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We consider an electronic Hong-Ou-Mandel interferometer in the integer quantum Hall regime, where the
colliding electronic states are generated by applying voltage pulses (creating for instance levitons) to ohmic
contacts. The aim of this work is to investigate possible mechanisms leading to a reduced visibility of the Pauli
dip, i.e., the noise suppression expected for synchronized sources. It is known that electron-electron interactions
cannot account for this effect and always lead to a full suppression of the Hong-Ou-Mandel noise. Focusing on
the case of filling factor ν = 2, we show instead that a reduced visibility of the Pauli dip can result from mixing
of the copropagating edge channels, arising from tunneling events between them.

DOI: 10.1103/PhysRevB.105.125415

I. INTRODUCTION

The advent of time-dependently driven, on-demand single-
electron sources [1–4] has been pivotal for the development
of quantum optics with electrons [5,6] and in particular for the
arrival of quantum information applications using electron fly-
ing qubits based on levitons [7]. It is therefore of fundamental
importance to improve our understanding of the ac transport
regime and of effects that can possibly be detrimental for the
operation of these single-electron devices. Electron quantum
optics deals with highly controllable single-electron excita-
tions that propagate in solid-state systems and, ideally, can be
coherently manipulated. A natural platform where this can be
implemented is represented by quantum Hall systems, where
chiral edge channels play the role of waveguides and quantum
point contacts can be used as beamsplitters. Several theo-
retical works [8–26] have investigated various properties of
single-electron sources in this regime, and many experimental
results [27–38] have shown that a high degree of control in the
manipulation of single-electron excitations can be achieved.
Moreover, extensions to interacting systems [39–51] have also
been considered. In particular, the fractional quantum Hall
regime plays a special role, due to the presence of fractionally
charged quasiparticles, whose anyonic statistics can in prin-
ciple be probed by electron quantum optics setups [52]. Very
recently, first experiments in this regime have been reported
[53,54].

In the present paper, we deal with an electronic Hong-
Ou-Mandel (HOM) interferometer [55], which is a quantum-
optics setup in a quantum Hall device, where electrons are
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brought to “collide” at a quantum point contact (QPC); see
Fig. 1. Such a setup is a milestone in electron quantum
optics and has been used to directly demonstrate fermionic
antibunching, by observing a suppression of the current fluc-
tuations at the output of the interferometer. However, in
realistic experiments, this suppression can be incomplete
[30,33,56], calling for a mechanism able to explain this
effect. Remarkably, when the electronic states colliding at
the QPC are generated by voltage drives, Coulomb inter-
actions between edge channels are found to preserve a full
suppression of the HOM noise [16,57–59]. In contrast, we
identify mixing—namely, tunneling of quasiparticles between
edge channels—as a possible source of the partial reduc-
tion of the characteristic HOM dip in the detected current
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FIG. 1. Sketch of a Hong-Ou-Mandel (HOM) interferometer in
the integer quantum Hall regime at filling factor ν = 2. Chiral edge
states serve as waveguides in which electrons can propagate and are
used to send excitations, generated by voltages VA and VB, toward a
quantum point contact (QPC) implementing an electronic beamsplit-
ter. The QPC is set in such a way that the inner edge channels are
fully reflected, so that the HOM interference only occurs on the outer
channels. Inner and outer channels are labeled by i = 1, 2 (upper
edge) and i = 3, 4 (lower edge). Mixing points (black stars) may
be present between the sources and the QPC, inducing interchannel
tunneling.

2469-9950/2022/105(12)/125415(18) 125415-1 Published by the American Physical Society

https://orcid.org/0000-0001-9739-9289
https://orcid.org/0000-0002-8397-5019
https://orcid.org/0000-0002-1457-0915
https://orcid.org/0000-0003-1078-9490
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.125415&domain=pdf&date_stamp=2022-03-21
https://doi.org/10.1103/PhysRevB.105.125415
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


MATTEO ACCIAI et al. PHYSICAL REVIEW B 105, 125415 (2022)

correlation functions. Edge state mixing has long been con-
sidered in the stationary transport regime: for copropagating
edge channels in the integer quantum Hall regime, it deter-
mines the equilibration length of edge channels. The first
works, done at moderately low temperature (around 1 K),
addressed spin-degenerate edge channels, where elastic tun-
neling of electrons occurs due to random impurities [60–62].
Also, the equilibration length of spin-resolved channels was
studied, at lower temperature, giving equilibration lengths
ranging from a few tens of μm [63,64] to a few hundred
μm [65]. Here, the combination of spin-orbit coupling and
a scattering potential is necessary to allow for the mixing of
opposite spin edge channels [66–68]. Mixing has a dramatic
effect in the case of counterpropagating edges, a situation
occurring for fractional quantum Hall edge states at filling fac-
tor 1/2 < ν < 1, like the ν = 2/3 hole-conjugated fractional
quantum Hall state [69–72]. In this regime, mixing has been
found to be essential to the explanation of the 2/3 conductance
quantization of edge channels and the appearance of neutral
counterpropagating modes. However, as the mixing of equi-
librated copropagating edge channels does not affect the dc
conductance, see below, the importance of mixing for other
transport regimes has been overlooked. This paper is aimed at
filling this gap in ac-driven integer quantum Hall devices.

Here, we investigate the effect of mixing of copropagating
edge channels in the integer quantum Hall regime, which is
likely to occur in 2D electron systems due to the native disor-
der arising from random ionization of donor impurities in the
host material. Concretely, we consider a HOM interferometer,
as shown in Fig. 1, in the integer quantum Hall regime at fill-
ing factor ν = 2. Currents are injected from contacts A and B
due to ac voltage drivings and particles are brought to collide
at the central QPC. When the drivings are appropriately syn-
chronized, this leads in the ideal case to a full suppression of
the shot noise. Here, we show that mixing significantly affects
the ac conductance and noise properties of copropagating
edge channels and, in particular, the visibility of two-particle
interference effects leading to noise suppression in electronic
HOM experiments. We consider one or two mixing points
in any of the interferometer arms. Tunneling between edge
channels, together with different propagation velocities, re-
sults in a reduced visibility of the HOM dip. In the case of
multiple mixing points, additional interference effects arise,
similar to those occurring in Mach-Zehnder interferometers
fed by single-electron sources [73–78]. We show this both
for sine-wave driving as well as for Lorentzian voltage pulses
carrying single electrons (levitons). We analyze in detail how
the position of tunneling points affects the noise properties.

Our results are shown for the special case of two edge
channels, but generalizations to more copropagating edge
channels is straightforward. We also anticipate that, regarding
the qualitative effects of channel mixing, our results can be
applicable to the fractional quantum Hall case, like for filling
factor ν = 2/5, which corresponds to ν = 2 in the fractional
quantum Hall Jain’s hierarchy based on composite fermions
[79]. Furthermore, as HOM shot noise experiments measure
the interference between two-particle braided and nonbraided
paths, they are expected to give a measure of the statistical an-
gle characterizing anyonic particles. The present work shows
that, in the future, the effect of mixing should be addressed in

order to get sensible statistical angle measurements from shot
noise.

The paper is organized as follows. First, in Sec. II we recall
some basic results on HOM noise in the absence of mixing,
that will be needed throughout the rest of the paper. Next,
in Sec. III we discuss the role of interactions, showing that
they do not modify the HOM visibility. Then, we present a
qualitative picture of the influence of channel mixing on pho-
toassisted and HOM noise in Sec. IV. Section V shows instead
the result of a full Floquet calculation of the HOM noise
in the presence of mixing in various conditions. Finally, in
Sec. VI we draw our conclusions and outline some directions
for further investigations.

II. BASIC RESULTS ON HOM NOISE WITHOUT MIXING

We consider the HOM interferometer sketched in Fig. 1,
in the absence of mixing, namely when no interchannel tun-
neling processes can occur. In addition, the QPC is tuned in
such a way that the inner channels are fully reflected.1 This
choice is motivated both by the experimental relevance of such
a configuration [30,33,80] and by the easier interpretation of
the results arising when only one pair of channels is parti-
tioned at the beamsplitter. Furthermore, we assume that the
injecting contacts are driven by periodic voltages, with period
T = 2π�−1. In the HOM configuration, these voltages are
typically identical, apart from a controllable time delay δ:

VA(t ) = V (t ), VB(t ) = V (t + δ). (1)

It is also useful to split them into dc and ac contributions,
namely V (t ) = Vdc + Vac(t ), with

∫ T
0 Vac(t )dt = 0. A HOM

experiment deals with the zero-frequency noise of currents
Îout
i (t ) that are collected at the contacts at the output of

the interferometer; see Fig. 1. The zero-frequency noise is
defined as

Si j = 2
∫ T /2

−T /2

dt

T

∫ +∞

−∞
dt ′

〈
δÎout

i

(
t + t ′

2

)
δÎout

j

(
t − t ′

2

)〉
,

(2)
where δÎout

i (t ) = Îout
i (t ) − 〈Îout

i (t )〉 are the fluctuations in the
output currents. These output currents are given by Îout

i (t ) =
−eviψ̂

†
i,out(t )ψ̂i,out(t ), where e > 0 is the elementary charge

and ψ̂i,out(t ) are the fermionic annihilation operators at the
output of the interferometer. They can be expressed in terms
of the input operators ψ̂i,in(t ), describing the electron states
exiting the injecting contacts, by using a Floquet scattering
approach [81], in the following way. First, due to the periodic
voltage drives, the fermionic operators before the QPC can be
written as (a similar expression holds for ψ̂i,out)

ψ̂i,in(x, t ) =
∫ +∞

−∞

dE√
hvi

∑
l∈Z

pl âi,in(E − l h̄�)e− iE
h̄ (t− x

vi
),

(3)
where âi,in(E ) annihilates an electron at energy E on channel i
and vi denotes the propagation velocity along that channel. We

1Note that the opposite regime, with fully transmitted outer chan-
nels and partially reflected inner ones, is equivalent and leads to
similar results.
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keep the setup as general as possible, allowing all velocities vi

to be different. In Eq. (3), we have introduced

pl = 1

T

∫ T /2

−T /2
dt eil�t e

ie
h̄

∫ t
−∞ dt ′Vac(t ′ ), (4)

that are the photoassisted Floquet probability amplitudes to
absorb (l > 0) or emit (l < 0) |l| energy quanta. Next, the
QPC is described via the scattering matrix2

SQPC =
(√

T i
√

R
i
√

R
√

T

)
, (5)

where T and R are, respectively, the transmission and reflec-
tion probabilities. Note that, for simplicity, the phase factors
describing the propagation between input and output contacts
have been disregarded in the scattering matrix. They will be
included in the next part when edge mixing will be intro-
duced. The scattering matrix relates the ingoing and outgoing
fermionic operator via(

â1,out

â3,out

)
= SQPC

(
â1,in

â3,in

)
, (6)

while â2,out = â2,in and â4,out = â4,in as the inner channels are
fully reflected.

The total currents collected at the output of the interferom-
eter are (see Fig. 1)

Iout
R (t ) = Iout

1 (t ) + Iout
4 (t ),

Iout
L (t ) = Iout

2 (t ) + Iout
3 (t ). (7)

In a HOM experiment, one usually considers the cross
correlations of output currents, namely SRL. In the limit
of zero-frequency fluctuations, due to current conservation,
the following relation holds: SRR = SLL = −SRL = −SLR.
Moreover, in order to discard purely thermal contributions to
the noise, which are independent of the applied drive, it is a
standard procedure to define the HOM noise as the following
difference:

SHOM = −�SRL = −(
Son,on

RL − Soff,off
RL

)
. (8)

Here “on, on” (“off, off”) indicate that both sources VA(t )
and VB(t ) are switched on (off). Another standard convention
is to normalize the HOM noise with respect to the Hanbury
Brown–Twiss (HBT) noise, obtained when only one of the
two sources is active. This defines the ratio

R = SHOM

SHBT
= Son,on

RL − Soff,off
RL

Son,off
RL + Soff,on

RL

. (9)

By combining the above Eqs. (2)–(8), the HOM noise can
be calculated. In the mixing- and interaction-free scenario
we are considering in this section, the excitations injected in

2Here, as typically done in the description of
HOM interferometry in quantum Hall setups,
we have assumed an energy-independent scattering matrix.
Considering an energy-dependent transmission does affect the HOM
dip, leading to a loss of visibility. However, in standard experimental
conditions [56], such an effect only plays a minor role from a
quantitative point of view.

channels 1 and 3 freely propagate until they are partitioned at
the QPC, eventually generating the following noise:

SHOM = RTS0(�13), (10)

where [10]

S0(�i j ) = e2

π
�

∑
l∈Z

�l (�i j )

[
l coth

(
l h̄�

2kBθ

)
− 2kBθ

h̄�

]
(11)

and θ is the temperature. The argument of this function, that
we have generically indicated with �i j , represents the time
delay with which the excitations injected into channels i and
j arrive at the QPC. In this section, the only relevant channels
for the HOM noise are 1 and 3, so �13 appears in (10). Other
values of i and j become relevant in the presence of mixing;
see Sec. V. If the two identical injecting sources are shifted by
δ, see Eq. (1), then the delay between the arrival times of the
excitations at the QPC is �13 = δ + dA/v1 − dB/v3, where
dA and dB are, respectively, the lengths of the interferometer
arms (i.e., the distances between the injecting sources and the
QPC). This clearly shows that any asymmetry in the interfer-
ometer (v1 �= v3 and/or dA �= dB) influences the effective time
delay �13 at the QPC. This time delay appears in Eq. (11) via
the photoassisted probabilities �l (�13), given by

�l (�i j ) =
∣∣∣∣ ∑

m∈Z
pm p∗

m−l e
im��i j

∣∣∣∣
2

≡ | p̃l (�i j )|2, (12)

where pl are defined in Eq. (4). When the arrival times are
synchronized (�13 = 0), one finds S0(0) = 0, by exploiting
the property

∑
m pm p∗

m−l = δl,0. Thus, by measuring the noise
as a function of the time delay, a full suppression of the signal
is expected at �13 = 0. This is known as HOM dip or Pauli
dip [6].

The HOM noise takes a simple form when the injecting
sources are driven by a periodic train of Lorentzian voltage
pulses, each carrying a single electron, namely

V (t ) =
∑
k∈Z

L (t − kT ), L (t ) = 2h̄

ew

1

1 + (t/w)2
, (13)

where w is the width of the pulses. The Lorentzian drive L (t )
has a special role in the domain of electron quantum optics, as
it is known to generate pure single-electron states on top of
the Fermi sea, without any spurious neutral particle-hole pairs
[82–84]. Such single-electron states are known as levitons [3].
With the voltage (13), and in the limit of zero temperature, S0

reduces to [10,37]

S0(�13)
∣∣
θ=0 = 4e2

T
sin2(π�13/T )

sin2(π�13/T ) + sinh2(2πw/T )
. (14)

Moreover, the noise ratio R for levitons was predicted [10]
and confirmed [37] to maintain the same form as in Eq. (14),
independently of temperature. Another interesting feature of
the single-particle nature of levitons is that they allow one
to make a direct comparison with photonic HOM experi-
ments. Indeed, in the same way as HOM interference of two
single-particle bosonic states is related to the corresponding
wave function overlap [55], the HOM noise resulting from the
interference of two single-particle fermionic states |ψA〉 and
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|ψB〉 is given by

SHOM ∝ 1 − |〈ψA(t )|ψB(t )〉|2, (15)

where the overlap J = |〈ψA(t )|ψB(t )〉|2 is the coincidence
probability to find the two particles at different outputs of
the interferometer. For indistinguishable states, J = 1 and the
noise vanishes, as a consequence of the Pauli principle forcing
the two particles to exit the interferometer on different out-
puts. Such an expression can be found from (14) in the limit
w � T , where just a single pulse can be considered, instead
of a periodic train. One finds [8,10]

SHOM ≈ 4e2RT [1 − J (�13)]/T , (16a)

J (�13) = |〈ψA(t )|ψB(t )〉|2 = 4w2

4w2 + �2
13

. (16b)

Here, J (�13) is interpreted as the overlap of two levi-
ton wave functions ψA(t ) = ψlev(t − dA/v1) and ψB(t ) =
ψlev(t − dB/v3 + δ), with

ψlev(t ) =
√

w

π

1

t − iw
. (17)

For �13 = 0 (achieved, e.g., with δ = 0 and a symmetric
interferometer) the right leviton wave function ψB(t ) matches
the left leviton wave function ψA(t ) at all times. In this situ-
ation, the incoming states are perfectly indistinguishable, so
that the coincidence probability is exactly 1 and the HOM
noise vanishes. For �13 � w, keeping �13 < T , the right
and left leviton wave functions no longer overlap and we
are left with the independent partitioning of left and right
levitons, each contributing to the current noise by the amount
2e2RT/T .

The 100% visibility of the HOM dip as a function of �13 is
characteristic of electron antibunching as opposed to photon
bunching and is common to all voltage-generated fermionic
excitations, as Eq. (11) shows. However, previous experimen-
tal results in the quantum Hall regime at ν = 2 [30,33], as
well as more recent ones using voltage pulses [56], observed
imperfect dips and a reduced visibility of the HOM signal. The
central result of this paper is the discussion of a mechanism—
channel mixing—explaining this effect. Before coming to this
point, we recall some known results concerning interactions.

III. INTERACTING COPROPAGATING EDGE CHANNELS

Electron-electron interactions often play a relevant role
in the description of copropagating edge channels in the
integer quantum Hall effect. In particular, they are known
to affect the propagation of an injected electronic wave
packet, leading to its decomposition into charge and neu-
tral modes [16,29,33,85–87]. This is an instance of charge
fractionalization, a well-known phenomenon in various in-
teracting one-dimensional systems [88–93]. Fractionalization
was found to be a possible explanation [15] for the re-
duced visibility of HOM experiments performed with single
electrons injected from a driven quantum dot into quantum
Hall edge channels [30,33]. However, it was noted that if
the injected states are obtained by applying voltage pulses,
the HOM noise signal remains unaffected when the sources
are synchronized, even in the presence of interactions and

fractionalization [59]. In this section, we review these results
and generalize them, including the effect of possible further
dissipation channels. By this, we show that interaction is not
expected to be at the origin of the reduced visibility even in
this case. Note the later sections (Secs. IV and V) on mixing
effects do not require the material contained in the present
one, and can therefore be read independently of it.

A. Model of electron-electron interactions

We consider the pair of copropagating channels on the
upper edge in Fig. 1 (i = 1, 2). Including density-density in-
terchannel interactions, the two channels are modeled by the
following Hamiltonian density [41,94]:

H0 =
∑
i=1,2

h̄vi

4π
(∂xφ̂i )

2 + h̄u12

2π
(∂xφ̂1)(∂xφ̂2). (18)

Here, vi is the propagation velocity on channel i and φ̂i

are bosonic operators, satisfying the commutation relations
[φ̂i(x), φ̂ j (y)] = iπ sgn(x − y)δi j . They are connected to the
fermionic operators ψ̂i(x), annihilating an electron on channel
i at position x, via the bosonization identity

ψ̂i(x) = Fi√
2πa

e−iφ̂i (x), (19)

where Fi are Klein factors and a is a short-distance cutoff.
Furthermore, the charge density on channel i can be conve-
niently expressed as

ρ̂i = −e : ψ̂
†
i ψ̂i := − e

2π
∂xφ̂i. (20)

Finally, the coupling strength between the channels is de-
noted by the parameter u12. Note that we have neglected
intrachannel interactions, as they can be readily included in
a redefinition of the velocities vi. The Hamiltonian (18) can
be diagonalized by introducing a new basis via the rotation(

φ̂ρ

φ̂σ

)
=

(
cos χ sin χ

− sin χ cos χ

)(
φ̂1

φ̂2

)
. (21)

Here, χ is called mixing angle and can be expressed as

tan(2χ ) = 2u12

v1 − v2
. (22)

It ranges in the interval 0 � χ � π/4, where χ = 0 means no
interactions (u12 = 0), while χ = π/4 is achieved at maximal
coupling between the channels. The new fields φ̂ρ and φ̂σ are
the eigenfields of the problem and describe charge density
wave excitations propagating with velocities

vρ,σ = v1 + v2

2
± 1

cos(2χ )

v1 − v2

2
. (23)

Suppose now that the fields associated with the physical
channels have initial amplitudes φ̃1,2(0, ω). Here, we are using
the frequency representation

φ̃i(x, ω) =
∫

dt eiωt φ̂i(x, t ) (24)

and the argument x = 0 denotes the initial position where the
fields are evaluated. How do these amplitudes change after
a propagation length dA? To answer this question, one has
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first to consider the equations of motion for the eigenfields
(η = ρ, σ )

(−iω + vη∂x )φ̃η(x, ω) = 0 ⇒ φ̃η(x, ω) = ei ωx
vη φ̃η(0, ω) (25)

and then perform the change of basis to relate φ̃ρ,σ to φ̃1,2.
The result is the expression(

φ̃1(dA, ω)
φ̃2(dA, ω)

)
= S(dA, ω)

(
φ̃1(0, ω)
φ̃2(0, ω)

)
, (26)

where S(dA, ω) is called the edge-magnetoplasmon scattering
matrix. It reads [95]

S(dA, ω) =
(

c2 eiωτA
ρ + s2 eiωτA

σ cs(eiωτA
ρ − eiωτA

σ )
cs(eiωτA

ρ − eiωτA
σ ) s2 eiωτA

ρ + c2 eiωτA
σ

)
, (27)

where τA
ρ,σ = dA/vρ,σ are the times of flight associated with

the two different eigenmodes and we have introduced the
shorthand notation c ≡ cos χ , s ≡ sin χ .

Next, we consider the effect of an applied voltage acting on
the edge channels. This can be described by the Hamiltonian

HU = [ρ̂1(x) + ρ̂2(x)]U (x, t ), (28)

where U (x, t ) = �(−x)VA(t ) and VA(t ) is the voltage applied
to the upper-edge channels. In the absence of interactions, the
above term would result in the following time evolution of the
fermionic operators:

ψ̂i(x, t ) = ψ̂
(0)
i (x, t )e

ie
h̄

∫ t
−∞ dt ′VA(t ′−x/vi ), (29)

where the superscript (0) denotes the time evolution in the
absence of VA(t ). Thus, we see that the effect of a voltage
drive modifies the accumulated phase of the operators. Re-
markably, the same is true in the presence of electron-electron
interactions, which only lead to a modification of the voltage
appearing in the previous equation. Indeed, as discussed in
Ref. [13], a classical voltage generates a bosonic coherent
state, onto which interactions act as a frequency-dependent
beamsplitter via the edge-magnetoplasmon scattering matrix
(27). As a result, the outgoing state on channel i after a
propagation length dA is equivalent to the state generated by a
distorted voltage Ui(t ), such that its Fourier transform satisfies
Ũi(ω) = ∑

j=1,2 Si j (dA, ω)ṼA(ω). By using Eq. (27), one then
finds

U1(t ) = c2VA
(
t − τA

ρ

) + s2VA
(
t − τA

σ

)
+ cs

[
VA

(
t − τA

ρ

) − VA
(
t − τA

σ

)]
,

U2(t ) = s2VA
(
t − τA

ρ

) + c2VA
(
t − τA

σ

)
+ cs

[
VA

(
t − τA

ρ

) − VA
(
t − τA

σ

)]
. (30)

Notice that in the absence of interactions, one correctly recov-
ers Ui(t ) = VA(t − dA/vi ).

The above model can be modified to take into account
(unwanted) energy losses. Such a possibility is suggested by
some experimental results [29,96–98], where energy losses
after a given propagation distance were reported and had to
be taken into account to explain the observations. Here, we
follow Refs. [29,98,99] and phenomenologically introduce a
damping factor in the equations of motion (25), which become

[−i�(ω) + vη∂x]φ̃η(x, ω) = 0. (31)

Here, �(ω) = ω + iγ (ω) and γ (ω) is the damping factor. In
Ref. [29], the form γ (ω) = γ2ω

2 was assumed, whereas a lin-
ear dependence γ (ω) = γ1ω was shown to be the best choice
to explain the experimental data in Ref. [98]. It is also worth
mentioning that a different and more refined approach to in-
clude dissipation mechanisms in the context of copropagating
quantum Hall states was introduced in [100]. Independently of
the specific form of γ (ω), it is clear that in the presence of this
damping factor the scattering matrix (27) has to be modified
by replacing ω → ω + iγ (ω). Consequently, the voltages in
Eq. (30) are modified by replacing VA(t ) → WA(t ), where

WA(t ) =
∫

dt ′
∫

dω

2π
VA(t ′) e−iω(t−t ′ )e−γ (|ω|)(t−t ′ ). (32)

Note that in the absence of dissipation [γ (ω) = 0] one recov-
ers WA(t ) = VA(t ). We observe from the last equation that the
inclusion of a dissipative term in the model only leads to a
further modification of the outgoing voltages, compared to
Eq. (30). As we will see in the following, this modification
does not lead to a reduction of the visibility of the HOM dip.

B. HOM noise

We now consider the HOM interferometer sketched in
Fig. 1. It is clear that the discussion in Sec. III A can be
repeated identically for the lower-edge channels (i = 3, 4),
leading to voltages U3 and U4 which can be obtained, respec-
tively, from U1 and U2 in Eq. (30) by replacing A → B. This
allows one to evaluate the HOM noise, which can be written
as [14]

SHOM = (ev1)2RT
∫

�Q(t, t ′)dtdt ′, (33)

where the integrand is given by

�Q(t, t ′) = 2G (e)
F (t ′ − t )G (h)

F (t − t ′)

× {1 − cos[ϕA(t, t ′) − ϕB(t, t ′)]}. (34)

In this equation, we have introduced the equilibrium cor-
relation functions G (e)

F (t ) = 〈ψ̂†
1 (0)ψ̂1(t )〉F and G (h)

F (t ) =
〈ψ̂1(t )ψ̂†

1 (0)〉F and the phases ϕA/B are due to the modified
voltages taking interactions into account. Explicitly, they read

ϕA/B(t, t ′) = e

h̄

∫ t

t ′
U1/3(τ )dτ. (35)

By using Eq. (30) to calculate these phases and recall-
ing Eq. (1), one immediately realizes that, in the case of
a synchronized emission (δ = 0) and if no asymmetry is
present in the interferometer (dA = dB, v1 = v3, v2 = v4),
then ϕA(t, t ′) = ϕB(t, t ′) and the HOM noise (33) vanishes.
Note that the mentioned potential asymmetries are typically
absent due to experimental design. The vanishing of the HOM
noise at δ = 0 is not only valid for the simplest interaction
model in Eq. (18), but also for the extended version including
dissipation. It also applies to modified models with long-range
interactions [13], because, in that case, interaction effects
certainly give a more complicated voltage modification at
the end of the interacting region, but this does not change
the finding ϕA(t, t ′) = ϕB(t, t ′) for a synchronized emission.
We hence conclude that Coulomb interactions between the
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channels do not explain a reduced visibility of the HOM dip.
For these reasons, we neglect interactions in the rest of the
paper and we focus on a different mechanism that instead
is able (by itself) to explain such an effect, namely channel
mixing induced by interchannel tunneling. As a further reason
to neglect interactions, we also emphasize that the descrip-
tion presented in the rest of this paper can already explain
recent experimental results where a reduced HOM dip is
reported [56].

We conclude this section by mentioning that the im-
pact of interactions on the HOM noise strongly depends
on how the injected states are generated. As discussed,
e.g., in Refs. [13,16], voltage-generated states are coher-
ent states for edge magnetoplasmons and hence they do
not suffer from decoherence, leading to a full HOM dip.
On the contrary, single electrons injected from driven quan-
tum dots quickly relax at energies close to the Fermi level
before undergoing fractionalization [16]. In this case, in-
teractions are important and can explain a reduced HOM
dip [15].

IV. MIXING INDUCED BY INTERCHANNEL TUNNELING

This section is dedicated to a qualitative understanding of
mixing and is divided into two parts. First, in Sec. IV A, we
discuss the effect of mixing two copropagating chiral edge
channels in the quantum Hall regime when a dc or an ac
voltage is applied to the contact feeding the two channels with
electrons (injecting contact). For simplicity, we will consider
a single pointlike scatterer mixing the two edge channels. We
show that for an ac voltage applied to the contact, mixing
generates a photoassisted current noise in each channel which
vanishes for a pure dc voltage bias. Then, in Sec. IV B,
we consider the injection of single-charge levitons in the in-
put arms of the HOM interferometer, in order to understand
how mixing may affect the two-particle HOM interference of
single-electron quantum states.

A. Transport properties of two mixed copropagating
chiral channels

Consider two edge channels (i = 1, 2) emitted by the
same contact where a voltage is applied; see Fig. 2(a). At a
distance LA from the contact, a pointlike elastic scatterer
mixes the two edge channels, which then freely propagate.
We describe the effect of mixing by using again a scattering
approach, as discussed in Sec. II. We therefore introduce the
following unitary matrix

SA =
( √

TA i
√

RA

i
√

RA
√

TA

)
, (36)

which relates the fermionic operators before and after the
mixing point x = LA, in the same way as SQPC in Eq. (5)
relates the fermionic operators before and after the QPC.

1. Constant voltage bias

Let us first consider applying a dc voltage Vdc to the con-
tact. In this case, the photoassisted amplitudes (4) reduce
to pl = δl,0, which simplifies the expression (3) for the in-
coming fermionic operators. Then, the energy distributions

FIG. 2. (a) Two edge channels connected to the same ohmic con-
tact. At a distance x = LA from the contact, a mixing point is located.
It is characterized by a mixing strength RA = 1 − TA yielding the
probability of interchannel tunneling. (b) Special case of (a): When a
dc voltage is applied, one can ignore the mixing point and include
it in an equivalent ohmic contact, without changing the transport
and current noise properties. (c) When an ac bias is applied, the
ohmic contact can be replaced by two separate ohmic contacts, one
connecting the outer edge with a voltage shifted by the time delay
τ1 = LA/v1, and the second connecting the inner edge including the
time delay τ2 = LA/v2. A current noise results from the two fictitious
voltages not being equal when τ1 �= τ2. All panels are sketches of the
upper-edge channels in Fig. 1, before the QPC; the mixing point in
this figure corresponds to the black star in Fig. 1.

of electrons injected by the contact at x = 0 in channel i
are given by f1(E ) = f2(E ) = f (E − eVdc), where f (E ) =
[1 + exp(E/kBθ )]−1 is the equilibrium Fermi distribution at
temperature θ , taking the Fermi energy as the energy refer-
ence. As we anticipate that the temperature does not play an
important qualitative role, in the following we will choose
θ = 0 for simplicity. After mixing, the new energy distribu-
tions are f1,+ = TA f1 + RA f2 and f2,+ = RA f1 + TA f2. They
remain equal to f (E − eVdc) thanks to the unitarity of SA.
From this, we see that mixing has no consequence on dc
transport properties. In particular, mixing does not generate
current noise as equally occupied electronic states lead, by
antibunching, to the Pauli suppression of quantum partition
noise. We could then completely disregard the presence of the
mixing point and include it in an equivalent injecting contact
always biased by Vdc; see Fig. 2(b). However, this picture is
no longer appropriate when driving the injecting contact with
a time-dependent voltage.
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2. The ac voltage bias: Time-resolved current

Let us assume that an ac drive is applied to the contact
in Fig. 2(a). Even if the following discussion is valid for
an arbitrary periodic signal, one can take for concreteness
V (t ) = Vac cos(�t ), in which case one has pl = Jl (eVac/h̄�),
with Jl the Bessel functions of the first kind, and �l (�i j ) =
J2

l (2eVac sin(��i j/2)/h̄�).
As electrons propagate freely between the contact and

the scatterer, one sees from Eq. (3) that by a redefinition
of the Floquet amplitudes pl → ple−iE (t−x/vi )/h̄, the problem
becomes equivalent to having two separate ohmic contacts
placed immediately before the scatterer. These artificial con-
tacts, separately acting on channels 1 and 2, are respectively
biased by voltages V (t − τ1) and V (t − τ2), where τ1 =
LA/v1 and τ2 = LA/v2; see Fig. 2(c).

As a first ac transport property, it is interesting to see
how mixing affects the time-resolved current generated in
the outer and inner edge due to the cosine-wave potential
V (t ) = Vac cos(�t ) applied to the contact. In the absence of
mixing, the outer and inner ac currents are equal in amplitude
while their phase at a given point reflects the propagation
velocity of each channel. One has Ii(x, t ) = e2

h V (t − x/vi ). In
the presence of mixing one finds, for x � LA,

I1(x, t ) = e2

h

[
TAV

(
t − x

v1

)
+ RAV

(
t − τ2 + x − LA

v2

)]
,

I2(x, t ) = e2

h

[
RAV

(
t − τ1 − x − LA

v1

)
+ TAV

(
t − x

v2

)]
.

(37)

Right at the mixing point output, the two currents share equal
amplitude, Vac

√
1 − 2RATA[1 − cos(��τ )], a value smaller

than in the absence of mixing, and they present a relative
phase shift which not only depends on τ1 − τ2 but also on the
mixing strength.

3. Noise after the mixing point

For v1 �= v2, the two fictitious ac voltages in Fig. 2(c) are
not equal and we expect the generation of a finite photoas-
sisted shot noise (PASN) in the outer and inner currents, I1

and I2. Indeed, the corresponding zero-temperature current
noise spectral densities SI1 and SI2 after the mixing point are
given by

SI1 = SI2 = e2

π
�RATA

∑
l∈Z

|l|�l (�12), (38)

where �12 = τ1 − τ2. Notice that the noise in the previous
equation is equivalent to S22, as defined in Eq. (2). One thus
observes that a finite-frequency excitation on the original con-
tact is responsible for a finite partition noise due to mixing, in
contrast with the dc case (� = 0), where channel mixing does
not affect the dc transport and noise.

4. Energy density matrix

Another important quantity fully characterizing fermionic
states generated by an ac voltage bias is the energy density
matrix D(E ′, E ). Its measurement has been proved possible in
recent electronic quantum tomography experiments [31,38].

A calculation of this quantity requires the fermionic opera-
tors in energy representation. Considering the input fermionic
operators ψ̂i,in(LA, t ) before the scatterer, their energy repre-
sentation reads, using Eq. (3),

ψ̂i,in(E ) =
√

vi

2π h̄

∫ +∞

−∞
dt eiEt/h̄ψ̂i,in(LA, t )

=
∑
l∈Z

âi(E − l h̄�)pl e
iEτi/h̄. (39)

The quantum statistical average of the energy density matrix
for inner and outer states incoming on the scatterer writes

Di,in(E ′, E ) = 〈ψ̂†
i,in(E ′)ψ̂i,in(E )〉 − 〈ψ̂†

i,in(E ′)ψ̂i,in(E )〉off

=
∑

k,l∈Z
p∗

l−k ple
ik�τi f (E − l h̄�)δ(E ′ − E − kh̄�)

− f (E )δ(E − E ′). (40)

The term with the subscript “off” is the equilibrium Fermi
sea contribution with no ac voltage applied (i.e., obtained by
setting pl = δl,0). In Eq. (40), the nonzero diagonal terms
connecting energies separated by a multiple k of the photon
energy h̄� are typical of a photoassisted excitation of the
Fermi sea. The term k = 0, yielding the diagonal part of
Di,in(E ′, E ), is the energy distribution and does not contain
any information on the propagation times. Therefore, the inner
and outer input states share the same photoassisted energy
distribution:

f̃in(E ) = Di,in(E , E ) =
∑
l∈Z

|pl |2[ f (E − l h̄�) − f (E )]. (41)

Now, let us consider the output operators after the mixing
point. Using the scattering matrix (27), they are given by3

ψ̂+
1 (E ) = √

TAψ̂1,in(E ) + i
√

RAψ̂2,in(E ),

ψ̂+
2 (E ) = i

√
RAψ̂1,in(E ) + √

RAψ̂2,in(E ). (42)

This allows one to compute the output density matrix
D+

i (E ′, E ). We find, using RA + TA = 1, that the new energy
distribution f̃ +

i (E ) = D+
i (E , E ) is identical to that of input

states (and thus channel-independent):

f̃ +
i (E ) = f̃in(E ). (43)

The new energy distribution therefore displays, at zero tem-
perature, the same stepwise variation at energies El = l h̄�

as the one expected if mixing was not present. This has a
direct consequence when considering the setup in Fig. 3,
where the mixed edge channels meet at a beamsplitter with
another channel incoming from the opposite side and biased
by a dc voltage Vdc. Namely, the PASN due to partitioning by
the beamsplitter will show singularities when Vdc is a multi-
ple of h̄�/e. This means that the PASN Josephson relation
[53,58,101–103]

eVdc = kh̄�, k ∈ Z, (44)

3Here, we use the notation ψ̂+
i for the output operators after the

mixing point, instead of ψ̂i,out, which we keep for the operators after
the QPC.
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L A

FIG. 3. A beamsplitter is used to partition the excitations gen-
erated by a time-dependent voltage V (t ) on channel 1, while fully
reflecting those on channel 2. A dc voltage applied on the right
contact is used to probe the photoassisted shot noise in the presence
of mixing. The cross-correlation S13 between the outer edge currents
I1(t ) and I3(t ) exiting the beamsplitter is considered in the main
text. At the beamsplitter, outer channels 1 and 3 are transmitted with
probability T and reflected with probability R = 1 − T .

is not affected by channel mixing. Clearly, this strong result
reflects the elastic scattering property of the scatterer mixing
the outer and inner edge channels.

5. Photoassisted shot noise after a QPC

The last statement can be checked by a direct calculation
of the PASN that includes both the mixing in the input co-
propagating edge channels and the subsequent partitioning at
a beamsplitter, described by the scattering matrix (5). Notice
that here we are not yet considering a HOM configuration, as
one of the input sources is simply biased by a constant voltage,
used to probe the PASN generated by the other source; see
Fig. 3. We find the following cross-correlated noise:

S13 = e2�

π
RT

[
TARA

∑
l∈Z

|l|�l (�12)

−TA

∑
l∈Z

P1,l

∣∣∣∣l + eVdc

h̄�

∣∣∣∣ − RA

∑
l∈Z

P2,l

∣∣∣∣l + eVdc

h̄�

∣∣∣∣
]
.

(45)

Here, P1,l = P2,l = |pl |2 are the photoassisted probabilities
induced by the fictitious contacts acting on the outer and in-
ner channels, respectively biased by V (t − τ1) and V (t − τ2).
Moreover, �l (�12) is the photoassisted probability stemming
from an ac bias V (t − τ1) − V (t − τ2). Notice that �12 =
τ1 − τ2 is precisely the time delay between V (t − τ1) and
V (t − τ2). Equation (45) shows that the singularities in the
shot noise occurring for dc voltages obeying the Josephson
relation (44) are not affected by mixing before the beam-
splitter. Let us now comment on the three terms appearing
in Eq. (45). The first one leads to positive correlations. It is
due to mixing by the scatterer which makes the outer edge
incoming at the beamsplitter noisy. Like a thermal noise, it
has a bosonic character, leading to a positive contribution to
the cross-correlation. The second and the third terms give
instead negative correlations, which result from the parti-
tioning of electron-hole pairs photoexcited by the fictitious
voltages V (t − τ1) and V (t − τ2) of Fig. 2(c) and respectively

(a)

(b)

FIG. 4. A HOM interferometer where both sources inject levi-
tons and a mixing point is present on the left input arm. Contact A is
driven by a Lorentzian pulse L (t ), while a shifted pulse L (t − δ)
is applied to contact B. The resulting injected levitons are denoted
by the wave functions ψlev(t ) and ψlev(t − δ). The right- and left-
moving levitons propagate toward the electronic beamsplitter, where
they interfere. The two-particle interference manifests in the cross-
correlation between the outer edge currents exiting the beamsplitter.

transmitted with probability TA and RA. As P1,l = P2,l = |pl |2,
Eq. (45) simplifies to

S13 = −e2�

π
RT

[∑
l∈Z

|pl |2
∣∣∣∣l + eVdc

h̄�

∣∣∣∣ − TARA

∑
l∈Z

�l |l|
]
.

(46)

We observe from this result that mixing does not affect the
excess cross-correlated PASN �S13 = S13 − S13|Vdc=0, as it
just adds a finite, bias-independent offset to the total cross-
correlated noise. Finally, note that S13 is the current noise
observed at the outer output channels only, while in Sec. V
we will consider the total noise of the inner and outer edge
channels SRL.

B. Mixing and Hong-Ou-Mandel fermionic noise: Qualitative
approach with levitons

We now move to discussing how mixing can affect the
HOM shot noise. To this aim, we consider a qualitative pic-
ture based on levitons. As sketched in Fig. 4, we assume
that single-pulse Lorentzian voltages L (t ) and L (t − δ), see
Eq. (13), are applied to the left and right contacts, thereby in-
jecting identical levitons on both the inner and outer channels.
The current noise at the outputs of the outer edge channels
provides a measure of the two-particle HOM interference.

The mixing-free scenario has been discussed in Sec. II and
leads to the noise in Eq. (16a). Let us now consider a finite
mixing probability RA = 1 − TA due to the scatterer located
at x = LA. The left and right wave functions incoming at the
HOM beamsplitter are now given by

ψA(t ) = √
TAψlev(t − τ1 − τ ′

1) + i
√

RAψlev(t − τ2 − τ ′
1),

ψB(t ) = ψlev(t − δ − τB). (47)

Here, ψlev(t ) is the time-domain representation of the leviton
wave function; see Eq. (17). Moreover, we have introduced
the propagation time τ ′

1 between the mixing scatterer and the
left input of the QPC and the propagation time τB between the
right contact and the right input of the QPC. These two times
do not play a particular physical role and will be absorbed in
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a redefinition of the time t → t + τ ′
1 and of the HOM time

delay: δ → δ − (τB − τ ′
1). With this redefinition we get

ψA(t ) = √
TAψlev(t − τ1) + i

√
RAψlev(t − τ2),

ψB(t ) = ψlev(t − δ).
(48)

From this equation, we can qualitatively observe that ψA(t )
can never match ψB(t ) unless τ1 = τ2, namely when the in-
ner and outer propagation velocities are equal. In this case,
for δ = τ1 = τ2, perfect indistinguishability occurs and the
joint probability of finding two levitons in different outputs
is |〈ψA(t )|ψB(t )〉|2 = 1, so the HOM noise vanishes. For a
general situation with different propagation velocities (τ1 �=
τ2), the smallest finite mixing RA �= 0 lifts the HOM dip,
meaning that the HOM noise is never fully vanishing. For
|τ1 − τ2| > w we can even expect two HOM minima located
in the vicinity of τ = τ1 and τ = τ2, still having a nonzero
noise at each minimum. Indeed, using the representation of
fictitious contacts discussed above, one can use a gauge trans-
formation by subtracting from all contacts the same ac voltage
VB(t ) = L (t − δ). For δ = τ1, the HOM noise is obtained by
calculating the PASN where only the inner fictitious contact is
biased by a finite ac voltage equal to L (t − τ2) − L (t − τ1)
while the two remaining contacts are grounded. Similarly, one
finds the HOM noise close to the second minimum at δ = τ2

by evaluating the PASN while grounding both the fictitious
outer contact and the right contact and applying the voltage
L (t − τ1) − L (t − τ2) on the fictitious inner contact.

Finally, the qualitative picture just discussed is confirmed
by the full calculation of Sec. V, from which one gets the
following noise observed at the output contacts:

SHOM(δ) ∝ RT {TA[1 − J (δ − τ1)] + RA[1 − J (δ − τ2)]}
+ T 2RATA[1 − J (τ1 − τ2)]. (49)

Here, J (δ) is again the coincidence probability given by
Eq. (16b), which measures the overlap of the wave functions
of levitons incoming onto the beamsplitter in the mixing-free
scenario. For RA = 0 and TA = 1, only the first term in (49)
contributes and a full HOM dip is reached at δ = τ1, cor-
responding to the process in which the leviton injected on
channel 1 is transmitted at the mixing point and collides with
the other incoming from channels 3. Likewise, for perfect
reflection at the mixing point, RA = 1 and TA = 0, the only
contribution, i.e., the second term in (49), comes from the
process where the leviton injected into channel 2 is transferred
to channel 1 at the mixing point and then collides with the
incoming state injected into channel 3 (lower edge, outer
channel). Then a full dip occurs when δ = τ2. At finite mixing,
RA �= 0 and TA �= 0, both terms contribute and the HOM noise
does not vanish.

V. FULL HOM NOISE IN THE PRESENCE OF MIXING

We have shown in the previous section that when two co-
propagating channels are mixed, their ac transport properties
are modified: in particular, unlike in the dc case, current noise
is generated. We have then argued that a reduced visibility of
the HOM dip is expected. However, a precise expression for
the HOM noise in the presence of mixing, as provided in (49),

B

B

dA

dB

I1
out (t)

I4
out (t)

I3
out (t)

I2
out

(a)

(b)

(t)

1
2

1

dA

dB

I1
out (t)

I4
out (t)

I3
out (t)

I2
out (t)

2

FIG. 5. Setup for the evaluation of the full HOM noise in the
presence of mixing. (a) One mixing point is present on each edge.
Mixing is described by the scattering matrices SA and SB. (b) Con-
figuration with two mixing points (described by S1 and S2) on the
same edge. This second setting allows us to investigate the effect of
additional interferences.

cannot be obtained by a qualitative reasoning and requires a
more careful evaluation.

In this section, we therefore address the full calculation of
the HOM noise in the presence of mixing and present explicit
results in various configurations. Specifically, we consider the
settings sketched in Fig. 5. For the sake of generality, we
allow the HOM interferometer to be asymmetric; namely, we
consider different distances (dA and dB) from the injecting
contacts to the central QPC. Finally, as far as mixing points
are concerned, we investigate three possibilities. The first one,
considered in Sec. V A, was already sketched in Fig. 4, where
a single mixing point is present in one edge only. Here, the
difference with Fig. 4 is that we consider generic periodic
sources instead of the injection of levitons. The second case,
described in Sec. V B, is shown in Fig. 5(a), where one mixing
point is present on each edge, at distances LA and LB from
the corresponding injecting contact. These mixing points are
characterized by scattering matrices SA, given in Eq. (36),
and SB having an identical expression, with TA → TB and
RA → RB. In the third case, drawn in Fig. 5(b) and addressed
in Sec. V D, two mixing points are present in the same edge,
respectively located at positions L1 and L2 from the injecting
source. As before, the mixing points are described by scat-
tering matrices S1 and S2, parametrized as in (36), but with
transmissions T1 and T2, respectively.

The reasons why we choose these three configurations are
the following. First, the case of a single mixing point in one
input arm only (Sec. V A) provides the minimal model able to
explain a reduced HOM dip. Then, in a realistic setup mixing
is expected in both input arms, motivating us to consider
the configuration discussed in Sec. V B. Finally, in Sec. V D
we provide the simplest example that illustrates the effect of
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consecutive mixing points in the same input arm, showing that
this leads to additional interference terms. More complicated
scenarios are beyond the scope of this work and, importantly,
our results already provide a sensible explanation of recent
experimental data [56].

A. Single mixing point

If a single mixing point is present, say in the left incoming
arm of the interferometer, SB = 1. In this case, we find

SHOM = T 2TARAS0(�12) + RT TAS0(�13)

+ RT RAS0(�23), (50)

where the effective time delays appearing in the S0 functions
are

�12 = LA

v1
− LA

v2
, (51a)

�13 = δ + dA

v1
− dB

v3
, (51b)

�23 = δ + LA

v2
+ dA − LA

v1
− dB

v3
. (51c)

In these expressions, the subscripts in �i j indicate that
the excitations responsible for the contribution to the noise
associated with S0(�i j ) are injected into channels i and j.

Some comments about the result (50) are appropriate. First,
it reduces to Eq. (10) in the absence of mixing (TA = 1 and
RA = 0). Second, we note that when dA = dB, v3 = v1, and
for the injection of levitons, Eq. (50) reproduces (after a suit-
able redefinition of the HOM delay δ) what we anticipated
in Eq. (49). Third, the structure of Eq. (50) makes the in-
terpretation of the result straightforward. Indeed, we observe
that the total HOM noise is composed of a combination of
independent HOM noises of the form (11), each with its own
time delay, depending on the different paths that the colliding
electrons took to arrive at the QPC. For instance, the term
involving the delay �13 is the simplest and originates from
electrons being injected in channels 1 and 3 and remaining
in the same channels when passing through the respective
mixing point. Similarly, the term associated with �23 comes
from the collision of an excitation injected into channel 3 and
propagating directly to the QPC and an excitation injected into
channel 2 and transferred to channel 1 at the mixing point at
distance LA from the source. The difference in the times of
flight of these two paths is exactly given by �23. A sketch
illustrating such paths is provided in Fig. 6(a). Finally, the
coexistence of three different terms in Eq. (50) shows that the
presence of mixing is able to introduce a “which-path” infor-
mation (encoded in the different time delays), thus leading to
an overall breaking of indistinguishability and a reduction of
the HOM dip.

Such a reduction can indeed be easily understood from
Eq. (50): it is sufficient to recall that the function S0 van-
ishes when its argument does. Then, it is clear that in the
presence of mixing and if channels propagate with different
velocities v1 �= v2, it is not possible to synchronize all arrival
times at the QPC and this results in a never vanishing noise.
Clearly, the amount by which the HOM dip is reduced de-
pends both on the difference in the time delays (51), but also

FIG. 6. Sketch of two paths contributing to the HOM noise (52).
In both examples, the times of flight for each part of the paths
are indicated, together with the required transmission and reflection
probabilities with which excitations are scattered at each mixing
point and at the QPC. In (a) the total time delay is �23 and the
probability of such a collision is RT RATB, while in (b) one finds �24,
with probability RT RARB. All terms in (52) can be understood in this
way.

on the mixing strength that modifies the relative weight of the
three terms in Eq. (50).

B. Two mixing points in different arms

As expected from the discussion of Sec. V A, the addition
of a second mixing point in the other arm of the interferom-
eter, see Fig. 5(a), introduces more independent HOM-like
contributions to the total noise, because more possible paths
from the sources to the QPC are present. The total HOM noise
in the presence of two mixing points as in Fig. 5(a) is found
to be

SHOM = RT TATBS0(�13) + RT TARBS0(�14)

+ RT RATBS0(�23) + RT RARBS0(�24)

+ T 2RATAS0(�12) + T 2TBRBS0(�34). (52)

Here, some of the effective time delays �i j are already given
in Eq. (51). The remaining ones read

�14 = δ + dA

v1
− LB

v4
− dB − LB

v3
, (53a)

�24 = δ + LA

v2
+ dA − LA

v1
− LB

v4
− dB − LB

v3
, (53b)

�34 = LB

v3
− LB

v4
. (53c)

Once again, these time delays do not just contain the bare
time shift δ between the injecting sources, but also other
asymmetry factors due to different propagation lengths in the
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interferometer and velocity mismatches among the different
channels.

The origin of the various terms in Eq. (52) is the following.
Since the HOM noise is the cross-correlation of currents IR

and IL, given in Eq. (7), one has in general SRL = S12 +
S13 + S24 + S34. However, S24 = 0 because channels 2 and
4 are fully reflected at the QPC and therefore do not con-
tribute to the partition noise. In the remaining terms, S13

leads to the first two lines in Eq. (52), plus two additional
terms: −RT RATAS0(�12) and −RT TBRBS0(�34). Instead,
S34 = T TBRBS0(�34) and S12 = T RATAS0(�12), so that they
combine with the corresponding terms from S13 to yield the
last line of (52). Note that the terms proportional to T 2 would
be present even in the absence of the central QPC. Indeed,
these contributions are uniquely due to mixing, that makes
the input channels of the interferometer noisy. In contrast, the
terms involving the HOM time delay δ require the presence of
the QPC.

As noted in Sec. V A, we can interpret every term in
Eq. (52) by considering the associated time delays resulting
from one of the possible paths that the colliding excitations
follow from the source to the QPC. This is shown in Fig. 6.
Compared to Eq. (50), here more terms appear in the total
HOM noise, due to the presence of the second mixing point.
In the following, we discuss some results for the case of
a symmetric interferometer with dA = dB. Furthermore, we
assume that the velocities on the outer channels 1 and 3
are equal, v1 = v3 = vout and, similarly, v2 = v4 = vin for the
inner channels. In most of the plots, we consider a cosine drive

V (t ) = V0[1 − cos(�t )], (54)

injecting on average q electrons per period into the edge
channel, with

q = eV0

h̄�
. (55)

When q = 1, one electron per period is injected. However, a
cosine drive does not generate a purely electronic excitation,
unlike Lorentzian pulses. In Fig. 7, we show the normalized
HOM noise in a scenario where mixing occurs at the same dis-
tance in both edges (LA = LB). In both (a) and (b), we clearly
observe that the HOM noise never vanishes and the contrast
of the HOM dip is thus reduced. The difference between the
two plots is that in (a) we have considered a weak-mixing
scenario, with RA = RB = 0.1, while in (b) the channels are
more strongly mixed (RA = RB = 0.5). As is intuitively clear,
the stronger the mixing, the more the contrast in the HOM
dip is reduced. This is because when mixing is strong, all
the terms in Eq. (52) are relevant, each having its own time
delay. On top of this, we also notice that by increasing the
beamsplitter transmission, the contrast is further reduced. This
is because, when T is large, the terms proportional to T 2 in
Eq. (52) are dominant. But those terms do not depend on
the time delay δ, see Eq. (53), which makes the modulation
of the HOM noise as a function of δ very weak. As a last
comment in Fig. 7, we notice that the curves are symmetric
with respect to δ = 0 and have a minimum at that point. This is
a consequence of the specific symmetric choice of parameters
(LA = LB, TA = TB). By relaxing this condition, the minimum

(a)

(b)

FIG. 7. Normalized HOM noise as a function of the time delay
δ between the sources VA(t ) and VB(t ) and for different values of
the QPC transmission T . Both sources are sinusoidal and inject on
average q = 1 electrons per period; see Eq. (55). (a) Weak-mixing
scenario, with RA = RB = 0.1. (b) Strong-mixing case, with RA =
RB = 0.5. In both (a) and (b), we considered dA = dB = 12 μm, θ =
30 mK, LA = LB = 6 μm. Finally, the velocity mismatch is vout =
1.1vin, with vin = 3 × 104 m/s, and the driving frequency is 14 GHz.

of the HOM noise can drift both toward positive and negative
values of δ and asymmetries may appear as well (not shown).

By increasing the distances LA,B from the sources to the
mixing points, the effective time delays (53) differ more and
more, resulting in a decrease of the HOM contrast. This is
seen in Fig. 8, where the visibility of the HOM dip is shown
as a function of LA and LB. The visibility is defined as

V = maxδ (SHOM) − minδ (SHOM)

maxδ (SHOM) + minδ (SHOM)
. (56)

In Fig. 8, we observe that indeed an increase of both LA and
LB leads to a decrease in the visibility.

C. Influence of the pulse width

Until now, all the results have been shown by considering
a cosine drive, see Eq. (54). Apart from the frequency �, this
drive only has one additional parameter, namely the ampli-
tude V0 determining the average injected charge per period.
Another important feature that can influence the HOM noise
is the width of each pulse with respect to the period. For this,
other drives than the cosine voltage (54) must be considered.
Here, we choose a periodic train of Lorentzian pulses L (t ),
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FIG. 8. Visibility V of the HOM signal, see Eq. (56), as a func-
tion of the positions LA and LB of the mixing points along the
edges. In this plot, we set T = 0.7, vout = 1.2vin, and a strong mixing
RA = RB = 0.5. All other parameters are as in Fig. 7.

see Eq. (13), whose width is parametrized by w. Thanks to
this additional parameter, important qualitative differences in
the HOM signal can be observed compared to Fig. 7, namely
the appearance of multiple minima (of different height) in
the HOM noise in the presence of mixing. This effect is
best observed for the symmetric case LA = LB = L. Under
this condition (and recalling that we have assumed v1 = v3 =
vout, v2 = v4 = vin, and dA = dB), we find from Eq. (53) that
�13 = �24 = δ, while �14 = δ + L(v−1

out − v−1
in ) and �23 =

δ − L(v−1
out − v−1

in ). As already mentioned, the remaining time
delays �12 and �34 are independent of δ and therefore the
associated terms do not contribute to the δ-dependent modu-
lation of the HOM noise. Because �13 = �24 = δ, the terms
in (52) containing these delays share the same minima (for
δ = kT , k ∈ Z) and maxima (for δ = (2k + 1)T /2, k ∈ Z),
and may only differ in amplitude. On the other hand, the two
terms associated with �14 and �23 have minima that shift
in opposite directions when increasing L and/or the velocity
mismatch. If these minima become sufficiently well separated
within a given period of the drive, a local minimum in the full
HOM signal may occur in correspondence of ±L(v−1

out − v−1
in ).

The other condition for this to happen is that the minima in the
terms containing �14 and �23 are well localized. This happens
for narrow excitations, with a small width compared to the
driving period. We illustrate this effect in Fig. 9.

Our findings suggest that there might be an alternative
interpretation of previous results, where the appearance of
side dips and a nonvanishing central HOM dip were attributed
to fractionalization [15,30,80]. Indeed, we have shown (at
least qualitatively) that mixing is able to produce both these
features. This constitutes a starting point for a quantitative
comparison with experimental data. For completeness, we
remind the reader that in the experiments in [30,80] the ex-
citations were injected into the outer edge channel only.

(a)

(b)

(c)

(d)

FIG. 9. Appearance of side dips in the HOM noise due to mixing.
In this figure, we have chosen a periodic train of Lorentzian pulses
L (t ), see Eq. (13), with width w/T = 0.05. In the top row, different
terms contributing to the HOM noise (52) are plotted separately.
The delays �i j in the legend are shorthand notations for S0(�i j ).
The bottom row shows instead the total HOM noise. For the left
column, we have chosen LA = LB = 2 μm, while in the right column
LA = LB = 6 μm. For both rows, TA = TB = 0.5 and T = 0.3. All
other parameters are the same as in Fig. 7. In (a), the minima of
the terms involving �24 and �23 are not separated enough and the
corresponding total HOM noise (b) then only shows a single dip. In
(c), instead, a greater separation of these minima is responsible for
the appearance of side dips in the HOM noise (d).

D. Two mixing points on the same edge

We now address the final step of our analysis and derive an
exact expression for the noise in the case of two mixing points
on the same edge, for arbitrary mixing strength. Let us con-
sider the setup sketched in Fig. 5(b). Here, the main difference
compared to Sec. V A is the larger number of possible paths
incoming at the beamsplitter. This difference is reflected in the
form of the HOM noise, which is not as simple as Eq. (50). In
fact, we find the following decomposition:

SHOM = Sa + Sb + Sc + Sd, (57)

where the different contributions arise from the collision of
distinct types of paths involving different time delays, as we
now explain. The first term, Sa, reads

Sa = 2T 2T2T1R2R1S0(�) + RT
[
T2T1S0(�13)

+ T2R1S0
(
�1

23

) + R2T1S0
(
�2

23

) + R2R1S0(� + �13)
]

+ T 2[T 2
2 R1T1S0

(
�1

12

) + T 2
1 R2T2S0

(
�2

12

)
+ R2

1T2R2S0
(
� + �1

12

) + R2
2T1R1S0

(
�1

12

)]
, (58)

where �13 is given in Eq. (51) and

� = (L2 − L1)
(
v−1

1 − v−1
2

)
, (59a)

�1,2
12 = L1,2

(
v−1

1 − v−1
2

)
, (59b)

�1,2
23 = �13 + L1,2

(
v−1

1 − v−1
2

)
. (59c)
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(a)

(b)

FIG. 10. (a) Paths contributing to the term Sb in (60). The blue
line represents a process weighted by probabilities T1,2, while the red,
dashed lines are weighted by probability amplitudes r1,2 = √

R1,2

and t1,2 = √
T1,2. Notice that the solid blue line results from a combi-

nation of two identical dashed lines, each weighted by a probability
amplitude. Taken together, the paths in (a) produce one of the terms
in Eq. (60). (b) One of the possible pairs of paths contributing to
Sd in Eq. (62). Specifically, the drawn paths generate the term with
Z (�13, � + �13). Indeed, the two arguments of the function Z are
the difference in time of flight between paths of the same color.

Each term in Eq. (58) can be interpreted by identifying
paths of the same type of those shown in Fig. 6 and calculating
their arrival time delay.

Next, Sb can be expressed as

Sb = T 2√T2T1R2R1(R2 − T2)(T1 − R1)X (�). (60)

It arises from the combination at the output of the interferom-
eter of paths as those sketched in Fig. 10(a). Here, we have the
blue line representing a direct path and the red, dashed ones
standing for an interfering path. By calculating the difference
in the times of flight between the two red lines, one precisely
finds �, see Eq. (59a), which is the parameter entering the
function X , whose explicit expression is reported in the Ap-
pendix. It is important to notice that Sb is independent of
the time delay δ between the injecting sources. Therefore,
it affects the visibility of the HOM signal by modifying the
denominator of Eq. (56) only.

The third term, Sc, arises from current fluctuations asso-
ciated with a pair of paths like the dashed ones in Fig. 10(a).
There are only a few terms with this origin, and the final result
has the simple expression

Sc = 2T 2T2T1R2R1Y (�). (61)

The function Y is explicitly reported in the Appendix, but the
presence of the time delay � is again intuitively understood by
considering the difference in times of flight in the amplitudes
of the interfering paths; see Fig. 10(a). Since Sc is independent
of δ, it affects the visibility in Eq. (56) is the same way as Sb.

Finally, Sd is given by

Sd = −T 2T2T1R2R1
[
Z

(
�2

12,� + �2
12

) + Z
(
�1

12,�
1
12

)]
+ RT

√
T2T1R2R1

[
Z

(
�1

23,�
2
23

) − Z (�13,� + �13)
]

+ T 2√T2T1R2R1
[
T1(T2 − R2)Z

(
�1

12,�
2
12

)
+ R1(R2 − T2)Z

(
�1

12,� + �1
12

)]
. (62)

As shown in Fig. 10(b), each of the terms in the previous
equation can be described in terms of a pair of interfer-
ing paths that combine at the output of the interferometer
and produce current fluctuations detected in the HOM noise.
While referring the reader to the Appendix for the full ex-
pression of Z , it is worth mentioning here that the two
time delays appearing in this function can be understood by
considering the different pairs of interfering paths. For in-
stance, with the help of Fig. 10(b), one can notice that the
difference in times of flight in the red paths is given by
� + �13, while the blue ones are delayed by �13. Moreover,
by considering the transmission and reflection amplitudes, one
also finds that the process in Fig. 10(b) contributes with a
probability RT

√
T2T1R2R1, which is precisely the prefactor of

the function containing the above-mentioned time delays. We
conclude this section by comparing the exact result (57) in
the presence of two mixing points on a given edge, Fig. 5(b),
with a configuration with a single mixing point on the same
edge, namely Fig. 5(a) with SB = 1. Furthermore, we assume
the position LA of the mixing point in the single-point setup
to be equal to the position L1 of the first mixing point in the
two-point configuration. Likewise, we take TA = T1; in this
way, the two settings simply differ by the addition of the
second mixing point, located at L2. With these assumptions,
we investigate how the visibility of the HOM dip changes due
to the addition of the second mixing point.

The result is shown in Fig. 11, where we plot the ra-
tio V2mp/V1mp between the visibility in the two- (V2mp) and
single-point configurations (V1mp). This ratio is shown as a
function of the position L2 > L1 of the second mixing point,
for different positions L1 of the first one. Because of the larger
number of terms in Eq. (57) compared to Eq. (50), it is natural
to expect a reduction of the visibility when two mixing points
are present. Indeed, more terms containing the function S0

need to be synchronized in order to retain a good visibility
and this is more difficult if more time delays are present.
This expectation is confirmed for a generic choice of the
parameters in the case of weak mixing, shown in Fig. 11(a).
Interestingly enough, however, in the strong-mixing case it is
possible to have a better visibility with two mixing points than
with one only, at least when L2 is close to L1; see Fig. 11(b).
This is because the terms Sb and Sd, unlike those in Eq. (58),
can become negative. Apparently, in the strong-mixing regime
and for L2 close to L1 the negativity of the interference terms
is enough to compensate the otherwise larger positive value of
the contribution Sa, eventually leading to a better visibility of
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(a)

(b)

FIG. 11. Comparison of the visibility of the HOM dip in the case
with two (V2mp) or a single mixing point (V1mp). (a) Weak-mixing
regime, with TA = T1 = T2 = 0.9. (b) Strong-mixing regime, with
TA = T1 = T2 = 0.5. In all plots, we have chosen T = 0.5 and LA =
L1, depending on the different curves, as specified in the legend. The
visibility ratio V2mp/V1mp is plotted as a function of L2, for L2 > L1.
All other parameters are the same as in Fig. 7.

the HOM dip compared with the setup with a single mixing
point.

VI. CONCLUSIONS AND OUTLOOK

We have investigated the influence of channel mixing in
fermionic Hong-Ou-Mandel experiments in the integer quan-
tum Hall regime at filling factor ν = 2. We have shown
that tunneling events between the copropagating edge chan-
nels where the injected electronic excitations propagate are
responsible for an incomplete suppression of the current
cross-correlations detected at the output of the HOM inter-
ferometer. In other words, the presence of mixing reduces the
visibility of the so-called Pauli dip (or HOM dip) occurring
when the two sources at the input arms of the interferome-
ter are synchronized. This is because interchannel tunneling
events mix excitations injected on different channels and
propagating at possibly different velocities in such a way that
there is always a delay in the arrival times of these excitations
at the beamsplitter, which results in a finite noise. On the
contrary, Coulomb interactions cannot account for a reduced
visibility of the HOM dip if the injected states are generated
via voltage pulses.

Possible directions for further investigations, well beyond
the purpose of this work, include the analysis of the combined
effect of interactions and mixing, as well as the challenging
task of considering a large number of mixing points and
studying the crossover toward the incoherent regime, where
the oscillations in the HOM signal are expected to fade out.
It would also be interesting to extend the analysis of HOM
interferometry to more complex edge structures including
counterpropagating modes and understand how this affects the
conclusions presented in this work.

Our results highlight the importance of mixing in the inter-
pretation of fermionic HOM experiments and are particularly
relevant for the analysis of future measurements, in particular
in the fractional quantum Hall regime [56]. There, a nonzero
HOM dip is expected to be directly related to the anyonic
statistics of the fractionally charged quasiparticles, allowing
one to extract their statistical angle. However, we have shown
in this paper that a reduction of the HOM dip can also be
attributed to mixing, which should be then properly taken into
account for a correct interpretation of the measurement out-
come. Finally, our results could find applications in graphene
which is, thanks to its robustness to decoherence, a very
promising test bed for Hong-Ou-Mandel experiments. Indeed,
it has recently been shown that any defect of the crystalline
structure can lead to mixing of copropagating edge states
[104]. Therefore, our approach should be carefully considered
in any graphene Hong-Ou-Mandel interferometer in the quan-
tum Hall regime.
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APPENDIX: DETAILED EXPRESSIONS FOR THE HOM
NOISE IN SECTION V D

In this Appendix, we provide further details concerning
the case of two mixing points in the same edge, discussed in
Sec. V D. In particular, we give the explicit expressions of the
functions X , Y , and Z contained in Eqs. (60)–(62), respec-
tively. They can all be expressed in terms of the following
integral:

I (�, l ) =
∫

dω f (ω) f (−ω − h̄�l )eiω�, (A1)

given by

I (�, l ) = h̄

�

el/θ̄ e−il�̄/2

el/θ̄ − 1

2π�̄θ̄

sinh(π�̄θ̄ )
sin(l�̄/2), (A2)
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where �̄ = �� and θ̄ = kBθ/h̄�. In special cases, it
reduces to

I (0, 0) = kBθ,

I (0, l ) = h̄�l eh̄�l/kBθ

eh̄�l/kBθ − 1
,

I (�, 0) = π�(kBθ )2

h̄
csch

(
πkBθ�

h̄

)
. (A3)

In terms of this integral, we have

X (�) = 4I (�, 0)Re

(
eiq��

∑
l∈Z

|pl |2eil�� − 1

)
, (A4)

where

pl = 1

T

∫ T /2

−T /2
dt eil�t e

ie
h̄

∫ t
−∞ dt ′Vac(t ′ ) (A5)

are the photoassisted amplitudes associated with the voltage
V (t ) = Vdc + Vac(t ) and

q = eVdc

h̄�
(A6)

represents the average number of particles injected in
one period of the driving. Next, the function Y is given
by

Y (�) = 2 Re

[
e2iq��

∑
l∈Z

e2i�l p̃l (�) p̃∗
l (−�)I (2�, l )

]

− 2I (2�, 0) (A7)

with the modified photoassisted amplitudes defined in
Eq. (12), namely

p̃l (�) =
∑
m∈Z

pm p∗
m−l e

im��. (A8)

In the limit of zero time delay, one finds

X (0) = Y (0) = 0. (A9)

Finally, we have

Z (�a,�b) = 2 Re

{
eiq��ba

∑
l∈Z

eil��baI (�ba, l )

× [ p̃∗
l (�a) p̃l (�b) + p̃∗

l (−�b) p̃l (−�a)]

}

− 4I (�ba, 0), (A10)

where �ba = �b − �a. This function is symmetric in its ar-
guments and for �a = �b = � reduces to

Z (�,�) = 2S0(�). (A11)

By using Eqs. (A9) and (A11), one can easily show that in
the limit L2 → L1, where the two mixing points merge into
a single one [see Fig. 5(b)], the HOM noise (57) reduces to
a form that is structurally identical to (50), but with renor-
malized prefactors. Furthermore, Eq. (50) is recovered when
T2 = 1, as it should be.
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