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Transformer-based molecular optimization 
beyond matched molecular pairs
Jiazhen He1* , Eva Nittinger2, Christian Tyrchan2, Werngard Czechtizky2, Atanas Patronov1, 
Esben Jannik Bjerrum1 and Ola Engkvist1,3 

Abstract 

Molecular optimization aims to improve the drug profile of a starting molecule. It is a fundamental problem in drug 
discovery but challenging due to (i) the requirement of simultaneous optimization of multiple properties and (ii) the 
large chemical space to explore. Recently, deep learning methods have been proposed to solve this task by mimick-
ing the chemist’s intuition in terms of matched molecular pairs (MMPs). Although MMPs is a widely used strategy by 
medicinal chemists, it offers limited capability in terms of exploring the space of structural modifications, therefore 
does not cover the complete space of solutions. Often more general transformations beyond the nature of MMPs 
are feasible and/or necessary, e.g. simultaneous modifications of the starting molecule at different places including 
the core scaffold. This study aims to provide a general methodology that offers more general structural modifications 
beyond MMPs. In particular, the same Transformer architecture is trained on different datasets. These datasets consist 
of a set of molecular pairs which reflect different types of transformations. Beyond MMP transformation, datasets 
reflecting general structural changes are constructed from ChEMBL based on two approaches: Tanimoto similarity 
(allows for multiple modifications) and scaffold matching (allows for multiple modifications but keep the scaffold 
constant) respectively. We investigate how the model behavior can be altered by tailoring the dataset while using the 
same model architecture. Our results show that the models trained on differently prepared datasets transform a given 
starting molecule in a way that it reflects the nature of the dataset used for training the model. These models could 
complement each other and unlock the capability for the chemists to pursue different options for improving a start-
ing molecule.
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Introduction
Molecular optimization aims to improve the property 
profile of a starting molecule. It plays an important role in 
the drug discovery and development process. However, 
this problem is challenging due to (i) the requirement 
of simultaneous optimization of multiple, often conflict-
ing properties, e.g. physicochemical properties, ADMET 
(absorption, distribution, metabolism, elimination and 

toxicity) properties, safety and potency against its target 
and (ii) the large chemical space [1] to explore. Tradition-
ally, chemists use their knowledge, experience and intui-
tion [2] to apply chemical transformations to the starting 
molecule, to design improved molecules that have a bal-
ance of multiple properties. However, it heavily relies on 
chemist’s knowledge and is often impacted by individual‘s 
biases. This can limit the design process and the oppor-
tunities to find improved molecules within a reasonable 
time scale.

Recently, various deep learning methods have 
been used and proposed for de novo molecular 
design, e.g.  recurrent neural networks (RNNs)  [3–5], 
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variational autoencoders (VAEs)  [6–11] and genera-
tive adversarial networks (GANs) [12–15]. To improve 
the generated molecules towards desirable properties, 
reinforcement learning  [12, 13, 15, 16], adversarial 
training  [17–19], transfer learning  [3] and different 
optimization techniques  [6, 20] have been used. Con-
ditional generative models  [8, 11, 21, 22] have also 
been proposed where the desirable properties are 
incorporated as condition to directly control the gen-
erating process. However, most of them focus on gen-
erating molecules from scratch. There are only a few 
studies on generating molecules with desirable prop-
erties from a given starting molecule, which aim to 
solve the molecular optimization task directly. Most 
of them use a set of molecular pairs for training. Jin 
et al. [17, 23, 24] utilized molecular graph represen-
tations and viewed the molecular optimization prob-
lem as a graph-to-graph translation problem. He et al. 
[25, 26] instead utilized the string-based representa-
tion, the simplified molecular-input line-entry system 
(SMILES)  [27] and employed the machine transla-
tion models  [28, 29] from natural language process-
ing (NLP). They trained machine translation models 
(Transformer and Seq2Seq) to mimic the chemist’s 
approach of using MMPs  [30, 31] where two mole-
cules differ by a single chemical transformation. It was 
shown that the Transformer performs better than the 
Seq2Seq and HierG2G architectures [24].

Application of MMPs is a widely used design strat-
egy by medicinal chemists due to its interpretable 
and intuitive nature. However, MMPs are inherently 
limited in terms of structural modifications relevant 
for molecular optimization. From chemist’s perspec-
tive, there could be need for transformations that 
extend beyond the reach and capabilities of MMPs, 
such as simultaneous modifications of the molecule 
at multiple points or modifications of the core scaf-
fold. Moreover, such modifications are often needed 
to reach the optimization goals. In this study, the 
same Transformer architecture is trained on different 
datasets. These datasets consist of a set of molecu-
lar pairs, and are prepared to reflect different types 
of transformations. To capture more general trans-
formations beyond MMPs, two approaches are used 
to extract molecular pairs from ChEMBL: Tanimoto 
similarity (allows for multiple modifications) and scaf-
fold matching  [32] (allows for multiple modifications 
but keeps the scaffold constant) respectively. The goal 
of this study is not necessarily to benchmark against 
MMPs but instead to provide more general structural 
modifications than only MMPs. This could unlock the 
capability for the chemists to pursue different options 
for improving a starting molecule.

Methods
Following [25], the SMILES representation of mol-
ecule and the Transformer model from NLP are used 
in our study. The Transformer model is trained on a set 
of molecular pairs together with the property changes 
between source and target molecules. Figure  1 shows 
an example of source and target sequences which are 
fed into the Transformer model. The input consists of 
property constraint and source molecule’s SMILES. The 
property constraint specifies how to change the source 
molecule.

Given a set of molecular pairs {(X ,Y ,Z)} where X rep-
resents source molecule, Y represents target molecule, 
and Z represents the property change between source 
molecule X and target molecule Y, the Transformer 
model will learn a mapping (X ,Z) ∈ X × Z → Y ∈ Y 
during training where X × Z represents the input space 
and Y represents the target space. During testing, given 
a new (X ,Z) ∈ X × Z , the model will be expected to 
generate a diverse set of target molecules with desirable 
properties [25].

Properties optimized
Three ADMET properties, logD, solubility and clearance 
which are important properties of a drug are selected 
to be optimized simultaneously. LogD is measured as 
a compound’s distribution coefficient between octanol 
and water at pH 7.4, based on the shake flask approach. 
Solubility is measured by the generation of a saturated 

Fig. 1 Input and output of the Transformer model (following [25]). 
The input is the concatenation of property change tokens and the 
SMILES of the starting molecule. During training, the output is the 
target molecule with the desirable properties while during inference 
the output is generated token by token and is expected to satisfy the 
property constraint in the input
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solution of the compound, followed by assaying the solu-
tion using high-performance liquid chromatography 
(HPLC) with ultra violet (UV) quantification and mass 
spectrometry (MS) identification. The measured unit of 
solubility is µ M. For clearance, human liver microsome 
intrinsic clearance (HLM CLint) is measured, and the 
unit is µL/min/mg. The measured in-house property data 
was used to build the property prediction models. These 
models were then applied to the processed molecules in 
ChEMBL to derive the data used for training the Trans-
former model. They are also used to estimate the proper-
ties of the generated molecules from the model. Details 
can be found in Section ADMET Property Prediction 
Model.

Tokenizing SMILES and property changes
The Transformer model takes a sequence of tokens as 
input. Therefore the SMILES and property changes 
need to be tokenized to be recognized by the model. The 
SMILES is tokenized based on a single character with the 
exception of two-character tokens (i.e.  , “Cl” and “Br”) 
and tokens between brackets (e.g.  “[nH]” and “[O-]”). 
The tokenization was performed independently for each 
dataset.

Considering practical desirable criteria and experi-
mental errors, solubility and clearance changes are 
encoded using three categories, while the change in 
logD is encoded into range intervals, with each inter-
val length=0.2 except for the two open intervals on 
the sides (Table 1). The threshold for low/high solubil-
ity is 50 µ M (1.7 in log10 scale), and the threshold for 
low/high clearance is 20 µL/min/mg respectively (1.3 
in log10 scale). These property change tokens can be 
derived from the given input molecule’s properties and 
the target desirable properties. For example, if an input 

molecule’s solubility value is 10 µ M and the target 
desirable solubility value is 80 µ M, then the encoded 
property change token would be “Solubility_low→ 
high”.

The vocabulary consists of all the tokens after per-
forming the tokenization on all the SMILES and 
property changes of the molecular pairs in a dataset. 
Additionally, special tokens, start and end are added to 
signal the beginning and ending of a sequence.

Transformer neural network
The same Transformer neural network in [25, 29] is used 
in this study. The Transformer consists of an encoder 
and a decoder. The network takes a sequence of tokens 
as input. Each token is converted into an embedding vec-
tor–a numerical representation of the token that can be 
processed by the network. The input tokens are fed into 
the network simultaneously. To capture the order infor-
mation of the input tokens, positional encoding is per-
formed on the embedding vectors. The resulting vectors 
are then passed through the encoder. The encoder is a 
stack of encoder layers, which process their input itera-
tively one layer after another. Each encoder layer converts 
its input (a sequence of vectors) into another sequence 
of vectors called encodings. These encodings are passed 
to the next encoder layer as input. The decoder is a stack 
of decoder layers of the same number as encoder. It does 
the opposite of the encoder: convert the encoder encod-
ings into a sequence of tokens one token at a time. The 
attention mechanism is utilized in both encoder and 
decoder to encode or decode a current vector consid-
ering the importance of other vectors in the sequence. 
More details about the Transformer architecture can be 
found in [25, 29].

Table 1 Property change encoding

Property Measured unit Threshold Threshold in log10 scale Designed property change tokens

LogD - - - LogD_change_(− inf, − 6.9]

...

LogD_change_(− 0.3, − 0.1]

LogD_change_(− 0.1, 0.1]

LogD_change_(0.1, 0.3]

...

LogD_change_(6.9, inf ]

Solubility µM low: ≤50 low: ≤1.7 Solubility_low→high

high: >50 high: >1.7 Solubility_high→low

Solubility_no_change

Clearance µL/min/mg low: ≤20 low: ≤1.3 Clearance_low→high

high: >20 high: >1.3 Clearance_high→low

Clearance_no_change
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Model training and sampling
The same Transformer architecture was trained with 
each dataset. Each model was trained on a single GPU 
(either NVIDIA GeForce RTX 2080 Ti or NVIDIA Tesla 
K80). The hyperparameters were set the same as [25]. 
The models were trained using a batch size of 128, Adam 
optimizer and the original learning rate schedule  [29] 
with 4000 warmup steps. More details about the hyper-
parameters can be found in Additional file 1: Table S1.

After training, the model can be used to generate 
sequences given an input sequence. The sequence of 
tokens are generated one token at a time. At the first 
time step, the decoder takes the start token together 
with the encoder outputs as input, and samples an out-
put token from the produced probability distribution 
over all the tokens in the vocabulary. The next time step 
will take all previous generated tokens and the encoder 
outputs as input. This process will continue until the end 
token is generated or a pre-defined maximum length of 
sequence is reached. To allow for the generation of multi-
ple sequences, multinomial sampling is used.

Data preparation
The datasets1 consist of a set of molecular pairs extracted 
from ChEMBL 28  [33]. In particular, the pairs were 
extracted from the molecules that are originated from 
the same publication since the molecules are more likely 
to be in the same project. Therefore, the molecular pairs 
are more likely to reflect the chemist’s intuition. The mol-
ecules, publications and molecular pairs are processed in 
the following fashion,

Molecule pre-processing

• Standardization using MolVS  2: Keep uncharged 
version of the largest fragment; Sanitize; Remov-
eHs; Disconnect metals; Apply normalization rules; 
Reionize acids; Keep sterochemistry

• 10 ≤ Number of heavy atoms ≤ 50
• Number of rings > 0
• AZFilter=“CORE” [34] to filter out low-quality com-

pounds
• Substructure filters [35] for hit triaging with Severity-

Score<10 3.
• Each molecule’s property values are within 3 stand-

ard deviations of all molecules’ property values (pre-
dicted)

Publication pre-processing

• Year ≥ 2000
• 10 ≤ Number of molecules ≤ 60

Molecular pair pre-processing

• Remove duplicated pairs (keep the earliest reported)
• Include reverse pairs

The resulting statistics on the data after performing the 
steps above can be found in Additional file 1: Figure S1.

Constructing molecular pairs
To capture different types of transformations, the follow-
ing criteria are considered for extracting the pairs from 
different perspectives.

MMP. The matched molecular pairs are two molecules 
differ by a single transformation, which has been widely 
used as a strategy by medicinal chemists to support 
molecular optimization. Here, the MMPs are extracted 
using mmpdb, an open-source matched molecular pair 
tool [36]. The ratio between the number of heavy atoms 
(non-hydrogen atoms) in the R-group and the number 
of heavy atoms in the entire molecule is not greater than 
0.33 [37].

To capture more general transformations (e.g. multiple 
modifications), apart from single transformations, the 
following criteria are used,

Tanimoto similarity. The Tanimoto similarity is com-
puted based on Morgan Fingerprint with radius=2 
(ECFP4) using RDKit. Figure 2 shows the distribution of 
Tanimoto similarity between all the possible unique pairs 
originating from the same publication. We extract the 
molecular pairs based on the following thresholds,

Fig. 2 Tanimoto similarity distribution considering all the possible 
unique pairs with the same publication

1 https:// doi. org/ 10. 5281/ zenodo. 63198 21.
2 https:// molvs. readt hedocs. io/ en/ latest/.
3 https:// github. com/ rdkit/ rdkit/ tree/ master/ Contr ib/ NIBRS ubstr uctur 
eFilt ers.

https://doi.org/10.5281/zenodo.6319821
https://molvs.readthedocs.io/en/latest/
https://github.com/rdkit/rdkit/tree/master/Contrib/NIBRSubstructureFilters
https://github.com/rdkit/rdkit/tree/master/Contrib/NIBRSubstructureFilters


Page 5 of 14He et al. Journal of Cheminformatics           (2022) 14:18  

• Similarity ( ≥0.5) for similar molecules
• Similarity ([0.5,0.7)) for medium similar molecules
• Similarity ( ≥0.7) for highly similar molecules

Scaffold matching. For the molecules originating from 
the same publication, if two molecules share the same 
scaffold then they are extracted as pairs. In particular, 
the Murcko scaffold from RDKit which removes the side 
chains and the Murcko scaffold generic which converts 
all atom types to C and all bonds to single are used. The 
top 20 frequently occurring scaffold and generic scaffold 
can be found in Additional file 1: Figures S2 and S3.

Table  2 shows the resulting datasets (all datasets 
include reverse pairs). The training, validation and test 
sets are split based on the year of the publications from 
which the pairs are extracted. The Transformer neural 
network is trained on each dataset, and is expected to 
transform the input molecule in a way that it reflects the 
nature of the dataset used for training the model.

ADMET property prediction model
The input of our Transformer model takes the property 
changes of molecular pairs into account. The property 
predictive models were built by using a message passing 
neural network [38]. Since the public data in ChEMBL on 
the properties of interest was scarce, we resorted to using 
in-house data instead. The solubility and clearance data 
are transformed to log10 scale. The resulting models were 
used as a source of ground truth for deriving the training 
data. They were also used for evaluating the properties of 
the output from the Transformer model. Experimental 
verification would have been an expensive alternative and 
for the illustrative purposes of our work, we found that 
a simulated alternative of a wet lab experiment would 
be sufficient. Table 3 shows the train and test size, root-
mean-square error (RMSE), normalized RMSE (NRMSE) 
and R2 for each property prediction model.

Experimental settings
For each starting molecule in the test set, 10 unique valid 
molecules, which are different from the starting mole-
cule, were generated using multinomial sampling.

Evaluation metrics
The models are evaluated in two main aspects,

• Successful property constraints gives the per-
centage of generated molecules that fulfill the three 
desirable properties specified by model input simul-
taneously. The ADMET property prediction model 
in Table 3 is used to compute the properties of gen-
erated molecules. Following  [25], the model error 
(Test RMSE in Table  3) is considered to determine 
if a generated molecule satisfies its desirable prop-
erties. For logD, the generated molecules with 
|logDgenerated − logDtarget | ≤ 0.4 will be considered 
as satisfying desirable logD constraint. For solubility, 
the threshold for low and high will be a range con-
sidering the model error, i.e. 1.7±0.6. The generated 
molecules with solubility ≤ 2.3 will be considered as 
low, and those with solubility ≥ 1.1 will be consid-
ered as high. Similarly, for clearance, the threshold is 
1.3±0.35.

• Successful structure constraints gives the percent-
age of generated molecules that when comparing 

Table 2 Dataset

Datasets Training (2000-2017) Validation (2018) Test (2019-2020)

MMPs 2,287,588 143,978 166,582

Similarity ( ≥0.5) 6,543,684 418,180 475,070

Similarity ([0.5,0.7)) 4,543,472 286,682 327,606

Similarity ( ≥0.7) 2,000,212 131,498 147,464

Scaffold 2,850,180 171,914 199,786

Scaffold generic 4,127,058 255,580 289,034

Table 3 Property prediction model performance on in-house 
data

LogD Solubility Clearance

Train size 186,575 197,988 155,652

Train RMSE 0.295 0.489 0.271

Train NRMSE 0.025 0.056 0.053

Train R2 0.942 0.775 0.760

Test size 20,731 21,999 17,295

Test RMSE 0.395 0.600 0.352

Test NRMSE 0.038 0.076 0.091

Test R2 0.897 0.659 0.555
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with their corresponding starting molecules, have the 
same structure constraints as the pairs in the train-
ing set. This differs according to datasets, e.g.  for 
the MMPs dataset, this metric gives the percentage 
of generated molecules that are matched molecular 
pairs with their starting molecules while for the Simi-
larity ( ≥0.5) dataset, the structure constraint is that 
the Tanimoto similarity between the generated mol-
ecules and their corresponding starting molecules 
is between 0.5 and 1.0. This metric evaluates if the 
model has learned to use the type of transformation 
reflected in the training set to modify starting mol-
ecules.

Baselines
We compare our model Transformer with the following 
baselines,

• Transformer-U is the unconditional Transformer 
architecture trained on molecular pairs but without 
any input property constraints.

• Random randomly selects 10 molecules (for a direct 
comparison with our Transformer model where 
10 molecules are generated) from the unique set of 

molecules in the test set that have the same structure 
constraint as the training set. For example, for the 
Scaffold dataset, it randomly select 10 molecules that 
share the same scaffold with the given starting mol-
ecule. Since it is computationally expensive to evalu-
ate all the samples (each sample consist of a starting 
molecule desirable property changes) in the test set, 
we randomly select 1% of the test set, repeat 5 times 
with different sampling seeds and report the aver-
age results. Note the Random baseline will always 
give 100% successful structure constraints due to its 
nature of fulfilling the structure constraints.

Results and discussion
Data statistics
Figure  3 shows the overlap of training molecular pairs 
among different datasets. Almost all the MMPs are in 
the dataset of pairs with Similarity ( ≥0.5). The over-
lap between the MMP dataset and the Similarity ( ≥0.7) 
dataset is bigger than the one between the MMP dataset 
and the Similarity ([0.5,0.7)) dataset. Exemplar molecu-
lar pairs only in dataset Similarity ( ≥0.5) show that the 
scaffold is changed compared to pairs sharing generic 

Fig. 3 Overlap of training molecular pairs among different datasets. Exemplar molecular pairs are shown for data only in dataset Similarity ( ≥0.5), 
scaffold generic and MMP respectively
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scaffold and are non-MMPs because of multiple modi-
fications and/or big change in R-group. The molecular 
pairs only in scaffold generic have Tanimoto similarity 
below 0.5. A tiny proportion of MMPs have Tanimoto 
similarity below 0.5 and change the scaffold.

Performance comparison with baselines
Table 4 compares our Transformer model with the base-
lines (Transformer-U and Random) in terms of successful 
property and structure constraints on different datasets. 
Transformer outperforms Transformer-U and Random 
in terms of successful property constraints, generating 
more molecules with desirable properties on all datasets. 
For the successful structure constraints, Transformer-U 
is comparable or better than Transformer. Transformer-
U has learned to generate “similar” molecules to the given 
input starting molecules. However, it generates much less 
molecules with desirable properties compared to Trans-
former. It is mainly because Transformer-U was trained 
only on molecular pairs, and does not include the prop-
erty change of the pairs in the input, while Transformer 
having the property changes as additional input, allows 
for more directed output generation. Both Transformer 
and Transformer-U outperform the Random baseline—
finding more molecules that satisfy desirable properties 
and structure constraint simultaneously.

Figure  4 compares the Tanimoto similarity distribu-
tion of the molecular pairs from the training set with 
the one between the generated molecules and their 
starting molecules from the test set for the Transformer 
model. It can be seen that the distribution of the gen-
erated pairs align well with the pairs from the training 
set for most datasets. This indicates that the model has 
learned to transform a given starting molecule in a way 
that it reflects the nature of the training data. For the 
datasets based on Tanimoto similarity, the alignment 
is worse, but the model systematically generates mole-
cules that fulfil the successful property constraints. This 
can be seen from the areas (lightcyan) that are outside 
the constrains of the training set (red). This also indi-
cates the model can extrapolate the learning beyond 
the structure constraints defined by the training data. 
Additionally, the overlap between the Tanimoto simi-
larity distribution of molecular pairs from the train-
ing set (red) and the one from the test set (yellow) for 
the scaffold-based datasets is slightly worse than the 
overlap for the MMP dataset in Fig.  4. However, from 
Table  4, the models trained on scaffold-based data-
sets perform better than the one trained on the MMP 
dataset in terms of fulfilling successful structure con-
straints. This might be because the structural changes 
with MMPs are in general smaller than the ones with 

Table 4 Performance comparison of Transformer and baselines in terms of successful property constraints, successful structure 
constraints and both metrics simultaneously

The results in bold indicate the best values; higher values are better

 Each model is trained on the corresponding dataset for that row

Dataset Model Successful property 
constraints (%)

Successful structure 
constraints (%)

Successful property and 
structure constraints (%)

MMP Transformer 61.90 91.55 58.09
Transformer-U 33.67 93.25 31.85

Random 13.44±0.43 100 13.44±0.43

Similarity ( ≥0.5) Transformer 51.83 82.30 44.53
Transformer-U 29.04 83.63 25.32

Random 15.17±0.27 100 15.17±0.27

Similarity ([0.5,0.7)) Transformer 46.75 68.09 32.96
Transformer-U 26.23 69.13 18.72

Random 14.57±0.37 100 14.57±0.37

Similarity ( ≥0.7) Transformer 65.09 82.68 56.07
Transformer-U 39.57 84.83 34.70

Random 11.48±0.29 100 11.48±0.29

Scaffold Transformer 61.53 95.32 59.69
Transformer-U 37.16 95.69 36.26

Random 17.22±0.74 100 17.22±0.74

Scaffold generic Transformer 55.05 96.01 53.66
Transformer-U 32.55 96.30 31.69

Random 16.48±0.41 100 16.48±0.41
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scaffold-based pairs, which tends to keep the Tanimoto 
similarity higher. On the other hand, it is relatively easy 
for the model trained on molecular pairs sharing the 
same scaffold to maintain the same scaffold while intro-
ducing multiple modifications. For the model trained 
on MMPs, the modification has to be a single and a 
small transformation in order to fulfill the successful 
structure constraint.

Performance comparison of models trained on different 
types of molecular pairs
With the following experiments, we evaluate how the 
models trained on different types of molecular pairs per-
form on the same test sets. Table 5 shows the results on 
the restricted intersection test set which is the intersec-
tion of MMP, Similarity ( ≥0.5) and Scaffold generic test 

Fig. 4 Tanimoto similarity distribution for Similarity (≥ 0.5) dataset, Similarity ([0.5,0.7)) dataset, Similarity (≥ 0.7) dataset, MMP dataset, Scaffold 
dataset and Scaffold generic dataset. Legend Train for the molecular pairs from the training set; Generated desirable property for the pairs 
between the generated molecules that fulfil successful property constraints and their starting molecules from the test set; Generated desirable 
property+structure for the pairs between the generated molecules that fulfil both successful property and structure constraints and their starting 
molecules from the test set; Generated desirable property¬structure for the pairs between the generated molecules that fulfil successful property 
but not structure constraints and their starting molecules from the test set

Table 5 Performance comparison of the Transformer models trained on different types of molecular pairs on the restricted 
intersection test set (numbers in bracket represent the absolute increase or decrease compared to the corresponding Transformer 
model performance on the original test set in Table 4)

The extremes (best/worst performance or largest/smallest change) are highlighted in bold

Test set Type of molecular pairs where 
Transformer is trained

Successful property 
constraints (%)

Successful structure 
constraints (%)

Successful property and 
structure constraints (%)

MMP 65.71 ( ↑ 3.81) 91.68 ( ↑ 0.13) 61.82 ( ↑ 3.73)

Similarity ( ≥0.5) 55.55 ( ↑ 3.72) 84.47 ( ↑ 2.17) 48.97 ( ↑ 4.44)

Restricted Similarity ([0.5,0.7)) 50.17 ( ↑ 3.42) 68.66 ( ↑ 0.57) 35.28 ( ↑ 2.32)

intersection Similarity ( ≥0.7) 65.39 ( ↑ 0.30) 81.49 ( ↓ 1.19) 55.55 ( ↓ 0.52)

Scaffold 62.91 ( ↑ 1.38) 94.42 ( ↓ 0.90) 60.70 ( ↓ 1.01)

Scaffold generic 59.07 ( ↑ 4.02) 96.14 ( ↑ 0.13) 57.68 ( ↑ 4.02)
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sets. Details about the test sets, and the results for other 
test sets can be found in Additional file 1 (p.6-7).

The model trained on MMP dataset performs best in 
terms of successful property constraints, followed closely 
by the one trained on Similarity ( ≥0.7) dataset, while the 
model trained on Similarity ([0.5, 0.7)) dataset performs 
worst. This might be because the molecular pairs in the 
restricted intersection test set have smaller structural 
changes and desired property changes, and it is easier 
to achieve small desirable property changes by making 
small structural changes. It might also be because of the 
varying performance of the models trained on differ-
ent types of molecular pairs in the beginning (Table  4). 
Therefore we also report the difference (numbers in 
bracket) compared to their performance on their original 
test sets (Table 4). We can see that most models perform 
better compared to the performance on their own origi-
nal test set, indicating this restricted intersection test set 
is an relative easy task. The performance change of the 
models trained on Similarity ( ≥0.7) and Scaffold are very 
small, indicating there is not much difference between 
this restricted dataset and their own original test set in 
terms of difficulty.

Figure 5a shows how the training molecular pairs from 
different datasets correlate with each other. For example, 
40% of MMPs (row) are also pairs with Similarity ([0.5, 
0.7)) (column) but only 20% of pairs with Similarity ([0.5, 
0.7)) (row) are MMPs (column). Figure 5b shows that for 
the restricted intersection test set, how the generated 
molecules from models trained on different datasets sat-
isfy different structure constraints. For example, among 
the generated molecules (that satisfy the property con-
straints and structure constraints, i.e.  Similarity ([0.5, 
0.7))) from the model trained on Similarity ([0.5, 0.7)) 
(row), 22% of them are MMPs when comparing with 
their corresponding starting molecules. Compared to 
the heatmap for the training set, the one for Restricted 
intersection test set basically follow the same pattern 
(similar patterns are found on other test sets), indicating 
the models have learned to modify the starting molecules 
in the way that it reflects the nature of the training set. 
Overall, it is shown that there is no single model generat-
ing molecules that cover the ones from all other models. 
It could be beneficial to use an ensemble of these mod-
els which complement each other to provide different 

(a) Relationship between the training molecular
pairs of different datasets

(b) Generated molecules from different models
(row) in terms of satisfying different structure con-
straints (column)

Fig. 5 Comparison of heatmaps for training set and test set. The more similar, the better. a Relationship between the training molecular pairs 
of different datasets, e.g. the number 0.2 with Similarity ([0.5, 0.7)) as row and MMP as column from the training set represents 20% of the pairs 
with Similarity ([0.5, 0.7)) are also MMPs. b Each row represents the model trained on the corresponding dataset, and each column represents the 
corresponding structure constraints. The number 0.22 with Similarity ([0.5, 0.7)) as row and MMP as column from the Restricted intersection test 
set represents that when looking at the generated molecules using the Transformer model trained on Similarity ([0.5, 0.7)) dataset, among all the 
ones fulfilling the the property constraints and structure constraints (i.e. Similarity ([0.5, 0.7))), 22% of them are MMPs. The diagonal for the Restricted 
intersection is always 1 because we only look at the generated molecules that already fulfil the property constraints and structure constraints
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options to transform a starting molecule towards desir-
able properties.

Performance on test sets with large property changes 
desired
With the following experiments, we evaluate how the 
models trained on different types of molecular pairs per-
form on the test sets where large property changes (logD 
change is above 1; solubility and clearance change is 
either low→high or high→low) are desired. The molec-
ular pairs in the original test sets where large property 
changes are extracted and merged excluding duplicates. 
Table 6 shows that 4.6% (highest) of the Similarity ([0.5, 
0.7)) dataset has large property changes desired while 
Similarity ( ≥0.7) dataset has the lowest, 2.3%. It is rea-
sonable because it is less likely to have large property 
changes while keeping higher structural similarity.

Table  7 shows the results on the merged dataset (the 
results on other datasets in Table  6 can be found in 
Additional file  1: Table  S5). All models perform worse 
compared to their performance on their original test 
set (Table 4). The reason is that only a small proportion 

of molecular pairs having large property changes in the 
training set (Additional file  1: Figure S4), therefore the 
models generalize less well on such pairs. Intuitively, it 
would be expected that the model trained on Similarity 
([0.5, 0.7)) dataset would perform best since it has higher 
percentage of pairs with large property changes for train-
ing and have more freedom to modify the starting mol-
ecule. However, it is observed that the model trained on 
MMPs performs best. This might be because it is easier 
to train the Transformer model for MMPs compared to 
pairs with similarity ([0.5, 0.7)) (already seen in Table 4) 
due to the smaller extrapolated space. Having that said, 
the performance of the models trained on different 
types of molecular pairs differ less on this Merged test 
set where big property changes are desired compared to 
previous test sets ( (Table 4 and Table 5). When looking 
at the numbers in bracket, we observed that the perfor-
mance of model trained on Similarity ([0.5, 0.7)) drop the 
least, while the one for Similarity ( ≥0.7) drop the most, 
followed by Scaffold and MMP.

Example of diverse molecules generated using models 
trained on different types of molecular pairs
Figures 6 and 7 show an example of the generated mol-
ecules that fulfill the desirable properties but modify the 
starting molecule in different ways depending on the 
training data used for training the model. In particular, 
the generated molecules in Fig.  6b make a single trans-
formation to the starting molecule while the ones in 
Fig. 7c and 7d allow for multiple modifications but keep 
the scaffold or generic scaffold constant. The generated 
molecules in Fig. 6c, 6d and 7b allow for multiple modi-
fications and changes in scaffold, but the Tanimoto simi-
larity lies approximately [0.5, 1.0], [0.7, 1.0] and [0.5, 0.7) 
respectively. Overall, this shows the flexibility of modify-
ing starting molecules to achieve desirable properties in 
different ways by using the models trained on different 
types of molecular pairs.

Table 6 Test sets where big property changes (logD change is 
above 1; solubility and clearance change is either low→high or 
high→low) are desired

Size indicates the number of data points where big property change are desired; 
Percentage indicates the fraction of the original test set in Table 2 with data 
points that have big property changes, e.g. 6180/166582≈3.7%

Test set Size Percentage 
(%)

MMP 6,180 3.7

Similarity ( ≥0.5) 18,546 3.9

Similarity ([0.5, 0.7)) 15,130 4.6

Similarity ( ≥0.7) 3,416 2.3

Scaffold 6,252 3.1

Scaffold generic 10,514 3.6

Merged 21,652 -

Table 7 Performance comparison of Transformer models trained on different types of molecular pairs on the Merged dataset where 
big property changes are desired (numbers in bracket represent the absolute increase/decrease compared to the corresponding 
Transformer model performance on the original test set in Table 4)

The extremes (best/worst performance or largest/smallest change) are highlighted in bold

Test set Type of molecular pairs where 
Transformer is trained

Successful property 
constraints (%)

Successful structure 
constraints (%)

Successful property and 
structure constraints (%)

MMP 40.82 ( ↓ 21.08) 83.89 ( ↓ 7.66) 36.12 ( ↓ 21.97)

Similarity ( ≥0.5) 39.81 ( ↓ 12.02) 75.00 ( ↓ 7.30) 30.70 ( ↓ 13.83)

Merged Similarity ([0.5,0.7)) 38.33 ( ↓ 8.42) 66.64 ( ↓ 1.45) 25.94 ( ↓ 7.02)

Similarity ( ≥0.7) 36.14 ( ↓ 28.95) 68.57 ( ↓ 14.11) 25.58 ( ↓ 30.49)

Scaffold 36.50 ( ↓ 25.03) 89.17 ( ↓ 6.15) 33.60 ( ↓ 23.09)

Scaffold generic 37.78 ( ↓ 17.27) 91.30 ( ↓ 4.71) 35.26 ( ↓ 18.40)
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Discussion
Varying performance of models trained on different types 
of molecular pairs
The Transformer models trained on different datasets 
show varying performance as shown in Table 4. For the 
MMP, scaffold and scaffold generic datasets, it is easier to 
generate molecules in terms of successful structure con-
strains (MMPs, sharing same scaffold) compared to the 
datasets based on Tanimoto similarity split. This might 
be because the pairs in the Tanimoto similarity based 
datasets have more variations, and the models have more 
freedom to extrapolate which makes it difficult to keep 
the same structure constraints. It might also be due to 

the hard Tanimoto similarity cutoff used for constructing 
the training set (Fig.  4), which is difficult for the gener-
ated molecules from the Transformer model to follow on.

In terms of successful property constrains, Similar-
ity ( ≥0.7) dataset has the best performance, followed by 
MMP and scaffold, which are much better than Similar-
ity ([0.5,0.7)), Similarity ( ≥0.5) and scaffold generic. The 
reason might be that the extrapolated space is larger 
which makes it harder to find molecules with desirable 
properties. It might also be because the molecular pairs 
are more similar and the property changes are smaller for 
Similarity ( ≥0.7), MMP and scaffold dataset (Additional 
file 1: Figure S4).

(a) Starting molecule and desirable properties

(b) Generated molecules from model trained on MMPs

(c) Generated molecules from model trained on pairs with Similarity (≥0.5)

(d) Generated molecules from model trained on pairs with Similarity ([0.5,0.7))

Fig. 6 Example of diverse molecules with desirable properties generated by models trained on (b) MMPs (c) pairs with Similarity ( ≥0.5) (d) 
pairs with Similarity ([0.5, 0.7)). The changes in the generated molecules compared with starting molecule are highlighted in red. Sim represents 
Tanimoto similarity
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Varying performance in terms of successful structure 
constraints and successful property constraints
It is observed from Table 4 that the Transformer model’s 
performance in terms of successful structure constraints 
is better than successful property constraints. This might 
be because it is a relative easy task to keep the same 
structure constraint as in the training set. While for suc-
cessful property constraints, it is more restricted due to 
the requirement of satisfying three properties simultane-
ously and the logD change is encoded at a higher level of 
granularity (considering the practical use) compared to 
solubility and clearance change which only have three 
possible changes (Table  1). This makes the input space 

more complicated and bigger, which requires more data 
to build a good model and makes it harder to generalize 
well.

Molecular optimization beyond MMPs
The goal of this study is not necessarily to benchmark 
against MMPs, but instead to provide a general meth-
odology that enables general structural changes beyond 
what MMPs are designed for. The application of MMPs 
is a useful concept, but it poses a limitation of explor-
ing a broader chemical space. Often structural modi-
fications beyond the reach of MMPs are feasible and/

(a) Starting molecule and desirable properties

(b) Generated molecules from model trained on pairs with Similarity (≥0.7)

(c) Generated molecules from model trained on pairs sharing scaffold

(d) Generated molecules from model trained on pairs sharing generic scaffold

Fig. 7 Example of diverse molecules with desirable properties generated by models trained on b pairs with Similarity ( ≥0.7) c pairs sharing 
scaffold and d pairs sharing generic scaffold. The changes in the generated molecules compared with starting molecule are highlighted in red. Sim 
represents Tanimoto similarity
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or needed to reach optimization goals. The presented 
method and results deliver the opportunity of exploring 
a broader space of structural modifications for molec-
ular optimization. There is an observed tendency that 
it is more challenging for the model to learn from the 
datasets with larger structural changes, i.e.  Similarity 
( ≥0.5), Similarity ([0.5, 0.7)) and Scaffold generic. The 
reason might be because the navigated chemical space 
is larger and it is hard to relate the large structural 
changes to accurate property changes. Nevertheless, 
these models provide alternatives to MMPs, which is 
useful when MMPs are not adequate or feasible during 
optimization. This study shows how tailoring the train-
ing datasets can lead to the changes in the behaviour of 
the resulting trained model. This concept can be extrap-
olated to any user-specified structure modification.

Conclusions
We propose a general methodology to provide more gen-
eral structural transformations beyond MMPs for molecular 
optimization. This can be achieved by tailoring the dataset 
accordingly while using the same model architecture. Dif-
ferent types of dataset (molecular pairs) were extracted from 
ChEMBL based on MMPs, Tanimoto similarity and scaf-
fold matching which result in six datasets: MMPs, Similar-
ity ( ≥0.5), Similarity ([0.5, 0.7)), Similarity ( ≥0.7)), Scaffold 
and Scaffold generic. These datasets reflect different types 
of transformations, and the Transformer neural network 
was trained on each dataset. Our results showed that it is 
relatively easy to keep the structure constraints for MMP and 
Scaffold-based datasets compared to Tanimoto similarity-
based datasets. Furthermore, the models trained on different 
types of molecular pairs transform a given starting molecule 
in a way that it reflects the nature of the dataset used for 
training the model, e.g. the model trained on MMPs modify 
the starting molecules by a single transformation, the models 
trained on similarity based molecular pairs allow for multi-
ple modifications but keep the Tanimoto similarity in certain 
ranges, and the model trained on Scaffold-based molecular 
pairs allow for multiple modifications but keep the scaffold 
or generic scaffold constant. These models could comple-
ment each other and unlock the capability for the chemists 
to pursue different options for improving a starting mole-
cule, therefore accelerate the drug discovery process.
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