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We consider the C*-algebra €7 ,,,, which is a g-twist of two Cuntz—Toeplitz algebras. For
the case |g| < 1, we give an explicit formula which untwists the g-deformation showing
that the isomorphism class of £}, ,;, does not depend on g. For the case |q| = 1, we give
an explicit description of all ideals in 5%77”. In particular, we show that E%,m contains a
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unique largest ideal M. We identify €% ,,, /Mg with the Rieffel deformation of On ® O
and use a K-theoretical argument to show that the isomorphism class does not depend on
q. The latter result holds true in a more general setting of multiparameter deformations.

Keywords: Cuntz—Toeplitz algebra; Rieffel’s deformation; g-deformation; Fock represen-
tation; K-theory.
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1. Introduction

Since the early 1980s, a wide study of non-classical models of mathematical physics,
quantum group theory and noncommutative probability (see e.g. [5 211, 23] [38], 140}
50]) gave rise to a number of papers on operator algebras generated by various de-
formed commutation relations [6} 34} [39], a prominent example being the irrational
rotation algebra, also called the non-commutative torus [48]. A major question
for such objects is whether deformations exist and how they relate to the original
object.

Other objects of studies, closely related to the ones mentioned above, are
C*-algebras generated by isometries, such as Cuntz algebras, extensions of non-
commutative tori and their multiparameter generalizations, see, [9} 10} [16], [45] [46].
The problems of classification of representations, existence of faithful (universal)
representation, as well as the study of structure of corresponding C*-algebra and
dependence of C*-isomorphism classes on parameter of the deformations are among
the central ones in this area.

In our paper, we work with a certain class of C*-algebras generated by isome-
tries subject to deformed commutation relations. We study the structure of these
C*-algebras, present their faithful representations and show that some of the alge-
bras we deal with are independent of the deformation parameter of deformation.
The relation with Rieffel deformation of tensor products, see e.g. [30], has been
significant for our studies.

1.1. Context: Wick algebras

Let us put our work into a broader context. A general approach to the study of such
deformed commutation relations has been provided by the framework of quadratic
x-algebras allowing Wick ordering (Wick algebras), see [29]. It includes, among
others, deformations of canonical commutation relations of quantum mechanics,
some quantum groups and quantum homogeneous spaces, see e.g. [22] B5] [47, [53].
On the other hand, one can consider Wick algebras as deformations of Cuntz—
Toeplitz algebras, see [10] 17, [29].

For {TA, i,j,k,0 = T,dy C C, TE = T’ the Wick algebra W(T) is the *-

17 Jjio
algebra generated by elements a;, a}, j = 1,d subject to the relations

d
* 1 *
aja; = 61+ g 177 aay,.
k=1
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It depends [29] on the so-called operator of coefficients T', given as follows. Let

H =C? and ey, ...,eq be the standard orthonormal basis, then
d .
T: H®? 5{@2, Ter®e = Z Til]gei®€j-
i,j=1

It is a nontrivial and central problem in the theory of Wick algebras to de-
termine whether a Fock representation mpr of a Wick algebra exists, see [0]
20, 29] for some sufficient conditions: for instance, it exists, if T' is braided, i.e.
AT (Te1)A®T) = (T®1)(1T)(1®T), and if |T|| < 1; moreover, if
|IT|| < 1 then mpr is a faithful representation of W(T').

Another important question concerns the stability of isomorphism classes of the
universal C*-envelope®* W(T') = C*(W(T)). It was conjectured in [28]:

Conjecture 1.1. If T is self-adjoint, braided and ||T|| < 1, then W(T") ~ W(0).

In particular, the authors of [28] have shown that the conjecture holds for the
case ||T|| < v/2 — 1, for more results on the subject see [T7, B1].

In the case T = 0 and d = dim H = 1, the Wick algebra W (0) is generated by a
single isometry s, its universal C*-algebra exists and is isomorphic to the C*-algebra
generated by the unilateral shift, and the Fock representation is faithful. The ideal
Jin &, generated by 1 — ss* is isomorphic to the algebra of compact operators and
&/I~ C(SY), see [9]. When d > 2, the enveloping universal C*-algebra exists and it
is called the Cuntz—Toeplitz algebra O((io). It is isomorphic to C*(7wp,q(W(0))), so the
Fock representation of O{(jo) is faithful, see [I0]. Furthermore, the ideal J generated
by 1— Z?Zl s;s; is the unique largest ideal in OElO). It is isomorphic to the algebra
of compact operators on F;. The quotient Ofio) /7 is called the Cuntz algebra Og4.

It is nuclear (as well as (9510))7 simple and purely infinite, see [10] for more details.

1.2. Our objects of interest: The C*-algebras EF
In this paper, we study the C*-algebras € , generated by Wick algebras WEY
with the operator of coefficients 1" given by

TU1®U2:0, TU1®’U2:0, Ul,UQG(Cn, Ul,UQECm,

Tuv=q®u, Tveu=quuv, uecC" veC™m,

2Recall that given a *-algebra A, we denote by A = C*(A) its universal C*-algebra, if it exists,
i.e. if the set Rep A of bounded x-representations of A is non-empty and

sup |7 (a)|| < oo
mERep A

for any a € A. The universal C*-algebra A is determined by the universal property: there exists
a x-homomorphism 6: A — A such that for any C*-algebra B and *-homomorphism 8: A — B,
there exists a unique *-homomorphism 3: A — B, such that = S0 6.

2250017-3
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for H = C"®C™, |g| < 1. Note, that T satisfies the braid relation and ||T'|| = |¢| < 1
for any n,m € N. In particular, the Fock representation 7r 4 exists for |¢| < 1 and
is faithful on WE{ , for [q| < 1, see the above discussion on general Wick algebras.
The C*-algebra &£ ,, is generated by isometries {s;}7_,, and {t,}],, satisfying
commutation relations of the following form:

sis; =0, 1<i#j<n,
tits =0, 0<r#s<m, (1.1)
sjtrzqtrs;, 0<j<n, 0<r<m.

They are related to the C*-algebras of deformed canonical commutation rela-
tions S{q“}v qij = q]z’ ‘qu| S ]-7 7”] S {]‘a cee 7d}7 -1< qii < 17 given by

a;aj =051+ qijaa;, i,j=1.d (1.2)

In one degree of freedom (d = 1), G, exists for ¢ € [-1,1) and G, ~ & for any
g € (—1,1), see [28]. See also [2, [38] for more on this algebra. The C*-algebra G, 4 of
quon commutation relations with d degrees of freedom was introduced and studied
in [5 21} 23} [56] and one has Gg 4 ~ (93, for ¢ < v/2—1. The above multiparameter
version of quons was considered in [6, 39, 40]. For |q;;| < v/2—1 we get Gyg,,3 =~ 0Y.
Further related version have been studied in [4, [37, [46].

1.3. Sz,m in the casen=m =1

In the case n =1, m =1, VVElq’1 is generated by isometries s1, so subject to the
relations

* *
5182 = (4S257.

It is easy to see that its universal C*-algebra 8%1 exists for any |¢| < 1.

If [¢| < 1, the main result of [27] states that £f ; ~ 85(’)% = Ogo) for any |q| < 1.
In particular the Fock representation of €1 ; is faithful. Notice that the C*-algebra
8?’1 was the only known family of Wick algebras where Conjecture[[Tlholds (in this
case ||T|| < 1 if and only if |¢| < 1). In particular, even the isomorphism between
C*-algebra generated by three g-commuting isometries and 09 for all |¢| < 1 is still
not established.

The case |gq| = 1 was studied in [32] [46] [54]. Here, the additional relation

§281 = (5152

holds in €7 ;. It was shown that €{ ; is nuclear for any |¢| = 1. Let M, be the ideal
generated by the projections 1 — s;s7 and 1 — s2s5. Then 8?,1/Mq ~ Ag, where A,
is the non-commutative torus, see [48],

* * * * * * *
Aq = C*(ur,uz |ujur = wmu] =1, usug = ugus = 1, usur = quius).

2250017-4
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If ¢ is not a root of unity, then the corresponding non-commutative torus A, is
simple and M, is the unique largest ideal in € ;. Let us stress that unlike the case
lg| < 1, the C*-isomorphism class of 8?’1 is “unstable” with respect to q. Namely,
& =~ &P if and only if A,, ~ Ag,, see [32, 46, [54].

One can consider another higher-dimensional analog of £ ;. For a set {g;;}

3

d
i,7=1

of complex numbers such that |¢;;| < 1, ¢;; = Gji» ¢ = 1, and d > 2, one can

consider a C*-algebra €y, 1, generated by s;, s7, j = 1,d subject to the relations
sisj =1, 8;8j=qijs;s;.

The case |gij| < 1 was considered in [36], where it was proved that €4,y is
nuclear and the Fock representation is faithful. It turned out that the fixed point
C*-subalgebra of €, .} with respect to the canonical action of T< is an AF-algebra
and is independent of {g;;}. However, the conjecture that €, ) ~ €;p} remains
open.

The case |g;;| = 1 was studied in [16} [32] 46]. It was shown that €, y is nuclear
for any such family {g;;} and the Fock representation is faithful.

Let us note, see [46], that the C*-algebra €, .y with |g;;| = 1 is isomorphic to the
C*-algebra Gy, ;3 determined by deformed quons. In particular, this isomorphism
implies that the Fock realization of G4,y is faithful, so the Fock representation can
be considered as the universal representation of 9{% 1 We stress also that apart
the case [g;;| < 1 the C*-isomorphism class of €4, .} with |g;;| = 1 depends on the
C*-isomorphism class of the non-commutative torus Tyg;},

_ * . * oo —1 P
T{Qij} =C (ulv Uy = Uy UjUyg *quuﬂul)a

and is unstable at any point.

1.4. €7 ., in the case n,m > 2

In our paper, we focus on the study of £f ,, with n,m > 2 (see [43] for the case
n =1, m > 2) and we also consider a multiparameter case. In the one parameter
case, the analysis is separated into two conceptually different cases, |¢| < 1 and
lq| = 1.

If |g| < 1, we show that €9, ~ Eg’m = 0 where the latter is the Cuntz—

n,m — n—+m?
Toeplitz algebra with n 4+ m generators.
For the case |q| = 1, we stress out that &f ., is isomorphic to the Rief-

fel deformation of O%O) ® (952) implying in particular the nuclearity of &f .. We
show that it contains a unique largest ideal M,, and we consider the quotient
05 ® ¢Om = & ,,,/My, in fact, even for a multiparameter © = (g;;) with |g;;| = 1,
denoting the object 0,, ® 0,,. We show that 0,, ® ;0,, and 0, ® 0,,, are simple
and purely infinite. We use Kirchberg—Philips’s classification theorem, see [33] [44],
to get one of our main results, namely

0,®¢0m 20,80, and 0,860, >0,00,

2250017-5
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for any ¢,¢;; € C, |q| = |gi;| = 1. Next, we show that the isomorphism class of M
is independent of ¢ and consider € ,, as an (essential) extension of O, ® O,, by
M, and study the corresponding Ext group. In particular, if ged(n —1,m —1) =1,
this group is zero. Thus in this case, €2, and €], both determine the zero class
in Ext(0,, ® ¢Om, M).

We stress that unlike the case of extensions by compacts, one cannot immedi-
ately deduce that two trivial essential extensions are isomorphic. So, the problem

. . 1 .
of an isomorphism €7 ,, ~ &, . remains open.

1.5. Relation with deformed CCR

Finally, we present the relation of &, ,,,, 7, m > 2 with multi-component commuta-
tion relations, see [4l [14) [37].

Take k € (0,1) and ¢ € C, |g| = 1. Construct H = C* & C™, n, m > 2 and
define T: H®2 — H®2 a5 follows:

Tuis Q@uo = kus @uq, if either uy,us € C* or wuy,us € C™
Tu®v=qv®u, ifueC" veC™

Denote the corresponding Wick algebra by WE,‘{’ffn and its universal C*-algebra by
&k . This C*-algebra is generated by s, tr, j = In, r = I,m, subject to the
relations

578 = 0ij(1+ ksjsy),
t;ﬁtl = 5rl(1 + k’tlt;ﬁ), (13)

sjtr =q trsj.

m

Notice that in 4% with |¢| = 1, k € (0,1), the relations

trs; =qsjty, j=1,n, r=1m, (1.4)

hold as well. Indeed, for B;, = t,.s; — qs;t, we have B;TBJ-T = kQBjTB;T and
Bj,. =0.

Relations (L3)), (L) can be regarded as an example of system considered in [4}
14] in the case of finite count of degrees of freedom.

One can show, [46], that E;Ilﬁn ~ &1, for k € (0,1). Hence, in particular, one
of our main results says that the C*-algebra generated by (3] is an extension
of 0, ®O,,. One more important corollary of the isomorphism is that the Fock
representation of relations (L3]), (IL4]) is faithful.

Notice that for £k = +1 we get a discrete analogue of commutation relations for
generalized statistics introduced in [37].

2. The case |q| < 1

We start with some lemmas. Let A,, denote the set of all words in alphabet {1,n}.
For any non-empty p = (g1, ..., tr), and a family of elements by, ..., b, we denote

2250017-6
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by b, the product b,, ---b,,; we also put by = 1. In this section, we assume that
any word p belongs to A,,.

Lemma 2.1. Let Q = Y"1, s;s7, then

* *
E SHqu— g SuS,,.

|ul=F lv|=k+1
Proof. Straightforward. O

Lemma 2.2. For any x € €}, one has

m

Z spxsy|| < |lzl-

|ul=Fk

Proof. (1) First prove the claim for positive z. In this case one has 0 <z < ||z||1.
Hence 0 < s, zs)y, < ||z[[s.s],, and

Z spzsy || < [z - Z SuSh||-

ME |u|=Fk

Note that sisx = ., 1, A € Ap, [pu| = |\ = k, implying that {s,s}, | [u] = k}
form a family of pairwise orthogonal projections. Hence || 37, _ sus.[| = 1, and
the statement for positive x is proved.

(2) For any @ € €] . write A =3, |, suws), then A" =37 | s,a”s) and

* A * *
A*A = g Sur" TS,
[u|=Fk

Then by the proved above

1AI? = |A*A|| < [la*2]| = [|=[|*. O

Construct t; = (1 — Q)t;, | =1, m.

Lemma 2.3. The following commutation relations hold:

sity=0, i=1,n, 1=1,m,

=0, l#r Lr=1,m,

T

tit, =1—q?’Q >0, r=T,m.

Proof. We have s(1 — Q) = 0, implying that sit; = 0 for any i = 1,7, and
l=1,m.

2250017-7
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Further,
n n
bt =tr(1 = Q) =it =Y trsisiti =061 — Y |q*sititis]
=1 =1

=6.(1 — |¢*Q). O

Proposition 2.1. For any r = 1, m, one has

oo
t, = Z Z qksuﬂsz.

k=0 |u|=k

In particular, the family {s;,t,, i = 1,n, r = 1,m} generates EL -
Proof. Put M| = Z\u\:k qksuzrsz, k € Zy. Then

My =t —Qty =t — > susits,

[p|=1
and
Mp=" " su(1=Q)tysh = > 5,(1—Q)siit,
[ul=k |u|=Fk
= Z susttr — Z sﬂsZtr.
[u|=Fk [u|=k+1
Then
N
Shy = ZM,: =t — Z SusZtT =t, — ¢Vt Z sutrsz.
k=0 lul=N+1 lul=N+1

Since || 32, 1=n41 Sutrspll < [It-]| = 1 one has that S§, — ¢, in €] ,, as N = co. O

is realized by Hilbert space operators. Consider the left polar

Suppose that &
t, - ¢p, where ¢2 = 11, = 1 — |¢|>Q > 0, implying that #, is an

decomposition t,. =

q
n,m
(28

isometry and

frzfrc;legq r=1,m.

n,m?

Lemma 2.4. The following commutation relations hold:

=1m

st
|

=
.
|
—

3
<

) )

2250017-8
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and

Summing up the results stated above, we get the following theorem.

Theorem 2.1. Let £, = (1 — Q)t-(1 — |¢]2Q)~2, r = T,m. Then the family

{54, 8, Y7, | generates 3, and

n,m?

;85 =051, trtl =01, s,

2Q)z, so t, € C*(t,, Q), so by

Proof. It remains to note that t, = \
= 1,m, generate €} . |

Proposition 2] the elements s;, &, i =

_ ©

Corollary 2.1. Denote by v;, i = 1, n+m, the isometries generating 8%7 ndm -

Then Theorem 211 implies that the correspondence

v S, t=1,n, vUpgp—t,, T=1m,
extends uniquely to a surjective homomorphism p: €9~ — &4

Our next aim is to construct the inverse homomorphism ¢: €2 . — €9 . To
do it, put

~ § N
Q:Zvivi Wy = pir(1 = |g?Q)2, r=T,m.

Then wiw, =1 — |q\2©, and wiw; =0 if r # 1, r,l = 1,m. Construct

oo
k ~ %
:E g q VWY, r=1,

k=0 |u|=k

E

where p runs over A,,, and set as above v, = v, - --v,,. Note that the series above
converges with respect to norm in &%

Lemma 2.5. The following commutation relations hold:

% .
wrw = 0pl, viw, =qwevl, i=1n, rl=1m.

Proof. First, we note that v;w, =0, and w}v; =0 for any i = 1,n, and j = 1,m,
implying that

vswy =0, wrvs =0, for any nonempty § € A,, r=1,m.

Let [A| % |u|, A\, pt € Ap. If [A| > |/, then A = Ay with || = |u| and vivu = 65,05
Otherwise p = 11, || = |A| and viv, = drzvg. So, if [A| > |p| one has

uAW;, v/\v#wr =05 vAw vt wrv# =0,

2250017-9
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and if |p| > |A|, then
vAW, U,\Uuwr = O\pUAW, vgWrv, = 0.

Since vjvx = d,a1, if |u| = [A|, one has

N
wpue = g (5 ) (X v

k=0 |\|=k 1=0 || =t
N
= lim E E k@t vk, vt
N oo |q‘ r OV,
RI=0 [\|=F: a| =1
N
= lim E E 2k Wi, W
N oo |q‘ r YN Yy
k=0 |Al,|u|=k,

N N
_ . 2k ~ ~ _ . 2k
= Nhjgo E E lg|* vy wpvy, = ]\;gréo E E lg|* v, (1

k=0 |p|=k k=0 |u|=k
N
= lim E 2kv v — § 2k+2 U*
N—ooo ‘q| 27 ‘q| I
k=0 ‘p,‘:k: |p|:k+1
= lim [1—|¢*V*? E v vl | =1,
N—00 |q‘ B
[u|=N+1

— q[*Q?)v;;

Since w}w; = 0, r # [, the same arguments as above imply that wiw; =0, r # [.

For any non-empty p € A, write o(p) = 0 if |u| =1, and o(u) =

|p| = k > 1. Further, for any ¢ = 1,n, r = 1, m one has

* _ koox, 7%
V; Wy = E E q"S; U Wrv,

= v;"wr + Z Z qkéimvg(u)@w;(u)vf

k=1 |u|=

oo
_ E E k ~ x x *
=4q q 'UN’LUTUH'UZ' = q'lUT'Ui

k=0 |u|=k

Lemma 2.6. For any r =1, m, one has w, = (1 — @)wr.

Proof. First note that (1 — @)UZ =0, i = 1,n, implies that

(17@)1}# :Ov |.u‘ GAH? ,ll?é@

2250017-10
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Then

1-Qur=1-Q) (> > dvij

k=0 |u|=k

= errZ Z vuwr (17Q) Wy

k=1 |u|=k

To complete the proof it remains to note that @anrr =0, r=1,m. So,
1
Qwr = QUnJrr(l - ‘Q| Q)2 = o

Theorem 2.2. Let vy, i = 1,n + m, be the isometries generating 9 and CNQ =

o vivf. Put

~ ~\ 1 ~
Wy = Un+r(1 - |q‘2Q)2 and w, = Z Z quuwrvz

k=0 |u|=k

n,m?

Then

* * * ..
v; = 0;;1, wrw =61, viw, =quwyvy, 4,j=1,n, rl=1m.
Moreover, the family {v;, w,}"_,™ , generates %

=17

Proof. We need to prove only the last statement of the theorem. We have

Vnir = Wr(1 = (g2 Q)7 = (1 - Qur(1 — [gI?Q) "% € C*(wy, vi, i = L,n).

o _ 0
Hence v, wy, i = 1,n, 7 = 1,m, generate &, ,,. O

Corollary 2.2. The statement of Theorem and the universal property of €} .,
imply the existence of a surjective homomorphism : €] — S%M defined by

U(s;) =vi, Y(t,)=w, i=Ln, r=1m.
Now, we are ready to formulate the main result of this section.

Theorem 2.3. For any q € C, |¢| < 1, one has an isomorphism €%, ~ &9

Proof. In Theorem 1] we constructed the surjective homomorphism ¢: 8%7,” —
&1 defined by

@(vz) = Si, @(Un+r) = %\m 1= 1ana r= 17m~

Show that ¢: &%, — &Y from Corollary is the inverse of ¢. Indeed, the

n,m

equalities 1(s;) = v;, i = 1,n, imply that
P(1-Q)=1-Q.
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Then, since ¥(t,) = w,, we get

Y(t) =91 - Q) = (1 - Quy =@, r=Tm,

and

V(E) = (61— 1gPQ) %) = & (1~ |a’Q)* = vuyr, r=Tm.
SO, QZJQD(U’L) = 1/}(52) = Ui, QZJQD(U,,H,T) = 7/’(%\7*) = Un+r, 1= 17”7 r= ]-am’ and

Yo =ideo
Show that i) = idgs . Indeed,
(i) = p(vnr(1 = [a’Q)?) =11 — g*Q)2 =4, r=T.d.

Then for any r = 1, m, one has

=3 dow)e@)ev, => D qFsutesy,

k=0 |u|=k k=0 |u|=k

So, pi(si) = p(vi) = si, pP(tr) = p(wy) =tp, i =1,n, 7 =1,m. O

3. The Case |q| =1

In this section, we discuss the case |¢| = 1. Notice that for |¢| = 1, formula (LI
implies t;s; = gsitj, i = 1,n, j = 1,m. Indeed, one has just put B;; = t;8; — qsit;
and check that B;;B;; =0, i # j.

3.1. Auxiliary results

In this subsection, we collect some general facts about C*-dynamical systems,
crossed products and Rieffel deformations which we will use in our considerations.

3.1.1. Fized point subalgebras

First, we recall how properties of a fixed point subalgebra of a C*-algebra with an
action of a compact group are related to properties of the whole algebra.

Definition 3.1. Let A be a C*-algebra with an action v of a compact group G.
A fixed point subalgebra A7 is a subset of all a € A such that v4(a) = a for all
geG.

Notice that for every action of a compact group G on a C*-algebra A one
can construct a faithful conditional expectation E,: A — A" onto the fixed point
subalgebra, given by

E,@ = [ (a)ix
G
where )\ is the Haar measure on G.
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A homomorphism ¢: A — B between C*-algebras with actions « and g of a
compact group G is called equivariant if

poay=L40¢ foranygceg.

3.1.2. Crossed products

Given a locally compact group G and a C*-algebra A with a G-action «, consider the
full crossed product C*-algebra A x,, G, see [55]. One has two natural embeddings
into the multiplier algebra M (A x, G),

Z'AZ‘A—>M(.A><10¢G), igiG—>M(.A><1aG),
(ia(a)f)(s) = af(s), (ic(t)f)(s) = u(f(t7's)), t,s€G, acA,
for f € C.(G,A).

Remark 3.1. Obviously, i¢(s) is a unitary element of M (A x, G) for any s € G.
Recall that i determines the following homomorphism denoted also by i¢g

ig: C*(G) - M(A x4 G)
defined by

io(f) = /G F(8)ia(s)dA(s),

where ) is the left Haar measure on G.
Notice that for any g € C.(G,A) one has

(ic(£)g)t) = a9,

where -, denotes the product in A X, G. In particular, when A is unital we can
identify ig(f) with f -, 14, and in fact i¢ maps C*(G) into A X, G. Also notice
that

ic(t)ia(a)ict)™! = ia(a(a)) € M(A xq G).

If ¢ is an equivariant homomorphism between C*-algebras A with a G-action
« and B with a G-action 3, then one can define the homomorphism

eXNG:AXNGG—=BxgG, (exG)(f)t)=¢(ft), [feCA(G,A).
Let A be a unital C*-algebra with G-action a. Then t4: C — A,
LA(A) = )\]_A,

is an equivariant homomorphism, where G acts trivially on C. Since CxG = C*(G),
one has that

ta XG: C*(G) = A %, G.
In fact, in this case we have

ta X G =g, (3,1)
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where i¢: C*(G) — A x4 G is described in Remark Bl Indeed, for any g €
G.(G,A) one has

(ic(f) /f as(g(t™ts))dt

implying iq(f) = (ta @ G)(f) for any f € C*(G).

3.1.3. Rieffel’s deformation

In what follows, we recall some basic facts on Rieffel’s deformations. Given a C*-
algebra A equipped with an action a of R™ and a skew symmetric matrix © €
M, (R), one can construct the Rieffel deformation of A, denoted by Ae, see [I},[49].
In particular, the elements a € A such that z — ay(a) € C°(R™, A) form a dense
subset Ao in Aeg and for any a,b € Ay their product in Ag is given by the
following oscillatory integral (see [49]):

a-eb:= / / o) (a)ay (b)e*™ ) dydy, (3.2)

where (-, -) is a scalar product in R™. The mapping a2 : a — a.(a), a € Ao, extends
naturally to an action a® of R” on Ag.

Given an equivariant s#-homomorphism ¢ between C*-algebras A and B with
actions of R™, one can define a *-homomorphism ¢g : Ag — Bg, which is also
equivariant with respect to the induced actions. Moreover, ¢g is injective if and
only if ¢ is injective, see e.g. [30].

The next result follows directly from [30, Lemma 3.5].

Proposition 3.1. The mapping id: A — (Ae)—o is an equivariant x-isomorphism.

In what follows, we will be interested in periodic actions of R", i.e. we assume
that « is an action of T". Given a character y € T" ~ Z", consider

Ay ={a e A:a,(a) = x(2)a for every z € T"}.
Then
A @
XEZ™

where some terms could be equal to zero, and Ay, - Ay, C Ay, 1y,, Ay = A_y. So,
Ay, X € Z", can be treated as homogeneous components of Z"-grading on A.

For a periodic action o of R™ on a C*-algebra A and a skew-symmetric matrix
© € M,(R), construct the Rieffel deformation Ag. Notice that all homogeneous
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elements belong to As. Apply formula B2) to a € A,, b€ Ay

a-ob= / / 2O ®):p) e2mi(y:0) pe 27 (2:9) oy
—a-b / (2mi(v.0) / £27i{2,—0 () 270} gy 4y

=a- b/ e2m<y’q>5y7(~)(p) dy
= 27{O(P)d) 4 . p.
Thus, given a € A, and b € A, one has
a-eb=emOPag . p, (3.3)

Remark 3.2. Notice that Ag also possesses a Z"-grading such that (Aeg), = A,
for every p € Z™. Due to B.3)), we have a -9 b = a - b for any a,b € A4p, p € Z™.
Indeed, for any skew symmetric © € M,,(R™) and p € Z™, one has (@ p, +p) = 0.
The involution on (Ag), coincides with the involution on A,.

Consider a C*-dynamical system (A, T", «), and its covariant representation
(w,U) on a Hilbert space H. For any p € Z™ ~ T™, put

H, = {h € 3 | Ush = *™ P p}.
Then H = P,z Hp (see [55]).

Proposition 3.2 ([8, Theorem 2.8]). Let (m,U) be a covariant representation
of (A, T™, «) on a Hilbert space 3. Then one can define a representation mo of Aeg
as follows:

mo(a)¢ = MO D (a)g,

for every £ € Hy, a € Ay, p,q € Z™. Moreover, mg s faithful if and only if  is
faithful.

It is known that Rieffel’s deformation can be embedded into M (A x, R™), but
for the periodic actions we have an explicit description of this embedding.

Proposition 3.3 ([62, Lemma 3.1.1]). The following mapping defines an
embedding:

ing Ao = M(AXaR™), ing(ap) =ialap)irn(—O(p)),
where p € Z™ and a, is homogeneous of degree p.

Proposition 3.4 (30, Proposition 3.2;52), Sec. 3.1). Let (A, R™ «) be a C*-
dynamical system with periodic o and unital A. Put Ag to be the Rieffel deformation
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of A. There exist a periodic action o® of R™ on Ae and an isomorphism ¥ : Ag X e
R™ — A xq R™ such that the following diagram is commutative:

C*(R") = Go(R")

Ao X 0 R v A xq R?

Namely, a®(a) = a(a) holds for any a € A,, p € Z". Then it is easy to verify
that ige: Ao = M (A Xo R™) with dgn: R™ — M (A x4 R™) determine a covariant
representation of (Ag,R™, a®) in M (A x, R"). Hence, by the universal property
of crossed product we get the corresponding homomorphism

U: Ag Xge R™ — M(A xq R”).
In fact, the range of ¥ coincides with A x, R™ and ¥ defines an isomorphism

U: Ag X a® R" - A XaRn, (3.4)

see [30, 52] for more detailed considerations.
The following propositions shows that Rieffel’s deformation inherits properties
of the non-deformed counterpart.

Proposition 3.5 ([30, Theorem 3.10]). A C*-algebra Ag is nuclear if and only
if A is nuclear.

Proposition 3.6 ([30, Theorem 3.13]). For a C*-algebra A one has
K()(.A@) == K()(.A) and Kl(.A@) = Kl(.A)

3.1.4. Rieffel’s deformation of a tensor product

In this part, we apply Rieffel’s deformation procedure to a tensor product of two
nuclear unital C*-algebras equipped with an action of T.

Let A, B be C*-algebras with actions a and 8 of T. Then there is a natural
action a ® 8 of T? on A ® B defined as

(OL ® 5)901,902 (a ® b) = Qpy (a) ® 5902 (b)

Consider the induced gradings on A and B:

A=EP A, B=EP B,

P1EZL p2€Z

Then the corresponding grading on A ® B is

AB:= @ A, @B,

(p1,p2)t€Z?

In particular, a®1 € (A®B)p, 0 and 1®b € (AR B)(g,p,)t, Where a € A, and
be By,.
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Given ¢ = €270 consider

0, = . (3.5)
v,
2

One can see that the Rieffel deformation (A® B)e, is in fact the universal
C*-algebra A ® ¢, B, generated by all homogeneous elements

aE‘API7 bEsza p1>p2€Za
subject to the relations
ba = e*™iPoriP2 g, (3.6)

In what follows, we present more precise formulation and elementary prove of this
result. The discussion on universality properties for much more general deformation
of tensor product can be found in [4I].

First, construct x-algebra A & 0,B,

A®e,B=Clac Ay, be By, |ba=e>PP2qh p p,€Z)
It is easy to see that correspondence 7, determined by
ﬁ(a):a@)la ﬁ(b):]-@b’ aE‘API? bEsza plaPZEZa

extends to a *-algebra homomorphism 7j: A® e, B — (A® B)e,. Indeed, let e =
(1,0)%, e2 = (0,1)". Then for a € A,,, b € B,, one has

ii(a) -, i(b) = (a®1) -0, (1®b) = ™ PolrOucr 22 g @ | = e~i0OPIP2g @) |
and
i(b) -6, ii(a) = (1@b) 0, (a@ 1) = m#olr2Oaez mietlq g} — TieoPP2g @b,
Hence
i(b) e, fi(a) = > "P24(a) -0, (D).
In particular,
n(ab) = e TP b, a € A,, beB,, p1,p2€Z.

Since (A® B)e, is a C*-algebra, the set Rep.A® e, B is non-empty. Further,
take any 7 € Rep A & 0, B. Consider its restriction, m 4 to A. Then for any a € A,
one has

Im(a)ll = [Imala)ll < llall.a-
Analogously, ||7(b)|| < ||b]|s, b € By,. Hence for any z € A® o, B one has

sup  [|m(x)]] < o0
7r€RepA®@q‘B

and the universal C*-algebra A® ¢, B := C*(A® o, B) exists.
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Notice that one has the natural T2 action v on A ® o,B determined by
'-Yapl,apg (a : b) = 627F75(p1<,01+p2<,02)a : b7 ac ‘Apla b € BPQa p17p2 € Z

Proposition Bl implies the following result.

Theorem 3.1. One has a T?-equivariant x-isomorphism
A®e,B~ (AR B)e,.
Proof. The following argument is due to a private communication by P. Kaszprak.
By the universal property we extend the homomorphism
7: A®@q23 — (A®B)e,
to surjective homomorphism
n:A®e,B — (A®B)e,.

Evidently, 7 is equivariant with respect to T2 actions on A®e,B and (A®B)e,
described above.
To show the injectivity of 7, we construct homomorphism

P:ARB = (A®e,B)0,,
defined as follows. For homogeneous a € A,,, b € B,,, put
Pa®l)=ac (A®eo,B)-0,, P(1Rb)=be (ARe,B)-0,-
Ifaec Ay and b e By,, then
Y(a®1) _e, Y(1®Db) = e™PPP2qh = e TPIP2hg = (1@ D) o, P(a®1).

Here, we use the relation ab = e~?7?0P1P2pq which holds in A ® e, B.

Due to the universal property of tensor product, ¥ extends to a surjective ho-
momorphism from A® B to (A®e,B)_e,.

Recall that the equivariant homomorphism

n:A®e,B— (A®B)e,
is injective if and only if the induced homomorphism
n-e,: A®e,B)-e, = (A®B)e,)-0,
determined by
n-e,(a) =a®1l, n_e,b)=1®b, acA,, be By, p1,p2€Zy,

is injective. Recall also that, due to functorial properties of Rieffel deformation the
identity mapping

a®b—a®b, ac€A,, beB,,, pi,p2€Z,

extends to isomorphism ((A® B)e,)-e, ~ A® B.
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So, one has the following commutative diagram:

A®e,B)- (A®B)e,)-o,
o /
A®B
Since 1 is surjective, n_g, is injective. O

3.2. Nuclearity of €1

The nuclearity of (9510) ® (952) and Proposition immediately imply the following
corollary.

Corollary 3.1. The C*-algebra €L . is nuclear for any q € C, |q| = 1.

n,m

The nuclearity of €%, can also be shown using more explicit arguments. One
can use the standard trick of untwisting the g-deformation in the crossed product,
which clarifies informally the nature of isomorphism (B3.4). Namely, for ¢ = 270

consider the action o of Z on & ,,, defined on the generators as

mikpo

al;(sj) =e S5, oz]q“(tr) = e Tikeoy

j=1,...,n, r=1,....,m, k€ Z.

Denote by the same symbol the similar action on Skwm o~ oﬁ,‘” ®O§2). Here, we

denote by 3; and #, the generators of Ehm

Proposition 3.7. For any ¢y € [0,1), one has an isomorphism &l m XNa, L ~
Ehm May L.

Proof. Recall that 87117,” X, Z is generated as a C*-algebra by elements s;, t, and
a unitary wu, such that the following relations satisfied:

~ % iTYo T I —impo F :
usjut =05, ut,ut =e "%, j=1,n, r=1,m.
Put 5; = 5; u and ¢, = ¢, u. Obviously, 5}, t, and u generate Skwm Xq, Z. Further,

$18k = 0kl, tity=0nl

and

‘*)

Sity = sjut,u = e T u? = e P, 5% = e 2L uSu = 75,

In a similar way we get 57t, = qt,8}, j = 1,n, r = 1,m. Finally,
~ % impo~ Dok _—impor
us;u” = €05, utyut =e "0,
Hence the correspondence
S > 8y, tji—>tj, u— u,

2250017-19



Int. J. Math. Downloaded from www.worldscientific.com

by CHALMERS UNIVERSITY OF TECHNOLOGY on 02/17/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

A. Kuzmin et al.

. . . q 1 . . _
determines a homomorphism ®,: &7 | X, Z — &, , Xq, Z. The inverse is con

structed evidently. O

Let us show the nuclearity of €] . again. Indeed, E}L’m =0 0 is nuclear.
Then so is the crossed product E}L’m X, Z. Then due to the isomorphism above,
&L m Xy, Z is nuclear, implying the nuclearity of €% ,,, see [3].

n,m?

3.3. Fock representation of Eg,m

In this part, we study the Fock representation of €7 .
First of all let us stress out that according to Theorem B.1lwe can identify £ ,,

with ((9510) ®O£2))@q. In particular, we use this isomorphism below to show that
Fock representation of €9  is faithful.

n,m

Definition 3.2. The Fock representation of €] ,, is the unique up to unitary equiv-
alence irreducible *-representation 7. determined by the action on vacuum vector
Q, |1Qf =1,

Th(sHN =0, 7L{t)Q2=0, j=1,n, r=1,m.
Denote by 7, the Fock representation of o) ¢ &l m acting on the space

Fn=T(H,) =CQOEPHI?, 3, =C",
d=1

by formulas
Trn($;)=¢€j, Trn(sjle, Qe - Qe;, =€jQe;, Qe ey,
TEn(S) =0, Tra(s))es, ®en® - Re;, =0ji e, ® -+ ®eg,, deEN,

where ey, ..., e, is the standard orthonormal basis of J(,,. Notice that 7, is the
unique irreducible faithful representations of (9510), see for example [28].
In what follows, we give an explicit formula for 7%.(s;), 7% (¢, ). Consider the Fock

representations 7z, and g, of *-subalgebras C*({s1,...,s,}) = o) ¢ &L, and
C*({t1,...,tm}) = 052) C &} ., respectively. Denote by Q, € &, and Q, € Fp,

the corresponding vacuum vectors.

Theorem 3.2. The Fock representation w4 of €1 . acts on the space F = F, @ F,

n,m

as follows:

78(s;) = TEn(s;) ©dm(g™2), j=T,m,

wh(t,) = dn(q?) QTEm(ty), r=1,m,
where di(\) acts on Fy, k =n,m by
de(NQ = ., d(N)X = MNX, XeHZP, leN
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Proof. It is a direct calculation to verify that the operators defined above satisfy
the relations of € ,,. Since 7p is irreducible on Fy, k = m, n, the representation
7. is irreducible on &, ® F,,. Finally put Q = Q,, ® ,,,, then obviously

h(s))2=0, and 7L(t))Q=0, j=TInr=1Im

T

Thus 7, is the Fock representation of £ . |

Remark 3.3. In some cases, it will be more convenient to present the operators
of the Fock representation of €2 . in one of the alternative forms

n,m

W%‘('Sj) = 7TF,71(£j)®1?m> J=1n,

Th(ty) = dp(qQ) @Tpm(ty), =1,m,

or

which are obviously unitary equivalent to the one presented in the statement above.

The next step we show that in fact 7% can be obtained applying the construc-
tion form Proposition 3.2 to the representation 7p,, ® 7pm, of oﬁ,‘” ® oﬁ,?). To this
end construct the family of unitary operators {Us, »,, ¢1,¢2 € [0,27)} acting on
F,, @ F,, as follows:

Upr pp (€1 @ &) = 2milermitep) ¢y g6, ¢ € HEPL
Eo €HEP2 pi,pr €74

The pair (7pn®Tpm, Up,,,,) determines a covariant representation of
((9%0) ® oﬁ,?), T2, o), where as above

aWIVWZ (Sj ® 1) = 627”;901 (Sj ® 1)’ 01991’992(1 ®t7‘) = 627”;902(1 ®t7“)'

Notice that for p = (p1,p2)! € Z3, the subspace HLP* @ HZP2 is the (p1,p2)'-
homogeneous component of F related to the action of Uy, ,, and (F), = {0} for
any p € Z*\ Z3.

Recall also that §; = s; ® 1 is contained in e; = (1, 0)‘-homogeneous component
and &, = 1®1t, is in ey = (0,1)*-homogeneous component of 05?)@(952) with
respect to a. Now one can apply Proposition Namely, given £ = & ®& €
H2Pr @ H2P2 one gets

— 2m{Oqe1,p) Thn @ TEm(5;) €

(TP ® TFm)e,(55) &
= 7"F,n(5j)§1 ® e P20 §o = (WF,n(Sj) ® dm(qié)) g,
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and
(7rF,n ® ﬂF,m)(—)q (%\T‘) 5 = 627ri<@q € p) 7rF,n ® 7I_F',m.(%\r)f

= TPV L R () €2 = (dn(q?) ® TEm () E.

Notice that for any j = 1,n, and r» = 1,m,

~

(7TF,n ®7TF,m)@q (gj)Q = 07 (7rF,n ®7TF,m)@q (t;ﬁ)Q = 0.

So, we have shown that 7% = (7r, @ TEm)e,-
Since Tg, @ T,y is faithful representation of oﬁ,‘” ®O§2) we immediately get
the following result.

Theorem 3.3. The Fock representation 74 of €4, . is faithful.

m,n

We finish this part by an analog of the well-known Wold decomposition theorem
for a single isometry. Recall that

n m
Q:Zsjs;, P:Ztrt:.
j=1 r=1

Theorem 3.4 (Generalized Wold decomposition). Let w: & | — B(3) be a
x-representation. Then

H=5H; ®Hy®Hs D Hy,

where each H;, j = 1,2,3,4, is invariant with respect to w, and for m; =7 [g¢, one

has

o Hy; = FRK for some Hilbert space KX, and m = 75 ® La;
[ ] 71'2(1762):0, ﬂQ(l*P)?éO,

e m3(1—P)=0,m(1-Q)#0;

e (1 —Q) =0, m4(1— P)=0;

where any of H;, j =1,2,3,4, could be zero.

Proof. We will use the fact that any representation of (9510) is a direct sum of a
multiple of the Fock representation and a representation of O,,.
So, restrict 7 to (9510) C &% ,,, and decompose H = Hp & Hp, where

and 71'(0%0))‘}( - is a multiple of the Fock representation. Denote
Si=m(s5) l3ce, Q@ :=m(Q) I5p-

Put Sp := 1g¢, and Sy := Sy, --- S, for any non-empty A, 3 A = (Aq,..., Ag).
Since

Hr = P SilkerQ),

AEA,
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it is invariant with respect to m(¢.), w(t*), r = 1, m. Indeed, ¢,Q = Qt, in &Y

n,m:

implying the invariance of ker @ with respect to 7(¢,) and 7(¢*). Denote ker Q by
G and T, :=7(t;) [g. Then

Tt )ShE = ¢ Sam(t)€ = ¢MS\T ¢, €€
Thus Hr ~ F,, ® G with

ﬂ-(sj) [f}cF: 7I_F',’n.(sj) Y 197 W(tr) rg'fF: dn(Q) ®Tra ] = 17”7 r= ]-ama

where the family {7} determines a x-representation 7 of (952) on §.
Further, decompose G as § = Gr @ 91}5 into an orthogonal sum of subspaces
invariant with respect to 7, where Gp = F,,, ® K,

%SF(tT‘) = prm(tr)(g)lg(, r=1,m, and T [9# (1 — P) =0.

Thus Hp = (Fn ®Fn @ K) & (F, @ GF) and

T30 (85) = (Trn(s;) ® 1z, ®1k) ® (Trn(s;) ®1gr), J=1,m,

THp (tr) = (dn(q) ®7TF,m(tr) 29 1K) S (dn(q) ®7FF\SZ# (tr))’ r=1m.

Put 7, = 5, ®7,, ® K = F®XK and notice that that 7 [4¢,= 7qu®19<, see Re-
mark B3l Put Hz = F, ® Sl% and w3 = 7 [g¢, le.

ms(s;) = 71'F7n(sj)®19#, m3(t,) = dn(q)®%‘9#(tr), j=1,n, r=1,m.

Evidently, 73(1 — P) = 0 and 73(1 — Q) # 0.
Finally, applying similar arguments to the invariant subspace H7 one can show
that there exists a decomposition

Hi =Ho @ Hy
into the orthogonal sum of invariant subspaces, where
e Ho =3, L and
ma(s5) == 3¢, (85) = dm (@) ®@7(s5), ma(tr) =7 [3¢, (tr) = TEm(tr) ® 1z,

for a representation 7 of O,,. Evidently, m2(1 — Q) = 0, m2(1 — P) # 0.
e For my := 7 [4¢, one has

m(1—Q)=0, m(l—P)=0. O

3.4. Ideals in Ez’m

In this part, we give a complete description of ideals in €%

n,m?

and prove their
independence on the deformation parameter g.
For

n m
Q:ZSJ-S;, P:Ztrt:.
j=1 r=1

2250017-23



Int. J. Math. Downloaded from www.worldscientific.com

by CHALMERS UNIVERSITY OF TECHNOLOGY on 02/17/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

A. Kuzmin et al.

we consider two-sided ideals, M, generated by 1 — P and 1 — Q, J{ generated by
1—Q, 93 generated by 1 — P, and J,; generated by (1 — Q)(1 — P). Evidently,

9, =91NJ% =97.94,

In what follows, we will show that any ideal in €] ,, coincides with the one listed
above.

To clarify the structure of 37, I3 and J,, we use the construction of twisted tensor
product of a certain C*-algebra with the algebra of compact operators K, see [54].
We give a brief review of the construction, adapted to our situation.

Recall that the C*-algebra K can be considered as a universal C*-algebra
generated by a closed linear span of elements e, p,v € A, subject to the
relations

€111 €pavs = Opgun Cuivns ezlyl =€us Vi, li € An,
here eg := egp is a minimal projection.
Definition 3.3. Let A be a C*-algebra,
a={oy, neA,} CAut(A), where ay =ida,

and ey, p, v € Ay, be the generators of K specified above. Construct the universal
C*-algebra

AK)og =C"(a€ A, €Klaey, = eﬂya;l(aﬂ(a)).

We define A® ,K as a subalgebra of (A,K), generated by az, a € A C (A,K)q,
reKc A K.

Notice that (A, K), exists for any C*-algebra A and family o C Aut(A), see [54].

Remark 3.4. (1) Let , = e,p. Then azx, = z,au(a), ar), = zha;, " (a), a € A,
compare with [54].

-1

(2) For any a € A one has e, a = a

(aw(a))e,,, implying that
(aeu)* = o (o (@))evp

(3) For any ay,az € A one has (a1€,,0,)(02€150,) = 00,0105, (0, (a2)) €411 -
Proposition 3.8 ([564]). Let A be a C*-algebra and

a={oy, peA,} CAut(A) with ay =1idg.
Then the correspondence

aeu — oy(a)®eu, a€A, pvel,

extends by linearity and continuity to an isomorphism

Apy: AR K=+ ARK,
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where A is constructed via the correspondence
a® ey, — a;l(a)ew, a€A, uvel,.
Remark 3.5. For z, = e,p, 1t € A,, one has, see [54],
Aolazy) = ay(a) @z,  Anlaz)) =a®@),.

The following functorial property of ® K can be derived easily. Consider

a = (ap)uen, CAut(A), B =(Bu)uer, C Aut(B).

Suppose ¢: A — B is equivariant, i.e. p(ay(a)) = Bu(p(a)) for any a € A and
1 € Ay, Then one can define the homomorphism

2P AR K= BegK, ¢P(ak)=p(a)k, acA, kek,
making the following diagram commutative:

B
A®K 229 B 4K

[ [ (37)
ARK £21% goK
Namely, it is easy to verify that
(85" 0 (p@idi) 0 Au)(ae) = p(@)e, = 9B L (ae,), a €A, pve A,

An important consequence of the commutativity of the diagram above is exact-
ness of the functor ® K. Let

B = (BN)HeAn CAut(B), a= (au)uel\n CAut(A), = ('Vu)uel\n C Aut(C)

and consider a short exact sequence

0 B2 A-5¢ 0,

where @1, @2 are equivariant homomorphisms. Then one has the following short
exact sequence:

®RE vy
0 — BesK 28 AR K 223 e@ K — 0.

Now, we are ready to study the structure of the ideals J{,73,J, C €2 .. We
start with J{. Notice that

J% = c‘l's'{tlmt;gs#l(l - Q)S;17 Hi,1 € Ana H2,V2 € Am}

Put E,,,, = s, (1—=Q)s;., p1,v1 € Ay Then E,, ,,, satisfy the relations for matrix

units generating K. Moreover, c.l.s.{E,,, i,V € Ay} is an ideal in (9510) isomorphic
to K.
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Consider the family a? = (a,)ueca,, C Aut(Ogg)) defined as

a,(ty) = ql“ltr, a,(ty) = q_l“lt:, pweN, r=1m.

Proposition 3.9. The correspondence aey, — aE,,, a € 052), v € Ay, extends
to an isomorphism

Ag1: 09 @ 0K — 99,

Proof. We note that for any p1,v1 € A, and ps,ve € A, one has

tot* Eu = q(|l’1\*\#1\)(\#2|*|V2\)Emylt t* = Eﬂlula;ll(alll(t t* ).

p2luy p2 by p2 Ly
Thus, due to the universal property of <O§2), K)qa, the correspondence
ae,, — ally,
determines a surjective homomorphism A ;: oﬁ,?) ® @K — J%.
It remains to show that A, ; is injective. Since the Fock representation of £ ,,

is faithful, we can identify J{ with 7% (39). It will be convenient for us to use the
following form of the Fock representation, see Remark

WqF'(Sj) = ﬂ-F,n(Sj)®13~m = SJ ®13:m7 ] = ]-ana

Th(tr) = dn(q) @TEm(tr) = dn(q) T, 7 =1,m.
In particular, for any py,01 € Ay, po,v0 € Ay,

T (tuatsy Brn) = dn(@"* 7108, (1 - Q)S,, @ T, T,

2oy p2ty,
Consider A, 10 AL : 0 K — 715(I7). We intend to show that
Ag1o AL =Tk,
where 71 is the restriction of the Fock representation of (9510) ® (952) to K® oﬁ,?),
and K is generated by E,, specified above. Notice that the family
{tusty, @ Epivy, p1,01 € A, pig, vz € Ay}
generates 052) ® K. Then
A;ql(tuzt;z ® By ) = 04;11 (tuaty,)env, = q_lml(luzl_lm)tuzt;zeuwl’

M2 vo

and

AQal OA;‘}(t t, ®EH1V1)

K2 Yo

= q*\ﬂl\(\ﬂz\*\l’ﬂ)ﬂg(t 5 Eu)

K2 Yo

= q*\ﬂl\(\#2\*\V2|)dn(q\#2\*\l’2|)Sﬂl(1 - Q)S; T, T

132 2

= q*\ﬂl\(\#2\*\1’2|)q|m\(\#2\*\1’2|)Sﬂldn(qlu2\*\V2|)(1 —-Q)S; ®T,,Tr

= Sm(l - Q)S; ®TN2T:2 = 7r117(Ell1V1 ®tlt2t;2)a
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where we used relations d,,(A\)S; = AS;dy, (A), j
that

1,n, A € C, and the obvious fact

To complete the proof we recall that 7} is a faithful representation of O%O) ® 052),

so its restriction to K ® (952) is also faithful, implying the injectivity of A,. O
Remark 3.6. Note that any T-action on the C*-algebra of compact operators is
inner. Hence, [41], Corollary 5.16 and Example 5.17] imply that any twisted tensor
product with the compact operators is isomorphic to the usual tensor product. This

gives a short proof of the above proposition, though without an explicit formula for
the isomorphism.

Remark 3.7. Evidently, J, is a closed linear span of the family
{tu,(1=P)t;, 5, (L —Q)sy,, p1,v1 € A, po,v2 € Ay} C I
Moreover, c.l.s.{t,,(1 — P)t;,, p2,v2 € A} =K C O 1t is easy to see that
(s (1 = PYE,) = glal=vahy, (1 — Py
so every «a, € o can be regarded as an element of Aut(K).
A moment reflection and Proposition give the following corollary:

Proposition 3.10. Restriction of Ag1 to K® (K C 052) ® 11K gives an isomor-
phism

Ag1: K@ 0K =9,

To deal with J%, we consider the family 87 = {8, p € A} C Aut(OSLO)) defined
as

Bulsi) =q Ws;,  Bu(sy) =q"s;, j=Tn
Proposition 3.11. One has an isomorphism Ag 2: oL ® gaK — J4.

Obviously, Ay 2 induces the isomorphism K ® ga[K o~ J,;, where the first term is

an ideal in (9510) and the second in oﬁ,?)

Write

, respectively.

en: K= 00 g K- 00,
for the canonical embeddings and
Gn: Oglo) — O0n, @m: 052) — O,
for the quotient maps. Let also
eqitJg— 9% =12,
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be the embeddings and
gt J? — J?/Uq, ji=1,2,

the quotient maps. Notice also that the families a? C Aut(Ogg)), 81 C Aut(O%O))
determine families of automorphisms of O,, and O, respectively, also denoted by
af and f9.

Theorem 3.5. One has the following isomorphism of extensions:

0 g, — g0 Tl g9/, 0
AqaoAT} lAaqu;} J:
em ®idk 40 gm ® idk
0 — K@K —— 0,9 K—— 0, K —— 0
and
0 g, — 22 597 T2, 91)9, 0
J{quoA;é lquOA;é lg

0— KoK22% 90 gk =24 0, g K —— 0

Proof. Indeed, each row in diagram (B.8]) below is exact and every non-dashed
vertical arrow is an isomorphism. The bottom left and bottom right squares are
commutative due to ([B7)). The top left square is commutative due to the arguments
in the proof of Proposition combined with Remark 3.7 Hence there exists a
unique isomorphism

D,1:931/T4 = Oy ® 0aK,

making the diagram ([B.8) commutative

€q,1 Tq,1

0 1, g4 97/9, —— 0

|
|aat laab e
ad ® ~

0 —— K@K 2% 00 © 10K 5 0 ® qu K —— 0

(3.8)
JAM lAaq lAaq
em ®id m @ id
0 —— KoK 22% 90 g K 2225 9, g K — 0
The proof for J2 is similar. O

The following lemma follows from the fact that M, = J{ + J4.
Lemma 3.1.
My/3q=9%)3,8793)3; ~ 0, @K O, K.
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Theorem implies that Jg,J7,73 are stable C*-algebras. It follows from [50]
Proposition 6.12], that an extension of a stable C*-algebra by K is also stable. Thus,
Lemma [BJ] implies immediately the following important corollary.

Corollary 3.2. For any q € C, |q| = 1, the C*-algebra M, is stable.

Denote the Calkin algebra by . Recall that for C*-algebras A and B the
isomorphism

Ext(A @ B,K) ~ Ext(A, K) & Ext(B,K)
is given as follows. Let
t:A—->A2B, ula)=(a,0), 12:B—->ASB, 12(b)=(0,b).
For a Busby invariant 7: A & B — @ define
F:Ext(A @ B,K) — Ext(A,K) @ Ext(B,K), F(7) = (ro0u1,7012).
It can be shown, see [24], that F determines a group isomorphism.

Remark 3.8. Consider an extension

0 B € A 0. (3.9)

Let ¢: B — M(B) be the canonical embedding. Define 5: &€ — M(B), to be the
unique map such that

B(e)i(b) = i(eb), foreverybe B, ec&.
Then the Busby invariant 7 is the unique map which makes the diagram commute.

0 —— B —— M(B) — M(B)/B —— 0

dl dl

0 B e A 0

We will use both notations [€] and [r] in order to denote the class of the exten-

sion (B9) in Ext(A, B).

Let [M,] € Ext(3{/3, & 92/34,94), [97] € Ext(3/q,34), (98] € Ext(31/q,3,),
respectively, be the classes of the following extensions:

079y =My —797/3,®73/74 — 0,
079,791 —71/7, — 0,

0—J,— 798 —73/7, — 0.
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Lemma 3.2.

M) = ([911,193]) € EXt(j({/qujq) D EXt(jg/qujq) = EXt(T{/gq & jg/qujq)~

Proof. Consider the following morphism of extensions:

Jq — M(Jq) - M(3q)/34
Jq H 71 H 34/
Jg ——|—— M(J,) T M(3q)/34
s o
Jq M,y 91/3, @ 93/,

Here
B1:31 = M(T,), B2: My — M(J,),
are homomorphisms introduced in Remark B.8| the vertical arrow
J1: J% — M4
is the inclusion, and the vertical arrow
n:31/3g = 31/1 ® 33/,

has the form ¢; (z) = («,0).
Notice that for every b € J, and = € J{ one has

(B2 0 j1)(2)i(b) = i(j1(x)b) = i(xb) = B1(x)i(b).

By the uniqueness of 51, we get S2071 = 1. Thus, the following diagram commutes:

71 2 v,

M, —2 M(3,)

Further, Remark implies that for Busby invariants 75¢ and 7y, the squares
below are commutative

M(Jg) —— M(34)/4 M(Jg) —— M(34)/4

I A R

I ——— 11/9, My, —— 31/9, ®33/3,
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Hence the square

Tqq
31/3q ——— M(34)/%

[ H

99/9, @ 9/3g —2s M(34)/7,

is also commutative. Thus, 192 = Ty, © ¢t1. By the same arguments we get m91 =
™, © t2, Where

12: 93/ = 31/3, ®I3)Tq,  2(y) = (0,y).
Thus
[T, ] = ([rw, © ua]s [T, © e2]) = ([m92], [mg])- O
In the following theorem, we give a description of all ideals in £ ..

Theorem 3.6. Any ideal J C £}, coincides with one of J4, 31, I3, M.
Proof. First, we notice that 7 /3, ~ O0,, ® K, J2/J, ~ O,, @ K are simple. Hence
for any ideal J such that 3, CJ C Jf or I, € J C J2, one has § = J,, or J = I, or
g=19.

Further, using the fact that M, = I{ + 93 and I, = 7 N T4 we get

M, /7] ~3%/3, ~ 0, K.

So if 37 € g C My, then again either J = J{ or J = M,. Obviously, the same result
holds for 94 C J C M.

In what follows, see Proposition[.2, we show that € ,, /M, is simple and purely
infinite. In particular, M, contains any ideal in £, ,,,, see Corollary B2l

Let J C €] ,,, be an ideal and 7 be a representation of £} . such that kerm = 7.
Notice that the Fock component m; in the Wold decomposition of 7 is zero. Thus,

by Theorem B.4]
m =Ty D M3 D Ty, (3.10)

and J = kerm = kermy N kerms N ker my. Let us describe these kernels. Suppose
that the component 7y is non-zero. Since m2(1 — Q) = 0 and m2(1 — P) # 0, we
have

I1 C kermy C My,

implying ker mo = J4. Using the same arguments, one can deduce that if the com-
ponent 73 is non-zero, then ker m3 = J3. and if 74 is non-zero, then kermy = M,.
Finally, if in (8I0) 72 and 73 are non-zero then J = kerm = J,. If either mp # 0
and 3 = 0 or 73 # 0 and w2 = 0, then either § =4 or § = J%. In the case my = 0
and 73 = 0 one has J = kermy = M,. |
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Corollary 3.3. All ideals in &}, ,, are essential. The ideal I is the unique minimal
ideal.

In particular, the extension
073, —>M;,—797/3,®9%/3, — 0

is essential. Indeed, the ideal K =J, C €] ,, is the unique minimal ideal. Since an
ideal of an ideal in a C*-algebra is an ideal in the whole algebra, J, is the unique
minimal ideal in Mg, thus it is essential in M,.

The following proposition is a corollary of Voiculescu’s Theorem, see [3, Theorem

15.12.3].

Proposition 3.12. Let €1, &2 be two essential extensions of a nuclear C*-algebra
A by K. If [€1] = [E2] € Ext(A,K) then & ~ &s.

Theorem 3.7. For any q € C, |¢| =1, one has My >~ M;.

Proof. By Theorem B [7%] € Ext(0,, ® K,K), and [J] € Ext(0,, ® K, K) do not
depend on ¢. By Lemma B2l [M,] does not depend on ¢g. Thus, by Corollary B3l
and Proposition B.12] M, >~ M;. O

4. The Multiparameter Case

We now turn to the C*-algebra 0,, @ (O, := €% ,, /M. Our goal is to show that it
is isomorphic to O, ® O,,,. More generally, we show that even multiparameter twists
of O, ® O,, are impossible. This is very specific for the Cuntz algebra. Indeed, recall
that the tensor product of C(S')® C(S') does admit twists, the famous rotation
algebra A, being the result. Also twists of tensor products of Toeplitz algebras have
been considered [16, 54]. However, the tensor product of Cuntz algebras may not
be twisted as we will see.

Our proof uses deep theory from the classification of C*-algebras: We use Kirch-
berg’s seminal result from the 1990’s [33], stating that two unital, separable, nuclear,
simple, purely infinite C*-algebras are isomorphic if and only if they have the same
K-groups.

Note that twists of C*-algebras A with Cuntz algebras O,, were first considered
by Cuntz in 1981 [12], see also the PhD thesis of Neubiiser from 2000 [42]. We
reformulate Cuntz’s definition in terms of universal C*-algebras later. Let us now
focus on the case A = O,,.

Definition 4.1. Let 2 < n,m < oo and let © = (g;;) be a matrix with ¢;; € S*

being scalars of absolute value one, for ¢ = 1,...,n and 5 = 1,...,m. We define
the twist of two Cuntz algebras O,, and O,, as the universal C*-algebra 0,, ® g O,,
generated by isometries s1,..., 8, and t1,...,t, with Y 1| sisf = Z;nzl tit; =1

and s;t; = gy;t;8; for all 7 and j.
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Observe that for ¢;; = 1 for all ¢ and j, we obtain 0, ® @O = O, ® O,y,, while
the choice ¢;; = ¢ yields the one parameter deformation O, ® ;O = &}, /My,
which can be seen as follows.

We have s;t; = g;5t;s; for all ¢ and j if and only if sjt; = g;;t;s; for all ¢ and j.
Indeed, assuming the former relations and using t}¢; = d;x, we infer

sity =Y titpsit; = Gintesitit; = Gijt;s;.
k k

Conversely, fixing ¢ and j and assuming s;t; = g;;t}s;, we obtain
(Sitj — qijtjsi)*(sitj — qijtjsi) =1- (jijsftjsitj — Qijtjsrtjsi + 1=0.

Moreover, note that we may view 0, ® g0, as a twisted tensor product in the
following sense. Putting Cuntz’s definition from [12] to a language of universal
C*-algebras, we may say that given a unital C*-algebra A and automorphisms
o, ...,an, of Asatisfying o; 0 a; = o5 0oy, we may define a twisted tensor product
AX(ar,....am) Om as the universal unital C*-algebra generated by all elements a € A
(including the relations of A) and isometries ¢1,...,t,, such that ), txt; = 1 and
tia = (a)ty, for all j =1,...,m and a € A. We observe that O, ® 0,, is such a
twisted tensor product, if we put a;(s;) := ;js; for A =0, = C*(s1,..., ).

Let us quickly show that O,, ® 9O,,, may be represented concretely on a Hilbert
space. First, represent O,, on ¢?(Ny) by Tjek := eg,(k), Where

Bi,.-, Bm:Ng — Ny

are injective functions with disjoint ranges such that the union of their ranges is
all of Ny. Second, choose any representation o:0,, — L(¢*(Ny)) mapping s;
S;. Third, let S be the unilateral shift on ¢3(Z). Fourthly, define the diagonal
unitaries U; on £2(Ng x Z) by Ujemn := Ci(m,n)em n, where the scalars ¢;(m,n)
with [(;(m,n)| = 1 obey the inductive rule (;(8;(m),n + 1) = ¢;;¢;(m, n). Finally,
7:0, ® 00, — B(F?(Ng x Ny x Z)) with

71'(81') = Si®Ui, W(tj)Z: id®Tj®§

exists by the universal property.

4.1. 0, ® 9, s nuclear

Let us now begin with collecting the ingredients for an application of Kirchberg’s
Theorem. The first step is to verify that O,, ® ¢ O,, is nuclear. For the one parameter
deformation O, ® ;0,,, this is a consequence of Corollary Bl For the multiparam-
eter deformations, we use the following lemma by Rosenberg, which is actually a
statement about crossed products with the semigroup Ny by the endomorphism
b — sbs* of B. Recall that the bootstrap class N (also called UCT class) is a class
of nuclear C*-algebras which is closed under many operations; see [3, Chap. IX,
Sec. 22.3] for more on N.

Lemma 4.1 ([5I, Theorem 3]). Let A be a unital C*-algebra, and let B C A be
a nuclear C*-subalgebra containing the unit of A. Let s € A be an isometry such
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that sBs* C B and A = C*(B,s), i.e. let A be generated by B and s. Then A is
nuclear. Moreover, if B is in the bootstrap class N, so is A.

Let us denote by s, the product s, ...s,,, where p = (u1,..., ) is a multi-
index of length |u| = k and pq,...,uk € {1,...,n}. Given k € Ny, denote by G
the C*-subalgebra of O, ® ¢0,, defined as

G :=C"(spzs), | € O, u| =V =k) COn®@00m.

Here, we denote by O,, the C*-subalgebra G9 = C*(t1,...,tm) C 0, ®60;,
(which is isomorphic to O, of course). The closed union of all G is denoted
by By, so

By :=C*(suzs;, | © € O, || = V| € No) C Op, ® 00sn,.
Proposition 4.1. We have the following:

(a) Sk C 0, ® 00, is nuclear and in N for all k € Ny.
(b) By C 0, ® 0Oy, is nuclear and in N.
(¢) 0, ®e0, is nuclear and in N.

Proof. For (a), we show that Gj is isomorphic to M,»(C)® Oy,, where M,x(C)
denotes the algebra of n* x n* matrices with complex entries. For doing so, let k > 0
and write M,,»(C) ® Oy, as the universal C*-algebra generated by elements e, for
multi-indices p, v in {1,...,n} of length k, together with isometries t1, ..., %, such
that >, txty = 1 and epvepe = Oppepo, en, = ey and e,wtj =ti€um.

It is then easy to see that the elements €, := s}, and ¢; := lelzk Sptisy, in Sk
fulfill the relations of M1 (C) ® O,,. As this C*-algebra is simple, Gy, is isomorphic
to M1 (C) ® Op,. Now, Oy, is in N and the bootstrap class is closed under tensoring
with matrix algebras, so M,x(C) ® O,, is in N.

As for (b), note that we have G C Gi41 for all k. Indeed, check that sutisy, =
Yk Grisusktisgsy, € Gry1. We may then view By as the inductive limit of the
system G; C Go C .... As N is closed under inductive limits, we get the result
by (a).

Finally, for (c), put Bj+1 = C*(Bj,sj+1) C 0,80, for j =0,...,n — L
We prove inductively that Bji1 is in N and that Bji1 = C*(Bo, s1,---,8j+1),
using Lemma [l By induction hypothesis (or by (b) in the case j = 0), the C*-
algebra Bj; is nuclear and in N, it is unital with the same unit as B;j;; and it is
contained in Bj; ;. Therefore, to apply Rosenberg’s lemma, we only have to check,
that Sj+1BjS;f+1 - Bj = C*(B(), S1y..ny Sj).

For this, let s,xs) be in By for some z € O, and |pu| = |v| € Ny. Then
Sj+18ux8, 85,1 € Bo C Bj. We conclude s;y1Bosj,y C Bj. For k =1,...,7j, we
have 5(j+177€)5>(kk,j+1) € By, where (j + 1,k) and (k,j + 1) denote multi-indices of
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length two. Thus:
* * * *
Sj+18kSj41 = Sj+15k8415kSk = (S(j+1,k)3(k,j+1))3k € B,.

Thus, if = x1...2y is a product of elements z; € By U {s1,s],...,sj,s]}, for
l=1,...,k, we have

8j+1287 11 = (Sj+1718541) -+ (417,87 11) € Bj.

This proves s;+1C*(Bo, 51, .- -,5;)s7.; C B; and we are done.
Since 0, ® 0,,, = B,,, we obtain the stated result. |

4.2. 0, ® 0., ts purely infinite

Next, we are going to show that O, ® e O,, is purely infinite. Recall, that a unital
C*-algebra A is called purely infinite, if for all nonzero elements x € A, there are
a,b € A such that axb = 1. In particular, A is then simple.

In our proof, we follow Cuntz’s work on O,, from 1977 [I0] and we adapt it to
0, ®00,,. The idea is to find a faithful expectation ¢ on O, ® 9O0,,, such that
an element 0 # x € 0, ® 00, (or rather an element y close to z*z) is mapped
to a self-adjoint complex valued matrix with controlled norm. By linear algebra,
we then can find a minimal projection e, which projects onto a one-dimensional
subspace corresponding to the largest eigenvalue of this matrix: its norm. We then
choose a unitary u transforming this projection e into S7.57"(S1*)"(S7)". Moreover,
we implement ¢ locally by an isometry w € O, ® 90,,. Using all these elements
in 0, ® 90, we can define z € A, such that zyz* = 1. This implies that zx*zz*
is invertible and we finish the proof by putting a := b*z* and b := z*(zx*xz*)_%.
Then axb = 1.

Let us now work out the details. We define the following subsets of O, ® Oyy,:

v

Ino.No = Span{sutyty sy [ |ul = [V, 11| = [V} = Uy jen, Th
*

Tiiowe = SPAR{ sty t5,5 | 1] = v}
Fa = PR,y 55 | /] = |/}

v

Frp i=span{s,tty sy ||| = |v| =k, |@/| = || =1} for k,1 € Ny

Lemma 4.2. The above subsets Ty, TngNgs TNo,e; Ten, are C*-subalgebras
of 0, ®0,, and we have Ty = U<k j<1T5;. Actually, Ty is isomorphic to
Mot (C).

Proof. Using the well-known relations t};t, = d,, for multi-indices |u| = |v| and
similarly for s,/, we infer that all these subsets are in fact *-subalgebras. Moreover,
all of these *-subalgebras are closed. For J}; this follows from the fact that the
elements t,,5,,+ s}, 1, satisfy the relations of matrix units and hence J ; is isomorphic
t0 My (C). Finally, let st/ t5 s5 € F; ; for i < k,j <[ and write 1 as the sum
P of all projections sstt¥ sy with [0| = k — 4 and |€/| =1 — j. Then st t}, s} =
S#t#/Pt;,S; € F. O
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Next, we are going to construct a faithful expectation for O, ® ¢O,,, similar to
the one for O,, or the rotation algebra A,. Recall that for a unital C*-algebra A, a
unital, linear, positive map ¢: A — B is an expectation, if B C A is a C*-subalgebra
and ¢? = ¢. It is faithful, if it maps non-zero positive elements to non-zero positive
elements.

Let p¢e : 05, ® 00y = 05, ® 90, be the automorphisms mapping s; — (s; and
t; — &t;j, where ¢, & € C are scalars of absolute value one. Put, for z € 0,, ® O0:

1
¢1($) ::/0 p62wit71<$)dt,

1
¢2(x) ::/0 p1,e2mit (x)dt.

Lemma 4.3. The maps ¢1:0, ®00m — Ing,e, $2: 0, ®60, — Fen, and ¢ :=
P10 =P20¢1:0,®e0y, = Ing,N, are faithful expectations.

Proof. The map (¢,€) — pce(x) is continuous in norm, for all z € 0, ® 0Oy,
as pee(sutwtl sy) = §‘“‘_‘”|§‘“/|_|”/‘sutuftf,,s,’j. Thus, ¢ and ¢y are well-defined
as limits of sums + Zivd perriey, 1 () for partitions 0y,...,0n of the unit interval
(likewise for ¢2). They are unital, linear, positive and faithful as may be deduced
immediately from this approximation by finite sums.

Applying ¢1 to s,t,t)s; (where p, 1/, v and v are of arbitrary length) yields:

1
D1(sutthist) = < / 62”(“"|)tdt) Suttl st
0

_Jsutwtys;, for ul = [vl,
0 otherwise.

Therefore, since the span of the words s,t,/t;s} is dense in 0, ® 60, we get
? = ¢ and the image of ¢ is Fn,e, similarly for ¢s.

The composition of two faithful expectations is again a unital, linear, positive
and faithful map. If they commute, we even get an expectation. This is the case for
¢1 and ¢, due to the following computation:

Sttt sk for |u| = |v| and |p'| = |V/],
o alostatessy — |ttt Tor = 1ol and i =
0 otherwise.
The same holds for ¢5 o ¢ (Sutultj,s;), thus ¢1 0 2 = ¢2 0 1 and we are done.

a

Let us now implement ¢ locally by an isometry using a standard trick.

Lemma 4.4. For all k,I € Ny, there exists an isometry w € 0O, ®gO0n,
which commutes with all elements in Fy 1, such that ¢(y) = wryw for all y €
span{suty iy, sy | |pl, [v] <k and |/], V'] <1}
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Proof. Put s, := s?*s3t3'ty and define w by

w = g Soter Syter S}
8]=k,|e’|=L
Then, w is an isometry. We have ws,t,y = s,t.sy and t},s;w = s,t),s;, for all

w, i v,V with |p| = |v| = k and |¢/| = [V/| = . We conclude ws,t,/t} s} =
sutwty syw, thus w commutes with Jy ;.

Now, let y = s,t,t} sh be a word with |u|, [v| < k and ||, |V/| < L If |p] = |v|
and |p'| = ||, then y € Fi,; by Lemma 2] thus we have w*yw = w*wy = y =

@(y). In the case of |u| # |v| or || # ||, we have w*yw = 0 = ¢(y). |
Proposition 4.2. 0, ® g0, is purely infinite.

Proof. Let 0 # =z € 0,, ® 90,,,. Under the faithful expectation ¢, the non-zero,
positive element z*x is mapped to the non-zero, positive element ¢(z*x) of norm 1,
if suitably scaled. Since the linear span 8 of all elements s,t,/t, s}, where u, ', v, v/
are multi-indices of arbitrary length, is dense in 0,, ® 9 O,,,, there is a self-adjoint

element y € 8, such that ||z*z — y|| < . We conclude that [|¢(y)|| > 2,

lo(z* )|l < llp(z*z = y)|| + o) < 3+ l6w)]-

Let r be the maximal length of the multi-indices of the summands of y from its
presentation as an element in 8. By Lemma L4 there is an isometry w € O,, ® Oy,
which commutes with F, , such that ¢(y) = w*yw.

By Lemma 2, we can view ¢(y) € F,., = My (C) as a self-adjoint matrix.
Thus, there is a minimal projection e € F, ., such that ed(y) = ¢(y)e = ||d(y)|le >
3¢. There is also a unitary u € F,,, with ueu* = s{t7(t])"(s})", transforming one
minimal projection into another.

Put = i= | ¢(y)]| =} ()" (1) wew”. Then ||2]) < [l¢(y)|~* < 2 and we have

as 1 =

2yz" = o)l ()" (1) ued(y)eu*sit] = (t7)" (s7) ueu*sit] =
Hence zx*xz* is invertible:
1

= -<1
3

ol ks
B~ =

1= zataz"|| = [[2(y — 2"2)2"| <

Finally, put a := b*z* and b := z*(z2*z2*)~ 2. Then azb = 1. |

4.3. K-groups of O, ® 6O,

Finally, we calculate the K-groups of O,, ® ¢, building on the work by Cuntz [12].
Recall, that Cuntz gave a slightly different definition for the twist of a C*-algebra
A with O,, in his paper: Let A C B(H) be a unital C*-algebra, aq,...,a, be
pairwise commuting automorphisms of A and let uq,...,u,, € B(H) be pairwise
commuting unitaries implementing the automorphisms by «; = Ad(u;). We denote
by U := (u1,...,un) the tupel of the unitaries and by A xy( O, the C*-subalgebra
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of B(H) ® O,, generated by all elements a ® 1 for a € A together with u; ® S, ...,
U, @ Sy

Proposition 4.3 ([12, Theorem 1.5]). In the situation as above, the following
6term sequence s exact:

Ko(d) TES Ko(4) C Ko(A xu O)
) {
K1 (A xy O) — K4 Ee Ky (A)

Here K;(A) = K;(AxyOp,) for j = 0,1 is the map induced by the natural inclusion
of A into A Xy O, viaa+— a®1.

We now get an according 6-term exact sequence for O,, ® gO,,.

Corollary 4.1. The following sequence in K -theory is exact:

0= K1(0p ®60m) = Ko(0,) "3 Ko(0,) = Ko(0 ® 60m) — 0

Hence, the K-groups of O, ® 0O, are independent from the parameter ©.

Proof. In our situation, we put A := O,, and «;(s;) = G;js;- We may represent
OnXNay ZXayZ ... XNq,, Z concretely on some Hilbert space by some representation 7
which yields unitaries uq, . . ., u,, implementing the automorphisms a;, ..., a,,. We
may thus form O, Xy O, in the sense of Cuntz and we obtain a *-homomorphism
0:0,®60m = 0, xy0,, mapping s; = m(s;) @landt; = u; ® 5;. As 0, @ 00,
is purely infinite, it is simple in particular. Hence, o is an isomorphism.

We now apply Proposition £3]to 0, ® 90, = O,, Xy Oy Since the automor-
phisms «; are homotopic to the identity, we get «;. = id for all 4 = 1,...,m on
the level of K-theory. Thus the map id — > «;,' is multiplication by (m — 1) on
Ko(0,) =7Z/(n—1)Z. As K1(0,) = 0, we end up with the exact sequence of our
assertion.

Now, the map Ky(0,) (1) Ky(0,,) is independent from © and so are its
kernel K1(0, ® 00,,) and its image Ko(O,, ® 00,,). Note that the isomorphisms
of Ko(0,, ® 00r,) and Ko(0,, ® o/ O,y,) for different parameters © and ©' map units
to units. O

Remark 4.1. We may use the Kiinneth formula to compute the K-theory of
O, ® Oy, explicitly. Recall that O,, ® O,, satisfies the UCT (see Proposition E.T]).
The Kiinneth formula for K-theory, see [3 Theorem 23.1.3], gives the following
short exact sequences, j € Za,

0= P Ki(0n) ©2Kij(0m) = K;(0, @ 0,)

1€7L2

— @ TOI‘%(KZ(OH), Ki+j+1<om)) — 0.
1€7L2
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Let d = ged(n — 1,m — 1). It is a well-known fact in homological algebra, see [1§],
that for an abelian group A

Tor?(A,Z/dZ) ~ Anna(d) = {a € A | da = 0}.
In particular,
TorX(Z/nZ, Z./mZ) ~ Z/gcd(n, m)Z.
Recall that, see [11]
Ko(0,)=Z/(n—1)2Z, Ki(0,)=0.
Hence, for 0,, ® O,,, one has the following short exact sequences:
0=>2Z/(n—1)2Z®zZ/(m—-1)Z — Ko(0,®0,,) = 0— 0,
00— K1(0,®0,,) = Z/dZ — 0.
This implies
Ko(0,®0,,) ~Z/dZ, Ki1(0,®0,,)~2Z/dZ.

4.4. 0, Q 0., ts isomorphic to O,, ® O,,

We may now put together all ingredients in order to apply Kirchberg’s Theorem
[33] which is as follows.

Proposition 4.4. Let A and B be unital, separable, nuclear, simple and purely
infinite C*-algebras in the bootstrap class N with K;(A) = K;(B) for j = 0,1 (with
matching units in the case of j =0). Then A = B.

Theorem 4.1. For any parameter O, the C*-algebra O, ® 6Oy, is isomorphic to
Om ® Oy,. Hence we may not twist the tensor product of two Cuntz algebras in this
sense.

Proof. By Proposition[Z1] O,, ® ¢ Oy, is nuclear and in N and by Proposition £.2]
it is purely infinite and simple. By Corollary 1] the K-groups of O, ® ¢O,,
and O,, ® 0,, coincide. Thus, by Kirchberg’s Theorem, O, ® ¢O,, is isomorphic
to O, ® Oy O

Remark 4.2. The above result on 0, ® ¢0,, has been part of the fourth author’s
PhD thesis from 2011 and it has not been published in any other paper.

4.5. The isomorphism O, ® ¢O0n ~ O, @ O,,. The Rieffel
deformation approach

In this section, we return to one parameter case of 0, ® ;0,,, and present an ap-
proach to the proof of isomorphism

0n®¢0m ~ 0,0, ¢ <1,

which is based on the properties of Rieffel deformation.
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In [20], the authors have shown that for every C*-algebra A with an action o of
R, there exists a KK-isomorphism ¢, € KKj(A,Ax,R). This ¢, is a generalization
of the Connes—Thom isomorphisms for K-theory. In what follows, we will denote
by o: KK(A,B) x KK(B,C) — KK(A,C) the Kasparov product, and by K :
KK(A,B)xKK(C,D) - KK(A®C,B®D) the exterior tensor product. Given a
homomorphism ¢ : A — B, put [¢] € KK (A, B) to be the induced KK-morphism.
For more details see [3] 25].

We list some properties of t, that will be used below.

(1) Inverse of ¢, is given by tg, where @ is the dual action.
(2) If A = C with the trivial action of R, then the corresponding element

t1 € KK1<(C,C()<R)) ~7

is the generator of the group.
(3) Let ¢: (A, a) = (B, ) be an equivariant homomorphism. Then the following
diagram commutes in KK-theory:

Aty Ax,R

P) t LMR

B —5 BxgR
(4) Let 8 be an action of R on B. For the action v =idg ® 8 on A® B we have
ty =145 tg.
Further, we will need the following version of classification result by Kirchberg and
Philips:

Theorem 4.2 ([33, Corollary 4.2.2]). Let A and B be separable nuclear uni-
tal purely infinite simple C*-algebras, and suppose that there exists an invertible
element n € KK(A,B), such that [ta] on = [ts], where t4:C — A is defined
by ta(l) = 14, and t3:C — B is defined by t(l) = 1s. Then A and B are
isomorphic.

Notice that the conditions of the theorem above does not require C*-algebras
A and B to be in the bootstrap class N.

Theorem 4.3. The C*-algebras O, ® 40, and O, ® Oy, are isomorphic for any
gl = 1.

Proof. Throughout the proof, we will distinguish between the actions of T? on
0, ® Oy, and on O, ® 4Oy, denoting the latter by a?. As shown above, the both
algebras are separable nuclear unital simple and purely infinite.

Further, Proposition 3.4, and the isomorphism 0, ® (O ~ (0, ® O1n)e, yield
the isomorphism

U:(0,®0.,) Xq R? = (0, ®,0,,) X R
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Decompose the crossed products as follows:
(00, ®Om) Mo R? = (0, ® Op) Xay R X, R,
(0n ®qO0m) Xas R? = (0, ® ¢Opm) Xas R X0 R.
Define
ta = ta; © (Loym) Mia,) € KK(0np® Om, (0, ® O) Xa R?),
tar = to1 0 (Loym) Witag) € KK(0n® ¢Om, (On ® ¢Om) Xaa R?),
Then
N=teo[W]ot,' € KK(0,® ;0m,0,®0,)
is a K K-isomorphism. The property [0, ,0,.]° 1 = [t0, @ 0,,] follows from the

commutativity of the following diagram:

1

t10(Loy )M t1) (Loge®t1) oty

C Co(R?) C
-1
On ® ¢Om ™ (00 ® qOm) o R2 —— L (0, @ Opn) ¥ R2 S 0, © O,

a

Remark 4.3. The proof presented above was obtained by the first author inde-
pendently of the proof of multiparameter case.

4.6. Computation of Ext for ng,m

Let us finish with some remarks on €7 . Firstly, the simplicity of O, ® 4O, implies
that My C €7, is the largest ideal.

s

Corollary 4.2. The ideal My C €9 . is the unique largest ideal.

s

Proof. Let n: &7 ,, — 0, ® 40, be the quotient homomorphism. Suppose that
d C &}, is a two-sided #-ideal. Due to the simplicity of O, ® ;O we have that
either n(J) = {0} and J C My, or n(J) = 0, ® 4Or,. In the latter case, 1 +x € J

for a certain x € M. For any 0 < ¢ < 1, choose N € N, such that for

(61752) _ €1 _ €2

g E E W St (1= P) (1 - Q)7t), 5,5 € My
€1,e2€{0,1}, p1,2€A,, v1,V2EA,,

ST AP PARI

one has ||z — x¢|| < €. Notice that for any p € Ay, v € Ay, with |ul, |v| > N one
has sjtjz. = 0.
Fix p € Ay, and v € Ay, || = [v| > N, then

Ye = sty (L= 2)tys, = 1 — sty (v — xo)tys, € 3.

Thus ||s;t;(z — z2)tys,ll < e implies that y. is invertible, so 1 € g. |
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Second, we may show that Ext(0,, ® (O, M,) =0 if ged(n —1,m —1) =1. To
this end we compute first the K-theory of M,.

Theorem 4.4. Let d = ged(n —1,m — 1). Then
Ko(Mq) >~ Z/dZ (&5) Z, Kl(Mq) ~ (0.

Proof. The isomorphism €4 = ~ ((95,0) ® 052))@q, Proposition 3.6 and [11, Propo-

nm —

sition 3.9], imply that
Ko(&4,,,) = Ko((0)) © 0)e,) = Ko(0;, ®0},) = Z,
Ki(&] ) = K (0 ® 0D)e,) = K1(0) @ 05,) = 0.
Applying the 6-term exact sequence for
0=-K—=-M; = 0,3K®0,, oK = 0,
we get
Z — Ko(My) — Z/(n—1)Z® Z/(m —1)Z

T |

0+ K1 (M,) 0

Then K1(M,) = 0, and elementary properties of finitely generated abelian groups
imply that

Ko(My) =Z & Tors,

where Tors is a direct sum of finite cyclic groups.
Further, the following exact sequence:

0—->My— &L, = 0,®0m —0
gives
KoM,) —2— 2 —— Z/dZ

| |

7.)dZ 0 0

The map p: Ko(My) ~ Z & Tors — Z has form p = (p1, p2), where

p1: 2 — 7, ps: Tors— Z.
Evidently, p» = 0, and p # 0 implies that ker p; = {0}. Thus,

ker p = Tors = Im(:) ~ Z/dZ. |
Theorem 4.5. Let d =ged(n —1,m — 1) = 1. Then Ext(0, ® ¢O0m, My) = 0.
Proof. Recall that for nuclear C*-algebras Ext(A, B) ~ K K;(A, B).
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We use the UCT sequence
0 — P Extz(Ki(A), Ki(B)) = KK1(A, B) — €D Hom(K;(A), Ki11(B)).
€22 €22
for A =0, ® 40, and B = M,.
Since Ko(A) = K1(A) =Z/dZ and Ko(B) =Z @ Z/dZ, K1(B) = 0, one has
Hom(Ko(A), K1(B)) =0, Hom(K1(A), Ko(B)) =Z/dZ,
and, see [18],
Exty(Ko(A), Ko(B)) = Z/dZ & Z/dZ, Exty(K1(A), K1(B)) = 0.
Hence the following sequence is exact:

0—>Z/dZSZ/dZ — KKi(0n ® ¢Om,My) = Z/dZ — 0. |

By Theorem 3] for the case of ged(n — 1,m — 1) = 1 one can immediately
deduce that extension classes of

0—>My; — &L, = 0,®0m —0,
and
0 My = &L, = 0,®0, =0,

coincide in Ext(0, ® O,,, M;) and are trivial. These extensions are essential, how-
ever in general case one does not have an immediate generalization of Proposi-
tion BI20 Thus, the study of the problem whether &2, ~ &} = would require

further investigations, see [13| [19].
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