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Abstract
Visual analysis of time series in hydrology is frequently seen as a crucial step to becoming acquainted with the nature of 
the data, as well as detecting unexpected errors, biases, etc. Human eyes, in particular those of a trained expert, are well 
suited to recognize irregularities and distinct patterns. However, there are limits as to what the eye can resolve and process; 
moreover, visual analysis is by definition subjective and has low reproducibility. Visual inspection is frequently mentioned 
in publications, but rarely described in detail, even though it may have significantly affected decisions made in the process of 
performing the underlying study. This paper presents a visual analysis of groundwater hydrographs that has been performed 
in relation to attempts to classify groundwater time series as part of developing a new concept for prediction in data-scarce 
groundwater systems. Within this concept, determining the similarity of groundwater hydrographs is essential. As standard 
approaches for similarity analysis of groundwater hydrographs do not yet exist, different approaches were developed and 
tested. This provided the opportunity to carry out a comparison between visual analysis and formal, automated classifica-
tion approaches. The presented visual classification was carried out on two sets of time series from central Europe and 
Fennoscandia. It is explained why and where visual classification can be beneficial but also where the limitations and chal-
lenges associated with the approach lie. It is concluded that systematic visual analysis of time series in hydrology, despite 
its subjectivity and low reproducibility, should receive much more attention.

Keywords  Groundwater monitoring · Groundwater statistics · Visual inspection · Similarity · Time series

Introduction

Background and objectives

In hydrological literature, there are frequent references to 
how a visual inspection of time series was carried out as an 
initial step in data analysis. In fact, even if not mentioned 
explicitly, in most hydrological studies it can be assumed 
that plots of time series data were looked at in some way. 
In modelling studies, where time series of observed and 
simulated data are compared, the visual comparison of 
time series seems to play an important role, even if articles 
focus on the “hard” performance criteria used for objective 

evaluations (Crochemore et al. 2015; Seibert et al. 2016). 
While visual inspections and analyses seem to be carried out 
frequently, studies rarely mention exactly how such visual 
analyses were made, and how the results of such visual eval-
uations may have influenced the entire process and hence the 
results. Only few studies examine visual techniques further, 
and analyse their role and importance (Crochemore et al. 
2015; Ehret and Zehe 2011; Seibert et al. 2016). This article 
focuses entirely on the visual analysis carried out in a study 
concerned with groundwater hydrograph similarity.

The visual analysis presented in this article is part of a 
larger research effort, which aims to adopt the concept of 
catchment classification and similarity, as used in surface 
hydrology to groundwater hydrology. This concept has been 
developed through a large community effort in the Interna-
tional Association of Hydrological Sciences (IAHS) dec-
ade 2003–2012, which was dedicated to PUB (predictions 
in ungauged basins, Hrachowitz et al. 2013). The underlying 
idea of the concept is that similar systems (catchments), in 
similar states, will respond similarly (responses here mean 
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discharge hydrographs) if exposed to similar input signals 
(see e.g., Wagener et al. 2007). One fundamental challenge 
of the approach is the detection of similarities between dif-
ferent system responses (expressed as time series of, for 
example, river discharge or groundwater levels). Methods 
developed and validated for comparing discharge hydro-
graphs cannot simply be applied to groundwater hydro-
graphs, as the latter exhibit some fundamentally different 
characteristics (Barthel 2014). Within the larger framework 
of the research, various different approaches for similarity 
detection and classification based on direct times series com-
parison (Haaf and Barthel 2018), as well as feature extrac-
tion with subsequent clustering (Heudorfer et al. 2019), 
were developed and compared. Haaf and Barthel (2018) 
used visual inspection of time series as a method in its own 
right, but did not provide a systematic analysis of the visual 
approaches used or the results obtained. Visual inspection, 
comparison and finally classification of time series were 
mainly a single step in data preprocessing, yet also led to 
important decisions in the development of the research as 
a whole.

Based on the research described in the preceding, this 
paper explores whether visual classification may be more 
than simply an initial step in data preparation. On the face 
of it, there are many arguments against this, including the 
contention that visual approaches are subjective, tedious and 
impractical to apply to large datasets, and that they are not 
reproducible and transferable to other datasets. However, 
there are indications that systematic visual inspection/clas-
sification is highly advantageous during the early stages of a 
study, which may be important in particular for groundwater 
systems and groundwater observations. Each groundwater 
hydrograph and its dynamics constitute the combined result 
of a multitude of factors: geology of the aquifer and the 
stratigraphy, unsaturated zone processes, land surface prop-
erties and land use, climate, human impact and its change 
over time (Giese et al. 2020). Moreover, the technical design 
of the observation well itself plays an important role. In 
groundwater hydrology, time series have not been explored 
as comprehensively as in surface hydrology (Barthel 2014); 
many features of groundwater hydrographs and their links 
to driving and controlling factors remain poorly understood. 
Further, quantitative information on the factors influencing 
groundwater dynamics is scarce—for example, very little 
is known about the unsaturated zone below the root zone in 
aquifers with a greater depth (e.g. >10 m) to groundwater 
(Barthel 2006; Harter and Hopmans 2004). Furthermore, 
groundwater time series are often short, contain gaps, or are 
influenced by human activity. Sparse data of poor and uncer-
tain quality, a multitude of influencing factors, and many 
known and, possibly, even more unknown, unknowns are 
difficult for automated, algorithm-based approaches (data 
mining, multivariate statistics, etc.).

The overall objective of this paper is to evaluate the gen-
eral value of systematic visual analysis and comparison of 
groundwater hydrographs. An attempt is made to determine 
whether visual analysis and classification can be more than 
just a preliminary, informal task in data analysis and whether 
it might even be mandatory for classification and similarity-
based approaches in hydrogeology.

To avoid potential misunderstandings, let it be stated that 
this paper is not introducing a new method. Rather, it pre-
sents the discussion of a method that many hydrologists and 
hydrogeologists apply on an almost daily basis, but which 
is nonetheless hardly ever mentioned in scientific literature. 
Visual inspection of time series, to get an initial idea of 
their quality or what they might reveal, is something done 
by everyone. The impression from an initial visual inspec-
tion of time series data may often have considerable impact 
on choices made when applying formal scientific methodol-
ogy, but they may even provide insights that “real” scientific 
methods not only may not provide but may also overlook. 
The examples used in the paper are not presented to pro-
vide proof of the validity of a new method, they are used to 
illustrate potential benefits and challenges. Readers who are 
interested in the concept that forms the background of this 
discussion, and the specific role of visual analysis therein, 
are referred to a recent article in Hydrogeology Journal by 
Barthel et al. (2021).

Moreover, it needs to be highlighted that visual analy-
sis is subjective. Readers, expecting clear criteria and well 
defined, reproducible concepts will be disappointed. The 
subjectivity and lack of conclusiveness of the subject may 
also be reflected in the language used.

Visual inspection and classification as a tool 
in (groundwater) hydrology

It may seemingly contradict what was previously written, 
but there is, in fact, a large body of literature on visual 
classification, comparison of time series and visualization 
techniques for detecting similarities stemming from a huge 
range of different scientific disciplines. Many approaches do 
not compare plots of time series as such (as in this paper), 
but use special techniques for transforming time series into 
other objects, which are then visually compared. Overviews 
explaining purpose, visualization techniques and different 
fields of applications are provided by, for example, Gleicher 
et al. (2011) or Gogolou et al. (2019). Overall, the charac-
teristics of the time series used and the goals of visual analy-
sis in individual studies span a very wide range. However, 
the nature of the times series analysed and the goals of the 
analysis in this body of literature are often very different 
from the analysis of groundwater hydrographs presented 
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here; therefore, a systematic review of this field of study is 
not justified in the context of this article.

In (groundwater) hydrology, visual inspection and com-
parison of time series is quite frequently mentioned as part 
of a workflow or diagnostic tool. However, most of the 
related publications do not explicitly describe how the 
visual analysis was carried out and what role it played in 
the work flow (e.g., Guzha and Hardy 2009; Harrigan et al. 
2014; Li et al. 2017). Of the few articles that not only men-
tion the use of visual tools, but also address their role as a 
part of the methodology, the most relevant in the context of 
this article is Ehret and Zehe (2011). They described vis-
ual inspection as “a powerful tool for simultaneous, case-
specific and multi-criteria (yet subjective) evaluation” and 
included it as an essential element in the development of 
an approach to determine hydrograph similarity. They even 
suggested that visual inspection and comparison of hydro-
graphs may be even more important than objective metrics. 
They stated “Eye and brain are a powerful expert system 
for simultaneous, case specific multi-criteria evaluation 
which provides results in close accordance with the user’s 
needs. Due to these obvious advantages, visual inspection 
is still standard procedure for calibration and validation 
in engineering practice.” They also found, for example, 
that “peak time metrics are much easier verbalized and 
applied in visual inspection than formulated and coded, 
as it requires automated identification of individual events 
[…].” Surprisingly, this is one of the very few indications 
in hydrological literature that visual inspection may, in 
some cases, be superior to automated identification; how-
ever, Ehret and Zehe (2011) also mentioned that the major 
drawback of visual inspection is that “it is subjective and 
hence irreproducible and it is not applicable on large data 
sets.” Similar statements can be found in most articles on 
visual analysis.

Visual comparison of time series receives slightly more 
attention in hydrological studies when it is used for assess-
ing the performance of hydrological models. One example 
of a study covering “visual performance measures”—the 
comparison of the time series of modelled output to the 
measured time series of the same variable (essentially a 
similarity analysis)—was comprehensively described by 
Ewen (2011). Crochemore et al. (2015) asked a group of 
150 hydrologists to evaluate a set of 20 hydrographs of 
simulated and observed data visually, in order to find links 
between the numerical criteria of the model’s performance 
and expert judgment. They found that expert judgement 
was highly variable from one expert to another but they 
ultimately recommended that quantitative and qualitative 
evaluations be combined, because “Visual evaluation ben-
efits from the knowledge of experts and from their skill 
and experience, and can be very helpful in providing finely 
tuned assessments of model accuracy.” A similar study 

(summarized in Crochemore et al. (2015)) was presented by 
Chiew and McMahon (1993). Seibert et al. (2016) argued 
that, for the purpose of comparing simulated to observed 
hydrographs, “visual hydrograph inspection is still the 
most widely used technique in hydrology as it allows for 
the simultaneous consideration of various aspects such as 
the occurrence of hydrological rainfall–runoff events, the 
timing of peaks and troughs, the agreement in shape, and 
the comparison of individual rising or falling limbs within 
an event.” They also stated that “Visual hydrograph inspec-
tion is hence a powerful yet demanding evaluation tech-
nique which is still rather difficult to mimic by automated 
methods.”

To the authors’ knowledge, no studies exist that explic-
itly address visual similarity analysis as a processing step. 
In general, similarity analysis of groundwater hydrographs 
is still rare with these few exceptions—Allen et al. (2010), 
Rinderer et al. (2017) and Rinderer et al. (2019). Allen et al. 
(2010) classified mountain valley groundwater systems 
using a number of aspects including the seasonal reversals of 
recharge and discharge from snowmelt and rivers. Rinderer 
et al. (2017) and (2019) used time series classification of 
groundwater hydrographs on a small headwater catchment 
in Switzerland to upscale and model groundwater dynamics 
from point to catchment scale.

Study area and data

The examples presented in this article are taken from two 
main study areas (Fig. 1)—one in central Europe (mainly 
Southern Germany plus Austria, France, Switzerland) and 
one in northern Europe (mainly Sweden, plus Finland); they 
will be referred to as the German and the Swedish datasets 
respectively. Here, only those aspects related to the study 
area and data that are immediately relevant to the aspects 
in focus are mentioned. Readers interested in more details 
regarding the data used and the various studies carried out 
can refer to Barthel et al. (2005, 2008, 2012, 2016, 2021), 
Gaiser et al. (2008), Giese et al. (2020), Haaf and Barthel 
(2018), Haaf et al. (2020), Heudorfer et al. (2019), Mauser 
and Prasch (2016), Nickel et al. (2005), Nygren et al. (2020), 
Römer et al. (2016) as well as the PhD dissertations of Haaf 
(2020) and Heudorfer (2019).

Jointly, the datasets comprise groundwater level time 
series from ~5,500 groundwater observation wells (~4,000 
from central Europe). Additionally, a large variety of geo-
graphic, geological, hydrological and climate data were col-
lected and used. Data were obtained from different agencies 
in several countries and are thus very heterogeneous in terms 
of time series length and resolution, metadata, geological 
and technical descriptions, etc. With respect to the raw data 
available for the studies summarized here, and in the context 
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of this article, it is important to note that most of the obser-
vation wells were:

•	 Relatively shallow, with only a few deeper than 200 m
•	 Often clustered in river valleys
•	 Often located relatively close to human settlements.

Additionally, the time series used:

•	 Differed widely in terms of length and regularity of 
measurement intervals, and total length of observation 
period

•	 Very often contained gaps, outliers, and (sometimes 
quite peculiar) irregularities (see, for example, plots d 
and h in Fig. 2).

A wide variety of examples of time series is shown in 
the results section; note that all plots are available in the 

electronic supplementary material (ESM) (Barthel et al. 
2020).

To give the reader a flavour of the range of different appear-
ances of time series within the dataset, Fig. 2 shows selected 
plots where plots a and b are very similar, while plot c is com-
pletely different (i.e. dissimilar) to both a and b. Plot f mostly 
resembles plot c, yet shows, in a rather subtle way, some over-
printing of features found in plots a and b. This is even more 
pronounced in plot e, which could be described as a mix of 
the prominent characteristics of a, b and c. Plots d and h show 
examples of what is meant when a hydrograph is called “irregu-
lar” – in example d, the pattern for the first 4 years is apparently 
rather different (dissimilar) from the following years. Plot h 
shows a variety of “unusual” characteristics. First, there is a 
section in the middle that has a different (smoother) appearance 
than the sections at the beginning and at the end. Second, there 
are some deep downward peaks, the most prominent around 
1995. It is important to keep this in mind as irregularities in 

Fig. 1   Detailed map with observation well locations of the study 
area in southern Germany based on the International Geological Map 
of Europe IGME5000 (Asch 2007). Points are the locations of 751 
out of ~5,000 observation wells in Central Europe used in the study 
described by Heudorfer et  al. (2019). Note that Quaternary alluvial 
sediments, from which the majority of the observations were made, 

are often not explicitly distinguishable at this scale due to their small 
spatial extents. Quaternary alluvial sediments are typically located in 
narrow stretches alongside rivers. From Heudorfer et al. (2019). For 
the Fennoscandian study area (Sweden and Finland, highlighted in 
grey on the small map), observation well locations are not shown
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groundwater hydrographs are very frequent, occur in many 
peculiar and unexpected ways and form one main reason to 
carry out visual analysis.

It is highly recommended for the reader to take a look 
at the entire data set provided online in Barthel et al. 
(2020), as the within-group similarities and between 
group similarities of the time series are much more strik-
ing when looking at a large number of plots than at the 
few examples presented here in the main document.

Methods

Plots of 1,096 time series from southern Germany (841) and 
Sweden (255) were visually inspected and grouped accord-
ing to similar appearance. To evaluate the performance of 
visual classification, the results were compared those from 
algorithm-based classification techniques applied to the 
same dataset. To explore whether the results of visual clas-
sification can be explained by the hydrogeological condi-
tions where the measurements were taken, the time series 
classification results were compared with the results of a 
hydrogeological classification.

Visual comparison and classification of time series

Preprocessing and plotting

The following methodological considerations are primarily 
concerned with similarity analysis and classification, but 
will be applicable to many other uses of visual analysis as 

well. To achieve a meaningful visual comparison, plots do 
need to show differences between time series as clearly as 
possible, but otherwise they need to be identical (scaling, 
layout). This may sound obvious but is easier said than done 
in practice. Many choices exist, yet many of the best ones 
may not be feasible (for example, the plots required may be 
too large). The choice of plot has a significant impact on 
the visual appearance, and thus the analysis results. Choices 
include, for example, the length of the plotted time interval, 
temporal resolution, graphical resolution, standardization, 
and how to deal with gaps (either not plotting or filling with 
straight lines) among others. Even line thickness, colours 
and symbols have great impact. The requirement for iden-
tical layout requires harsh compromises. As groundwater 
head data are expressed either in meters above sea level or 
depth below surface, the subtraction of the mean (or shift-
ing graphs along the y-axis) seems mandatory. Groundwa-
ter level fluctuations have very different magnitudes (in this 
dataset, from a few centimetres up to 15 m within a decade). 
Z-scores are an option to achieve comparable y-axis scal-
ing, with the disadvantage that differences in magnitude, a 
significant hydrogeological feature, are lost. The solution 
taken here was to work with two sets of plots—one with 
just the mean subtracted, the other showing z-scores. Dif-
ferent plot lengths were also tested: 1, 3, 10 and 30 years. As 
time series start and end at different dates and have different 
lengths, plot periods become short if one wants each plot to 
have the same start and end dates. Longer plot periods with 
different start and end dates (the chosen option) have the 
disadvantage that particular events (e.g. a significant drought 
or flood creating characteristic peaks) may be visible in one 
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Fig. 2   a–h Groundwater hydrograph examples. Plots of daily measurements, spanning 10 years. Means are subtracted, but the original magni-
tude of fluctuations has been maintained
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plot but not the other. Also, within a short period such as 
1 year, signals with long wavelengths are lost, while long 
periods (30 years) mean that high frequency signals (visu-
ally) disappear if plots are not made extremely large. One 
option tested to overcome this issue was to use EEMD—
ensemble empirical model decomposition; Wu and Huang 
(2009)—plots that show different frequency components of 
time series in parallel (Fig. 3e).

While different styles of plots emphasize different char-
acteristics of time series, using many different plot styles 
in parallel has proven unfeasible and confusing, and a con-
sistent classification of time series, taking several different 
features into account, cannot be achieved. A significant 
disadvantage of visual techniques is that the human brain, 
while very good at detecting differences in a small number 
of objects of the same kind, can only process a rather limited 
quantity of different information at a time.

In Fig. 3a–d, plots clearly show the impact of standardiza-
tion on plot appearance: the pairs (a and c; and b and d) show 
the same hydrograph, one with only the mean subtracted, the 
other as z-scores. Standardization has the advantage that all 
plots can be more easily fitted into a chosen plot area with 
equal size and axis scaling; however, it changes the appear-
ance, drastically in some cases, whereby some characteris-
tics are understated, while others are exaggerated. Again, it 
depends on the overall objectives of a study as to what is most 
appropriate. As always, “appropriate” is a relative term: it 
depends on the research question or hypothesis to be tested. 
In a study on the impact of long-term climatic changes on 

groundwater, high frequency signals may be less important, 
while those might be extremely interesting in a study on shal-
low groundwater dependent eco-systems. Figure 3e shows 
an EEMD plot of the same time series shown in Fig. 3b,d. 
Splitting the time series into different frequency components 
can be very helpful but, overall, this style of representation 
was not found to be very helpful in the classification stage of 
a classification; the additional information provided cannot 
be “processed” meaningfully. It may prove helpful in a stage 
where one goes from simple visual characterization to concep-
tual interpretation in relation to hydrogeological conditions.

In addition to the technical challenges associated with 
plotting, other challenges arise from the nature and quality 
of groundwater hydrographs. As described in section “Study 
area and data”, many hydrographs are irregular, have differ-
ent length and measurement intervals, gaps, etc. It is thus 
not always possible to visually compare hydrographs with 
identical technical descriptions—i.e. identical length, start 
date or measurement intervals—if one wants to include 
a large enough number of time series in the comparison. 
Compromises have to be made. In this context it is worth 
mentioning that of the more than 5,000 time series available 
in the projects, only about 1,300 were selected for the visual 
classification exercise. The rest were removed prior to visual 
inspection using automatic procedures. Reasons to remove 
time series from the data set were for example: very short 
time series, time series with start and end dates far outside 
the range of the majority of time series, time series with 
very long gaps, many gaps or very irregular measurement 
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intervals. The ~100 time series classified as “irregular” in 
the present study, are those which passed the automatic 
quality control, but were found irregular on closer visual 
inspection.

The final preprocessing and plotting options chosen were:

•	 Plots of 10-year-long time series of daily data (with dif-
ferent start dates); shorter (3 years) and longer (30 years) 
time series were used in some unclear cases to support 
the decision.

•	 Original data with mean subtracted, on y-axis ranging 
6 m (adjusted to the min and max values of the data); 
z-score data and EEMD were used in parallel, but only to 
help make classification decisions in very unclear cases.

•	 Gaps were filled using linear interpolation, but a set of 
plots with gaps left blank was also used (which option is 
better depends mostly on the length of the gaps).

Time series classification according to similarity

One of the most interesting methodological questions in 
relation to classification of time series is “What makes 
two time series appear similar or dissimilar?” Looking at 

the examples shown in Fig. 2a,b, most people will likely 
agree that the plots are quite similar, while the plot in 
Fig. 2c is clearly dissimilar from plots of Fig. 2a,b. In this 
case, where plots show strong similarity, to arrive at this 
conclusion is straightforward, a simple glance is sufficient. 
It becomes much more difficult when patterns are mixed or 
irregularities occur (see Fig. 2 and associated text). Fig-
ure 2e, for example, has features that resemble Fig. 2c and 
also Fig. 2a. How to deal with this is a great challenge and, 
ultimately, the point where subjectivity dominates the pro-
cess. Without elaborating further on this, there are differ-
ent options to visualize time series classification according 
to similarity. One can:

1.	 Look for characteristic patterns in a time series, make 
an inventory of patterns and then group the time series 
according to the combination of patterns found. Figure 4 
explains what is meant by patterns in this sense.

2.	 Look at the overall visual appearance only, without mak-
ing attempts to identify and characterize patterns.

The first attempts at visual classification in this study 
were carried out according to option 1. They were started 
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from a set of unique patterns (peak symmetry, upper/lower 
bounds, flashiness, etc.), after which it was attempted to 
identify the time series where those patterns occurred. 
Figure 4 shows four selected examples of “eye-catching” 
patterns. Some attempts were made to create an inventory 
of patterns based on verbal descriptions (“symmetric”, 
“flashy”) and sketches. Attempts were also made to explain 
potential hydrogeological causes. While visual pattern iden-
tification may be a valid and even less subjective approach 
to visual classification, paving the way for semiautomated 
or automated classification—see section ‘Comparison with 
index-based classification’ and Heudorfer et al. (2019)—it 
was finally decided not to follow the approach as it proved to 
be extremely tedious. The main challenge is that most time 
series do not show patterns in pure form, but show rather 
the superposition of many patterns. In Fig. 4, the uppermost 
row shows simplified versions of several patterns which fre-
quently occur in the dataset. The middle row of Fig. 4 shows 
examples of time series that show the same patterns in rela-
tively pure form. The examples in the lower row of Fig. 4 
show superpositions of the respective pattern with other pat-
terns. The eye seems well able to distinguish between basic 
patterns in such a mixture; the challenge remains to decide 
what pattern, or mixture of patterns, is characteristic for a 
specific group, subgroup or type. In relation to the attempts 
to explain patterns using expert hydrogeological knowledge, 
it should be noted that this may introduce a strong bias and 
wishful thinking (“this is a shallow unconfined aquifer and 
thus must go into this group”, even if it looks different from 
time series from similar locations) and should probably best 
be avoided. It should also be noted that visual classification 
essentially struggles with the same issues as formal, algo-
rithm-based classification—in this example, it is the struggle 
between structural similarity and shape-based similarity as 
explained in work such as Lin and Li (2009).

The results presented in this paper were reached exclu-
sively using overall visual impression. It should be men-
tioned that even when one strives to carry out a characteriza-
tion of the overall visual impression only, one automatically 
starts to look for patterns, even if those are not systemati-
cally described and named.

The classification process was carried out stepwise over 
several iterations. The main approach used was to display 
miniature plots on two computer screens in parallel with 
20–80 miniature plots on each screen. The entire dataset 
with unsorted plots was shown on one screen, while a new 
folder with sorted plots was shown on the other. Plots that 
appeared similar were selected from the “unsorted” folder 
displayed on screen 1 and dragged and dropped to the 
sorted folder on screen 2. First, a very coarse sorting was 
carried out, leading to a small number (here, 9) of rather 
large groups. In the next step, subgroups were formed within 
these large groups, using the same drag and drop procedure 

as before. Subsequently, subgroups were split into sub-sub-
groups, called “types, using the same approach. In a final 
step, each type was compared with the other types and plots 
were redistributed to achieve maximum similarity in each 
subgroup. Cross-checks with other plot styles (see previ-
ous section) were carried out, and parts of the process were 
iterated several times. The “type-to-type” comparison some-
times led to splits, joins and removal of types, subgroups 
and groups.

The process resulted in a hierarchical scheme consisting 
of groups, subgroups and types. Groups were named accord-
ingly using a a 3 digit scheme (X,Y,Z), where X identifies 
the group, Y the subgroup and Z the type.

A strictly hierarchical, exclusive classification (mean-
ing each hydrograph belongs to exactly one type) leads to 
ambiguous results. Many hydrographs could belong to one 
type, but equally well to another. Visual inspection as used 
in this study does not provide the means to come to clear 
decisions due to the lack of objective criteria. For that rea-
son, the authors have experimented with “fuzzy classifica-
tions” where a hydrograph can belong to more than one type. 
The methodology used to achieve the fuzzy classification 
and the respective results are presented in the electronic sup-
plementary material (ESM).

Comparison of visual classification results 
with other data

The results of the visual classification were compared to the 
result of index-based classification (Heudorfer et al. 2019) 
and the results of direct comparison of time series based 
on different distance measures and subsequent clustering 
(Haaf and Barthel 2018). Moreover, visual classification 
results were compared to a set of hydrogeological descrip-
tors and the results of hydrogeological classification (Giese 
et al. 2020). The comparison of visual classification with the 
results of the direct comparison is described in some detail 
in Haaf and Barthel (2018) and thus are not shown here.

Comparison with index‑based classification

The index-based classification scheme is described in detail 
in Heudorfer et al. (2019). The fundamental idea is as fol-
lows—for each time series, a set of indices is calculated, 
each index expressing one characteristic feature (a “pat-
tern”) of groundwater dynamics. Heudorfer et al. (2019) 
developed a typology of groundwater dynamics with three 
major categories of features, namely structure, distribution 
and shape, each having several subcategories. Structure, for 
example, has the subcategories seasonal magnitude, seasonal 
timing, interannual variation and flashiness. Within each 
subcategory, one or more indices are defined—for example, 
the Richard-Baker index, in the subcategory flashiness is 
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the “sum of absolute values of day‐to‐day changes in head 
divided by the sum of scaled daily head” (Baker et al. 2004). 
The index Average seasonal fluctuation, belonging to the 
category “Seasonality magnitude”, is the “Mean annual dif-
ference between the averaged 3 highest monthly ground-
water heads per year and the averaged 3 lowest monthly 
groundwater heads per year” (Martens et al. 2013). Indices 
were calculated for 10-year time series of weekly and 5-year 
times series of daily data.

Heudorfer et al. (2019) considered a total of 62 indices, 
collected from different studies in hydrology and related 
fields of science. Of those 62, nine indices representing the 
previously mentioned subcategories were selected for com-
parison with the visual classification results (Table 1).

To compare the visual classification results with the 
index-based approach, mean and standard deviation for the 
selected indices from time series within each type, subgroup 
and group found through visual classification were calcu-
lated. A semiquantitative comparison was carried out with 
the aim of determining whether similar time series have 
similar index values.

Comparison with hydrogeological data

Within the scope of the wider research framework presented 
in this article, one main objective of time series classifica-
tion is to be able to establish and use dependencies between 
time series characteristics (dynamic behaviour) and hydroge-
ological conditions. This has the ultimate aim of being able 
to use the found dependencies to make predictions. There-
fore, the question as to whether a found classification scheme 
has any relation to hydrogeological conditions is a crucial 
one to be answered. It is assumed that the index-based clas-
sification introduced in the previous section shows some 
degree of relation to hydrogeological conditions, as many 
of the indices are based on theoretical and empirical consid-
erations of the dynamic behavior of groundwater resources. 
The visual classification based on “visual appearance” only, 
however, cannot rely on such assumptions; therefore, the 

authors found it beneficial to take a closer look at this ques-
tion. To do so, how selected numerical descriptors from 
a dataset containing geological and borehole information 
related to the found classification scheme were analysed. 
For the purpose of this article, this analysis was only car-
ried out qualitatively. An in-depth quantitative analysis of 
the same question, based on indices, is described in Haaf 
(2020) and Giese et al. (2020). Those articles also explain 
how the descriptors used were developed and why and how 
selections for the purpose of those analyses were made.

Results

Visual comparison and classification of time series

The classification was carried out independently for both 
datasets (Germany/Sweden) and for a combination of the 
two datasets. The Swedish dataset was also independently 
grouped by two different observers. In the results section, 
only details of the results for the German dataset are present 
as the results for the Swedish dataset do not fundamentally 
differ. Results of the classification of Swedish data and the 
combined classification (German and Swedish data in one 
data set) can be found in the (ESM).

In the context of this study, both exclusive classification 
and fuzzy classification were tested. Exclusive classifica-
tion means that each hydrograph is assigned to one type 
only, while in fuzzy classification each hydrograph can be 
assigned to many types.

Exclusive classification

For the German dataset of 841 time series, the procedure 
described in section ‘Visual comparison and classification 
of time series’ resulted in 82 visually distinguishable types 
within 28 different subgroups and nine groups. Up to 31 
individual time series were grouped into one type, while 
a few types had only two or three members. Additionally, 

Table 1   Indices selected for 
the comparison with visual 
classification results. See 
Heudorfer et al. (2019) for 
detailed explanations and 
references for all 62 indices

Aspect Component Index name Index abbreviation

Structure Seasonality magnitude Coefficient of variation (CV) of mean 
minimum monthly head

cv.mon.min

Seasonality timing CV of date of annual minimum head vardoy.min
Flashiness Richards pathlength pathlength
Interannual variation Low/high pulse count pulse.count.h

Shape Slope Recovery constant recov.const
Scale Peak base time peakbase.avg

Distribution Modality Bimodality coefficient bimod
Boundedness Median with 0–1 scale median
Density Mean of annual maximum avg.ann.max
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there were about 29 time series that did not fit into any of 
the found types; thus, these were classified as “not fitting 
anywhere”. Seventy-one hydrographs were put into a group 
called “irregular”. Note that all time series with obviously 
peculiar behaviour, outliers, gaps etc. were removed from 
the dataset before starting the process of visual classifica-
tion described here. The irregular time series detected here 
were, therefore, mainly those that were not spotted in the 
preparation stage. Plots of all the time series and classifica-
tions made are available in the ESM (Barthel et al. 2020).

Figure 5 shows the diversity of the time series used in 
this study, an overview of the used hierarchal classification 
scheme and a flavour of the achieved classification. The 
lower panel of Fig. 5 shows examples of time series from 
each of the nine groups created. The panel in the middle of 
Fig. 5 shows six representative examples of plots from one 
subgroup each, each belonging to group 2. The upper panel 
shows three representative examples from one type that was 
defined within the subgroup 2.2 of group 2.

Figure 6 shows some of the challenges associated with 
visual similarity analysis, using examples of plots of time 
series from two types, one defined within group 8 (type 
8.3.1), the other in group 9 (type 9.5.1). Types 8.3.1 and 
9.5.1 are clearly dissimilar from each other, while the 
within-type similarity of type 9.5.1 appears to be higher than 
the one of type 8.3.1. Although this can partly be explained 
by the preprocessing and plotting options used, the chosen 
plots demonstrate one of the challenges of visual similar-
ity analysis—the impression of similarity/dissimilarity is 
often a relative one, and it depends on the number of time 
series available. For type 9.5.1, very similar (i.e. similarity 
of all visible features) time series exist making them easy to 
group. For type 8.3.1, time series with very similar features 
exist—e.g. the apparent upper boundness, maxima flashier 
than minima, overall “noisy” appearance, no strong interan-
nual variations—yet those features are somewhat different 
in each of the given examples. There is ultimately no way 
to express degree of similarity clearly or to describe the 
nature of similarity in visual analysis; it remains subjective 
and unstructured. To overcome this, further moves towards 
quantitative analyses have to be made.

Figure 7 (upper two rows) shows examples of time series 
plots that were classified as being “irregular” and thus 
excluded from classification. The lower row of Fig. 7 shows 
examples of time series which are regular, but classified as 
“not fitting anywhere”—there is no other time series that 

resembles each of them. As mentioned before, irregulari-
ties in time series are of significance, both as “disturbing 
features” that introduce errors and uncertainty, and as addi-
tional information on groundwater systems and system 
responses—whatever creates strange/irregular and excep-
tional features may inform us about the influence of proper-
ties and processes or changes of these. Much may be learned 
from analyzing those more closely. It is important to point 
out that smaller or larger irregularities occur in almost any 
groundwater hydrograph. Without being able to prove this, 
the authors claim that many irregularities can be identified 
much better through visual inspection than by formalized 
automated approaches. Please note, that the term “noise” 
in relation to irregularities is avoided here, as identifying 
signals as noise may imply that they are not the results of the 
system responses one is interested in. The irregular features, 
however, may very well be “real” signals, yet created by an 
unknown and unusual process.

The visual classification of the Swedish dataset was car-
ried out independently (i.e. each observer used their own 
approach), and the results were compared. The details of 
this comparison do not add much to the overall conclusions 
other than confirming the subjectivity of the approach. On a 
“large scale”, i.e. at the group level, results concur largely, 
while overlaps are fewer on the subgroup and type levels. 
In that sense, visual classification does not differ from auto-
matic procedure, where the fine-grained classification results 
depend on, e.g. the chosen distance measures or clustering 
algorithms. Figure 8 shows examples from one subgroup 
created in the joint classification of Swedish and German 
data. Similarity between Swedish and German data is usu-
ally quite high at the subgroup level, but less strong at the 
type level. One main reason is that the Swedish dataset was 
created from bi-weekly measurements, usually leading to a 
smoother appearance. The second reason is that in many of 
the very shallow and thin aquifers in Sweden, groundwater 
levels frequently drop below the well bottom or reach the 
ground surface (wetlands). This creates an appearance of 
upper and lower bounds. In general, the diversity of types 
in Sweden is much lower, as there is less variety among 
hydrogeological settings—for example, hydrographs belong-
ing in some of the subgroups of group 1, associated with 
deep confined aquifers, are missing in the Swedish dataset.

“Fuzzy” classification

The results presented so far represent an “exclusive” hier-
archical classification—each time series belongs to one 
type only. However, results remain unsatisfactory—there 
are many cases where one time series fits in several types, 
depending on which of its visual features is weighted high-
est. This leads to an ambiguity of classifications, which can 
be explained by the mixture of patterns as demonstrated in 

Fig. 5   Lower panel with nine plots: Examples of plots of time series 
from each of the nine groups defined by visual classification. Panel 
in the middle with six plots: examples of plots of time series from 
subgroups that were defined within group 2. Upper panel with three 
plots: examples of plots of time series from one type (type 2.2.1), 
which was defined within subgroup 2.2

◂
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Fig. 4. In-between-type similarities across groups and sub-
groups exist. To explore this further, the between-similari-
ties and within-similarities of types, subgroups and groups 
were determined visually using a similarity matrix (section 
‘Visual comparison and classification of time series’). As 
the results of this supplementary approach are not used to 
support the conclusions of this paper, they are, together with 
further explanations, shown in the ESM.

Summary of findings

Some of the findings of the visual classifications are sum-
marized thus:

•	 As expected, the results of classification may differ, 
sometimes significantly, depending on preprocessing 
and plotting decisions (see Fig. 3, for example). This is 
particularly the case for time series with a high interan-
nual and low intraannual fluctuation or overall range.

•	 Classification time series with a large diversity of super-
imposed differing patterns (see Fig. 4 for examples) is 
extremely difficult. They may be assigned to different 
types, subgroups or groups, depending on which pattern 
the observer gives the highest weight to.

•	 A strictly hierarchical and exclusive classification is not 
meaningful. This should be kept in mind when applying 
automated similarity analysis approaches, in particular 
those described by Haaf and Barthel (2018).

•	 Two different observers will produce different results. 
The more strategic decisions they can agree on (plot-
ting, preprocessing, weighting of features and patterns), 
the more alike the results will be. However, large differ-

ences are still to be expected, as a comparison of visual 
classification of the Swedish dataset carried out by two 
observers revealed.

•	 Wishful thinking is a problem. The temptation to con-
firm preexisting conceptual ideas and hypotheses (“shal-
low-unconfined: must be a flashy type, etc.”) is strong.

•	 The Swedish and German time series are very similar 
in general. Most types in the joint classification contain 
time series from both datasets, yet there are a number 
of types that seem to be specific to either of the regions. 
There are technical issues to be considered, however, as 
the Swedish time series are measured bi-weekly, giving 
them a smoother appearance.

•	 The majority of time series contain sections that look 
peculiar or irregular in one way or another, deviat-
ing more or less from their general pattern. These can 
be small spikes and shifts, longer-lasting periods of 
exceptionally high or low measurements, changes of 
fluctuation frequency, as well as exceptionally noisy 
or exceptionally smooth parts. This aspect should be 
very carefully considered when developing and using 
automated similarity analysis and should be the main 
motivation to carry out systematic visual analysis of 
(groundwater) time series data overall. The human eye 
can, to some degree, “ignore” sections that are different 
from the “usual” appearance of a time series. Auto-
mated procedures, if not applied using moving win-
dows, will just mix them in.

Readers may be interested to learn how much time is 
needed to perform a meaningful visual inspection and clas-
sification of a dataset of around 1,000 hydrographs. Based 
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Fig. 6   Examples of plots of time series from two types
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on the study presented here, this is difficult to answer; to 
carry out the study and to arrive at the final classification 
presented, it took several months. However, much of this 
time was not spent on the actual inspection and classifica-
tion but on testing different approaches and ideas and the 
comparison with other approaches. Also, due to the lack of 
hard and objective criteria, it is hard to determine when one 
is done, i.e. when a satisfying result is achieved. Neverthe-
less, to provide some ideas, a rough estimate for a set of 
1,000 time series, assuming that preprocessing and plotting 
decisions have already been made, would be that a reason-
able classification at the group level can be made within sev-
eral hours. From there, a refinement to subgroup level will 
require about 1 or 2 more days. Type level classification can 
be achieved in an additional week. A fuzzy classification, 
involving a type-to-type comparison will require another 
2–3 days. For a set of 100 time series, everything, including 
fuzzy classification could be done in 1 day.

Comparison of visual classification with other data

Comparison with index‑based classification indices

To compare the results of visual classification to index-
based classification, Fig. 9 shows the averaged within-
subgroup values of nine selected indices. It can be seen 
that index value distributions show a distinct pattern for 
most groups and subgroups. Within groups, most indices 
usually have the same sign and magnitude, while one or 
two indices can differ significantly between subgroups of 
one group. There are, however, also exceptions—based on 
their index values, subgroups 1.4 and 1.5 are much closer 
to the subgroups in group 2 then they are to the other 
subgroups in group 1. It would definitely be interesting 
to look into this more, yet it is outside the scope of this 
article to discuss this further.
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Fig. 7   Upper two rows: examples of plots of time series that were 
classified as being “irregular”. Keep in mind that the main princi-
ple of the approach is to characterize hydrographs based on overall 
visual appearance only; therefore, similarity or irregularities are not 

explained. It is thus also left to the reader to identify what may be 
irregular here. Lower row: examples of time series which are regular 
(and seem normal), but classified as “not fitting anywhere” as they do 
not resemble any other time series
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Fig. 8   Time series examples from type 4.1.3 created from a joint 
dataset of Germany and Swedish data. The upper row shows exam-
ples from Germany, the lower from Sweden. Please note that the Ger-

man data were measured daily, the Swedish biweekly, leading to a 
smoother appearance

sub
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Fig. 9   Comparison of the subgroups defined through visual classification with the averaged within-subgroup values of nine selected indices (see 
Table 1). Index values are standardized (z-scores)
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In many cases, index values can be easily explained 
by the visual appearance (and vice versa)—for example, 
the pulse.count.h index is low for the rather smooth time 
series that is dominated by long wavelengths in groups 1, 
2 and 3, but has higher values for the rather flashy groups 
8 and 9 (compare also with Fig. 5). The pulse.count.h 
index value for subgroup 9.5 is, on average, 0.67, while 
the same index value is 1.63 for subgroup 8.3, clearly 
reflected by the visual appearance of the given examples 
from these subgroups.

To demonstrate how sets of index values for individual 
time series relate to the actual visual impression of a time 
series, Fig. 10 shows the index values of four distinct 
time series taken from pairs of very close types along 
with selected plots of those types. The subgroups those 
types belong to were chosen as they demonstrate strong 
between-subgroup similarity (2.2 and 2.3, 8.2 and 8.3, 
respectively), or strong between-subgroup dissimilarity 
(subgroups from group 2 versus group 8). According to 
the index profiles, times series ID1550 and ID1369 seem 
to be very similar, while the visual appearance suggests 
some differences (thus two different subgroups). ID1825 
and 1325, grouped into the same subgroup but differ-
ent types therein, are also quite similar index-wise (apart 
from index pulse.count.h). Visually, the different appear-
ance is mainly due to a smoother lower bound in 1325.

Comparison with hydrogeological data

Figure 11 shows the averaged, normalized (z-scores) val-
ues of six selected, commonly available observation well 

properties (descriptors) for all subgroups, determined 
through visual classification. All descriptors are related to 
thickness and depth, apart from elevation. For more infor-
mation on the descriptors used in this study, please refer to 
Giese et al. (2020) and Haaf et al. (2020).

More comparisons between visual classification results 
and hydrogeological settings are shown in Barthel et al. 
(2021). Figure 11 indicates that there is a strong, yet not 
unambiguous relationship between hydrogeological prop-
erties and types of groundwater dynamics as determined 
with visual classification. A deeper analysis of the relation-
ships shown in Fig. 11 would increase the understanding 
of groundwater system responses to change, but this also 
is outside the scope of this article. The authors would once 
again like to draw the reader’s attention to the other stud-
ies published by the authors within the framework of this 
research, as well as the PhD dissertations presented by Haaf 
(2020) and Heudorfer (2019).

Discussion

The objective of this article was to discuss the benefits and 
challenges of visual inspection and classification. This was 
done using a visual classification scheme for a large set of 
groundwater hydrographs. It was evaluated as to how well 
this scheme matched the results of automated (formalized) 
classification, and whether the assigned classification had 
a meaningful relationship to hydrogeological conditions. 
It was found that, using a thorough, systematic classifica-
tion based on visual appearance, a fine-grained hierarchal 
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classification of groundwater dynamics could be achieved 
that matched the results of automated, index-based classifi-
cation quite well. The index-based time series classification 
scheme, through a variety of different indices and a clear 
topology, makes different dimensions of similarity transpar-
ent and accessible, and allows for a straightforward compari-
son to visual classification. The comparison between the two 
showed a good match—for most types of time series estab-
lished through visual classification, the individual members 
showed quite similar values for a group of representative 
indices. The indices were also quite consistent with the hier-
archal scheme of the groups, subgroups and types. Indices 
differed significantly for groups that were visually dissimilar 
and were close for groups that were similar. There were, 
however, also cases where visual and index-based classifica-
tions did not match very well, and time series where neither 
classification method delivered convincing results.

Not unexpectedly, it was found that the classifications 
based on visual appearance could be linked to hydrogeologi-
cal conditions quite well. The relationships are not always 
straightforward—in some cases, similar time series are from 

different hydrogeological settings or a similar hydrogeologi-
cal setting creates dissimilar time series. Yet, such a scheme 
provides plenty of possibilities for improving knowledge and 
understanding of groundwater systems. It can be used to 
carry out systematic cross-checks, and to find and improve 
explanations of groundwater systems behaviour, based on a 
condensed and structured dataset.

Overall, it can be concluded that visual classification is 
a valid approach and could be used to make predictions of 
the dynamic behaviour of distinct hydrogeological settings. 
However, the more interesting question, in the context of 
this article, is whether systematic visual analysis is neces-
sary and worth such a big effort. Why not use the more sys-
tematic, formal and automated, and objective, procedures 
for time series characterization and classification from the 
beginning instead of the tedious and rather subjective visual 
approach?

This question is unfortunately difficult to answer sys-
tematically and quantitatively. One of the problems is that, 
despite demonstrating that visual and index-based classi-
fications deliver similar results, it is still unknown which 
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7.5
8.2
8.3
8.4
9.1
9.2
9.3
9.4
9.5

Fig. 11   Averaged, normalized (z-scores) values of six selected observation well parameters (descriptors) for all subgroups determined through 
visual classification. Note that for some subgroups, there were either no or not enough complete records of descriptors to do this analysis
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is more useful. It is known from other studies (Haaf et al. 
2020; Heudorfer et al. 2019; Giese et al. 2020) that index-
based classification does not deliver definitive classifica-
tion results. It was also shown that there is no absolute way 
to determine the performance of classification approaches 
(Haaf and Barthel 2018); therefore, it is difficult to decide, 
based on the comparison presented in this article, whether 
visual analysis performs much worse (making it unneces-
sary) or much better (making it mandatory) than index-
based classification. However, even if it cannot be directly 
proven through the results presented in this article, it seems 
likely that visual analysis may significantly help to improve 
automated schemes, in particular the index-based classifi-
cation. Nevertheless, there seems to be aspects of visually 
apparent dissimilarity that indices cannot capture (suggest-
ing development of new indices or improvement of exist-
ing ones). Table 2 shows a comparison of the advantages, 
disadvantages and limitations found in the three different 
classification approaches applied in the wider framework of 
this research. The direct comparison approach by Haaf and 
Barthel (2018) is included.

It is the authors’ opinion that the advantage of visual 
classification is the ability to handle time series data that 
are inhomogeneous in terms of measurement intervals, start 
and end date, gaps and irregularities—all features typical of 
groundwater hydrographs (Collenteur 2021; Peterson et al. 
2017). Handling in this sense, not only means foremost 
detecting and characterizing irregularities, but also using 

data which otherwise is too poor for numerical evaluation. 
Of the raw data available for this study, only a relatively 
small fraction could be used with the formal automated pro-
cedures; and to distinguish suitable from nonsuitable time 
series, visual inspection had to be used. Another impor-
tant advantage of visual classification is detecting new, yet 
unknown patterns in the data, and to detect situations where 
patterns are overprinted with others (see Fig. 4); some fur-
ther examples are given in Barthel et al. (2021).

On the other hand, the disadvantages of visual clas-
sification are significant: it is tedious, subjective and not 
reproducible. Additionally, it lacks explanatory power and 
is highly reliant on choices made in preprocessing and plot-
ting. Full-scale, systematic visual classification carried out 
on a large dataset of more than 1,000 time series does not 
seem to be appropriate, while the authors regard systematic 
visual analysis of data sets with less than 100 times series 
as almost mandatory, data sets of 100–1,000 time series can 
very well be considered for a systematic analysis, but it is 
recommended to start with subsets first.

Finally, the authors would like to highlight one discussion 
point related to time series classification in general—time 
series of groundwater levels are the result of many com-
plicated and interrelated conditions and processes. The 
resulting response patterns are thus manifold across many 
different features, patterns and aspects. Degree of similar-
ity can vary over time and/or be affected by unusual situa-
tions (drought, human interference). In visual classification, 

Table 2   Comparison between different classification (similarity detection) approaches

a Heudorfer et al. (2019)
b Haaf and Barthel (2018)

Approach: Visual classification Index-based classificationa Direct com-
parison of time 
seriesb

Results intuitive, transparent Partly Yes Partly
Allows for process-based explanations Only using expert knowledge Partly No
Tolerance to irregularities and gaps in time series High Medium to low Very low
Regular intervals between measurements required Tolerant to a certain degree Mostly yes Yes
Same length of time series required No Partly Yes
Time series must have same start and end date No No Yes
Preprocessing effort required Low Medium Medium
Influence of preprocessing on results Very high Low Low
Influence of plot layout on results High N/A N/A
Chances of spotting known unusual time series behaviour High Medium Medium
Chances of spotting previously unknown unusual time series 

behaviour/patterns
High Medium to low Very low

Reproducibility Very low High High
Max number of time series  ~1,000 Almost unlimited High
Time required Very high Low Low
Transferability Medium to low High High
Subjectivity Very high Low Low
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it depends on which patterns the viewer perceives as most 
important, and which patterns the chosen plotting option 
emphasizes most. It is impossible to know if those patterns 
also have a strong hydrogeological relevance. This problem 
is not unique for visual classification though—it applies to 
automated algorithm-based procedures as well. As long as 
the mechanisms and properties that lead to a certain dynamic 
behaviour of groundwater levels are not fully understood, 
it will neither be possible to determine the optimum clas-
sification scheme, nor to use similarity and classification in 
groundwater for robust predictions.

Conclusions

A systematic visual inspection and similarity analysis of a 
data set of more than 1,100 time series was performed. This 
was not done as a standalone approach but to support other 
approaches within a much larger framework of research 
(Barthel et al. 2021). The aim of this study on visual clas-
sification was thus not to prove the validity of a concept, or 
to quantitatively prove its superiority or inferiority in com-
parison to other approaches, but to evaluate how it can most 
beneficially be used as a support for other methods. The 
main conclusions from this study are:

•	 Visual classification (i.e. classification of time series 
based on perceived similarity), if carried out system-
atically and after thorough consideration of preprocess-
ing and plotting options, is an excellent tool to identify 
patterns, irregularities and peculiar features that can be 
used in various ways to develop, cross-check and enhance 
other, automated, approaches.

•	 Visual inspection is particularly powerful where data 
are poor and heterogeneous, which is often the case for 
groundwater time series.

•	 Visual classification, despite the advantages listed in 
the preceding, cannot form a standard approach to time 
series classification because of its obvious disadvantages: 
subjectivity, tediousness, low reproducibility and reusa-
bility. It is only justified, and in particular in groundwater 
studies even mandatory until greater understanding has 
been reached, in the early stages of an analysis as a tool 
to improve automated classification procedures.

•	 Even in the early stages of a classification study, an 
effort as large as the one carried out for the purpose of 
this article (>1,000 time series) is hardly justified. It 
is recommended to create a classification for a smaller 
subset of the dataset (100–200 time series) and to carry 
out random cross-checks with the rest of the dataset. 
Irregular features and particularities can be detected 
with far less systematic approaches.

•	 For groundwater data, the focus should be on identi-
fying and interpreting irregularities in time series, as 
those are plentiful and have interesting characteristics. 
With an inventory and characterization of the found 
irregularities, automated procedures to detect and 
understand irregularities can be better targeted and 
are less error-prone. The authors found that noise and 
outliers in groundwater time series are easily misinter-
preted by automated procedures. Having a clear idea 
of characteristic patterns and the mode of their occur-
rences can help to improve this.

•	 In this study, time series classification was made 
based on “overall visual appearance only” (see sec-
tion ‘Time series classification according to similar-
ity’). An approach using “visual pattern recognition” 
(see Fig. 4) may be even more difficult and tedious 
to accomplish, but may yield results which are more 
straightforward to use to improve automated similarity 
analysis.

To summarize, systematic visual inspection and clas-
sification is a highly valuable tool, but it must not be 
overrated. In the context of classification and similarity 
in groundwater data, it will play a significant role until the 
optimal approaches for groundwater hydrograph similar-
ity and classification are found, all the important features 
characterizing times series are known and understood, and 
all the disturbing features can be identified, eliminated 
and dealt with using automated procedures. As this ideal 
situation is still a long way off, visual analysis will, for the 
foreseeable future, have a role to play.
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