
CONSERVE: A framework for the selection of techniques for monitoring
containers security

Downloaded from: https://research.chalmers.se, 2022-07-02 09:44 UTC

Citation for the original published paper (version of record):
Jolak, R., Rosenstatter, T., Mohamad, M. et al (2022). CONSERVE: A framework for the selection of
techniques for monitoring containers security. Journal of Systems and Software, 186.
http://dx.doi.org/10.1016/j.jss.2021.111158

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

The Journal of Systems & Software 186 (2022) 111158

R

o
a
w
a
a
s
c
t
c

(
k
(
r

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

CONSERVE: A framework for the selection of techniques for
monitoring containers security✩

odi Jolak a,b,c,∗, Thomas Rosenstatter b,d, Mazen Mohamad a,b, Kim Strandberg b,c,
Behrooz Sangchoolie d, Nasser Nowdehi c, Riccardo Scandariato e

a University of Gothenburg, Sweden
b Chalmers University of Technology, Sweden
c Volvo Car Corporation, Sweden
d RISE Research Institutes of Sweden, Sweden
e Hamburg University of Technology, Germany

a r t i c l e i n f o

Article history:
Received 5 March 2021
Received in revised form 21November 2021
Accepted 23 November 2021
Available online 18 December 2021

Keywords:
Software and systems engineering
Virtualization
Security
Container monitoring
Intrusion detection
Attack analysis

a b s t r a c t

Context: Container-based virtualization is gaining popularity in different domains, as it supports
continuous development and improves the efficiency and reliability of run-time environments.
Problem: Different techniques are proposed for monitoring the security of containers. However, there
are no guidelines supporting the selection of suitable techniques for the tasks at hand.
Objective: We aim to support the selection and design of techniques for monitoring container-based
virtualization environments.
Approach : First, we review the literature and identify techniques for monitoring containerized
environments. Second, we classify these techniques according to a set of categories, such as technical
characteristic, applicability, effectiveness, and evaluation. We further detail the pros and cons that are
associated with each of the identified techniques.
Result: As a result, we present CONSERVE, a multi-dimensional decision support framework for an
informed and optimal selection of a suitable set of container monitoring techniques to be implemented
in different application domains.
Evaluation: A mix of eighteen researchers and practitioners evaluated the ease of use, understand-
ability, usefulness, efficiency, applicability, and completeness of the framework. The evaluation shows
a high level of interest, and points out to potential benefits.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Agility, flexibility, and ability to rapidly evolve are crucial for
rganizations to fulfill changes in the requirements of customers
nd markets. Accordingly, organizations are widely shifting to-
ards the adoption of DevOps as well as continuous integration
nd deployment practices (Rodríguez et al., 2017). However, the
doption of these practices for the development of embedded
ystems is a challenging endeavor, since these systems are in-
reasingly complex and intensively depend on hardware, sophis-
icated electronics, communication infrastructures, and real-time
apabilities (Lwakatare et al., 2016).

✩ Editor: Gabriele Bavota.
∗ Corresponding author at: University of Gothenburg, Sweden.

E-mail addresses: rodi.jolak@cse.gu.se (R. Jolak), thomas.rosenstatter@ri.se
T. Rosenstatter), mazen.mohamad@cse.gu.se (M. Mohamad),
im.strandberg@chalmers.se (K. Strandberg), behrooz.sangchoolie@ri.se
B. Sangchoolie), nasser.nowdehi@volvocars.com (N. Nowdehi),
iccardo.scandariato@tuhh.de (R. Scandariato).
ttps://doi.org/10.1016/j.jss.2021.111158
164-1212/© 2021 The Authors. Published by Elsevier Inc. This is an open access art
Virtualization enables and simplifies continuous software de-
velopment and deployment on virtual hardware, applications,
or operative systems. Container-based virtualization is a soft-
ware technology that enables software applications to run in
virtual run-time environments on a single operating system.
In cloud computing, container technology is emerging as an
important part of the cloud computing infrastructure and is
used in well-known public cloud platforms, such as Google and
IBM/Softlayer (Bernstein, 2014). Furthermore, container-based
virtualization is considered to have a great potential for sig-
nificantly advancing Platform-as-a-Service technology towards
distributed heterogeneous clouds through lightweightness and
interoperability (Pahl, 2015).

Although the benefits of the container technology have been
widely acknowledged in cloud computing; this technology is
gaining popularity in different domains because of the advan-
tages that it brings to the consistency of the software devel-
opment and deployment process (Merkel, 2014), as well as to
the efficiency, scalability, and reliability of the run-time virtual

environment (Soltesz et al., 2007).

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2021.111158
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.111158&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:rodi.jolak@cse.gu.se
mailto:thomas.rosenstatter@ri.se
mailto:mazen.mohamad@cse.gu.se
mailto:kim.strandberg@chalmers.se
mailto:behrooz.sangchoolie@ri.se
mailto:nasser.nowdehi@volvocars.com
mailto:riccardo.scandariato@tuhh.de
https://doi.org/10.1016/j.jss.2021.111158
http://creativecommons.org/licenses/by/4.0/

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

a
c
s
2

w
p
e
a
a
c
t
b
u
p
t
c
s
t
o
o
s

M
b
d
s
e
2
s
t
s

p
s
s
a
t

C
t

d
h
h
n
d
o
v

2

s
b
i
v
o
t
a

a
h
c

t
a
e
s
a
f
n
a
o
t
a
s

i
s
i
o
t
T

For example, in the Internet of Things (IoT) domain there is
growing trend towards using the container technology, since it
an be used on devices characterized by fewer computational re-
ources to efficiently execute complementary software (Morabito,
017).
In the automotive domain, modern vehicles are equipped

ith sophisticated software applications to serve different pur-
oses, such as supporting autonomous driving and vehicle-to-
verything (V2X) communication. The increasing complexity of
utomotive systems, and the proliferation of software function-
lities that they provide, demands the adoption of more effi-
ient solutions for continuous development and deployment in
he future. Indeed, container-based virtualization has shown to
e effective in several ways. For instance, Berger et al. (2017)
se a containerized software development and deployment ap-
roach for self-driving vehicles. They show the effectiveness of
he approach in enabling a continuous deployment of software
omponents as well as ensuring traceability between software
ources and binaries. Moreover, Morabito et al. (2017) indicate
hat container-based virtualization is an efficient solution that
ffers high flexibility in the management of the processes running
n the On Board Unit (OBU), and allows overcoming the complex
oftware updating procedures required by OBUs.

otivation. While the use of container-based virtualization
rings many advantages including the facilitation of cloud-based
eployment and networking, there still exist concerns about the
ecurity and safety of this technology (Bernstein, 2014; Combe
t al., 2016; Chandramouli and Chandramouli, 2017; Martin et al.,
018). Furthermore, the ever increasing connectivity between
ystems paves the road for more security attacks. Thus, sophis-
icated attack analysis techniques for protecting these connected
ystems are required.
Different techniques for monitoring containers security are

roposed. However, there are no guidelines for supporting the
election of suitable techniques for the tasks at hand. The lack of
uch guidelines might thus influence the decisions of architects
nd developers which, in turn, might unintentionally undermine
he overall security and safety of the developed systems.

ontribution. To deal with the aforementioned issues, we address
he following research questions:

• RQ.1 What techniques are available for monitoring container-
based virtualization environments?
First, we review the literature to identify relevant tech-
niques for monitoring container-based virtualization envi-
ronments with the goal to provide a comprehensive
overview of these techniques. In particular, we review 99
studies and identify 15 monitoring techniques. The results
are reported in Section 3. Second, we ensure the reliability
of the review by performing a quality control on 15% of the
data (15 studies).

• RQ.2 How can we support the selection of these monitoring
techniques?
First, we categorize the identified techniques to help de-
velopers understand their purpose, technical characteristics,
applicability, and effectiveness. Yet, combining these tech-
niques can be beneficial to achieve multiple monitoring-
layers for securing containers.
Second, we further elaborate on the trade-offs (i.e., pros
and cons) that are associated with each of the techniques,
e.g., with respect to efficiency, accuracy, and other qualities.
As a result, we present CONSERVE in Section 4, a framework
for supporting the selection of techniques for monitoring
container-based virtualization environments in different ap-
plication domains, such as cloud computing, cyber–physical,
and automotive.
 r

2

Fig. 1. Architecture of container-based environments (Huang and Wu, 2018).

• RQ.3What is the perception of researchers and practitioners on
the understandability, usefulness, efficiency, applicability, and
completeness of the framework?
We plan and conduct an evaluation of the CONSERVE frame-
work involving a mix of eighteen researchers and practition-
ers from both academia and industry. We report the results
of the evaluation in Section 5.

In summary, we provide a multi-dimensional multi-domain
ecision support framework that is built based on an compre-
ensive literature analysis. This framework helps developers in
aving the required knowledge about container monitoring tech-
iques that are applicable to their problem. Ultimately, it leads
evelopers to the informed and optimal selection of a suitable set
f techniques to be implemented for monitoring container-based
irtualization environments.

. Background

Virtualization techniques are beneficial in several aspects,
uch as the ability to optimize the use of resources, separation
y design (i.e., sandboxing), migration to other hardware, and
ncreased monitoring capabilities (Huang and Wu, 2018). Hence
irtualization techniques can be used to improve the resilience
f systems. However, by adding complexity in the system archi-
ecture, the attack surface increases and, thus, it is crucial that
pplications are secured.
There are various methods for running applications securely

nd isolated, such as (i) container-based virtualization, (ii)
ypervisor-based virtualization and (iii) the use of trusted exe-
ution environments (TEEs).
In container-based virtualization, also called application vir-

ualization, the host operating system is shared between the
pplications. Fig. 1 illustrates the basic structure of containerized
nvironments. The container runtime, e.g., Docker (2020), is re-
ponsible for deploying the applications into containers and guar-
ntees that the containers run in isolation. The runtime there-
ore ensures that the operating system provides means for (i)
amespace isolation, to control the resources a container has
ccess to; (ii) resource allocation, to control the consumption
f resources, e.g., memory; and (iii) file system virtualization,
o efficiently use physical storage across several containers. In
ddition to the application itself, a container may also include
pecific libraries (Souppaya et al., 2017; Huang and Wu, 2018).
Early work already showed that container-based virtualization

s more resource efficient and scales better than hypervisor-based
olutions, which virtualize an entire system including its operat-
ng system (Soltesz et al., 2007). Huang and Wu (2018) provide an
verview of the classification and aspects of virtualization. Two
ypes of hypervisor-based virtualization exist, namely Type 1 and
ype 2 hypervisors. The former hypervisor, also called bare-metal,
uns directly on the physical hardware whereas the latter runs as

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

a
t
v
t
h
t
c
r
m
t
b

b
c
T
c
u
e
2
c
I

p
r
c
d
t
r
c
u
E
c
c
n
i

b
a
r
(
n
t
f
t
m
c

2

v
l
O
s
h
o
w
o
f
n
h
o
t
t

m

c
o
l
e
s
l
i
r

s
p
t
w
r
t
i
t
u
c

b
a
t
(
o
o
l
8

c
w
s
t
t
t

3

pplication on top of the operating system. Huang and Wu fur-
her compare hypervisor-based virtualization to container-based
irtualization and identify four advantages of container-based vir-
ualization: faster deployment, containers start in seconds whereas
ypervisor-based solutions are slower since they need to launch
he VM with its own kernel; less resource requirement, containers
ommonly share the operating system; flexibility, freezing and
esuming containers requires less resources compared to virtual
achine states of hypervisor-based virtualization ; and forensics,

he state of containers can be more easily accessed and monitored
y the host system (Huang and Wu, 2018).
Approaches to combine the benefits known from hypervisor-

ased solutions, i.e., isolation and separation of applications, with
ontainers led to so-called lightweight virtualization or micro VMs.
hese solutions use a hypervisor such as KVM/QEMU, deploy each
ontainer in a separate VM with its own lightweight kernel and
se an optimized Virtual Machine Monitor (VMM). Kata Contain-
rs (Randazzo and Tinnirello, 2019) and Firecracker (Agache et al.,
020) are representatives for this type of virtualization and are
ompliant to the specifications defined by the Open Container
nitiative (OCI) (OCI, 2021).

Trusted execution environments (TEEs) are designed to
rovide a secure environment for applications to perform secu-
ity relevant computations that in most cases require accessing
ryptographic key material through, e.g., data authentication,
evice/system authentication, and encryption/decryption. These
rusted applications are typically not standalone; they execute
equests from the normal execution environment via a secure
ommunication channel, i.e., secure monitor. Two commercially
sed TEE solutions are ARM TrustZone and Intel Software Guard
xtensions (SGX). Pinto and Santos (2019) highlight that the
ode base of trusted applications needs to be kept lean to avoid
omplex applications that are potentially more prone to code vul-
erabilities. Since, there is only one TEE per device, a vulnerability
n one trusted application can affect the security of another.

Attempts to combine virtualization techniques with TEEs have
een made. For instance, Li et al. (2019) propose to isolate trusted
pplications using virtualization. A thin hypervisor (TEE-visor)
unning in the TEE executes multiple virtualized TEE instances
vTEEs) which are better separated from each other. SCONE (Ar-
autov et al., 2016) utilizes a TEE, namely Intel SGX, to increase
he isolation of (Docker, 2020) containers. These research ef-
orts (Li et al., 2019; Arnautov et al., 2016) highlight the poten-
ial of combining TEEs with virtualization techniques, although
ore research needs to be conducted to explore how TEEs and
ontainer monitoring can be combined.

.1. Related work

NIST provides guidelines for the secure use of container-based
irtualization in SP 800-190 (Souppaya et al., 2017). These guide-
ines cover security aspects for the entire software life cycle.
verall, NIST SP 800-190 results in six recommendations for
ecuring containers, among others the advice of using OSs that
ave been specifically designed for the use with containers in
rder to minimize the attack surface; grouping of containers
ith the same properties on a single OS kernel; and the use
f container-aware runtime defense mechanisms. The document
urther details the major risks for each container component,
amely the container image, registry, orchestrator, container and
ost OS; and identifies corresponding countermeasures described
n a system level. With the CONSERVE framework we support
he NIST recommendation to use container-aware runtime defense
ools.

Casalicchio and Iannucci (2020) present an overview of com-
only used container technologies grouped in container type,
3

ontainer manager and orchestration framework. Performance,
rchestration and cyber-security are identified as the main chal-
enges in containerization, where cyber-security is further cat-
gorized in isolation, encryption of image layers, and network
ecurity. The authors describe for each sub-category relevant
iterature and conclude that the reviewed works focus mainly on
mprovements in the container isolation, encryption of images at
est and run-time as well as solutions making use of Intel SGX.

Bélair et al. (2019) set the focus of their survey on kernel
ecurity mechanisms for improving container security and pro-
ose a taxonomy based on how the data to enforce security is
ransmitted, i.e., configuration-based, code-based and rule-based,
here solutions belonging to the latter two allow the container to
equire certain security demands. Moreover, the authors evaluate
he seven reviewed solutions in terms of (i) the granularity one
s able to define the policies; (ii) the level of customization; (iii)
he need for software modifications for enforcing policies; (iv)
sability in real life scenarios; and (5) the extent to which security
oncerns can be addressed.
Another review of security solutions for containers is provided

y Sultan et al. (2019). The authors focus on security issues
nd challenges; and review existing security solutions and map
hem to four defined use cases: (i) inter-container protection;
ii) protection of the host from their containers; (iii) protection
f the containers from the applications in it; and (iv) protection
f the containers from the host. Additionally, each study is also
inked to the major risks for containers identified in NIST SP
00-190.
In comparison to the existing work focusing on reviewing se-

urity measures for containerized environments, with CONSERVE
e provide a framework for categorizing and choosing suitable
ecure monitoring techniques for containers allowing designers
o make an informed decision for selecting techniques for the
ask at hand. Moreover, we provide a detailed analysis of each
echnique including a trade-off analysis (i.e., pros and cons).

. Approach

To create the CONSERVE framework, we employ the design
science research methodology (Wieringa, 2014). Design science is
an iterative process that involves problem space exploration, so-
lution implementation, and solution evaluation. We first conduct
a literature review to get a comprehensive understanding of the
characteristics of container monitoring techniques. These charac-
teristics are then used to create a multi-dimensional framework
with a goal to support developers in making design decisions and
ultimately selecting the most appropriate monitoring techniques
for the task at hand.

In this section, we first provide details on the literature review
and snowballing approaches that we used to identify techniques
for monitoring containerized environments (Sections 3.1 and
3.2). After that, we describe how we create the CONSERVE frame-
work based on the studies that are identified via the literature re-
view (Section 3.3). Fig. 2 provides an illustration of the approach
which is further detailed in the following subsections.

3.1. Literature review

First, we perform a literature review using the Scopus database.
Scopus is a well curated database covering more than 77 million
records making it one of largest databases of abstracts and ci-
tations (Elsevier, 2021). We first use Scopus and collect a set of
99 studies in December 2020 using the following search terms:
monitor(ing), security, software or Linux, and container or Docker.

To check whether or not the studies are relevant for this work,
we perform a screening process by reading the title, abstract, and

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

T
C

able 1
onsidered studies (Monitoring Techniques MTs) in the CONSERVE framework.
ID Reference Publication Publication Venue

MT1 De Benedictis and Lioy (2019) Journal Future Generation Computer Systems (FGCS)
MT2 Lei et al. (2017) Conference Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA)
MT3 Khalimov et al. (2019) Conference Utility and Cloud Computing (UCC)
MT4 Mattetti et al. (2015) Conference Communication and Network Security (ICCNS)
MT5 Chen et al. (2019) Conference Design, Automation, and Test in Europe Conference (DATE)
MT6 Zou et al. (2019) Journal IEEE Transactions on Cloud Computing (TCC)
MT7 Du et al. (2018) Conference Algorithms and Architectures for Parallel Processing (ICA3PP)
MT8 Fourati et al. (2019) Conference Parallel and Distributed Computing, Applications and Technologies (PDCAT)
MT9 Gantikow et al. (2020) Conference Parallel, Distributed and Network-Based Processing (PDP)
MT10 Abed et al. (2015) Workshop Security and Trust Management (STM)
MT11 Srinivasan et al. (2018) Conference Security in Computing and Communication (SSCC)
MT12 Sayed and Azab (2019) Conference Information Technology, Electronics, and Mobile Communication (IEMCON)
MT13 Abed et al. (2020) Journal Communication Networks and Distributed Systems
MT14 Gantikow et al. (2019) Conference Cloud Computing and Services Science (CLOSER)
MT15 Kamthania (2019) Conference Electrical and Computer Engineering (WIECON-ECE)
Fig. 2. Approach.

keywords of the studies. During the screening process, we include
studies that present techniques or approaches for monitoring the
security of containerized environments. We exclude studies that:

1. are not written in English,
2. describe high-level recommendations for securing contain-

ers, without providing a comprehensive description of a
technique that can be applied in practice , and

3. do not report an evaluation of the proposed techniques.

In total, we find 7 studies following the literature review ap-
proach. These studies are included in Table 1.

3.2. Snowballing approach

To complement our review and cover more relevant work,
we use the snowballing approach (Wohlin, 2014). This search
approach essentially involves repeating the screening process
on the papers in the reference list (i.e., backward snowballing)
and papers that cite the study under inspection (i.e., forward
snowballing). Google Scholar is used to perform this inspec-
tion to avoid publisher bias (e.g. searching in one publisher’s
database) (Wohlin, 2014). As a result, we identify additional 8
relevant studies which ultimately increases the number of studies
considered in this work to 15 studies (see Table 1). These studies
are ordered by the publication date; from September 2015 to
March 2020. Out of the fifteen identified studies, eleven are
conference publications, three are journal publications, and one
study is a workshop publication.
4

3.3. Categorization of the techniques

The aim of this step is categorize the monitoring techniques to
provide a decision-support framework for an informed selection
of the techniques.

After collecting the relevant studies, two authors of this
manuscript discussed different aspects that can be used for cat-
egorizing the monitoring techniques. The aim of this discussion
was to prepare and plan for the process of data extraction. The
discussed aspects are the following:

• What are the detection and analysis strategies adopted by
the monitoring technique? What are the required input,
activities, and outcome of the analysis?

• Which domains are the monitoring techniques applicable
to?

• What is the purpose of the monitoring techniques and what
are the consequences?

• How is the technique evaluated and what are the evaluation
results?

To systematically extract relevant details for the categorization
of the techniques, we read the relevant papers identified by the
literature review and snowballing search. By doing so, differ-
ent details and aspects have emerged and noted. These details
are then organized in themes by conducting a thematic analy-
sis at the explicit level (Boyatzis, 1998). As a result, high-level
categories and sub-categories are distinguished. The results are
shown in Table 2. Four main categories have emerged: Technical
Characteristics, Applicability, Effect, and Evaluation. Each one of
these categories include a number of sub-categories providing
specific details of the monitoring techniques. Based on these
categories, we made the following design decisions for building
of the CONSERVE framework (presented in Section 4):

• Technical Characteristics and Applicability, including their
corresponding sub-categories, will be used for supporting
the selection process and assisting the identification of can-
didate monitoring techniques applicable to the problem or
task at hand.

• Effect and Evaluation, including their corresponding sub-
categories, will be used for supporting an objective decision-
making process for an optimal selection based on com-
paring the performance and consequences of applying the
monitoring techniques.

In the following, we provide details on the emerged categories

and their corresponding sub-categories.

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

T
C

m
a
o

able 2
ategorization of the techniques for monitoring the security of containerized environments.
Category Sub-Category Description or Example

Technical Characteristics Detection Strategy Misuse-based, Anomaly-based.
Monitored Object Host OS and/or Containerized Application.
Intrusiveness External, Internal, or Both.
Required Resources Required Resources for analysis: Software, Hardware, or Both.
Analysis Strategy Remote Attestation, Filtering and Introspection, Rule-based, or ML-based.
Analysis Time Real-time or Forensically.
Analysis Input E.g., System Calls, An Application, Sensor or Traffic Data, or Configuration Files.
Collected Measurements E.g., Interactions with the OS, as well as Resource Usage (CPU, Memory, Network).
Analysis Procedure Detailed Analysis Steps
Response/Reaction E.g., Logging, Alarm Activation, or Attack Mitigation.

Applicability Domain General-Purpose, Cloud Computing, Cyber–Physical, High Performance Computing, IoT.
Software Type E.g., Linux, Docker, Kubernetes.

Effect Targeted Threats STRIDE: spoofing, tampering, repudiation, information disclosure, DoS, elevation of privilege.
Targeted Attacks E.g., Malware, Unauthorized Access, Kernel Exploit, Binaries Modification.
Targeted Faults E.g., Memory Leak, Log Explosion, and Network Latency.
Pros E.g., Enhanced Verification.
Cons E.g., Inaccurate Prediction of Anomalies.
Side Effect E.g., Impact on Performance and CPU Utilization.

Evaluation Type Case Study, Experimental study, or testing study.
Approach Detailed Evaluation Approach
Metrics Evaluation Metrics, e.g., Performance, Detection Rate, Precision, Recall.
Result Detailed Evaluation Results
3

a

3.3.1. Technical characteristics
What are the detection and analysis strategies adopted by the

onitoring technique? What are the required input, activities,
nd outcome of the analysis? This category includes a number
f sub-categories:

• Detection strategy: To distinguish between two different
strategies for intrusion detection; misuse-based vs. anomaly
based detection strategy.

• Monitored object: The object in the container-based virtu-
alization environment that is monitored by the technique.
This can be the host operating system (OS), container en-
gine, and/or the containerized applications.

• Intrusiveness: It indicates whether the monitoring is done
internally or externally with respect to the environment in
concern.

• Required resources: The resources that the monitoring tech-
nique requires to operate. These resources can be software,
hardware, or both.

• Analysis strategy: It specifies the strategy that is adopted by
the technique for monitoring and analyzing the activities in
the virtualization environment. Analysis strategies can be
remote attestation, filtering and introspection, rule-based,
ML-based, or statistical analysis.

• Analysis time: It specifies whether the monitoring is done in
real-time or forensically (i.e., offline mode).

• Analysis input: The resources that the technique uses as
an input for doing the analysis. These resources can be,
e.g., a set of system calls within a specific period of time, a
suspected application, sensor or traffic data, or configuration
details.

• Collected measurements: Such as the frequency of interaction
with the OS, as well as resource usage (e.g., CPU, memory
and network).

• Analysis procedure: This provides a detailed description (i.e.,
step by step) of the analysis procedure.

• Response or Reaction: The action that the monitoring tech-
nique performs once an anomaly or misuse is detected.
This can be, e.g., activating an alarm, logging details about
the anomaly, or attack mitigation. Additionally, monitoring
can be either active or passive, where the former is event-
driven, monitoring occurrences of events, and therefor not
5

time dependent. The latter, on the other hand, is based
on state inspection polling during intervals and is vulner-
able to transient attacks, i.e. attacks that occur between
the polling and is thus time dependent. However, active
monitoring is vulnerable to attacks which are outside of
the specified events, and therefore circumvent detection
mechanisms (Pham et al., 2014). Event based monitoring is
used in a majority of the considered papers, thus we do not
further put any emphasis on this distinction.

3.3.2. Applicability
Which domains are the monitoring techniques applicable to?

This category is further broken down into the following two
sub-categories:

• Domain: This subcategory specifies the domain in which the
monitoring technique can be applied. The domain can be of
general purpose, cloud computing, cyber–physical systems,
high performance computing, or IoT.

• Software type: It specifies the type of software on which the
monitoring technique can be applied, e.g., Linux containers
(2021), Docker (2020), or Kubernetes (2020).

.3.3. Effect
What is the purpose of the monitoring techniques and what

re the consequences? This category includes four sub-categories:

• Targeted threats: The security threats that are targeted by
the monitoring technique. The threats can be spoofing, tam-
pering, repudiation, information disclosure, denial of ser-
vice, and/or elevation of privilege. These security threats are
known as STRIDE (Howard and Lipner, 2006).

• Targeted attacks: The type of the security attack that is tar-
geted by the monitoring technique. The attack type can be,
e.g., malware, unauthorized access, kernel exploit, network
congestion and binaries modification.

• Targeted faults: The faults that are targeted by the technique,
e.g., memory leak, CPU consumption, network latency, and
log explosion.

• Pros and cons: A description of the advantages (e.g., en-
hanced verification) and disadvantages (e.g., inaccurate
anomaly prediction) of the monitoring technique.

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

t
f
p
s
t
c
e
b
M
a
s
s
o
a
s
M

Fig. 3. CONSERVE Framework for the Selection of container monitoring techniques.
• Side effect: It specifies the impact of the monitoring tech-
nique on some quality aspects or resources, such as perfor-
mance and CPU utilization.

3.3.4. Evaluation
How is the technique evaluated and what are the evaluation

results?
This category describes the type of evaluation that is per-

formed on the monitoring technique, which can be a case study,
experimental, or testing study. Moreover, it details the evaluation
approach together with the evaluation metrics (e.g., performance
or detection rate) and results.

4. The framework: CONSERVE

In this section we present CONSERVE (see Fig. 3), a top-down
selection framework for supporting the selection and implemen-
tation of monitoring techniques of container-based virtualization
environments.

First, the framework supports the selection process by assist-
ing the identification of candidate monitoring techniques appli-
cable to the problem or task at hand (level 1 Detection Strategy
o level 5 Original Application Domain in Fig. 3). In particular, to
ind out which monitoring techniques are applicable to a given
roblem, the framework questions whether the needed detection
trategy is misuse- or anomaly-based. After that, for each detec-
ion strategy the framework details the analysis strategies that
an be used and the objects in the container-based virtualization
nvironment that can be monitored. The analysis strategies can
e remote attestation, filtering and introspection, rule-based, or
L-based. The monitored objects can be the host, containerized
pplication or service, or both. The framework further lists the
ecurity threats and attacks that need to be targeted, and de-
cribes the domains for which the monitoring techniques were
riginally designed and applied. By going through these level,
set of candidate monitoring techniques can be identified and

elected for the problem at hand (level 6 Monitoring Techniques
T).
6

Second, the framework supports an objective decision-making
process for an optimal selection based on comparing the follow-
ing details (level 7 Analysis Characteristics to level 9 Evaluation in
Fig. 3):

• characteristics of the analysis strategy, including the re-
quired analysis resources, analysis location and time, analy-
sis input, and collected measures (see Table 3),

• pros and cons that arise from the adoption of the monitoring
techniques (see Table 4), and

• type, metrics, and result of the evaluation that is conducted
to assess the performance of the monitoring techniques (see
Table 5).

In the following, we first provide details on the detection
and analysis strategies in Section 4.1. After that, we describe the
monitoring techniques in Section 4.2.

Finally, we describe how the CONSERVE framework can be
used, and provide an example scenario in Section 4.3.

4.1. Detection and analysis strategies

Misuse-based detection identifies defined suspicious patterns,
or signatures, within the analyzed data of the system to be
protected. These techniques can identify known attacks with an
acceptable accuracy and they tend to produce few false alarms
(Garcia-Teodoro et al., 2009). However, this detection strategy
does not provide means for detecting unknown intrusions
(Garcia-Teodoro et al., 2009).

Anomaly-based detection involves the estimation of the nor-
mal behavior of the system that needs to be protected, and the
identification of unexpected events by checking whenever a given
observation deviates from the normal behavior (Garcia-Teodoro
et al., 2009). Anomaly-based detection enables the detection of
previously unknown intrusions. However, the rate of false posi-
tive alarms is usually higher compared to misuse-based detection
systems (Garcia-Teodoro et al., 2009).

The following analysis strategies can be used when adopt-
ing the anomaly- or misuse-based detection strategy: remote

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

a
a

p
s

4

ttestation, filtering and introspection, rule-based, and ML-based
nalysis.

• Remote attestation is a process by which a software appli-
cation certifies its verification of certain security criteria
to remote parties (Haldar et al., 2004). It is used to attest
different properties of a software and verify its integrity and
behavior. The application that is required to certify itself
sends a unique hash of its executable created and signed
by the Trusted Platform Module to the remote party. The
remote party then verifies the signature of the application’s
hash prior to approval of the software. Eventual verification
failures are further treated as anomalies.

• Filtering and Introspection involves filtering and analyzing
the interaction between the software application and the
host OS. Every application or program specifies a set of
system call sequences that it can produce. Analyzing the
number and sequence of system calls can provide an indica-
tion of normal or abnormal system behavior (Forrest et al.,
1996).

• Rule-based analysis involves using a set of rules which cap-
ture the normal behavior and expected activities of appli-
cations. This set of rules is then used to identify anomalous
behaviors (Lunt et al., 1989). The rules can be defined by an
administrator or learnt via the use of an algorithm.

• ML-based analysis involves the use of machine learning
techniques for identifying malicious activities. In supervised
learning, a ML model is trained to learn the malicious behav-
ior (classification). In unsupervised learning, a ML model is
used to identify patterns and eventually anomalies in data
through clustering. An analysis using supervised learning
significantly outperforms an analysis using unsupervised
learning if the test data contain no unknown attacks (Laskov
et al., 2005).

4.2. Selection of container monitoring techniques

We use the CONSERVE framework to support the selection
rocess of monitoring techniques based on the previously de-
cribed detection and analysis strategies.

.2.1. Anomaly-based detection and remote attestation analysis
• MT1: De Benedictis and Lioy (2019) propose DIVE, a tech-

nique based on anomaly-based detection and remote at-
testation analysis for Docker containers. DIVE exploits re-
mote attestation to verify software integrity and correct
the behavior of nodes in cloud applications at run-time. It
monitors the host and software running in the containers.
DIVE targets tampering threats and attacks e.g., by launching
malicious scripts and code, service configurations and binary
modifications, and starting new processes. The characteris-
tics (i.e., required resources, analysis location and time, anal-
ysis input, and collected measures) of the analysis strategy
are presented in Table 3.
DIVE consists of three main components, namely verifier, at-
tester, and infrastructure manager. The infrastructure man-
ager starts the remote attestation process and sends a list of
containers and hosts to the verifier.
Whereafter the verifier contacts the attester and asks for
integrity reports. After that, the verifier checks the measures
belonging to the containers of interests against a white-
list. Finally, the verifier returns the integrity verification
result to the infrastructure manager which is continuously
keeping track of the containers and hosts. The infrastructure
manager can terminate a compromised container or reboot
the whole system if the host OS is compromised.
7

4.2.2. Anomaly-based detection and filtering & introspection analy-
sis

Adopting a monitoring technique based on these strategies
leads to two options, which depend on the STRIDE security
threats that need to be targeted.

There are two techniques that support the monitoring of both
the containerized applications (or services) and the host OS, as
detailed below:

• MT2: SPEAKER Lei et al. (2017) is a general-purpose non-
intrusive technique for enhancing the efficiency of the mon-
itoring and analysis of containerized applications based on
Linux containers. SPEAKER can effectively reduce the attack
surface by removing unnecessary system calls that may be
exploited by malicious processes in the container.
For a given application container, SPEAKER uses a tracing
module for profiling the available system calls in a booting
phase and a running phase. The tracing module shares the
system call lists with a slimming module, which is respon-
sible for constraining the available system calls when the
container boots up and runs.

• MT3: A general-purpose non-intrusive malware detection
and analysis technique for Docker containers is proposed
by Khalimov et al. (2019). It employs containers as sand-
boxes for tracking and introspecting system calls (syscalls)
to the host kernel.
This sand-boxing technique targets tampering threats and
attacks, such as malicious code and network intrusion. This
technique records and logs information about the malware
behavior by using SystemTap (SystemTap, 2020). SystemTap
is an open source software infrastructure that simplifies the
gathering of information about the running activities in a
Linux system. It also enables altering the values of syscall
parameters, which enables this techniques to effectively
hide the artifacts of the environment from the malware. In
summary, this technique guarantees that the containerized
solution deceives sandbox evasion by artifact obfuscation,
network restructuring, and system call introspection.

4.2.3. Anomaly-based detection and rule-based analysis
There are two techniques that support the monitoring of both

the containerized applications (or services) and the host OS.

• MT4: Mattetti et al. (2015) present LiCShield for monitoring
and securing Linux containers in cloud computing systems.
LiCShield targets tampering, information disclosure, and el-
evation of privilege threats. Examples of targeted attacks
are: kernel exploits, attacks on shared kernel resources,
misconfigurations, malicious modules, and data leakage. LiC-
Shield automatically creates security profiles protecting the
execution of a container on the host and in the container.
This technique observes the execution of the activities and
operations in a training environment to automatically de-
fine rules describing the expected activities of containers.
LiCShield monitors the security of containerized applications
by tracking their execution and generating profiles of kernel
security modules which can restrict the capabilities of the
containers when anomalies are detected. As a result, the ex-
ecution and propagation of illegal operations and activities
is blocked.

• MT5: Chen et al. (2019) present ContainerDrone, a container-
based DoS attack resilience and monitoring technique for
realtime cyber–physical systems using Docker application
containers. This technique targets tampering and DoS secu-
rity threats. Moreover, it targets safety violations caused by
DoS attacks.

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

t
a

4

s
s

,

ContainerDrone uses the Simplex architecture (Sha, 2001) to
provide attack-resilience. In particular, a container-controller
and a host-controller are provided. A safety-monitor runs
on the host control environment and keeps monitoring the
output from both controllers. When a security violation
is detected, the monitor switches to a safety controller
to mitigate the attack and prevent further damage. The
safety controller is robust and runs a limited number of
modules that are critical to the correct functioning of the
system. To protect the CPU from DoS attacks, the technique
restricts the access of the container control environment to
the CPU using cgroups and Docker capabilities. To protect
the memory, the technique uses MemGuard (Yun et al.,
2013). MemGuard ensures that each CPU core has a reserved
memory bandwidth and does not access the memory ex-
ceeding a certain rate. Finally, the technique protects the
communication between the component of the system from
DoS attacks. In particular, sensor data and user inputs are
reviewed by the container and host controllers. Moreover
the network stack of the two controllers are separated. The
container controller is located in a sandboxed network space
where it does not have access to Internet, and can only
communicate with the host controller through a specified
interface.

There is one technique that supports the monitoring of con-
ainerized applications or services. This technique adopts two
nalysis strategies; rule-based and ML-based.

• MT6: Zou et al. (2019) propose a non-intrusive online con-
tainer anomaly monitoring technique for Docker containers.
This technique uses the optimized isolation forest algorithm
(iForest) to calculate an anomaly value of the resource usage
rates of each container on the host machine. The technique
can automatically set the monitoring time in order to reduce
monitoring delay and system overhead. Moreover, it can
locate the cause of an anomaly by analyzing the log of the
container. This technique targets tampering and DoS secu-
rity threats and is designed to defeat network congestion
and attacks. This technique also targets several faults such
as endless CPU loop or spin lock, memory leak, memory
overflow, improper disk scheduling, and log explosion.
In the host machine is a monitoring agent that collects data
on the resource utilization rate of the monitored container.
The collected data are stored in a monitoring storage module
which sends the data to an anomaly detection module.
The anomaly detection module checks the received data
for abnormality using an iForest algorithm. It calculates the
anomaly value and identifies the anomalous resource metric
when the anomaly value exceeds a certain threshold. The
abnormal container information are then sent to an anomaly
analysis module which firstly obtains the log of the abnor-
mal container from the host, and secondly analyzes the log
for locating the cause of the anomaly in the container.

.2.4. Anomaly-based detection and ML-based analysis
In addition to the technique of (Zou et al., 2019) that we de-

cribed in the previous paragraph, there are two techniques that
upport the monitoring of containerized applications or services.

• MT7: An anomaly detection technique that is used to detect
and diagnose anomalies in container-based microservices
is proposed by Du et al. (2018). This technique moni-
tors and analyzes real-time performance data of microser-
vices running in a cloud environment. The targeted security
threats are tampering, repudiation, and DoS. Moreover, this
8

technique addresses service level agreement violations and
fault injections. The targeted faults are CPU consumption,
memory leak, network package loss, and network latency
increase.
This technique includes three modules. First, a monitoring
module that obtains performance data of the monitored
container including CPU, memory, and network metrics.
Second, a data processing module based on a set of ML
classification models is used for the detection of anomalies.
Third, there is a fault injection module which simulates
service faults and collects performance data representing
both normal and abnormal conditions. When an anomaly
is detected in a microservice, then the data of all the con-
tainers running in this microservice are diagnosed using a
dynamic time warping algorithm to locate the anomalous
container. The prototype of the proposed detection tech-
nique is deployed on the orchestration system (Kubernetes,
2020).

• MT8: DockerAnalyzer is a technique for monitoring software
executions in microservices-based applications (Fourati et al.
2019). This technique also identifies of the root cause of an
abnormal behavior. It targets DoS and resource saturation
attacks.
This technique first collects data related to resource utiliza-
tion and application performance such as CPU and memory
usage, and application response time. A (Sysdig, 2020) mon-
itoring component is used to filter the collected data and
identify violations that need to be analyzed. An anomaly
detector is invoked to check these violations and find out
whether they are caused by normal resource saturation
based on an increase of the number of requests or by an
anomaly. In order to do so, the anomaly detector uses
an outlier detection algorithm. In case of an anomaly, an
anomaly detector based on a ML decision tree model is used
to search for and identify the root cause of the anomaly
which can be a specific request consuming the resources,
virtual machine problem, or container problem.

There are five techniques that support the monitoring of both
the containerized applications (or services) and the host OS.

• MT9: Gantikow et al. (2020) propose a container monitor-
ing technique using neural networks for high performance
computing environments. This techniques targets tampering
and spoofing threats as well as mimicry attacks.
A one layer Long Short Term Memory (LSTM) neural net-
work is used to detect anomalies in system calls distribution.
The neural network is trained to predict the distribution of
system calls at time t + 1 based on the distribution at time
t . In particular, the deviation between the prediction and
the actual value is measured using the Root Mean Square
Error (RMSE). After calculating the RMSE, the distribution of
system calls is classified into either a normal or anomalous
based on a predefined threshold value. Furthermore, the
LSTM neuronal network can predict the next file system
path that will be used by a system call based on the path
of the currently used file system. This is done by determin-
ing the deviation between the expected and the actual file
system path. Consequently, the file system path is classified
into normal or anomalous based on a predefined threshold
value. As this technique analyzes system calls using (Sysdig,
2020) it provides native container support.

• MT10: Abed et al. (2015) propose a non-intrusive technique
for realtime monitoring of applications within Linux con-
tainers running in a standalone or cloud-based environment.
This techniques targets spoofing, tampering, and DoS attacks
via e.g., malware injections, OS compromise, file system

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

T
D

able 3
etailed characteristics of the analysis strategy of each Monitoring Technique (MT).
MT Required Resources

(SW : software, HW :
hardware)

Location &
Timing

Analysis Input Collected Measures

MT1 SW : Linux capabilities
and Integrity
Measurement
Architecture
(IMA) (Sailer et al., 2004)
HW : Trusted Platform
Module

Offboard and
Realtime

Platform configuration registers
and IMA measures

Integrity verification results of
the input data

MT2 SW : Linux capabilities,
Secure Computing Mode
(Seccomp)

Offboard and
Realtime

A list of system calls issued by
the running processes of a
container to the host kernel

the ID of the originating
processes, arguments, and
return values

MT3 SW : Linux capabilities
and SystemTap

Offboard and
Forensically

A list of system calls issued by
the running processes of a
container to the host kernel

the ID of the originating
processes, arguments, and
return values, input/output
activity, network traffic, and
memory dumps

MT4 SW : SELinux (2020),
SystemTap (2020) and
AppArmor (2021)

Offboard and
Realtime

A Dockerfile which is built into
a Docker image and then run
in a Docker container

A list of performed kernel
operations during container
creation and execution
together with their resources
and required permissions

MT5 SW : Linux capabilities
and MemGuard (Yun
et al., 2013)

Onboard and
Realtime

Sensor data and user inputs.
Also, network traffic and
received threads

CPU core number, CPU
utilization, Memory bandwidth,
interval between two
consecutive output received by
the host controller

MT6 SW : (InfluxDB, 2021),
and Apriori
algorithm (Agarwal
et al., 1994)

Offboard and
Realtime

Running processes of a
containerized application or
service

Resource utilization:
Container’s ID, time, CPU
usage, memory usage, disk
read/write speed, and network
speed

MT7 SW : InfluxDB (2021),
cAdvisor (2020),
Heapster (2020), and
dynamic time warping
algorithm

Offboard and
Realtime

Running processes of
containerized services

Resource usage (CPU, Memory,
Network) and performance
data of a specific micro-service

MT8 SW : Sysdig (2020) Offboard and
Realtime

Running processes of
containerized services

Data related to number of
service requests. CPU usage,
memory usage, and application
performance (i.e., response
time).

MT9 SW : Sysdig (2020), Long
Short Term Memory
(LSTM) neural network

Offboard and
Realtime

A list of system calls issued by
the running processes of a
container to the host kernel

the ID of the originating
processes, arguments, and
return values. Also, the used
file and directory paths

MT10 SW : Linux capabilities
(Strace)

Offboard and
Realtime

A list of system calls issued by
the running processes of a
container to the host kernel

the ID of the originating
processes, arguments, and
return values

MT11 SW : Linux capabilities
(Strace)

Offboard and
Realtime

A list of system calls issued by
the running processes of a
container to the host kernel

the ID of the originating
processes, arguments, and
return values

MT12 SW : CRIU (2021),
Sysdig (2020)

Onboard and
Realtime

A list of system calls issued by
the running processes of a
container to the host kernel

the ID of the originating
processes, arguments, and
return values

MT13 SW : Linux capabilities
(Strace) and Sysdig

Offboard and
Realtime

A list of system calls issued by
the running processes of a
container to the host kernel

the ID of the originating
processes, arguments, and
return values

MT14 SW : Linux Capabilities,
Sysdig (2020) and Falco
(2020)

Offboard and
Realtime

A list of system calls issued by
the running processes of a
container to the host kernel

the ID of the originating
processes, arguments, and
return values. CPU load,
memory usage, network traffic,
and block I/O

(continued on next page)
9

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

T
able 3 (continued).
MT Required Resources

(SW : software, HW :
hardware)

Location &
Timing

Analysis Input Collected Measures

MT15 SW : Restricted
Boltzmann Machine
(RBM) algorithm

Offboard and
Realtime

Configuration details of
application workloads running
in containers: name of the
container instance, invoker
strategy, container interceptor
settings, container instance
cache, locking approach,
security domain, and cluster
configuration

Container run-time statistics:
Number of container volumes
mapped to the container, user
access privileges, and
authentication mechanisms.
Also, number and sorts of
network interfaces, network
access, inter-process
communications, and resource
allocation limits.
access, and brute force attacks. The used analysis strategy is
a sliding window and frequency-based bags of system calls
(BoSC) analysis which keeps track of the frequencies of the
system calls in a specific window of size k, where k is the
number of monitored system calls at each epoch. This tech-
nique uses Linux capabilities, such as strace which reports
system calls including information about their originating
process ID, arguments, and return values. By tracking these
system calls, the technique learns the behavior of the con-
tainerized applications and determines potential anomalies
in the environment.
The proposed technique does not require any prior knowl-
edge of the running application in the container, neither
does it require any change to the container nor the host ker-
nel. The technique first runs in a training mode where a clas-
sifier adds the new BoSC to the normal-behavior database.
If the current BoSC already exists in the normal-behavior
database, its frequency is incremented by one, otherwise,
the new BoSC is added to the database with the initial
frequency of one. A continuous training is applied dur-
ing detection mode to further improve the accuracy of the
technique.
Once trained, the technique runs in a detection mode where
a sliding window is used to check if the current BoSC is
present in the normal behavior database, if not a mismatch
is declared. Moreover, a trace is declared anomalous if the
number of mismatches exceeds a certain threshold.

• MT11: Srinivasan et al. (2018) propose a general-purpose
technique for real-time monitoring of applications running
in Docker containers. This technique targets tampering and
denial of service security threats, such as malware, Trojan
attacks, and SQL injection.
Given an application running within a container, this tech-
nique uses a system call-based approach for the detection
of anomalies and hence reports intrusions when they occur
in real-time. The technique works in two modes: a normal
and a detection mode. Based on these two modes, safe and
unsafe sequences of system calls are maintained as n-grams
and the probabilities of occurrences of these n-grams are
calculated. The overall relative n-gram probabilities of safe
sequences are stored in a database. The technique checks
each n-gram probability against the probabilities stored in
the database. If the n-gram is not present in the database,
or if the difference between the probabilities of the observed
and stored n-grams is beyond a certain threshold, the tech-
nique flags for a possible anomaly. When the number of the
flags reaches a specific threshold, the technique considers
the monitored activity as malicious and provides options to
either continue running the container or stop the execution.
The threshold is calculated by assessing the highest differ-
ence between the observed n-grams probabilities during the

normal mode and detection mode.

10
• MT12: Time Machine (TM) (Sayed and Azab, 2019) is a
general-purpose container monitoring technique that can be
used to identify abnormal behaviors and malicious activities
in Linux containers, in a way that keeps containerized state-
ful applications up and running in a safe state. This tech-
nique targets both tampering and DoS threats. In particular,
it avoids logic bomb activation in mission critical systems.
Logic bombs are a hidden code snippets that are added
to the source code on purpose to enable input-triggered
activation of a list of malicious features.
Given a container of interest, the TM creates a shadow
container (i.e., clone) of that container. Then, TM runs these
two containers in two parallel environments; realtime run-
ning the original container and delayed-time running the
shadow container. The incoming system-call traffic to re-
altime container is monitored. The monitoring strategy is
based on the bag of system call (BoSC) and sliding window
classification analysis, which checks whether or not a BoSC
is present in a normal-behavior database. If the traffic results
in a normal behavior, then the traffic is forwarded to the
shadow (i.e., delayed) container and a green flag is declared.
Otherwise, if the traffic results in a malicious behavior, then
the TM blocks the calls from reaching the shadow container,
clones the shadow container to the real container, saves the
calls that resulted an anomalous behavior in anomaly profile
to skip these calls in the future, and declares a red flag to
alert the admin of the system.

• MT13: Abed et al. (2020) propose a resilient intrusion de-
tection and resolution technique for cloud-based systems.
This technique targets spoofing, tampering, and DoS attacks
via e.g., malware injections, OS compromise, file system
access, and brute force attacks. This technique extends the
real-time behavior monitoring mechanism of Abed et al.
(2015). In particular, it uses a Moving Target Defense (MTD)
mechanism based on run-time container migration to quar-
antine malicious containers and reduce attack propagation.
Moreover, to avoid zero-day attacks, the technique sup-
ports random live migrations between running containers
to obfuscate its execution behavior.
The system uses Sysdig tool (Sysdig, 2020) to trace system
calls from the containers to the host kernel. When the
system detects a misbehavior, the moving-target defense
reacts as follows: in case of a stateful application, the system
immediately migrates the affected container running the
stateful application to a quarantine zone for further inspec-
tion. In case of a stateless application, the system rolls-back
the misbehaving container to a previous safe state. The pro-
posed technique was tested on an Apache Hadoop (Apache,
2021) cluster running Docker containers.

4.2.5. Misuse-based detection and rule-based analysis
There is one technique that supports the monitoring of both

the containerized application and the host OS.

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

T
P

able 4
ros, Cons, and Side effect of each Monitoring Technique (MT).
MT Trade-off Reported Side effect

Pros Cons

MT1 • Enables integrity verification of the host,
container engine, and running containers.
• Provides the possibility to distinguish which
container is compromised.
• Improves the remote attestation efficiency.

• Does not cover the full range of software
attacks, such as detecting in-memory
manipulations of code or data.
• The white-list should be updated each time
the host system is updated, or a false positive
will be triggered.
• It introduces a lock-in on the ‘‘Device
Mapper’’ storage driver for Docker.
• Its dependency on OpenAttestation (2021)
makes it non-portable on hosts equipped with
Trusted Platform Module (TPM) 2.0.

• Performance: Low impact
• CPU: impact is proportional
to the number of running
containers.
• Memory: low impact.

MT2 • Reduces the system call interface and incurs
almost no performance overhead.

• Incomplete system call tracing.
• Risk of system call misuse attacks e.g.,
mimicry attack.

• Performance: Low impact

MT3 • Uses sandboxing to analyze malware and
rigorously record its behavior.

• Risk of fingerprinting through different
sources that malware can easily be found.

• N/A

MT4 • Low overhead on the production
environment.

• Risk of blocking legitimate operations that
were never observed in the training
environment.

• Performance: Low impact

MT5 • Protects from Denial of Service (DoS) attacks
on CPU, memory, and communication.

• N/A • CPU: Low impact.

MT6 • Low performance overhead. • Inaccurate prediction: false positives and
false negatives.

• N/A

MT7 • Includes performance monitoring. • Inaccurate prediction: false positives and
false negatives.

• N/A

MT8 • Identifies the root cause of the abnormal
behavior.

• Inaccurate prediction: missing outliers
detection.

• N/A

MT9 • Helps preventing mimicry attacks. • Cannot be used alone since the reduction to
file system paths leads to too much data not
being analyzed.
• Inaccurate predictions: false positives.

• Performance: high impact
when the processed dataset is
large

MT10 • Requires less storage space compared to
sequence-based approaches while providing
better accuracy.
• Computationally manageable and does not
require limiting the application programming
interfaces.
• No information disclosure about the nature
of the application running in the container.

• Inaccurate prediction: false positives.
• Risk of mimicry attacks.

• Performance: Low impact

MT11 • Scalability: the ability to run multiple
Docker containers and a single monitoring IDS.

• Inaccurate prediction: false positives and
false negatives.

• CPU: Low impact

MT12 • Helps keeping the stateful containers up and
running in a safe state.

• Requires manual checks for the updates to
the applications within the container.

• Performance: Low impact

MT13 • Limits intrusion dispersion by enabling
container live migration between different
managed cloud-hosts or rolling back to a safe
state.
• Requires less storage space compared to
sequence-based approaches while providing
better accuracy.
• Computationally manageable and does not
require limiting the application programming
interfaces.
• No information disclosure about the nature
of the application running in the container.

• Inaccurate prediction: false positives.
• Risk of mimicry attacks.

• Performance: Low impact

MT14 • Low performance overhead. • The detection of a Buffer Overflow is not
possible.

• N/A

MT15 • Increases the possibility of identifying
zero-day vulnerabilities.

• Inaccurate prediction: false positives and
false negatives

• N/A
11

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

T
E

able 5
valuation of each Monitoring Techniques (MT) as reported by the studies.
MT Type Evaluation metric Result

MT1 • Performance It enables run-time verification of container applications at the cost of limited overhead. The
integrity verification time increases with the number of active containers. Also, container integrity
verification significantly impacts the CPU utilization at the verifier side, if compared to host-only
attestation. Memory consumption at the increase of running containers is not affected as much.

MT2 • Effectiveness
• Performance

It can successfully reduce more than 50% and 35% system calls in the running phase for the data
store containers and the web server containers, respectively, with negligible performance overhead.

MT3 • Effectiveness Docker containers are a promising option for a sandbox. Some artifacts can be hidden such as
network artifacts, the Linux capabilities profile and proc file. However, this option comes at the cost
of new detection artifacts which make containers subject to fingerprinting through different sources
that malware can easily find.

MT4 • Effectiveness
• Performance

It is efficient to prevent the targeted attacks, while having almost no overhead on the production
environment. It is recommended to deploy the approach with technologies like Host-based Intrusion
Detection Systems (HIDS) to achieve increased protection while optimizing the performance.

MT5 • Effectiveness (1) In the case without MemGuard, the drone starts to drift right after the Bandwidth task is
launched by the attacker and results in a crash shortly after. When the MemGuard is enabled, the
drone oscillates for a short time but then managed to stabilize itself. (2) in case of a UDP attack,
the attitude error control kills the received thread on host controller. (3) in case of security
monitoring of safety attacks on the complex controller, the security monitor detects that the output
from the container controller has not received for some time and kills the received thread and
switches to the output from the safety controller

MT6 • Detection rate
• False alarm rate

It can accurately detect anomalies in the container with small performance overheads: The
optimized iForest has an acceptable small false alarm rate and high detection rate. The optimized
iForest has a better performance than the compared detection methods. Overall, optimized iForest
has better anomaly detection results compared to other two compared methods.

MT7 • Precision/Recall
• F1 score

The detection performance of the anomalous service is excellent for most of the classifiers with
measure values above 0,9.

MT8 • Resource usage
• performance

The results demonstrate the effectiveness of the proposed technique in reducing resource usage
compared to Kubernetes. Also, the technique helps also to improve the performance of the
application comparing to Kubernetes by improving the response time to resource scaling requests.

MT9 • Effectiveness
• Performance

File system path analysis using neural networks has been shown to be a good complement to a
general approach such as system call distribution analysis, because by evaluating the system call
parameters mimicry attacks can be prevented. This method might cause performance problems due
to the larger number of processing steps compared to the system call distribution analysis for
workloads with many file system accesses.

MT10 • True positive rate
• False positive rate
• Complexity

Results show a high detection rate of 100% is easily achievable using a low detection threshold of
10 mismatches per epoch. The false positive rate is 2%. The algorithm used is linear in the size of
the input trace. The Time Complexity (TC) for looking up an index for a given system call is O(1)
operation. The TC for updating the database with a new Bag of System call is O(1) operations. The
TC for comparing the database before and after an epoch k, and computing the similarity metric, is
O(nk), where nk is the size of the database after epoch k. Hence, the algorithm used is linear in the
size of the input trace. The TC of running an epoch of size S is O(S + nk).

MT11 • Sensitivity
• False positive rate

The IDS system boasts of high values of sensitivity for all the datasets tested in the range of
96%–100%, and the False Positive Rate is very low, ranging from 0%–14%.

MT12 • Performance The Time Machine added time overhead about 17 milli-second per request (SQL query).

MT13 • Effectiveness
• Performance

Attack dispersion without the Moving Target Defense (MTD) is massive. With the increase of the
MTD response-rate, the attack dispersion is much less and the impact is limited. The impact on the
application performance is negligible. The migration process takes less than 0,05 sec in most cases.
The impact of intrusions is extremely limited and the intrusion dispersion rate is minimum.

MT14 • Effectiveness
• Performance

It is effective in many attack scenarios and comes at a low performance overhead cost (Sysdig with
full capture overhead is 5,45% and for Sysdig with filter is 2,02%).

MT15 • True positive rate
• False positive rate

A relatively high-classification rate (> 0,929) for some of the container security issues identified by
the algorithm for the test records generated based on container profile. The classification rate can
be improved further if more records are used to train the algorithm.
• MT14: Gantikow et al. (2019) propose a general-purpose
rule-based security monitoring technique for enhancing the
12
security of containerized environments, such as Docker, rkt
and LXC. This technique targets information disclosure, DoS,

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

4

t

4

t
o
d
w
h
r
t

t

C
d
b
c
F

b
t

r
b
t
r
w
c

o
c
o

c
l
l

m
m
C
c
c

t
k
c
O
t
t
(
t
m
M

S
m
u
i

and elevation of privilege security threats. In particular, it
detects a variety of misuse and attacks, such as unautho-
rized access, unauthorized launch of applications, container
breakout, unexpected network connections, and loading of
kernel module.
This technique is based on two open source tools; (Sysdig,
2020) which is a universal system visibility tool with na-
tive support for containers, and (Falco, 2020) which is a
behavioral activity monitoring support for containers. First,
Sysdig is used to capture and process the captured system
call events. After that, Falco is used to detect suspicious
behavior based on a predefined set of rules. In case of a
suspicious behavior, an incident notification is issued using
logging frameworks, messengers, or e-mail.

.2.6. Misuse-based detection and ML-based analysis
There is one technique that supports the monitoring of con-

ainerized applications or services.

• MT15: Kamthania (2019) proposes a general-purpose ML
technique for the identification of malicious patterns and
zero-day vulnerabilities in container production environ-
ments which can be applied to any container platform com-
plying to the Open Container Initiative specifications (OCI,
2021). This technique uses the deep learning restricted
Boltzmann machine (RBM) algorithm (Ackley et al., 1985).
This technique targets information disclosure, DoS, and el-
evation of privilege security threats. In particular, it deals
with unbounded network access from containers, insecure
run-time configurations, rogue containers, improper user
access rights, and embedded clear texts.
Given an application running in a container, the RBM de-
rives the profile and configuration details of the monitored
container. Next, it creates a behavioral knowledge map of
the container by collecting container statistics at run-time
(e.g., the number and types of network interfaces, network
access, inter-process communications, and resource allo-
cation limits). After that, the machine learning algorithm
builds the complete security profile of the container un-
der test which, in turn, is used to identify container secu-
rity threat patterns. The identified malicious patterns can
be used by container orchestration tools (e.g., Kubernetes)
to make decisions on the current state of the production
containers.

.3. Using the CONSERVE framework

In this section, we first describe how CONSERVE can be used
o perform the selection of container monitoring techniques. Sec-
nd, we provide an application scenario. Fig. 4 contains a flow
iagram and pseudo-code showing how the CONSERVE frame-
ork can be used. As input, a container-based environment (CBE)
as to be monitored in order to enhance its resiliency to secu-
ity threats. CONSERVE supports the selection of a monitoring
echnique for CBE through two steps:
Step A: Identification of candidate monitoring techniques.
Step B: Making of an objective and optimal selection (i.e., iden-
ifying the most suitable technique).
Step A. To identify a set of candidate monitoring techniques for
BE, the detection strategy can be selected first. There exist two
etection strategies to select from: anomaly-based or misuse-
ased. Based on the selected detection strategy, we get a list of
andidate monitoring techniques out of the available fifteen (see
ig. 4, flow chart: level 1, pseudo-code: lines 12–14).
After selecting the detection strategy, the analysis strategy can

e selected. If anomaly-based detection was selected previously,

hen as analysis strategy there exist four options to select from:

13
emote attestation, filtering and introspection, rule-based, or ML-
ased. On the other hand, if misuse-based detection was selected,
hen as analysis strategy there exist two options to select from:
ule-based or ML-based. Based on the selected analysis strategy,
e identify an updated (i.e., filtered) list of candidateMTs (flow
hart: level 2, pseudo-code: lines 16–19).
Next, the monitored object can be selected. There are three

ptions to select from: monitoring the host, containerized appli-
ation/service, or both of them. Once we select the monitored
bject(s), we update the list of candidateMTs (flow chart: level 3,

pseudo-code: lines 21–23). After that, the targeted security threats
can be selected. The targeted threats can be up to six threats
according to the STRIDE model (Howard and Lipner, 2006). Based
on the selected targeted threats, the list of candidateMTs gets
further updated (flow chart: level 4, pseudo-code: lines 25–27).
Next, the original application domain can be selected. There are
four domains to select from: general purpose, cloud computing,
cyber–physical systems, or high performance computing. Based
on the selected domain, we update the list of candidateMTs (flow
hart: level 5, pseudo-code: lines 29–31). As a result of Step A, a
ist of candidateMTs is identified (flow chart: level 6, pseudo-code:
ine 34).
Step B. In this step, CONSERVE supports an objective decision-
aking for an optimal selection. In particular, for each candidate
onitoring technique identified in the previous step (i.e., Step A),
ONSERVE reports its detailed analysis characteristics, pros and
ons, and evaluation results (flow chart: level 7, 8, and 9, pseudo-
ode: lines 41–48). Based on the details provided in Step B, the
most suitable monitoring technique for CBE can be identified and
hence selected (flow chart: output, pseudo-code: line 52).

4.3.1. An application scenario
Bob, a system architect, needs to use a container monitor-

ing technique to secure containerized applications running on
a Vehicle Computational Unit (VCU). A VCU is a powerful piece
of hardware that typically comes with multiple processors to
enable computationally demanding autonomous drive functions.
Moreover, it provides core vehicle functionality and services such
as mode management, on-board diagnostics, software download,
settings management, and connectivity. A VCU can run multiple
applications on the same hardware and/or operating system. Bob
has the following two requirements that he needs to fulfill:

• the monitoring technique should monitor the interaction
between the host OS and the container, and

• the monitoring technique should target unknown attacks
that belong to the following security threats: spoofing, and
denial of service (DoS).

By using CONSERVE, Bob explores the different monitoring tech-
niques applicable to his problem. First, Bob visits CONSERVE’s
level 1 (Detection Strategy) and selects anomaly-based as a de-
ection strategy since the monitoring technique must target un-
nown attacks. Accordingly, techniques from MT1 to MT13 are
onsidered as candidates. Next, by looking at level 3 (Monitored
bjects), Bob excludes techniques that do not monitor the in-
eraction between the host OS and the container. The excluded
echniques are MT6, MT7, and MT8. Last, by exploring level 4
Targeted Threats) Bob explores the monitoring techniques that
arget spoofing and DoS threats, and identifies three candidate
onitoring techniques. These techniques are MT2, MT10, and
T13.
To get further details on these techniques, Bob explores CON-

ERVE’s level 7 (Detailed Analysis Characteristics). Moreover, to
ake an objective selection, Bob explores the trade-offs and eval-
ation results (levels 8 and 9). He finds out that MT13 has a low
mpact on performance and provides a mechanism that enables

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158
Fig. 4. A flow chart (left) and pseudo-code (right) showing how to use the CONSERVE Framework.
rolling back a container to a safe-state. Bob considers this mecha-
nism as important, since the system he works on is safety-critical.
Hence, Bob considers MT13 as the most suitable monitoring
technique for addressing the problem and requirements he has
at hand.

5. Framework evaluation

To evaluate the CONSERVE framework, we use a mixed meth-
ods approach employing both quantitative and qualitative data
collection and analysis (Creswell and Creswell, 2017). We use this
approach because it enables the investigation of the strengths
and weaknesses of the developed framework including the social
and cognitive processes surrounding it. For data collection, we
follow a design comprising a try-out task and semi-structured
questionnaires (see Section 5.1). Moreover, we adopt a sequential
explanatory strategy for data analysis (Creswell and Creswell,
2017). Using this strategy, we use the qualitative data to com-
plement as well as assist the explanation and interpretation of
the quantitative data.
14
5.1. Try-out task and questionnaires

We create a pre-evaluation questionnaire to collect data on
participants’ highest educational degree, domain of expertise,
and current occupation as well as experience in systems secu-
rity and in development or engineering of computing systems.
Moreover, we design a try-out task to engage the participants in
using the framework, which is necessary to assess its strengths
and weaknesses. The task challenges the participants to select
a set of container monitoring techniques by using CONSERVE
and based on a set of specific requirements. Last, we create
a post-task questionnaire to collect perceptions on the ease of
use, understandability, usefulness, efficiency, applicability, and
completeness of the framework. The evaluation material, includ-
ing the pre-evaluation and post-task questionnaires, is available
online.1

1 Evaluation Material: http://rodijolak.com/conserve.

http://rodijolak.com/conserve

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

5

a
c
s
n
s
a

a
t
a
T
s
I
t
G

5

w
a
h
a
o
a
t
p
e
M
b
a
a
t

t
m

T
t
u
q
t
a

5

.2. Participants

The target group is the entire population of people who have
basic knowledge or expertise in engineering or development of
omputing systems. The accessible population for this study is a
ubset of the targeted group and identified opportunistically via
etworks of collaborators and contacts (i.e., through convenience
ample). In particular, a mix of 18 researchers and practitioners
re involved in the evaluation of the framework.
Table 6 provides details about the participants and is cre-

ted based on the answers collected by the pre-evaluation ques-
ionnaire. Seven of the participants are researchers working in
cademia or research institutes, namely Chalmers University of
echnology, University of Gothenburg, Vietnam National Univer-
ity, University of Paderborn, TU Hamburg, and RISE Research
nstitutes of Sweden. The remaining eleven participants are prac-
itioners working in industrial organizations, namely AB Volvo
roup Trucks Technology, Volvo Cars, and Nvidia.

.3. Evaluation procedure

Before running the evaluation, we conducted a pilot study
hich helped in shaping the design of the evaluation protocol and
ssessing whether it is realistic and workable. The pilot study also
elped in identifying issues with the design of evaluation protocol
s well as in training the supervisor of the evaluation. Based
n the pilot, we concluded that the participants would require
round 90 minutes to go through the try-out task and the ques-
ionnaires. After running the pilot, we collected date and time
references of the participants for conducting the evaluation. The
valuations are conducted in January and June 2021 over Zoom,
icrosoft Teams, or other online meeting tools that are preferred
y the participants. The first author of this article supervised
ll the evaluation sessions to avoid eventual unbalance in the
ssistance that the participants might have otherwise received by
he appointment of different supervisors.

For each evaluation meeting, the supervisor sent the evalua-
ion material to the participant and explained that the evaluation
aterial includes two files:

1. Evaluation Steps, which provides a step by step guideline
for performing the evaluation.
Beside presenting the task and questionnaires, this file
provides an introduction to containers and the threats that
targets the containers and the objects in the virtualization
environment.

2. CONSERVE, which is used for performing the evaluation
task described in the Evaluation Steps file.

he supervisor was present in the meetings to assist and guide
he participants in case they have questions regarding the eval-
ation process or technical problems e.g., link to pre-evaluation
uestions is not working. The supervisor asked the participants
o start the evaluation by going through the evaluation steps. On
verage, the evaluation sessions lasted 75±15 minutes.

.4. Evaluation results

To analyze the collected quantitative data, we generate de-
scriptive statistics including (i) percent stacked-bar charts which
display comparisons between categories of data and highlight the
relationship of constituent categories/parts to the whole bar, (ii)
precision and recall to investigate the accuracy of the answers
of the participants to the questions of the try-out task, and
(iii) Mean±SD (standard deviation) to analyze central tendencies
and dispersion. Furthermore, we conduct an inductive thematic
analysis (Boyatzis, 1998) which helps to identify, analyze, and
report patterns (i.e., themes) within the collected qualitative data.
In particular, we code the qualitative data as well as identify and

analyze themes at the explicit level (Boyatzis, 1998).

15
5.4.1. Task results
The evaluation task comprises of three steps. In the first step,

the participants are asked to select a set of candidate moni-
toring techniques that can be used for monitoring the security
of a containerized application of a Vehicle’s Computational Unit
(more details are provided in evaluation material). The selection
should be done using CONSERVE and based on two requirements,
namely, (i) the monitoring techniques should monitor the in-
teraction between the host OS and the container, and (ii) the
monitoring techniques should target unknown attacks that be-
long to Spoofing and Denial of Service security threats. Moreover,
we ask the participants to describe the reasoning behind their
selection.

The set from which the participants can select the monitor-
ing techniques is provided by CONSERVE and it includes fifteen
techniques in total. Three monitoring techniques (i.e., Abed et al.
(2015), Lei et al. (2017), and Abed et al. (2020)) fulfill the specified
requirements and are therefore the correct ones. Table 7 shows
the mean and standard deviation values of the precision and
recall related to the first step. The mean precision of all the
participants is 0.82±0.29 and the mean recall is 0.89±0.26. To
explain these numbers, we analyze the reasoning behind the
selections and observe the following:

• Human error: one participant included one false positive
and one false negative in the set of candidates; and an-
other participant included two false positives in the set of
candidates.
However, both of these participants have correctly reasoned
for their selections, which should have consequently helped
them in the selection of the correct techniques.
Accordingly, we consider these cases as consequences of a
human error.

• Misunderstanding: there are three cases connected to some
sort of misunderstanding: First, three participants misun-
derstood the evaluation task.
These participants included false positives in their solutions.
After checking their reasoning, we find that they considered
techniques targeting either Spoofing or Denial of Service
security threats, as opposed to the task’s requirement which
was on the selection of both of these threats.
Second, one participant removed one true positive from the
candidates set after discussing the pros and cons of the
technique, which is not required at this step.
Thus, we consider this case as a misunderstanding of the
task.
Third, the set of candidates of one participant has no true
positives.
After checking the reasoning, we find that the participant
did not take into account the requirements defined for this
step. Thus, we consider this case as a misunderstanding of
either the evaluation task or the framework.

In the second step, the participants are asked to report the
required software and hardware components for the proper func-
tioning of each candidate monitoring technique in the list of
candidate monitoring techniques. Table 7 shows the mean and
standard deviation values of the precision and recall related to the
second step. The mean precision and recall of all the participants
are the same, 0.94±0.24. Indeed, only one participant could not
fetch the required software and hardware components for the
proper functioning of the selected techniques.

In the third step of the evaluation task, we ask the participates
to select only one monitoring technique from their list or set
of candidates and provide a reasoning on their selection. We
find that most of the participants (17 out of 18) objectively

and correctly reasoned about their final selection based on the

R.Jolak,T.Rosenstatter,M
.M

oham
ad

et
al.

The
Journal

of
System

s
&

Softw
are

186
(2022)

111158

Table 6
Participants in the Evaluation of CONSERVE.
P# Degree Domain Occupation Systems Security Systems Development/Engineering Virtualization and Containers

Expertiseb Experience (years) Expertiseb Experience (years) Expertiseb Experience (years)

01 Ph.D. Software Engineering Ph.D. Student 4.00 4.00 4.00 9.00 1.00 0.17
02 M.Sc. Computer Science Research Assistant 3.00 0.00 4.00 3.00 3.00 2.00
03 M.Sc. Computer Science and Engineering Ph.D. Student 2.00 1.00 3.00 6.00 3.00 0.42
04 Ph.D. Computer Engineering Technology and Strategy Leader 3.00 0.00 4.00 10.00 3.00 5.00
05 Ph.D. Computer Science and Engineering Researcher 5.00 7.00 5.00 27.00 4.00 1.00
06 Ph.D. Networks and Systems Ph.D. Student 4.00 0.00 3.00 0.00 3.00 0.00
07 Ph.D. Computer Engineering Principle Engineer within Cybersecurity 4.00 2.00 4.00 15.00 3.00 0.50
08 M.Sc. Computer Science Ph.D. Student 2.00 0.00 4.00 4.00 2.00 0.50
09 Lic.Eng.a Networks and Systems Security Engineer 5.00 8.00 4.00 13.00 3.00 4.00
10 B.Sc. Mechatronic Engineering Logical Architect 2.00 0.00 5.00 34.00 2.00 0.00
11 M.Sc. Computer Science and Engineering Systems Security Engineer 4.00 10.00 4.00 5.00 3.00 2.00
12 M.Sc. Communication Engineering Ph.D. Student 2.00 0.34 4.00 4.00 2.00 0.00
13 M.Sc. Computer Science and Engineering Security System Designer 4.00 10.00 4.00 10.00 3.00 0.50
14 B.Sc. Computer Science Security Architect 5.00 23.00 4.00 32.00 4.00 10.00
15 Ph.D. Software Engineering System Architect 3.00 3.00 5.00 10.00 3.00 3.00
16 Ph.D. Network and Systems Software Engineer 2.00 2.00 4.00 5.00 3.00 1.00
17 M.Sc. Software Engineering Software Developer 3.00 0.00 3.00 12.00 2.00 1.00
18 B.Sc. Computer Science Software Developer 3.00 5.00 3.00 17.00 2.00 3.00

Median (ordinal data) 3.00 4.00 3.00
First Quartile (Q1) 2.25 4.00 2.00
Third Quartile (Q3) 4.00 4.00 3.00

Inter-Quartile Range (IQR) 1.75 0.00 1.00

Mean (interval data) 4.19 12.00 1.89
Standard Deviation 5.87 9.86 2.50

aLicentiate of Engineering is a pre-doctoral degree common in Sweden.
bExpertise: 1 very low, 2 low, 3 average, 4 high, 5 very high.

16

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

T
P
t

e
t
a
t
t
s
a
t
c
S
e
f
w

p
r

Fig. 5. Evaluation: Results of Post-Task Questions 13-17.
f
t
a
s
i
m
t
f
p

p
e
i
c
t
2
s
a
d
a
t
t
w
u

d
u
M
m
t
a
m
d

f
i
t
s

able 7
recision and Recall of (Step 1) the Selected Candidate Techniques and (Step 2)
he Required Resources.
Step 1 (n=18) Precision Recall Step 2 (n = 18) Precision Recall

Mean 0.82 0.89 Mean 0.94 0.94
Std. Dev. 0.29 0.26 Std. Dev. 0.24 0.24

details provided by Table 4 (pros and cons of the techniques) and
Table 5 (evaluation of the techniques). This result indicates that
the provided details on trade-offs and performance evaluation
by CONSERVE helped in assisting an objective decision-making
process of the monitoring techniques.

5.4.2. Post-task results
Fig. 5 presents the answers of the participants on the closed-

nded questions of the post-task questionnaire. This figure shows
hat the perceptions of the participants on the ease of use, clarity,
nd usefulness of the framework are positive (Q13-Q15). In fact,
he majority of participants agree that the framework is easy-
o-use (83%), clear (78%) and useful (94%). Moreover, this figure
hows that 50.00% of the participants consider the framework
s essential for performing the selection of container monitoring
echniques. In contrast, 50.00% of the participants state that they
ould perform and complete the task without the help of CON-
ERVE (Q16). However, this 50.00% and the rest of participants
stimate that performing the selection task requires the same ef-
ort (5.55%), more effort (16.67%), and much more effort (77.78%)
ithout the help of CONSERVE (Q17).
The answers to the open-ended questions (Q18-Q22) of the

ost-task questionnaire are analyzed using thematic analysis. The
esults are presented in the following paragraphs.

Benefits. According to the participants, there are three main
perceived benefits (b) of CONSERVE:

(b1) It provides a systematic decision support for navigating
through the applicable monitoring techniques for the task
at hand.

(b2) It is a simple and easy to use framework for selecting con-
tainer monitoring techniques.
17
(b3) It supports an efficient selection by saving time and effort
in matching the techniques with the requirements.

Applicability. CONSERVE is considered as a valuable light-weight
ramework that can be easily adopted in practice without addi-
ional training. Moreover, the participants perceived the potential
pplicability of the framework as an essential means for under-
tanding the features of the monitoring techniques and support-
ng the selection thereof in practice. A continuous support and
aintenance of the framework (e.g., by updating the considered

echniques or adding new ones) is perceived as an important step
or enduring and increasing the applicability of the framework in
ractice.
Challenges. The main perceived challenges are related to the

resentation and understandability of the framework and the
valuation task. For instance, the used publication references as
dentifiers of the techniques in the framework is perceived as
onfusing. On this regard, it is suggested to enhance the presen-
ation of the framework by using identifiers such as Tech 1, Tech
, etc. The reported evaluations in Table 5 are perceived to be
omehow difficult to use for comparing the techniques as not
ll the evaluations use the same metrics. The lack of sufficient
omain knowledge of the participants who have a low experience
nd experience in system security is considered as a challenge
o understand the framework and the evaluation task. Two par-
icipants also reported that the understanding of the framework
as challenging at the beginning, but they were able to fully
nderstand it after reading the evaluation tasks.
Completeness. To complete the framework and assist its un-

erstandability and applicability, it is suggested to describe the
se of the framework by means of examples and flow diagrams.
oreover, a connection to other quality attributes such as safety,
aintainability, reusability, and variability is considered as good

o have. To better assist the selection process, it is suggested to
dd more details about the metrics used in the evaluation of the
onitoring techniques such as the number of evaluated objects,
omain of evaluation, performance costs, and false positive rates.
Suggestions. It is suggested to create a web application or GUI

or an interactive presentation of the framework. This would
ndeed provide a means for filtering, grouping, and highlighting
he techniques with a click of a button, which in turn would
implify the comparison and selection process.

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

6

v

6

s
i
i
t
e
r
s
w
G
o
d

a
s
T
a

6

c
a
r
r
p
t
a
t
e
f
i
b
v
a
s
i
e

s
s
c
r
s
a
w
i
t
d
d
i
–
f

p
e
f
o
e

. Threats to validity

Our study is subject to threats to its construct validity, internal
alidity, external validity, and reliability.

.1. Construct validity

Construct validity refers to how well captured data and mea-
ures represent what researchers intended them to represent
n the study in question. The literature review is conducted by
nvolving one search database, namely Scopus, which is claimed
o be one of the largest databases of abstracts and citations (Keele
t al., 2007). Still, using one database in the literature review
aises the risk of considering a non-representative set of relevant
tudies. To complement the review and cover more relevant
ork, we use the snowballing search approach. In particular,
oogle Scholar is used to perform the snowballing search in
rder to avoid publisher bias (e.g., searching in one publisher’s
atabase) (Wohlin, 2014).
Discretizing the measurement of continuous properties, such

s the level of expertise and experience of the participants in
ystems security, could have lead to a threat to construct validity.
his threat is investigated for balanced Likert scales and identified
s not compromising the measures (Ray, 1982).

.2. Internal validity

Internal validity concerns efforts made to ensure that possible
onfounding factors are identified and alleviated. The inclusion
nd exclusion of studies in the literature review is done by one
esearcher. Hence, there is a threat of subjectivity (i.e., literature
eview reliability). To mitigate this threat, a second researcher
erformed a quality control of the review. Using the same search
erms, a search on Scopus database is performed and 15 studies
re randomly selected which account to approximately 15% of
he total number of the search results. The inclusion as well as
xclusion criteria and the snowballing search approach are per-
ormed on these studies. To assess the reliability, we calculate the
nter-rater agreement coefficient (Cohen’s kappa (Cohen, 1960))
etween the two researchers (i.e., raters). We obtain a kappa
alue of 0.75 which indicates a substantial inter-rater agreement
ccording to Landis and Koch (1977). The difference in the con-
idered studies (one study not included by the first researcher)
s discussed and resulted in a clarification of the inclusion and
xclusion criteria.
The level of expertise and experience in virtualization and

ystems security of the participants might influence the under-
tanding of the framework and, thus, the evaluation thereof. We
ontacted participants from both academia (Ph.D. students and
esearchers) and industry (e.g., systems security experts) to make
ure that our participants have different levels (i.e., high, medium,
nd low) of expertise and experience. The main reason is that
e wanted to increase realism, since not all developers working

n industry have a high expertise and experience in virtualiza-
ion and systems security. Furthermore, considering people with
ifferent levels of expertise and experience helps in obtaining
iverse and significant feedback – that might not otherwise man-
fest by involving only experts and highly experienced people
on the applicability, usefulness, and understand-ability of the

ramework.
The presentation of the framework (Fig. 3 and the three com-

lementing tables) might have influenced the understanding and
valuation thereof. A pilot study was conducted to ensure that the
ramework is clear and well presented. Moreover, the perceptions
n the ease of use and clarity were positive, thus we consider the

ffect of this issue as minimal.

18
Based on the publication type (e.g., conference vs. journal),
venue name, publication date, and number of current citations,
we notice that not all the included studies are published in well-
known venues. Moreover, four out of the fifteen included studies
still have a low number of citations. This might be considered
as a threat to the credibility of these studies. The four studies
that have a low number of citations are recently published, and
this might be the reason of such lack of citations. We think that
the implementation and further evaluation of the monitoring
techniques in practice would contribute in mitigating this threat.

6.3. External validity

External validity concerns the extent to which the results of a
study can be generalized. The clarity, size, duration, and complex-
ity of the task, including the questions, used for the evaluation
of the framework might differ from real-world conditions and
limit the generalizability of the evaluation results. To address this
threat, we aim and call for replication. Furthermore, the partici-
pants involved in the evaluation of the framework are selected
based on contacts and collaborators, i.e., through convenience
sample. While the number of involved participants might be
considered as small, we do not consider this as a major threat
since the aim of the evaluation is to get a preliminary qualitative
feedback and not to generalize over a population of actors.

6.4. Reliability

Reliability concerns the extent to which the operations of a
study can be repeated by other researchers, achieving the same
results. We thoroughly detail the approach that we adopted to
perform the literature review. Moreover, we detail the evaluation
process of the framework by reporting the introduction to the
context and framework given to the participants, characteris-
tics of the participants, evaluation task, and post-task questions.
These details should enable reproduction of our study under
comparable contexts.

7. Conclusion

Container-based virtualization is gaining popularity in dif-
ferent domains. Different techniques for monitoring containers
security are proposed. However, there are no guidelines support-
ing the selection of suitable container monitoring techniques for
the tasks at hand.

We review the literature to identify relevant techniques for
monitoring container-based virtualization environments with the
goal to provide a comprehensive overview of these techniques.
We further categorize the identified techniques to help develop-
ers understand their purpose, technical characteristics, applica-
bility, and effectiveness.

As a result, we present CONSERVE, a multi-dimensional deci-
sion support framework that can be applied in different domains.
An evaluation of the framework by a mix of eighteen researchers
and practitioners shows a high level of interest, and points out
to potential benefits. Mainly, the majority of the participants in
the evaluation agree that the framework is easy to use (83%),
clear (78%), and useful (94%). Moreover, all the participants agree
that the framework supports an efficient selection of container
monitoring techniques by saving time and effort in matching the
techniques with the tasks at hand.

7.1. Implications to research and practice

The knowledge that the framework provides, including the
characteristics, functionalities, pros, and cons of the container
monitoring techniques, could be used by researchers to enhance

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

t
t
t
n
t
c

w
s
t
e

f
p
t
s
t
c
i
t
t

7

a
o
i
a

o
c
m
o
d

C

s

he performance of the techniques and/or design more effec-
ive solutions. This can be done by e.g., investigating approaches
hat would significantly mitigate the current cons of the tech-
iques or by combining a number of techniques to achieve mul-
iple monitoring-layers and, thus, improve the security of the
ontainer-based virtualization environment.
A combination of threat-based risk analysis and the frame-

ork could be used by practitioners to make informed deci-
ions about the required monitoring techniques with respect
o the identified threats to the container-based virtualization
nvironment and the associated level of risk.
Given that the framework considers techniques used in dif-

erent domains and provides clear insight into the trade-offs and
erformance evaluations of each technique, the effectiveness of
he framework can be potentially more significant in domains
uch as automotive in which cybersecurity and container-based
echnology are relatively new, and performance requirements are
ritical. The framework enables practitioners in such domains to
dentify monitoring techniques used in other domains, and select
he most suitable approach based on the available resources and
he expected performance requirements.

.2. Future work

To enhance the current version of the framework, we will
ddress the comments that we received via the evaluation. More-
ver, to complement the conducted evaluation and get further
nsights, we plan to evaluate the framework using more scenarios
nd involving more participants.
Furthermore, we plan to provide an interactive presentation

f CONSERVE to assist the exploration and selection process of
ontainer monitoring techniques. We also plan to continuously
aintain and update the framework to reflect eventual evolution
f the considered monitoring techniques as well as include newly
eveloped techniques.

RediT authorship contribution statement

Rodi Jolak: Conceptualization, Methodology, Resources, In-
vestigation, Data curation, Writing - original draft, Writing -
review & editing, Supervision. Thomas Rosenstatter: Conceptu-
alization, Resources, Writing - original draft, Writing - review &
editing. Mazen Mohamad: Conceptualization, Resources, Writing
- original draft, Writing - review & editing. Kim Strandberg:
Conceptualization, Resources, Writing - original draft, Writing -
review & editing. Behrooz Sangchoolie: Conceptualization, Re-
ources, Writing original draft, Writing - review & editing. Nasser
Nowdehi: Conceptualization, Resources, Writing - original draft,
Writing - review & editing. Riccardo Scandariato: Conceptual-
ization, Methodology, Investigation, Resources, Writing - original
draft, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We would like to thank the participants who took a part in the
evaluation of CONSERVE. This research was partially supported
by the Swedish VINNOVA FFI project CyReV: Cyber Resilience
for Vehicles with diary numbers: 2018-05013 (1st phase) and
2019-03071 (2nd phase).
19
References

Abed, A.S., Azab, M., Clancy, C., Kashkoush, M.S., 2020. Resilient intrusion
detection system for cloud containers. Int. J. Commun. Netw. Distrib. Syst.
24 (1), 1–22.

Abed, A.S., Clancy, C., Levy, D.S., 2015. Intrusion detection system for applications
using linux containers. In: International Workshop on Security and Trust
Management. Springer, pp. 123–135.

Ackley, D.H., Hinton, G.E., Sejnowski, T.J., 1985. A learning algorithm for
Boltzmann machines. Cogn. Sci. 9 (1), 147–169.

Agache, A., Brooker, M., Iordache, A., Liguori, A., Neugebauer, R., Piwonka, P.,
Popa, D.-M., 2020. Firecracker: Lightweight virtualization for serverless
applications. In: 17th USENIX Symposium on Networked Systems Design and
Implementation. NSDI 20, USENIX Association, Santa Clara, CA, pp. 419–434,
URL https://www.usenix.org/conference/nsdi20/presentation/agache.

Agarwal, R., Srikant, R., et al., 1994. Fast algorithms for mining association rules.
In: Proc. of the 20th VLDB Conference, pp. 487–499.

Apache, 2021. Apache hadoop. Apache http://hadoop.apache.org/. (Accessed
January 2021).

AppArmor, 2021. A linux application security system. AppArmor https://gitlab.
com/apparmor/apparmor/-/wikis/home. (Accessed January 2021).

Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind, J.,
Muthukumaran, D., O’Keeffe, D., Stillwell, M.L., Goltzsche, D., Eyers, D.,
Kapitza, R., Pietzuch, P., Fetzer, C., 2016. SCONE: Secure linux containers
with intel SGX. In: Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation. In: OSDI’16, USENIX Association, USA,
pp. 689–703.

Bélair, M., Laniepce, S., Menaud, J.-M., 2019. Leveraging kernel security mech-
anisms to improve container security: A survey. In: Proceedings of the
14th International Conference on Availability, Reliability and Security. In:
ARES ’19, Association for Computing Machinery, New York, NY, USA, http:
//dx.doi.org/10.1145/3339252.3340502.

Berger, C., Nguyen, B., Benderius, O., 2017. Containerized development and
microservices for self-driving vehicles: experiences & best practices. In: 2017
IEEE International Conference on Software Architecture Workshops. ICSAW,
IEEE, pp. 7–12.

Bernstein, D., 2014. Containers and cloud: From LXC to docker to kubernetes.
IEEE Cloud Comput. 1 (3), 81–84. http://dx.doi.org/10.1109/MCC.2014.51.

Boyatzis, R.E., 1998. Transforming Qualitative Information: Thematic Analysis and
Code Development. sage.

cAdvisor, 2020. A software for analyzing and exposing resource usage and
performance data from running containers. GitHub Repository https://github.
com/google/cadvisor. (Accessed December 2020).

Casalicchio, E., Iannucci, S., 2020. The state-of-the-art in container
technologies: Application, orchestration and security. Concurr. Comput.:
Pract. Exper. 32 (17), http://dx.doi.org/10.1002/cpe.5668, e5668, URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5668, arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5668, e5668 cpe.5668.

Chandramouli, R., Chandramouli, R., 2017. Security Assurance Requirements for
Linux Application Container Deployments. US Department of Commerce,
National Institute of Standards and Technology.

Chen, J., Feng, Z., Wen, J.-Y., Liu, B., Sha, L., 2019. A container-based DoS attack-
resilient control framework for real-time UAV systems. In: 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, pp.
1222–1227.

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educ. Psychol.
Meas. 20 (1), 37–46. http://dx.doi.org/10.1177/001316446002000104, arXiv:
https://doi.org/10.1177/001316446002000104.

Combe, T., Martin, A., Di Pietro, R., 2016. To docker or not to docker: A security
perspective. IEEE Cloud Comput. 3 (5), 54–62.

containers, L., 2021. Infrastructure for container projects. Kubernetes https:
//linuxcontainers.org/. (Accessed June 2021).

Creswell, J.W., Creswell, J.D., 2017. Research Design: Qualitative, Quantitative,
and Mixed Methods Approaches. Sage publications.

CRIU, 2021. A checkpoint/restore functionality for linux. CRIU https://criu.org/
Main_Page. (Accessed January 2021).

De Benedictis, M., Lioy, A., 2019. Integrity verification of docker containers for
a lightweight cloud environment. Future Gener. Comput. Syst. 97, 236–246.

Docker, 2020. A lightweight, standalone, executable package of software that
includes everything needed to run an application. Docker https://www.
docker.com. (Accessed December 2020).

Du, Q., Xie, T., He, Y., 2018. Anomaly detection and diagnosis for container-based
microservices with performance monitoring. In: International Conference on
Algorithms and Architectures for Parallel Processing. Springer, pp. 560–572.

Elsevier, 2021. Scopus – expertly curated abstract & citation database. Elsevier
https://www.elsevier.com/solutions/scopus. (Accessed January 2021).

Falco, 2020. A behavioral activity monitoring with container support. GitHub
Repository https://github.com/draios/oss-falco. (Accessed December 2020).

Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A., 1996. A sense of self
for unix processes. In: Proceedings 1996 IEEE Symposium on Security and
Privacy. IEEE, pp. 120–128.

http://refhub.elsevier.com/S0164-1212(21)00247-8/sb1
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb1
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb1
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb1
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb1
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb3
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb3
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb3
https://www.usenix.org/conference/nsdi20/presentation/agache
http://hadoop.apache.org/
https://gitlab.com/apparmor/apparmor/-/wikis/home
https://gitlab.com/apparmor/apparmor/-/wikis/home
https://gitlab.com/apparmor/apparmor/-/wikis/home
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb8
http://dx.doi.org/10.1145/3339252.3340502
http://dx.doi.org/10.1145/3339252.3340502
http://dx.doi.org/10.1145/3339252.3340502
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb10
http://dx.doi.org/10.1109/MCC.2014.51
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb12
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
http://dx.doi.org/10.1002/cpe.5668
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5668
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5668
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5668
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5668
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb16
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb16
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb16
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb16
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb16
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb16
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb16
http://dx.doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb18
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb18
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb18
https://linuxcontainers.org/
https://linuxcontainers.org/
https://linuxcontainers.org/
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb20
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb20
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb20
https://criu.org/Main_Page
https://criu.org/Main_Page
https://criu.org/Main_Page
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb22
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb22
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb22
https://www.docker.com
https://www.docker.com
https://www.docker.com
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb24
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb24
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb24
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb24
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb24
https://www.elsevier.com/solutions/scopus
https://github.com/draios/oss-falco
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb27
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb27
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb27
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb27
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb27

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

F

G

G

G

H

H

H

H

I

K

K

K

K

L

L

L

L

L

L

M

M

M

M

M

O

ourati, M.H., Marzouk, S., Drira, K., Jmaiel, M., 2019. DOCKERANALYZER: To-
wards fine grained resource elasticity for microservices-based applications
deployed with docker. In: 2019 20th International Conference on Parallel
and Distributed Computing, Applications and Technologies. PDCAT, IEEE, pp.
220–225.

antikow, H., Reich, C., Knahl, M., Clarke, N.L., 2019. Rule-based security
monitoring of containerized workloads. In: CLOSER. pp. 543–550.

antikow, H., Zöhner, T., Reich, C., 2020. Container anomaly detection using neu-
ral networks analyzing system calls. In: 2020 28th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing. PDP, IEEE,
pp. 408–412.

arcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E., 2009.
Anomaly-based network intrusion detection: Techniques, systems and
challenges. Comput. Secur. 28 (1–2), 18–28.

aldar, V., Chandra, D., Franz, M., 2004. Semantic remote attestation: A vir-
tual machine directed approach to trusted computing. In: USENIX Virtual
Machine Research and Technology Symposium, Vol. 2004.

eapster, 2020. A software for container cluster monitoring and performance
analysis. GitHub Repository https://github.com/kubernetes-retired/heapster.
(Accessed December 2020).

oward, M., Lipner, S., 2006. The Security Development Lifecycle, Vol. 8.
Microsoft Press Redmond.

uang, D., Wu, H., 2018. Chapter 2 - virtualization. In: Huang, D., Wu, H. (Eds.),
Mobile Cloud Computing. Morgan Kaufmann, pp. 31–64. http://dx.doi.org/
10.1016/B978-0-12-809641-3.00003-X, URL http://www.sciencedirect.com/
science/article/pii/B978012809641300003X.

nfluxDB, 2021. A platform for building and operating time series applications.
InfluxDB https://www.influxdata.com. (Accessed January 2021).

amthania, S., 2019. A novel deep learning RBM based algorithm for securing
containers. In: 2019 IEEE International WIE Conference on Electrical and
Computer Engineering. WIECON-ECE, IEEE, pp. 1–7.

eele, S., et al., 2007. Guidelines for Performing Systematic Literature Reviews
in Software Engineering. Technical Report, Citeseer.

halimov, A., Benahmed, S., Hussain, R., Kazmi, S.A., Oracevic, A., Hussain, F.,
Ahmad, F., Kerrache, C.A., 2019. Container-based sandboxes for malware
analysis: A compromise worth considering. In: Proceedings of the 12th
IEEE/ACM International Conference on Utility and Cloud Computing, pp.
219–227.

ubernetes, 2020. An open-source system for automating deployment, scal-
ing, and management of containerized applications. Kubernetes https://
kubernetes.io. (Accessed December 2020).

andis, J.R., Koch, G.G., 1977. The measurement of observer agreement for
categorical data. Biometrics 33 (1), 159–174, URL http://www.jstor.org/
stable/2529310.

askov, P., Düssel, P., Schäfer, C., Rieck, K., 2005. Learning intrusion detection:
supervised or unsupervised? In: International Conference on Image Analysis
and Processing. Springer, pp. 50–57.

ei, L., Sun, J., Sun, K., Shenefiel, C., Ma, R., Wang, Y., Li, Q., 2017. SPEAKER: Split-
phase execution of application containers. In: International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
pp. 230–251.

i, W., Xia, Y., Lu, L., Chen, H., Zang, B., 2019. TEEV: Virtualizing trusted execution
environments on mobile platforms. In: Proceedings of the 15th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments.
In: VEE 2019, Association for Computing Machinery, New York, NY, USA, pp.
2–16. http://dx.doi.org/10.1145/3313808.3313810.

unt, T.F., Jagannathan, R., Lee, R., Whitehurst, A., Listgarten, S., 1989. Knowledge
based intrusion detection. In: Proceedings of the Annual AI Systems in
Government Conference, Washington, DC.

wakatare, L.E., Karvonen, T., Sauvola, T., Kuvaja, P., Olsson, H.H., Bosch, J.,
Oivo, M., 2016. Towards DevOps in the embedded systems domain: Why is it
so hard? In: 2016 49th Hawaii International Conference on System Sciences.
Hicss, IEEE, pp. 5437–5446.

artin, A., Raponi, S., Combe, T., Di Pietro, R., 2018. Docker ecosystem–
vulnerability analysis. Comput. Commun. 122, 30–43.

attetti, M., Shulman-Peleg, A., Allouche, Y., Corradi, A., Dolev, S., Foschini, L.,
2015. Securing the infrastructure and the workloads of linux containers. In:
2015 IEEE Conference on Communications and Network Security. CNS, IEEE,
pp. 559–567.

erkel, D., 2014. Docker: lightweight linux containers for consistent
development and deployment. Linux J. 2014 (239), 2.

orabito, R., 2017. Virtualization on internet of things edge devices with
container technologies: A performance evaluation. IEEE Access 5, 8835–8850.

orabito, R., Petrolo, R., Loscri, V., Mitton, N., Ruggeri, G., Molinaro, A., 2017.
Lightweight virtualization as enabling technology for future smart cars. In:
2017 IFIP/IEEE Symposium on Integrated Network and Service Management.
IM, IEEE, pp. 1238–1245.

CI, 2021. Open container initiative. OCI https://opencontainers.org/. (Accessed
January 2021).
20
OpenAttestation, 2021. An open source project providing a SDK for managing
host integrity verification. OpenAttestation https://wiki.openstack.org/wiki/
OpenAttestation. (Accessed January 2021).

Pahl, C., 2015. Containerization and the paas cloud. IEEE Cloud Comput. 2 (3),
24–31.

Pham, C., Estrada, Z., Cao, P., Kalbarczyk, Z., Iyer, R.K., 2014. Reliability and
security monitoring of virtual machines using hardware architectural invari-
ants. In: 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. pp. 13–24. http://dx.doi.org/10.1109/DSN.2014.19.

Pinto, S., Santos, N., 2019. Demystifying ARM TrustZone: A comprehensive
survey. ACM Comput. Surv. 51 (6), http://dx.doi.org/10.1145/3291047.

Randazzo, A., Tinnirello, I., 2019. Kata containers: An emerging architecture
for enabling MEC services in fast and secure way. In: Sixth International
Conference on Internet of Things: Systems, Management and Security.
IOTSMS, pp. 209–214. http://dx.doi.org/10.1109/IOTSMS48152.2019.8939164.

Ray, J.J., 1982. The construct validity of balanced likert scales. J. Soc. Psychol.
118 (1), 141–142.

Rodríguez, P., Haghighatkhah, A., Lwakatare, L.E., Teppola, S., Suomalainen, T.,
Eskeli, J., Karvonen, T., Kuvaja, P., Verner, J.M., Oivo, M., 2017. Continuous
deployment of software intensive products and services: A systematic
mapping study. J. Syst. Softw. 123, 263–291.

Sailer, R., Zhang, X., Jaeger, T., Van Doorn, L., 2004. Design and implementation
of a TCG-based integrity measurement architecture. In: USENIX Security
Symposium, Vol. 13, 2004, pp. 223–238.

Sayed, M.M., Azab, M., 2019. The time machine: Smart operation-resilience in
presence of attacks and failures. In: 2019 IEEE 10th Annual Information
Technology, Electronics and Mobile Communication Conference. IEMCON,
IEEE, pp. 0127–0132.

SELinux, 2020. A flexible mandatory access control (MAC) for linux. GitHub
Repository https://github.com/SELinuxProject. (Accessed December 2020).

Sha, L., 2001. Using simplicity to control complexity. IEEE Softw. 18 (4), 20–28.
Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L., 2007. Container-

based operating system virtualization: A scalable, high-performance alter-
native to hypervisors. In: Proceedings of the 2Nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, pp. 275–287.

Souppaya, M., Morello, J., Scarfone, K., 2017. NIST Special Publication 800-19 –
Application Container Security Guide. Technical Report, National Institute of
Standards and Technology (NIST), http://dx.doi.org/10.6028/NIST.SP.800-190.

Srinivasan, S., Kumar, A., Mahajan, M., Sitaram, D., Gupta, S., 2018. Probabilistic
real-time intrusion detection system for docker containers. In: International
Symposium on Security in Computing and Communication. Springer, pp.
336–347.

Sultan, S., Ahmad, I., Dimitriou, T., 2019. Container security: Issues, challenges,
and the road ahead. IEEE Access 7, 52976–52996.

Sysdig, 2020. A universal system visibility tool with native support for contain-
ers. GitHub Repository https://github.com/draios/sysdig. (Accessed December
2020).

SystemTap, 2020. A free software (GPL) infrastructure to simplify the gath-
ering of information about the running linux system. SystemTap https:
//sourceware.org/systemtap. (Accessed December 2020).

Wieringa, R.J., 2014. Design Science Methodology for Information Systems and
Software Engineering. Springer.

Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In: Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment in Software Engineering,
pp. 1–10.

Yun, H., Yao, G., Pellizzoni, R., Caccamo, M., Sha, L., 2013. Memguard: Memory
bandwidth reservation system for efficient performance isolation in multi-
core platforms. In: 2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium. RTAS, IEEE, pp. 55–64.

Zou, Z., Xie, Y., Huang, K., Xu, G., Feng, D., Long, D., 2019. A docker container
anomaly monitoring system based on optimized isolation forest. IEEE Trans.
Cloud Comput..

Rodi Jolak is a post-doctoral researcher in software en-
gineering at the joint Department of Computer Science
and Engineering between Chalmers and University of
Gothenburg in Sweden. His research activities focus on
software engineering, software architectures, software
design, human–computer interfaces, and security. Rodi
received a Ph.D. degree in software engineering from
the University of Gothenburg in 2020. He also prac-
ticed his role as a software engineer in industry for
more than two years. See http://www.rodijolak.com for
more.

http://refhub.elsevier.com/S0164-1212(21)00247-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb29
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb29
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb29
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb31
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb31
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb31
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb31
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb31
https://github.com/kubernetes-retired/heapster
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb34
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb34
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb34
http://dx.doi.org/10.1016/B978-0-12-809641-3.00003-X
http://dx.doi.org/10.1016/B978-0-12-809641-3.00003-X
http://dx.doi.org/10.1016/B978-0-12-809641-3.00003-X
http://www.sciencedirect.com/science/article/pii/B978012809641300003X
http://www.sciencedirect.com/science/article/pii/B978012809641300003X
http://www.sciencedirect.com/science/article/pii/B978012809641300003X
https://www.influxdata.com
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb37
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb37
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb37
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb37
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb37
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb38
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb38
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb38
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb42
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb42
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb42
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb42
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb42
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb43
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb43
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb43
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb43
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb43
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb43
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb43
http://dx.doi.org/10.1145/3313808.3313810
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb47
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb47
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb47
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb48
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb48
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb48
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb48
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb48
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb48
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb48
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb50
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb50
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb50
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb51
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb51
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb51
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb51
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb51
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb51
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb51
https://opencontainers.org/
https://wiki.openstack.org/wiki/OpenAttestation
https://wiki.openstack.org/wiki/OpenAttestation
https://wiki.openstack.org/wiki/OpenAttestation
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb54
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb54
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb54
http://dx.doi.org/10.1109/DSN.2014.19
http://dx.doi.org/10.1145/3291047
http://dx.doi.org/10.1109/IOTSMS48152.2019.8939164
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb58
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb58
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb58
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb61
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb61
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb61
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb61
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb61
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb61
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb61
https://github.com/SELinuxProject
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb63
http://dx.doi.org/10.6028/NIST.SP.800-190
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb66
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb66
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb66
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb66
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb66
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb66
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb66
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb67
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb67
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb67
https://github.com/draios/sysdig
https://sourceware.org/systemtap
https://sourceware.org/systemtap
https://sourceware.org/systemtap
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb70
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb70
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb70
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb73
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb73
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb73
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb73
http://refhub.elsevier.com/S0164-1212(21)00247-8/sb73
http://www.rodijolak.com

R. Jolak, T. Rosenstatter, M. Mohamad et al. The Journal of Systems & Software 186 (2022) 111158

d

s

Thomas Rosenstatter is a researcher in the Depart-
ment of Digital Systems at RISE Research Institutes
of Sweden and received a Ph.D. degree in Computer
Science and Engineering at the Chalmers University of
Technology in Sweden. His research focuses on cyber-
security in transport and the design and development
of secure and resilient cyber–physical systems.

Mazen Mohamad received his master’s degree in soft-
ware engineering in 2016 from Chalmers University
of technology in Sweden, and is currently working
towards a Ph.D. in Computer Science and Engineering
at the Software Engineering division of the Computer
Science and Engineering department of Chalmers Uni-
versity of Technology and University of Gothenburg.
His research interests include security assurance of
cyber–physical systems.

Kim Strandberg is a senior security engineer at the
Department of Research and Development at Volvo
Cars and an industrial Ph.D. student in the Depart-
ment of Computer Science and Engineering at Chalmers
University of Technology, Sweden. He has two BSc.
and two MSc. within the area of computer science
and engineering. He has been working as an engineer
within the IT area for 16 years and with automotive
cyber security for about six years. His main research
field is automotive cyber security, with an emphasis
on secure and resilient automotive system design and

evelopment.
21
Behrooz Sangchoolie is a researcher in the Depart-
ment of Electrification and Reliability at RISE Research
Institutes of Sweden. He is the technical coordinator
of National and European research projects in the
area of dependable and secure computing and has
served on many program committees for conferences
and workshops in the area. His current research in-
terests include the use of fault and attack injection
experiments for dependability and security assessment
of computer systems as well as to conduct interplay
analyses between non-functional requirements such as

afety and security.

Nasser Nowdehi is an automotive cybersecurity tech-
nical specialist in the department of Research and
Development at Volvo Cars, Sweden. He has a Ph.D.
degree in automotive cybersecurity from Chalmers Uni-
versity of Technology and a MSc. degree in computer
systems and networks (specialized in cybersecurity)
from the same university. His main research interests
include intrusion detection systems, V2X security, and
cyber resilient systems.

Riccardo Scandariato (Ph.D. 2004) is a full professor
and the head of the Institute of Software Security
at the Hamburg University of Technology (TUHH), in
Germany. His work focuses on the design of secure and
privacy-friendly applications, particularly in the realms
of micro-services, IoT ecosystems, and cyber–physical
systems.

	CONSERVE: A framework for the selection of techniques for monitoring containers security
	Introduction
	Background
	Related work

	Approach
	Literature review
	Snowballing approach
	Categorization of the techniques
	Technical characteristics
	Applicability
	Effect
	Evaluation

	The framework: CONSERVE
	Detection and analysis strategies
	Selection of container monitoring techniques
	Anomaly-based detection and remote attestation analysis
	Anomaly-based detection and filtering introspection analysis
	Anomaly-based detection and rule-based analysis
	Anomaly-based detection and ML-based analysis
	Misuse-based detection and rule-based analysis
	Misuse-based detection and ML-based analysis

	Using the CONSERVE framework
	An application scenario

	Framework evaluation
	Try-out task and questionnaires
	Participants
	Evaluation procedure
	Evaluation results
	Task results
	Post-task results

	Threats to validity
	Construct validity
	Internal validity
	External validity
	Reliability

	Conclusion
	Implications to research and practice
	Future work

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

