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Abstract
In this paper we deal with construction and analysis of a multiwavelet spectral ele-
ment scheme for a generalized Cauchy type problemwith Caputo fractional derivative.
Numerical schemes for this type of problems, often suffer from the draw-back of spu-
rious oscillations. A common remedy is to render the problem to an equivalent integral
equation. For the generalized Cauchy type problem, a corresponding integral equation
is of nonlinear Volterra type. In this paper we investigate wellposedness and conver-
gence of a stabilizing multiwavelet scheme for a, one-dimensional case (in [a, b] or
[0, 1]), of this problem. Based on multiwavelets, we construct an approximation pro-
cedure for the fractional integral operator that yields a linear system of equations with
sparse coefficient matrix. In this setting, choosing an appropriate threshold, the num-
ber of non-zero coefficients in the system is substantially reduced. A severe obstacle
in the convergence analysis is the lack of continuous derivatives in the vicinity of the
inflow/ starting boundary point.Weovercome this issue through separating a J (mesh)-
dependent, small, neighborhood of a (or origin) from the interval, where we only take
L2-norm. The estimate in this part relies on Chebyshev polynomials, viz. As reported
by Richardson( Chebyshev interpolation for functions with endpoint singularities via
exponential and double-exponential transforms, Oxford University, UK, 2012) and
decreases, almost, exponentially by raising J . At the remaining part of the domain the
solution is sufficiently regular to derive the desired optimal error bound. We construct
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such a modified scheme and analyze its wellposedness, efficiency and accuracy. The
robustness of the proposed scheme is confirmed implementing numerical examples.

Keywords Cauchy problem · Caputo fractional integral · Multiwavelet · Spectral
element method

Mathematics Subject Classification 42C40 · 34A08 · 74S25 · 65N15

1 Introduction

We study a Cauchy type problem with Caputo fractional differentiation. To this
approach, let α ∈ R, N � n := [α] + 1, for α /∈ N, and n = α for α ∈ N. Fur-
ther, let α j ∈ R ( j = 1, · · · , σ ∈ N) be such that

0 = α0 < α1 < · · · < ασ < α.

Our objective is to study the spectral element method for the nonlinear differential
equation

cDα
a+(u)(x) = f

[
x, u(x), cDα1

a+(u)(x), . . . , cDασ

a+(u)(x)
]
, x ∈ [a, b],

u(κ)(a) = bκ , bκ ∈ R, κ = 0, 1, . . . , n − 1, (1.1)

where cDα
a+ denotes the Caputo fractional differential operator defined via Riemann-

Liouville fractional derivatives and the integral representation:

cDα
a+(u)(x) : = Dα

a+

(

u(t) −
n−1∑

κ=0

u(κ)(a)

κ! (t − a)κ

)

(x)

= 1

Γ (n − α)

∫ x

a

u(n)(t)dt

(x − t)α−n+1 =: I n−α
a+ Dn(u)(x), D := d

dx
.

(1.2)

In this paper we consider the study of the one-dimensional case where, for simplicity,
we shall let [a, b] := [0, 1] = Ω , and denote f on the right hand side of (1.1) by

Fα0,··· ,ασ [x, u] := f
[
x, u(x), cDα1

a+(u)(x), . . . , cDασ

a+(u)(x)
]
. (1.3)

For u ∈ ACn(Ω) ( space of absolutely continuous complex-valued functions with
continuous derivatives up to order n − 1 in Ω) the Caputo fractional derivative exists
almost everywhere in Ω , see, e.g. [22].

Below are some related, previous, studies of the problem (1.1). Kilbas et al. [21]
derived existence of unique L1 solution for Cauchy type problem with the Riemann-
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Liouville fractional derivative:

(
Dα
a+u

)
(x) = f [x, u(x)], α ∈ C,�(α) > 0, x > a,

(
Dα−k
a+ u

) (
a+) = bk, bk ∈ C, k = 1, . . . ,−[−α], (1.4)

under the assumption that f (x, y) ∈ L1[a, b] satisfies a Lipschitz condition in y.
Their investigation is based on rendering (1.4) into the equivalent Volterra integral
equation:

u(x) =
−[−α]∑

j=1

b j

Γ (α − j + 1)
(x − a)α− j + 1

Γ (α)

∫ x

a

f [t, u(t)]dt
(x − t)1−α

, (1.5)

and Banach fixed point theorem. This problem was first considered by Picher and
Swell [32], for α ∈ (0, 1) and a bounded, Lipschitz, function f (x, y). System of such
problems is studied by Bonilla et al. [6]. Existence of a unique solution for (1.4),
with Caputo fractional derivative, is given in [11, 13, 14]. In [14] a “shadowing-like”
approach reduces, both in linear and nonlinear cases, the non-rational fractional orders
to rational ones and then follow Grönwall type argument. Kilbas and Marzan [21]
studied (1.4), in a similar integral equation as (1.5), with Caputo fractional derivative:

u(x) =
−[−α]−1∑

κ=1

bκ

Γ (κ + 1)
(x − a)κ + 1

Γ (α)

∫ x

a

f [t, u(t)]dt
(x − t)1−α

,

u(κ)(0) = bκ , κ = 0, 1, . . . ,−[−α] − 1.

(1.6)

Some other approaches are Laplace transform [17], Adomian decomposition method
[9]. System of Caputo fractional differential equations:

cDα
a+Y (x) = AY (x), Y (0) = Y0, α ∈ [0, 1],

investigated in [8] and [14], contain full wellposedness proofs. This approach was
generalized to nonlinear Cauchy type problem with the Riemann-Liouville fractional
derivative of order α ∈ C (�(α) > 0) in [22]:

Dα
a+(u)(x) = f

[
x, u(x), Dα1

a+(u)(x), · · · , Dασ

a+(u)(x)
]
, (x ∈ [a, b]), (1.7)

where 0 < �(α1) < · · · < �(ασ ) < �(α), σ ≥ 2, giving conditions for a unique
L1(a, b) solution of (1.6) with α ∈ C. An explicit approach, via multivariate Mittag-
Leffler functions, for the linear version is given in [26]. In [25] an operational method
is introduced, where using B-spline functions the multi-order fractional differential
equation:

F
(
u(x), cDβ1 , . . . , cDβm

) = g(x), βi ∈ R,
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is solved combining the operational matrix of the Caputo fractional derivatives with
the collocation method, and without using the equivalent Volterra integral equation
form.

Other related studies are considering initial boundary value problems of sub-
diffusion type and combine the spectral Galerkin in time with finite element [18]
or finite difference schemes [42] in space. They construct efficient schemes tackling
singularities that substantially raise the convergence rate.

Amain strength ofwavelets lies on the property of removing/reducing the singulari-
ties, see, e.g. [27].Wavelet bases have been widely used for alternative representations
of integral and differential operators [3, 28], leading to more thorough study of the
underlying equations. As for the numerical studies, wavelet bases have significant
advantage, e.g., in the study of adaptivity of discontinuous Galerkin schemes [10, 19,
38–41], collocationmethod [29], etc. In this setting, Rehman et al. [34], approach (1.4)
with the Caputo fractional derivative, using Legendre wavelet method and convert the
problem to a system of algebraic equations, hence reducing it to finding unknown coef-
ficients of the system. In an other study, Patera [31], introduced the spectral method
into the finite element schemes that uses higher degree piecewise polynomial bases.
This procedure may lead to higher order of accuracy, where convergence is achieved
either by rasing the spectral order or making mesh refinements (as hp approach).
Compared to the standard finite elements, using hp-mesh, faster convergence can be
achieved with fewer degrees of freedom. The disadvantage of hp approach is that it is
not easily applicable in complex geometries.

Fractional calculus and fractional differential equations have applications in numer-
ous fields of science and engineering, such as material science in mechanical
engineering, anomalous diffusion, control and robotics, signal processing and system
identifications, friction modeling, wave propagation, turbulence, seepage in fractal
media, etc. [4, 7, 20, 23, 30, 45]. There are several equivalent definitions given for
the fractional derivatives, e.g., Grüwald-Letnikov, Riemann-Liouville, and the Caputo
fractional derivative [33].

In this paper we consider a multiwavelet approach rather than scalar wavelets.
This would allow higher vanishing moments without extending the supports of the
involved functions. Thus a smooth function gets negligible projections on most of the
bases and, hence, can be locally approximated by lower-order polynomials [1]. The
advantageous interpolating property of the scaling functionsmakesmultiwavelet more
suitable in solving differential equations: a property that helps to find the coefficients of
expansions of a solution.Our objective is to solve the generalizedCauchy type problem
(1.1) with Caputo fractional derivative. We represent the fractional integral operator
in multiwavelet bases that leads to a sparse representation of the solution operator on
a finite interval. Doing so we reduce the problem to the equivalent Volterra integral
equation and then apply the multiwavelet spectral element method to reach faster
discretization scheme. We investigate existence, uniqueness and derive convergence
for the proposed scheme.

An outline of the remaining part of the paper is as follows. In Sect. 2 we prove
the existence of a unique solution to our model problem. Section 3 is devoted to the
properties of multiwavelets and related projections. In Sect. 4 we introduce multiscale
transformation and give a representation of fractional integrals inmultiwavelet bases in
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a sparse matrix form. In Sect. 5 we define the multiwavelets spectral element method
and prove error estimates, via a splitting technique, where we employ Chebyshev
polynomials, cf Richardson [35], to tackle the lack of continuous derivatives in the
vicinity of the origin. Finally, in our concluding Sect. 6, we present numerical results
justifying the robustness of our constructed scheme.

2 Wellposedness

Weshow thewellposedness for the solution of the differential Eq. (1.1) by verifying the
existence of a unique solution for the, equivalent, nonlinear Volterra integral equation:

u(x) =
n−1∑

j=0

b j

j ! (x − a) j + 1

Γ (α)

∫ x

a

Fα0,...,ασ [t, u]dt
(x − t)1−α

. (2.1)

For ordinary differential equations, equivalence of Cauchy type problem, of Riemann-
Liouville fractional order, and its corresponding nonlinear Volterra integral equation
is proved in Kilbas et al. [22], where also the existence of a unique solution for this
problem is proved. In this study, however, we consider the Caputo fractional order
rather than the Riemann-Liouville. Since, then verifying the equivalence between
(1.1) and (2.1), though similar to the proof of Theorem 3.24 in [22], is much easier.
Hence, we establish existence of a unique solution for the Cauchy problem (1.1) in

Cα,υ
γ (Ω) := {u(x) ∈ Cυ(Ω) : cDα

a+u ∈ Cγ (Ω)},
υ ∈ N, α > 0, 0 ≤ γ < 1, (2.2)

where Cγ (Ω) is the space of functions f with (x − a)γ f (x) ∈ C(Ω).
To proceed, for a locally integrable function f ∈ Cα

n−α(Ω), we define the fractional
integrals of order α ∈ R:

I α( f )(x) := 1

Γ (α)

∫ x

0
(x − t)α−1 f (t)dt, x > 0, (2.3)

where

Cα
n−α(Ω)

= {
u(x) ∈ Cn−α(Ω) : (Dα

a+u
)
(x) ∈ Cn−α(Ω)

}
, n − 1 < α ≤ n, (n ∈ N).

We shall use the following result by [22].

Lemma 2.1 For 0 ≤ γ < 1, α ≥ γ , the operator I α in (2.3) is bounded in Cγ (Ω),

‖I α f ‖Cγ ≤ d(Ω)α
Γ (1 − γ )

Γ (1 + α − γ )
‖ f ‖Cγ , (2.4)

where d(Ω) := |Ω| is the size of Ω .
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Theorem 2.1 Assume that 0 ≤ γ < 1, γ ≤ α, G ⊂ C is an open set, and f :
Ω ×Gσ+1 → C, with f [x, u, u1, · · · , uσ ] ∈ Cγ (Ω), u1, · · · , uσ ∈ G, satisfies the
Lipschitz condition

| f [x, u, u1, · · · , uσ ](x) − f [x, v, v1, · · · , vσ ](x)| ≤ Λσ

σ∑

j=0

|u j − v j |,

u j , v j ∈ G, (2.5)

where Λσ > 0 is independent of x. Let u(κ j )(a) = bα j , with κ j = 0, . . . , n j − 1, and
j = 1, · · · , σ , be fixed numbers and set n j = [α j ] + 1. If n − 1 < α < n = [α] + 1,
then (1.1) has a unique solution u ∈ Cα,n−1

γ .

Proof Toshowexistenceof a unique solutionu(x) ∈ Cn−1(Ω) for theCauchyproblem
(1.1), it suffices to prove the existence of a unique solution u(x) ∈ Cn−1(Ω), cf (2.2),
for the equivalent nonlinear Volterra integral Eq. (2.1). To this approach, we pick up
a point x1 ∈ Ω ([a, x1] ⊂ [a, b], such x1 always exists) for which the following
inequality holds true

η := Λσ

n−1∑

κ=0

σ∑

j=0

(x1 − a)(α−κ−α j )

Γ (α − κ − α j + 1)
< 1. (2.6)

We rewrite the Eq. (2.1), introducing Volterra integral operator K , in the form

(K u)(x) = u0(x) + 1

Γ (α)

∫ x

a

Fα0,...,ασ [t, u]dt
(x − t)1−α

, (2.7)

where

u0(x) :=
n−1∑

j=0

b j

j ! (x − a) j .

To apply Banach fixed point theorem (see Theorem 1.9 [22]), we need to show that

1. if u(x) ∈ Cn−1[a, x1], then (K u)(x) ∈ Cn−1[a, x1]
2. for any u1, u2 ∈ Cn−1[a, x1], (satisfying same initial data),

‖K u1 − K u2‖Cn−1[a,x1] ≤ η‖u1 − u2‖Cn−1[a,x1]. (2.8)

Here, the distance in the complex metric space Cn−1(Ω) is given by

d(u1, u2) = ‖u1 − u2‖Cn−1(Ω) :=
n−1∑

κ=0

∥∥∥u(κ)
1 − u(κ)

2

∥∥∥
C(Ω)

.
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Differentiating (K u)(x), κ times, κ = 1, · · · , n − 1, and using (DκI α
a+)(u)(x) =

(I α−κ
a+ )(u)(x), which holds for α > κ and any sufficiently regular u(x) ∈ C(Ω), we

have, using (2.7),

(K u)(κ)(x) = u(κ)
o (x) + 1

Γ (α − κ)

∫ x

a

Fα0,...,ασ [t, u]dt
(x − t)1−α+κ

.

Thefirst termon the right hand side: u(κ)
0 (x) := ∑n−1

j=κ

b j
( j−κ)! (x−a)( j−κ) is continuous

on [a, x1]. To show continuity for the second term, we use Lemma 2.1 for γ = 0, and
a new α, by relabeling: α → α − κ − 1. Then we can prove that the second term is
also continuous on [a, x1] and for any κ = 0, 1, · · · , n − 1, and

∥∥
∥∥

1

Γ (α − κ)

∫ x

a

Fα0,...,ασ [t, u]dt
(x − t)1−α+κ

∥∥
∥∥
C[a,x1]

≤ (x1 − a)(α−κ)

Γ (α − κ + 1)
‖Fα0,...,ασ [x, u]‖C[a,x1]. (2.9)

Therefore, (K u)(x) ∈ Cn−1[a, x1].
To prove (2.8), by Lipschitz condition (2.5), inequality (2.9), and successive esti-

mates,

‖K u1 − K u2‖Cn−1[a,x1] =
n−1∑

κ=0

∥∥∥(K u1)
(κ) − (K u2)

(κ)
∥∥∥
C[a,x1]

=
n−1∑

κ=0

∥∥I α−κ
a+

(
Fα0,...,ασ [x, u1]

)− I α−κ
a+

(
Fα0,...,ασ [x, u2]

)∥∥
C[a,x1]

=
n−1∑

κ=0

∥∥I α−κ
a+

(
Fα0,...,ασ [x, u1] − Fα0,...,ασ [x, u2]

)∥∥
C[a,x1]

≤ Λσ

n−1∑

κ=0

∥
∥∥∥∥∥
I α−κ
a+

⎛

⎝
σ∑

j=0

cD
α j

a+(u1 − u2)

⎞

⎠

∥
∥∥∥∥∥
C[a,x1]

≤ Λσ

n−1∑

κ=0

σ∑

j=0

∥
∥∥I

α−κ−α j

a+
(
I
α j

a+
cD

α j

a+(u1 − u2)
)∥∥∥

C[a,x1]

= Λσ

n−1∑

κ=0

σ∑

j=0

∥∥
∥I

α−κ−α j

a+ ((u1 − u2)−

n j−1∑

κ j=0

(u1 − u2)(κ j )(a)

(κ j )! (x − a)κ j

⎞

⎠

∥
∥∥∥∥∥
C[a,x1]

.
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Hence, the assumption (u1 − u2)(κ j )(a) = 0 yields

‖K u1 − K u2‖Cn−1[a,x1] ≤ Λσ

n−1∑

κ=0

σ∑

j=0

∥∥∥I
α−κ−α j

a+ (u1 − u2)
∥∥∥
C[a,x1]

≤ Λσ

n−1∑

κ=0

σ∑

j=0

(x1 − a)(α−κ−α j )

Γ (α − κ − α j + 1)
‖u1 − u2‖C[a,x1]

≤ η‖u1 − u2‖Cn−1[a,x1].

By (2.6), 0 < η < 1, hence using Banach fixed point theorem, there exists a unique
solution û ∈ Cn−1[a, x1] for (1.1) in Ω1 := [a, x1]. Following theorem 1.19 [22],
this solution is the limit of a convergence sequenceK l(û0) (l → ∞) where û0 is any
function in Cn−1(Ω1). We can take û0 = u0, if at least one bκ �= 0, put ul = K l û0
and use (2.7), to get the recursion

ul(x) = u0(x) + 1

Γ (α)

∫ x

a

Fα0,...,ασ [t, ul−1]dt
(x − t)1−α

. (2.10)

Finally, since liml→∞ ‖K l û0 − û‖Cn−1[a,x1] = 0, we have

lim
l→∞ ‖ul − û‖Cn−1[a,x1] = 0. (2.11)

Note that here the method of successive approximation is used to obtain a unique
solution to the nonlinear Volterra integral Eq. (2.1): first for x ∈ (a, x1) and then, in
order to establish uniqueness on Ω , we choose x2 = x1 + h1, (x2 ∈ [x1, b]) at the
next step and set

u(x) = u0(x) + 1

Γ (α)

(∫ x1

a
+
∫ x2

x1

)
Fα0,...,ασ [t, u]dt

(x − t)1−α
. (2.12)

Due to the previous step, the first integral at the right hand side of (2.12) is a known
function. Hence, by the same argument as above, there exists a unique solution û(x) ∈
Cn−1[x1, x2] to (2.1) on [x1, x2]. Iterating this procedure, there exists a unique solution
u(x) = û(x) ∈ Cn−1(Ω) to the nonlinear Volterra integral equation and hence to the
Cauchy problem (1.1).

It remains to show that this solution belongs to Cα,n−1
γ (Ω). By (1.1) and (2.5),

∥∥cDα
a+(ul)(x)−cDα

a+(u)(x)
∥∥
Cγ (Ω)

= ∥∥Fα0,...,ασ [x, ul(x)]−Fα0,...,ασ [x, u(x)]∥∥Cγ (Ω)

≤ Λσ

σ∑

j=1

‖ul − u‖Cγ (Ω).
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Using (2.11), we get

lim
l→∞

∥∥cDα
a+(ul)(x) − cDα

a+(u)(x)
∥∥
Cγ (Ω)

= 0. (2.13)

Thus cDα
a+(u)(x) ∈ Cγ (Ω), and the proof is complete. �


3 Multiwavelets and projections

3.1 Alpert’s multiwavelets

To prepare for approximation procedure we recall Alpert’s multiwavelets, cf. [1–3],
that can be readily revised to bases for L2[0, 1] using Lagrange interpolation polyno-
mials Lk(x), through the roots {τk, k = 0, 1, . . . , r − 1} of the Legendre polynomial
Pr . Then, the Interpolating Scaling Functions (ISFs) are defined by

φk(x) :=
{√

2
ωk

Lk(2x − 1), x ∈ [0, 1],
0, otherwise,

k = 0, 1, . . . , r − 1, (3.1)

where ωk := 2/(r P ′
r (τk)Pr−1(τk)), k = 0, 1, · · · , r − 1 are the Gauss-Legendre

quadrature weights and φk :s are a family of orthonormal bases for the subspace

V r
0 = span

{
φk : k = 0, 1, · · · , r − 1

}
⊂ L2[0, 1],

of piecewise polynomials of degree less than r on [0, 1], and with L2-inner product.
Let now Ω := [0, 1] = ⋃

b∈B j
I j,b, where I j,b := [x j,b, x j,b+1], x j,b := 2− j b

and B j := {0, 1, · · · , 2 j − 1} for j ∈ Z
+ ∪ {0}. Further, define the dilation and

translation operators:

Da f (x) = √
a f (ax), and Tb f (x) = f (x − b), respectively.

As a property of the Multi-Resolution Analysis (MRA), we can introduce the nested
subspaces:

Vr
j = span

{
φk
j,b := D2 jTbφ

k, b ∈ B j , k = 0, 1, · · · , r − 1
}

,

with Vr
j ⊂ V r

j+1. Thus there exist complementary orthogonal subspacesWr
j such that

V r
j+1 = V r

j ⊕ Wr
j , j ∈ Z

+ ∪ {0}, (3.2)

where ⊕ denotes orthogonal sum, and a family of bases functions ψk
j,b that generates

Wr
j :

Wr
j = span

{
ψk

j,b := D2 jTbψ
k, b ∈ B j , k = 0, 1, · · · , r − 1

}
.
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The functions ψk = ψk
0,0 are called multiwavelets. Alpert’s multiwavelets are con-

structed using dual basis ψ k̃
j̃,b̃

with the bi-orthogonality condition:

〈
ψk

j,b, ψ
k̃
j̃ ,b̃

〉

L2(Ω)
= δ j, j̃δb,b̃δk,k̃ . (3.3)

A corresponding duality for the scaling functions is defined replacing ψ by ϕ in (3.3).
Due to the fact that Vr

j ⊂ V r
j+1 and Wr

j ⊂ V r
j+1, the vector functions Φ

r ,0
0 :=

[φ0
0,0, · · · , φr−1

0,0 ]T and Ψ
r ,0
0 := [ψ0

0,0, · · · , ψr−1
0,0 ]T satisfy matrix refinement equa-

tions:

Φ
r ,0
0 (x) = ∑

b∈B1

HbD2TbΦ
r ,0
0 (x) = ∑

b∈B1

HbΦ
r ,b
1 (x), (3.4)

Ψ
r ,0
0 (x) = ∑

b∈B1

GbD2TbΦ
r ,0
0 (x) = ∑

b∈B1

GbΦ
r ,b
1 (x), (3.5)

where Φ
r ,b
j := D2 jTbΦ

r ,0
0 = [φ0

j,b, · · · , φr−1
j,b ]T , and Hb, Gb for b ∈ B j are (r × r)

matrices with elements obtained from the inner products using the orthonormality
property of wavelets and scaling functions. To identify the closed form for multi-
wavelets, from (3.5), there are 2r2 unknown coefficients to be found. This is achieved
using

(i) The orthonormality that yields 2r of the unknown coefficients of (3.5) using:

〈
ψ i
0,0(x), ψ

k
0,0(x)

〉

L2(Ω)
= δik, i, k = 0, 1, . . . , r − 1.

(ii) The number of, Nk
ψ = k + r − 1, vanishing moments defined by

N k
p :=

∫ ∞

−∞
x pψk

0,0(x)dx =
{
0, 0 ≤ p < Nk

ψ

�= 0, p = Nk
ψ

,

k = 0, 1, · · · , r − 1, (3.6)

equivalent to ψ̂k
0,0(0) = 0, 0 ≤ p < Nk

ψ , that gives the remaining 2r(r − 1)
coefficients.

3.2 Projection onto VrJ

For a fixed integer J ≥ 0, we define an orthonormal projection operator Pr
J ( f ) :

L2(Ω) → V r
J :

f ≈ Pr
J ( f ) =

∑

b∈BJ

r−1∑

k=0

〈
f , φk

J ,b

〉

L2(Ω)
φk
J ,b, f ∈ L2(Ω). (3.7)
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The coefficients f kJ ,b :=
〈
f , φk

J ,b

〉

L2(Ω)
= ∫

IJ ,b
f (x)φr

J ,b(x)dx are approximated

using the Gauss-Legendre quadrature rule:

f kJ ,b ≈ 2−J/2
√

ωk

2
f
(
2−J (τ̂k + b)

)
, b ∈ BJ , k = 0, ..., r − 1,

and τ̂k := (τk + 1)/2, (3.8)

where τk are the roots of Pr . Let now Φr
J := [Φr ,0

J
T
, Φ

r ,1
J

T
, · · · , Φ

r ,bmax
J

T ]T where
bmax := max b ∈ BJ . Then, for fixed r and J , Φr

J is a vector function with elements
consisting of the multiscaling functions (same as ISFs) φk . Hence,

f ≈ Pr
J ( f ) = FJ

TflrJ , (3.9)

where FJ ∈ R
N is a N = r2J -dimensional vector with entries [FJ ]br+k+1 = f kJ ,b.

Lemma 3.1 (cf Lemma 1.1, [1]) Let f : [0, 1] → R be r times continuously differ-
entiable function. Then, Pr

J ( f ) approximates f with the L2-error bound

‖Pr
J ( f ) − f ‖ ≤ 2−Jr 2

4r r ! sup
x∈[0,1]

∣∣∣ f (r)(x)
∣∣∣ .

4 Multiscale transformation

Using (3.2), we write the multiscale decomposition as Vr
J = V r

0 ⊕ (⊕J−1
j=0W

r
j ). Thus,

one can approximate any function f ∈ L2(Ω) by ISFs of the space V r
0 and multi-

wavelets of the spacesWr
j , j = 0, 1, · · · , J − 1. To proceed, we introduce multiscale

operator M r
J : L2(Ω) → V r

J as

f ≈ M r
J ( f ) =

⎛

⎝Pr
0 +

J−1∑

j=0

Qr
j

⎞

⎠ ( f ), (4.1)

where Pr
0( f ) ∈ V r

0 and Qr
j , j = 0, . . . , J − 1 are the orthonormal projection

operators that map L2(Ω) onto Wr
j . Hence, M

r
J can be represented by

f ≈ M r
J ( f ) =

r−1∑

k=0

f k0,0φ
k
0,0 +

J−1∑

j=0

∑

b∈B j

r−1∑

k=0

f̃ kj,bψ
k
j,b, (4.2)

i.e., by a multiscale transformation, with

f k0,0 :=
〈
f , φk

0,0

〉

L2(Ω)
, and f̃ kj,b :=

〈
f , ψk

j,b

〉

L2(Ω)
. (4.3)
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Let now Ψ r
J := [Φr ,0

0
T
, Ψ

r ,0
0

T
, Ψ

r ,1
1

T · · · , Ψ
r ,bmax
J−1

T ]T , where Ψ
r ,b
j := D2 jTbΨ

r ,0
0 .

Note that here bmax := max b ∈ BJ−1. Thus, using notations preceding (3.4)–(3.5),
we may write

f ≈ M r
J ( f ) = F̃T

J Ψ r
J , (4.4)

where F̃J is a r2J -dimensional vector with entries f k0,0 and f̃ kj,b, for b ∈ BJ−1,
j = 0, · · · , J − 1 and k = 0, · · · , r − 1.
The single-scale coefficients f k0,0, k = 0, 1, · · · , r − 1 are computed using (3.8)

and the interpolation property of interpolating scaling functions. But, to evaluate the
multiwavelets coefficients f̃ kj,b, we donot have this property available. Therefore, these
integrals are computednumerically, by introducing the N×N wavelet transformmatrix
TJ , obtained using matrix refinement Eqs. (3.4) and (3.5). Then, the multiwavelets are
obtained as the result of TJ acting on the multiscaling functions:

Ψ r
J = TJΦ

r
J . (4.5)

Below is a brief way to construct TJ . In general, for ISFs, the refinement equation
between neighboring scales is given by Φr

j = HjΦ
r
j+1, where Hj = I2 j ⊗ H ,

H = [H0 H1] and I2 j is the identity matrix of order 2 j . Let now the vector function

Υ r
j := [Ψ r ,0

j
T
, · · · , Ψ

r ,2 j−1
j

T ]T satisfy Υ r
j = G jΦ

r
j+1, j = 0, 1, · · · , J −1, where

G j = I2 j ⊗ G and G = [G0, ,G1]. Then, we readily identify the wavelet transform
matrix TJ as

TJ =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1
2J

(H0 × H1 × . . . × HJ−1)
1
2J

(G0 × H1 × . . . × HJ−1)
1

2J−1 (G1 × H2 × . . . × HJ−1)

...
1
22

(GJ−2 × HJ−1)
1
2GJ−1

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

. (4.6)

The elements of the matrices G0, G1, H0 and H1, are, implicitely, determined using
(3.4) and (3.5). Further, one can find the reconstruction formula (see also [3]):

Φ
r ,b
1 = ḠbΨ r

0 + H̄bΦr
0, b = 0, 1. (4.7)

Relations (3.4), (3.5) and (4.7) yield algorithms for transition between different scales.

4.1 Thresholding

By (3.6), each multiwavelet provides vanishing moments of order Nk
ψ = k + r − 1,

k = 0, 1, · · · , r − 1. The Alpert’s multiwavelets are uniformly bounded both in L∞
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and L1, up to a constant:

∥
∥∥ψk

J ,b

∥
∥∥
L∞(Ω)

� 1,
∥
∥∥ψk

J ,b

∥
∥∥
L1(Ω)

� 1. (4.8)

The vanishing moments and normalizations (4.8), imply that the detail coefficients
f̃ kJ ,b become smaller when the underlying function is locally smooth, and we have, cf
[19],

f̃ kJ ,b =
∣∣
∣
〈
f , ψk

J ,b

〉∣∣
∣ ≤ inf

P∈∏
Nk

ψ

∣∣
∣
〈
f − P, ψk

J ,b

〉∣∣
∣ � 2−J Nk

ψ ‖ f ‖
W

1,Nk
ψ (Ω)

, (4.9)

where
∏

Nk
ψ
is the space of polynomial functions of degree less than Nk

ψ andW 1,Nk
ψ (Ω)

is the Sobolev space of real valued functions. Thus the detail coefficients decay at the

rate 2−J Nk
ψ , Nk

ψ = k + r − 1. Using higher vanishing moments, and increasing the
refinement level J , more detail coefficients may be discarded in smooth regions. This
yields thresholding with operator TDε :

TDε (F̃J ) = F̄J , (4.10)

where Dε := {(J , b, k) : | f̃ kJ ,b > ε}, and the elements of F̄J are given by

f̄ kj,b :=
{
f̃ kj,b, ( j, b, k) ∈ Dε,

0, else,
b ∈ B j , j = 0, . . . , J − 1, k = 0, . . . , r − 1.

(4.11)

The thresholding operator TDε , acts on the detail coefficients leaving the coarse scale
coefficients unaffected. The approximation error due to the thresholding can be esti-
mated similar to that of the classical wavelets, e.g., for the approximation operator
ADε := M r

J
−1TDεM

r
J .

Proposition 4.1 (Approximation error, cf [19]). Let Ω be bounded and ε j = ā j−J ε

with ā > 1. Then, the approximation error with respect to the set of significant details
Dε is uniformly bounded with respect to Lq(Ω), q ∈ [1,∞], i.e.,

∥∥Pr
J f − Pr

J ,Dε
f
∥∥
Lq (Ω)

≤ Cthrε, (4.12)

for some constant Cthr > 0 independent of J and ε. HerePr
J f andP

r
J ,Dε

f are the

projections corresponding to the coefficients F̃J and ADε F̃J , respectively.
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4.2 Representation of fractional integral in multiwavelet bases

Recall the fractional integrals of order α ∈ R defined in (2.3):

I α( f )(x) := 1

Γ (α)

∫ x

0
(x − t)α−1 f (t)dt, f ∈ Cα

n−α(Ω). (4.13)

Although the Alpert’s multiwavelet bases are discontinuous, by construction, they are
locally integrable. Hence, the fractional integral operator I α acting on the vector
function Φr

J can be expressed by the projection operator Pr
J as,

Pr
J

(
I α(Φr

J )(x)
) = I α

φ Φr
J (x), (4.14)

To find the entries of the matrix I α
φ , we use the following auxiliary result:

Lemma 4.1 (cf [37]) Lagrange polynomials Lk, on the set of nodes τk ∈ [0, 1], are
given by

Lk(x) =
r−1∑

l=0

βk,l x
r−1−l , k = 0, . . . , r − 1, (4.15)

where βk,0 = 1/
(∏r−1

l ′=0,l ′ �=k(τk − τl ′) and

βk,l = (−1)l
∏r−1

l ′=0,l ′ �=k(τk − τl ′)

r−1∑

kl=kl−1+1

· · ·
r−l−2∑

k1=0

l∏

i ′=1

τki ′ ,
l = 1, . . . , r − 1,
k �= k1 �= · · · �= kl .

Let now i = br + k + 1, j = b′r + k′ + 1 for k, k′ = 0, · · · , r − 1, and b, b′ ∈ BJ ,
then the coefficients [I α

φ ]i, j are given by

[I α
φ ]i, j = 2

−J
2

√
ωk′

2
I α

(
φr
J ,b

) (
2−J (τ̂k′ + b′))

= 2
−J
2

Γ (α)

√
ωk′

2

∫ 2−J ( ˆτk′+b′)

0

(
2−J (τ̂k′ + b′)− t

)α−1
φr
J ,b(t)dt . (4.16)

To compute the integral in (4.16), correlating the integration interval and the support
of φr

J ,b, we get the following three cases:

Case (1): b′ < b. Given that the support ofφr
J ,b is IJ ,b, τ̂k′ < 1 yields 2−J (τ̂k′ +b′) <

2−J b, then

[I α
φ ]i, j = 0, i, j = 1, · · · , N . (4.17)
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Case (2): b′ = b. Here, by the change of variable x = 2J t − b and with λ :=
τ̂k′ + b′ − b, (4.16) can be rewritten as

[I α
φ ]i, j = 2−Jα

Γ (α)

√
ωk′

2

∫ λ

0
(λ − x)α−1φk(x)dx . (4.18)

Using definition of the multi-scaling function φk in (3.1) and Lemma 4.1,
we have

[I α
φ ]i, j = 2−Jα

Γ (α)

√
ωk′

ωk

r−1∑

l=0

βk,l

∫ λ

0
(λ − x)α−1(2x − 1)r−1−ldx . (4.19)

By a further change of variable: x = λt , we can rewrite (4.19) as

[I α
φ ]i, j = (2−Jλ)

α

Γ (α)

√
ωk′

ωk
B(1, α)

r−1∑

l=0

βk,l(−1)r−1−l
2F1

(l + 1 − r , 1;α + 1; 2λ), (4.20)

where B is the β function and 2F1 is the hypergeometric function defined
by the power series representation below (see [5]),

2F1(a, b; c; z) =
∞∑

m=0

(a)m(b)m
(c)m

zm

m! , |z| < 1.

Here (·)m is the Pochhammer symbol. Since l + 1 − r is a non-positive
integer, this series terminates at a finite sum and the function 2F1 reduces
to the polynomial

2F1(l + 1 − r , 1;α + 1; 2λ)

=
r−l−1∑

m=0

(−1)m
(
r − 1 − l

m

)
(1)m

(α + 1)m
(2λ)m . (4.21)

Case (3): b′ > b. Then, τ̂k′ + b′ > b + 1, and the integral in (4.16) can be rewritten
as

[I α
φ ]i, j = 2

−J
2

Γ (α)

√
ωk′

2

∫ 2−J (b+1)

2−J b

(
2−J (τ̂k′ + b′)− t

)α−1
φr
J ,b(t)dt .

(4.22)

Using the same argument as in Case (2), we represent (4.22) in form of
(4.18). Now, once again, using the definition of scaling function (3.1),
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Lemma 4.1 and the change of variable x = λy we end up with

[
I α
φ

]

i, j
=
(
2−Jλ

)α

Γ (α)

√
ωk′

ωk

r−1∑

l=0

βk,l

∫ 1/λ

0
(1 − y)α−1 (2λy − 1)r−1−l dy.

(4.23)

Finally, applying the binomial expansion of (2λy − 1)r−1−l :

(2λy − 1)r−1−l =
r−1−l∑

m=0

(
r − 1 − l

m

)
(y)r−1−l−m(−1)m,

and further simplification, we get

[I α
φ ]i, j =

(
2−Jλ

)α

Γ (α)

√
ωk′

ωk

r−1∑

l=0

βk,l

r−1−l∑

m=0

(
r − 1 − l

m

)
(2λ)r−1−l−m(−1)m

×
∫ 1/λ

0
(1 − y)α−1(y)r−1−l−mdy. (4.24)

Here the last integral is the incomplete β function which is defined as

B(x; a, b) =
∫ x

0
ta−1(1 − t)b−1dt = xa

a
2F1(a, 1 − b; a + 1; x).

Hence, letting σ := r − l − m, we can write

∫ 1/λ

0
(1 − y)α−1(y)σ−1dy = (1/λ)σ

σ
2F1(σ, 1 − α; σ + 1; 1/λ).

In this way, the elements of the block upper triangular matrix Iα
φ are specified in

all possible cases.

5 Multiwavelets spectral element method

Using construction of the Alpert’s multiwavelets, it is easy to verify that φk
j,b, ψk

j,b ∈
Cn−1(I j,b) for j ∈ N0, b ∈ B j and k = 0, 1, . . . , r − 1, due to the fact that these
bases functions are polynomials on each subinterval I j,b. To discretize the nonlinear
Volterra integral Eq. (2.7), the approximate solution is represented by the multiscale
operatorM r

J : L2(Ω) → V r
J , cf. (4.1)–(4.4); where, for notational reason, we replace

f , f̃ , and F̃ by u, ũ, and Ũ , respectively and get, in compact form

u ≈ M r
J (u)(x) = Ũ T

J Ψ r
J (x), (5.1)
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where ŨJ is a N = r2J -dimensional vector with entries uk0,0 and ũ
k
j,b (0 ≤ j ≤ J−1),

b ∈ B j , and 0 ≤ k ≤ r − 1. Similar expansions are also valid for u0(x), as well as
Fα0,··· ,ασ [x,M r

J (u)(x)] ∈ Cγ (Ω):

M r
J (u0)(x) = Ũ T

0 Ψ r
J (x), (5.2)

M r
J (Fα0,...,ασ [x,M r

J (u)(x)])(x) = F̃T
J Ψ r

J (x), (5.3)

where Ũ0 and F̃J are N -dimensional vectors. The elements of Ũ0 and F̃J , are computed
using (3.8) and the wavelet transform matrix TJ . Let now urJ := M r

J (u), using (1.3),

M r
J (Fα0,...,ασ [x, urJ (x)])(x) = f [x, urJ (x), cDα1

a+(urJ )(x), . . . ,
cDασ

a+(urJ )(x)]
= f [x, urJ (x),I n1−α1

a+ Dn1(urJ )(x), . . . ,I
nσ −ασ

a+ Dnσ (urJ )(x)],

and

I
n j−α j

a+ Dn j (urJ )(x) := UTI
n j−α j

a+ Dn j (Ψ r
J )(x) = UTI

n j−α j

a+ D
n j
ψ (Ψ r

J )(x)

= UT D
n j
ψ I

n j−α j
ψ Ψ r

J (x), j = 1, . . . , σ,

where Dψ := TJ DφT T
J (herein, Dφ is thematrix representation of differential operator

for scaling functions Φr
J ) is the matrix representing the differential operator D for

Alpert’s multiwavelets and I α
ψ := TJ I α

φ T
T
J (see [3]). Approximating (2.1), using

(5.2)–(5.3), (4.14) and the wavelet transform matrix TJ , the residual in approximating
(2.1) is written as

rJ (x) =
(
Ũ T − Ũ T

0 − F̃T
J I α

ψ

)
Ψ r
J (x). (5.4)

Minimizing (5.4) yields the unknown coefficients. The spectralmethod is implemented
either by the Galerkin- or the collocation-method. In the wavelet Galerkin method we
use the orthogonality relation 〈rJ , Ψ r

J 〉 = 0 to find the Fourier coefficients for rJ
associated with Ψ r

J . This yields the nonlinear system

Ũ T − Ũ T
0 − F̃T

J I α
ψ = 0(≈), (5.5)

where the orthonormality property of the Alpert’s multiwavelets has been used. Then,
the Newton’s method is used to solve this nonlinear system.

5.1 Error estimate

There are some concerns about the approximation Lemma 3.1. The common wisdom
knows that one cannot expect the exact solution to have continuous derivatives in the
vicinity of the origin. A remedy cf [35] reads: let f (x) satisfy the condition

| f (x) − f (0)| ≤ A|x |ω, ω > 0, for some real A > 0, (5.6)
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and set L = ln 2J . Then one can show that there exists A1 > 0, such that for a
sufficiently small xL ∈ (0, 1),

| f (x) − f (0)|x∈[0,xL ] ≤ A1e
−ωL . (5.7)

Suppose that the Chebyshev interpolant Cn(y) provides an approximation for the
function

FL(y) = f
(
�−1 (L(y − 1)/2)

)
, y ∈ (−∞, 1],

where � := ln x , x ∈ [0, 1], and xL depends on � and decreases, exponentially, to
zero, as L → ∞.

Now we consider Cn
L , interpolating f (x) on [0, 1], as

Cn
L =

{
f (0), x ∈ [0, xL ],
Cn(2�(x)/L + 1), x ∈ [xL , 1]. (5.8)

Under these assumptions, the approximation error is given by

∥∥ f − Cn
L

∥∥ = max
{‖FL − Cn‖y∈[−1,1] , ‖ f − f0‖x∈[0,xL ]

}
. (5.9)

Then, similar to the Theorem 3.2 in [35], we can derive the following estimates:

Theorem 5.1 Let f be a sufficiently regular function defined on any subinterval of
[0, 1] not containing the origin that satisfies (5.6). Then there exists a δ > 0 such that
for L = ln 2J ,

‖ f − Cn
L‖ ≤ C2−Jδ, (5.10)

and

‖Pr
J ( f ) − f ‖ ≤ C2−Jδ. (5.11)

Proof Using (5.9), (5.7), and proof of lemma 3.1 (see [1]), we have

‖ f − Cn
L‖ ≤ max

{
21−r J Mr

√
1 − 2−J

4r r ! , A1e
−ωL

}

,

where Mr = supx∈[xL ,1] | f (r)(x)|. Evidently, the choice xL = 2−J (L = ln 2−J )
yields

‖ f − Cn
L‖ ≤ max

{
21−r J Mr

√
1 − 2−J

4r r ! , A1e
−ω ln 2J

}

= max

{
2Mr

√
1 − 2−J

4r r ! , A1

}

2−Jδ, δ = min {r , ω}, ω > 0, 1 ≤ r ∈ N.
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Then (5.10) follows with the constant C = max
{
2Mr

√
1−2−J

4r r ! , A1

}
.

To estimate ‖Pr
J f − f ‖, we use the error estimate for the polynomial based on

Chebyshev nodes for interpolation, and (5.10), to get (5.11), viz.

‖Pr
J f − f ‖2 ≤

∑

b∈BJ

∫

IJ ,b

(
Cn
L(x) − f (x)

)2
dx

≤
∑

b∈BJ

∫

IJ ,b

(
C2−Jδ

)2
dx = (C2−Jδ)2.

�


Lemma 5.1 (cf Corollary 2.3 (a), [22]).Givenα ∈ R
+, let n = −[−α]. Ifα /∈ N0, then

the Caputo fractional derivative operator cDα
a+ is bounded from the space Cn[0, 1]

into C[0, 1] as follows

‖cDα
a+u‖C ≤ 1

Γ (n − α)(n − α + 1)
‖u‖Cn . (5.12)

Theorem 5.2 Under the assumptions of Theorem 2.1, and for u(x) and uJ (x) the
exact and multiwavelets Galerkin solutions of Eq. (2.1), respectively, we have that: If
n − 1 < α < n = [α] + 1 and

η̃ := Λσ

σ∑

j=0

1

Γ (α − α j + 1)
< 1,

then, for any u(x) ∈ C(Ω), the following estimate holds true

‖u − uJ‖C(Ω) ≤
{
C02−Jr , if Fα1,...,ασ [x, u] ∈ Cr (Ω), r > 0,
C12−Jδ, if Fα1,··· ,ασ [x, u] ∈ Cr (Ω \ {0}) , r > 0, δ=min{r , ω}.

here

C0 = (1 − η̃)−1 2

4r r !
(

1

Γ (1 + α − r)
C2
∥∥Fα1,··· ,ασ [x, uJ ]

∥∥
Cm(Ω)

+
∥∥∥u(r)

0

∥∥∥
C(Ω)

)
,

C1 = (1 − η̃)−1
(
C + 2

4r r !
∥∥
∥u(r)

0

∥∥
∥
)

, for someC > 0, and

C2= 1/min {Γ (1 + α − r), Γ (m − r + α) (m − r + α + 1)},

with m = [r − α] + 1.
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Proof Let r > 0. If Fα1,··· ,ασ [x, u] ∈ Cr (Ω), then by Lemma 3.1, with (γ = 0), we
have

∥∥M r
J (I

α
a+(Fα1,··· ,ασ [x, u])) − I α

a+Fα1,··· ,ασ [x, u]∥∥C(Ω)

≤ 21−Jr

4r r ! max
x∈Ω

∣∣DrI α
a+Fα1,...,ασ [x, u]∣∣ .

There are two possible cases here:

1. If r < n, then we have

DrI α
a+ = I α−r

a+ ,

and it follows from (2.4) of Lemma 2.1, that

∥∥M r
J

(
I α

a+
(
Fα1,··· ,ασ [x, u]))− I α

a+Fα1,...,ασ [x, u]∥∥C(Ω)

≤ 21−Jr

4r r !
∥∥I α−r

a+ Fα1,··· ,ασ [x, u]∥∥
C(Ω)

≤ 21−Jr

4r r !
1

Γ (1 + α − r)
‖Fα1,··· ,ασ [x, u]‖C(Ω). (5.13)

2. If r ≥ n. Combining Lemma 2.21 of [22] and Theorem 3.14 in [15], it is easy to
write

DrI α
a+ = cDr−α

a+
cDα

a+I α
a+ = cDr−α

a+ . (5.14)

Thus using Lemma 5.1, we have

∥∥M r
J

(
I α

a+
(
Fα1,··· ,ασ [x, u]))− I α

a+Fα1,...,ασ [x, u]∥∥C(Ω)

≤ 21−Jr

4r r !
∥∥cDα−r

a+ Fα1,...,ασ [x, u]∥∥
C(Ω)

≤ 21−Jr

4r r !
1

Γ (m − r + α) (m − r + α + 1)

∥∥Fα1,··· ,ασ [x, u]∥∥Cm(Ω)
,

where m = [r − α] + 1.

In general, these two cases can be summarized in one, as

∥∥M r
J

(
I α

a+
(
Fα1,··· ,ασ [x, u]))− I α

a+Fα1,··· ,ασ [x, u]∥∥C(Ω)

≤ 21−Jr

4r r ! C2
∥∥Fα1,...,ασ [x, u]∥∥Cm(Ω)

, (5.15)

where C2 := 1/min{Γ (1 + α − r), Γ (m − r + α)(m − r + α + 1)}.
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Using (1.3), the hypothesis and proof of the Theorem 2.1 (Lipschitz condition 2.5),
and (2.9), we also have the following estimate,

∥∥I α
0+Fα1,...,ασ [x, u] − I α

0+
(
Fα1,...,ασ [x, uJ ]

)∥∥
C(Ω)

≤ Λσ

∥∥∥∥∥∥
I α

0+

⎡

⎣
σ∑

j=0

cD
α j

0+(u − uJ )

⎤

⎦

∥∥∥∥∥∥
C(Ω)

= Λσ

σ∑

j=0

∥∥∥I
α−α j

0+
[
I

α j

0+
cD

α j

0+(u − uJ )
]∥∥∥

C(Ω)

= Λσ

σ∑

j=0

∥∥∥
∥∥∥
I

α−α j

0+

⎡

⎣(u − uJ ) −
n j∑

κ j=0

(u − uJ )
(κ j )(0)

κ j ! xκ j

⎤

⎦

∥∥∥
∥∥∥
C(Ω)

≤ Λσ

σ∑

j=0

1

Γ (α − α j + 1)
‖u − uJ‖C(Ω). (5.16)

Now, we can write

u − uJ = u0 − M r
J (u0) + I α

a+Fα1,...,ασ [x, u] − M r
J

(
I α

a+
(
Fα1,...,ασ [x, uJ ]

))

+I α
a+Fα1,...,ασ [x, uJ ] − I α

a+Fα1,...,ασ [x, uJ ]. (5.17)

Taking C(Ω)-norm of (5.17) and using (5.13)– (5.16) and triangle inequality, we get

‖u − uJ‖C(Ω) ≤ ∥∥u0 − M r
J (u0)

∥∥
C(Ω)

+ ∥∥I α
a+Fα1,...,ασ [x, uJ ] − M r

J

(
I α

a+
(
Fα1,...,ασ [x, uJ ]

))∥∥
C(Ω)

+ ∥∥I α
a+Fα1,...,ασ [x, u] − I α

a+Fα1,··· ,ασ [x, uJ ]
∥∥
C(Ω)

≤ 21−Jr

4r r !
(
C2
∥∥Fα1,··· ,ασ [x, uJ ]

∥∥
Cm(Ω)

+
∥∥∥u(r)

0

∥∥∥
C(Ω)

)

+Λσ

σ∑

j=0

1

Γ (α − α j + 1)
‖u − uJ‖C(Ω) , (5.18)

and hence, since η̃ = Λσ

∑σ
j=0

1
Γ (α−α j+1) < 1, we end up with

‖u − uJ‖C(Ω) ≤ C02
−Jr , (5.19)

where

C0 = (1 − η̃)−1 2

4r r !
(

1

Γ (1 + α − r)
C2
∥∥Fα1,...,ασ [x, uJ ]

∥∥
Cm(Ω)

+
∥∥∥u(r)

0

∥∥∥
C(Ω)

)
.
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Similarly, if Fα1,··· ,ασ [x, u] is analytic away from the origin, (in the sense that
Fα1,··· ,ασ [x, u] ∈ Cr (Ω \ {0}), then

∥∥M r
J

(
I α

a+
(
Fα1,...,ασ [x, u]))− I α

a+Fα1,...,ασ [x, u]∥∥C(Ω)
≤ C2−Jδ, (5.20)

where C = max
{
2Mr

√
1−2−J

4r r ! , A1

}
with Mr = maxx∈[xL ,1] |DrI α

a+Fα1,··· ,ασ [x, u]|.
Finally, by (5.16), (5.17) and (5.20), and using the triangle inequality, one can easily

derive the following C(Ω)-norm estimate of (5.17),

(1 − η̃) ‖u − uJ‖C(Ω) ≤ 21−Jr

4r r !
∥∥∥u(r)

0

∥∥∥
C(Ω)

+ Ce−δ J . (5.21)

Hence, we can conclude that

‖u − uJ‖C(Ω) ≤ C12
−Jδ, (5.22)

with C1 =
(
(1 − η̃)−1

(
C + 2

4r r !
∥
∥∥u(r)

0

∥
∥∥
))

. �


6 Numerical examples

Here we present some canonical examples to illustrate the validity of the proposed
scheme through numerical implementations for the following two configurations:

E1. Three linear Cauchy type initial value problems

E1(a) : Dα
0+u(x) + u(x) = 0, 0 < α < 2, x ∈ Ω,

u(0) = 1, u′(0) = 0.

E1(b) : u′′(x) + D3/2
0+ u(x) + u(x) = f0(x), x ∈ Ω,

u(0) = 0, u′(0) = 0.

E1(c) : D1/2
0+ u(x) + √

πu(x) = √
π, x ∈ Ω,

u(0) = 1.
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E2. Three nonlinear Cauchy type initial value problems

E2(a) : Dα
0+u(x) − 2Dα1

0+u(x)(Dα2
0+u(x))2 − Dα3

0+u(x) = f1(x), x ∈ Ω,

u(0) = 0, u′(0) = 0, . . . , u(n−1)(0) = 0.

E2(b) : Dα
0+u(x) + a1(x) sin(D

α1
0+u(x)) − Dα2

0+u(x) = f2(x), x ∈ Ω,

u(0) = 0, u′(0) = 0, . . . , u(n−1)(0) = 0.

E2(c) : D3/2
0+ u(x) + a2(x)

√
D1/2
0+ u(x) + u(x) = f3(x), x ∈ Ω,

u(0) = 0, u′(0) = 0, u′′(0) = 0.

Here if α < 1, then we suppress the data u′(0) = 0, and recall the exact solution given
in [25]:

u(x) =
∞∑

i=0

(−xα)i

Γ (αi + 1)
.

Equation E1(b) is the Bagley-Torvik equation [13] with exact solution x7/3 and

f0(x) := 28

9
x1/3 + 112π

√
3

135Γ (2/3)Γ (5/6)
x5/6 + x7/3.

The equation E1(c) demonstrate ability of the proposed method in solving problems
whose solutions do not have continuous derivatives near the origin. The exact solution
of this problem is given by u(x) = 1 − eπxerfc(

√
πx).

The exact solutions for the configuration E2 (E2(a), E2(b), and E2(c)) all are of
the form u(x) = xβ , and the source functions f1(x) and f2(x) are obtained via

f1 :=Γ (β + 1)xβ−α

Γ (β + 1 − α)

− 2
Γ (β + 1)x3β−α1−2α2

Γ (β + 1 − α1)

(
Γ (β + 1)

Γ (β + 1 − α2)

)2

− Γ (β + 1)xβ−α3

Γ (β + 1 − α3)
,

f2 :=Γ (β + 1)xβ−α

Γ (β + 1 − α)
− a1(x) sin

(
Γ (β + 1)xβ−α1

Γ (β + 1 − α1)

)
− Γ (β + 1)xβ−α2

Γ (β + 1 − α2)
.

The coefficient a1(x) is a given smooth function.
As for the equation E2(c), the exact solution is u(x) = x3, for which one can

observe that the corresponding function Fα1,··· ,ασ [x, u] in (1.3) has not a continuous
derivative at zero. In this problem a2(x) := x2 and

f3(x) := x

5
√

π

(
4

√
5x 4

√
π
√
x5/2 + 5 x2

√
π + 40

√
x
)
.

Using the multiwavelet spectral element method of Sect. 5, the equivalent Volterra
integral equation for the configuration E1 is reduced to a system of linear algebraic
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equations inmatrix form as AU = U0. According to (4.9), the entries of the coefficient
matrix A decay at the rate of 2−J Nψ . Thus we expect that by increasing the refinement
level J and the vanishing moment of multiwavelets (equivalently r ), the coefficients
tend to zero for the sufficiently smooth underlying functions. Using a proper threshold,
one may set most coefficients to zero and thus obtain a sparse coefficient matrix A.
Obviously this process increases the computational speed but it may also increase the
error when choosing a larger threshold. The error is controlled by a given tolerance
ξ :

ε2−J/2‖Pr
J u‖2 = ξ. (6.1)

To preserve the desired accuracy, the optimal threshold value (6.1) must be used. Let
Nε be the number of nonzero elements of the coefficient matrix after thresholding.
Then, the compression percentage (percentage of matrix sparsity) Pε is defined by

Pε = N 2 − Nε

N 2 .

To check efficiency and accuracy of the proposed method for the configuration E1,
we illustrate the effects of the refinement level J and the multiplicity parameter r
in Figs. 1, 5 and 6. We observe that by increasing these parameters the L2 errors
decrease and thus resulting in higher CPU times. Since our goal is to decrease the
computational cost for linear Cauchy type problem by thresholding, we plot the effect
of varying threshold values on the coefficient matrix A and the CPU time (see Figs. 2
and 3). In Fig. 3, the percentage of compression is also presented. One can see that
with increasing threshold value, the number of elements of the coefficients matrix
decreases which results in lower CPU time and a higher percentage of compression.
Figure 4 shows the effect of the thresholding on L2 error with different values of r , J
and ε. Note that with increasing threshold value the error increases.

Table 1 shows the effect of thresholding on L2-error , for the configuration E1(a)

and with α = 0.85, r = 5 and J = 4. Table 2 shows the effect of thresholding, for
the refinement parameter J (= 2, 3) and the multiplicity r(= 3, 2), on L2-error for
the configuration E1(b) and with different ε-values.

Table 5 gives the L2 error for the configuration E2(a), for different α, β, and for
J = 2, 3, and r = 2, 3, 4, 5, 6. We observe that, by increasing the refinement level
J and the multiplicity parameter r , the L2 error decreases. As for the configuration
E2(b): choosing α = 2.5, α1 = 1.5 α2 = 0.5, different values for β, and various
functions for a1(x), we can see the effect of parameters J and r in Fig. 7.

We return to the critical case of non-differentiability in the vicinity of the origin, i.e.
the problems whose corresponding "F"-functions do not have a continuous derivative
near the origin.

In the linear case, Tables 3–4 demonstrate the effect of thresholding on the L2 error
and the percentage of matrix sparsity for E1(c). As for the nonlinear Example E2(c):
Fig. 8 is a further justification for robustness of the error analysis, where it can be seen
that, by increasing J , the error decreases exponentially, and the harm near x = 0 is
indeed removable.
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Fig. 1 Effects of the refinement level J (left) and the multiplicity parameter r (right) on L2 error when
α = 0.85 for configuration E1(a)

Fig. 2 Effects of the thresholding with thresholds ε = 10−5 (left) and ε = 10−3 (right) on the coefficient
matrix A when α = 0.85, taking r = 2 and J = 7 for configuration E1(a)

Fig. 3 Effect of thresholding on CPU time (left) and percentage of compression (right) when α = 0.85,
taking r = 2 and J = 7 for configuration E1(a)
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Fig. 4 Effect of thresholding on L2 error when α = 0.85, taking r = 5, J = 2 (left) and r = 2, J = 7
(right) for configuration E1(a)

Fig. 5 Effects of the refinement level J (left) and the multiplicity parameter r (right) on L2 error for
configuration E1(b)

To verify the accuracy of our approach we compare Implementing E1(a), with the
existing results in the literature, e.g. in [12, 24, 36]: In Table 6, the absolute error for
the proposed method at x = 1 is compared with those of the methods presented in
[12, 24]. As seen, we get a substantially better convergence with, relatively, larger
mesh size h (lines 5 and 6 of the table compared with the lines 1 and 2 in [12], and
lines 3 and 4 in [24]). In Table 7 a comparison is made with the results of the method
in [36], for different values of both α and x . Once again, the results confirm that our
method with lower spectral order (degree of approximating polynomilal) gives better
accuracy than in [36]. For α = 1 and α = 2, the exact solutions for E1(a) is reported
in [36] as u(x) = e−x and u(x) = cos(x), respectively. Our approximate solutions
for different values of α, and with r = 3 and J = 3, plotted in Fig. 9, shows that the
numerical solutions converge to the analytical ones as α approaches an integer order.
This comfirms that the solution of the fractional differential equation approaches to
that of the integer-order differential equation. This is yet a further test to justisy the
merit of our approach.

All examples are carried out with the combined use ofMaple andMatlab softwares.
Altogether confirms the advantageous effects of thresholding discussed in the paper.
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Table 2 Effects of thresholding, the refinement level J and the multiplicity r on L2 error for configuration
E1(b)

r J ε 0 10−5 10−3 10−1

3 2 L2 error 8.1112e − 4 8.1112e−4 8.2167e−4 1.0784e−1

Pε 0 0 9.72 66.67

3 L2 error 1.5691e − 4 1.5692e−4 1.5654e−4 1.8424e−1

Pε 0 18.58 30.73 86.98

2 2 L2 error 6.2493e − 3 6.2496e−3 6.2445e−3 1.6763e−2

Pε 0 3.12 6.25 53.12

3 L2 error 1.6737e − 3 1.6744e−3 1.6743e−3 1.7668e−2

Pε 0 14.06 23.82 79.29

Fig. 6 Effects of the refinement level J (left) and the multiplicity parameter r (right) on L2 error for
configuration E1(c)

Fig. 7 Effects of the refinement level r (left) and the multiplicity parameter J (right) on L2 error for
configuration E2(b)
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Table 5 L2 error when α = 2.5, α1 = 1.5 and α2 = 0.5 for configuration E2(a)

r 2 3 4 5 6

β = 3.5 J = 2 4.09e − 1 1.29e − 3 2.38e − 5 9.93e − 7 1.52e − 7

J = 3 1.66e − 1 1.84e − 4 1.21e − 6 7.58e − 8 8.59e − 9

β = 3 J = 2 1.58e − 2 3.85e − 3 2.89e − 3 1.36e − 3 8.38e − 4

J = 3 3.59e − 2 1.78e − 3 9.10e − 4 4.84e − 4 2.91e − 4

Fig. 8 Effects of the refinement level J (left) and the multiplicity parameter r (right) on L2 error for
configuration E2(c)

Table 6 Comparison of absolute value error reported in [12, 24] and proposed method at x = 1 for E1(a)

Method h α = 0.5 α = 1.5

Predictor-Corrector approach [12] 0.1 1.30e − 3 4.56e − 4

0.05 3.93e − 4 1.28e − 4

Method of [24] 0.1 3.98e − 4 2.45e − 5

0.05 1.43e − 4 4.22e − 6

Our method 0.125 2.15e − 5 1.25e − 5

0.0625 6.33e − 6 1.53e − 6

Table 7 Comparison of absolute value error reported in [36] and proposed method for E1(a)

method α x = 0.1 x = 0.3 x = 0.7 x = 0.9

Method of [36] 0.8 1.1e − 3 2.1e − 4 8.7e − 4 5.8e − 4

1.8 6.1e − 5 1.4e − 5 5.3e − 5 8.8e − 6

Our method 0.8 5.9e − 4 2.9e − 5 9.4e − 7 7.2e − 6

1.8 2.7e − 5 5.7e − 6 4.6e − 6 5.9e − 6
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Fig. 9 Approximate solution for different values of α taking r = 3 and J = 3 for E1(a)

7 Conclusion

We propose a reliable and efficient scheme based on multiwavelet spectral element
method for numerical solution of a generalized Cauchy type problem with Caputo
fractional derivative. Under certain assumptions, including Lipschitz continuity of
the right hand side, we prove existence of a unique solution for the problem. To this
approach, we start transforming the equation into a Volterra integral equation and then
reduce it to an algebraic system. Our proposed scheme is based on representing the
fractional integral operator in the multiwavelet bases as a sparse coefficient matrix.
For the resulting equation, in nonlinear form, the numerical computations are more
challenging. We propose an adequate numerical scheme to deal with this problem. In
the linear case, selecting an appropriate threshold, the number of non-zero coefficients
in the system is substantially reduced, thus obtaining a fast convergence with lower
cost. More specifically, selecting the high values of the refinement level J and multi-
plicity parameter r , the error will decrease correspondingly. Furthermore, due to this
observation, it is obvious that, by increasing the threshold the CPU time decreases and
the error increases. A main obstacle in error estimates is the lack of continuous deriva-
tives of the solution near the origin. This, however, is tackled by a splitting technique,
separating a local neighborhood of the origin, where L2-estimate based on Cheby-
shev polynomials is employed. This approach can be extended to two-dimensional
domains, with no reentrants, using 2D integral equation representation, and is the
subject of a forthcoming study (see also [10]). This, however, requires excessive CPU
time to implement. Implementing, goal oriented, numerical examples show the robust-
ness of this approach. The scheme yields a desired converges for an appropriate choice
of threshold and is cost-effective where we may, substantially, reduce the number of
non-zero coefficients of the system.

Herewemention that the constructedwavelet transformmatrix Tj has an epical role
in decreasing the number of nonzero coefficients, hence, reducing the computational
load. More specifically, Tj converts the coefficients in the expasions based on scal-
ing functions to those in multiwavelets. Here, the coefficients of the expansion with
respcet to the scaling functions are detemined using interpolation, and no integration
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is performed. The matrix I α
φ , which defines the fractional integral operator, and as a

spars matrix, reduces the computational load, is not considered elsewhere.
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