N. An, B. Peng,
G. Soavi, Y. Rao, and B. Yao, “Multispecies and individual gas
molecule detection using Stokes solitons in a graphene over-modal
microresonator,” Nature Communications, vol. 12, no. 1, p. 6716,
2021.

[177] M. Karpov, M. H. P. Pfeiffer, H. Guo, W. Weng, J. Liu, and
T. J. Kippenberg, “Dynamics of soliton crystals in optical microres-
onators,” Nature Physics, vol. 15, no. 10, pp. 1071–1077, 2019.

87



REFERENCES

[178] B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T.
Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss,
“Ultra-dense optical data transmission over standard fibre with a
single chip source,” Nature Communications, vol. 11, no. 1, p. 2568,
2020.

[179] A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera,
L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss,
and R. Morandotti, “Self-locked optical parametric oscillation in a
CMOS compatible microring resonator: a route to robust optical
frequency comb generation on a chip,” Optics Express, vol. 21,
no. 11, p. 13333, 2013.

[180] W. Weng, A. Kaszubowska-Anandarajah, J. He, P. D. Lakshmi-
jayasimha, E. Lucas, J. Liu, P. M. Anandarajah, and T. J. Kip-
penberg, “Gain-switched semiconductor laser driven soliton micro-
combs,” Nature Communications, vol. 12, no. 1, p. 1425, 2021.

[181] Q.-F. Yang, Q.-X. Ji, L. Wu, B. Shen, H. Wang, C. Bao, Z. Yuan,
and K. Vahala, “Dispersive-wave induced noise limits in miniature
soliton microwave sources,” Nature Communications, vol. 12, no. 1,
p. 1442, 2021.

[182] C. M. Gentry, X. Zeng, and M. A. Popović, “Tunable coupled-mode
dispersion compensation and its application to on-chip resonant
four-wave mixing,” Optics Letters, vol. 39, no. 19, p. 5689, 2014.

[183] E. Zhu and C. Zhao, “Modulation instability of Kerr optical fre-
quency combs in dual-coupled optical cavities,” Physical Review A,
vol. 105, no. 1, p. 013524, 2022.

[184] S. Fujii, Y. Okabe, R. Suzuki, T. Kato, A. Hori, Y. Honda, and
T. Tanabe, “Analysis of Mode Coupling Assisted Kerr Comb Gen-
eration in Normal Dispersion System,” IEEE Photonics Journal,
vol. 10, no. 5, p. 4501511, 2018.

[185] H. Wang, Y.-K. Lu, L. Wu, D. Y. Oh, B. Shen, S. H. Lee, and
K. Vahala, “Dirac solitons in optical microresonators,” Light: Sci-
ence & Applications, vol. 9, no. 1, p. 205, 2020.

[186] C. Bao, B. Shen, M.-G. Suh, H. Wang, K. Şafak, A. Dai, A. B.
Matsko, F. X. Kärtner, and K. Vahala, “Oscillatory motion of a

88



REFERENCES

counterpropagating Kerr soliton dimer,” Physical Review A, vol.
103, no. 1, p. L011501, 2021.

[187] L. Marti, J. P. Vasco, and V. Savona, “Slow-light enhanced fre-
quency combs and dissipative Kerr solitons in silicon coupled-ring
microresonators in the telecom band,” OSA Continuum, vol. 4,
no. 4, p. 1247, 2021.

[188] N. M. Kondratiev and V. E. Lobanov, “Modulational instability
and frequency combs in whispering-gallery-mode microresonators
with backscattering,” Physical Review A, vol. 101, p. 13816, 2020.

[189] C. Milián, Y. V. Kartashov, D. V. Skryabin, and L. Torner, “Cavity
solitons in a microring dimer with gain and loss,” Optics Letters,
vol. 43, no. 5, p. 979, 2018.

[190] Y. Dumeige and P. Féron, “Dispersive tristability in microring res-
onators,” Physical Review E, vol. 72, no. 6, p. 066609, 2005.

[191] A. Fulop, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. An-
drekson, A. M. Weiner, and V. Torres-Company, “Active feed-
back stabilization of normal-dispersion microresonator combs,”
in 2017 Conference on Lasers and Electro-Optics Europe & Eu-
ropean Quantum Electronics Conference (CLEO/Europe-EQEC),
vol. Part F82-C. IEEE, 2017, pp. 1–1.

[192] X. Yi, Q.-F. Yang, K. Youl Yang, and K. Vahala, “Active capture
and stabilization of temporal solitons in microresonators,” Optics
Letters, vol. 41, no. 9, p. 2037, 2016.

89



REFERENCES

90




