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Abstract: The present work describes a methodology to compute equivalent volumes representing
the microstructure of 3D-printed continuous fiber-reinforced thermoplastics, based on a statistical
characterization of the fiber distribution. In contrast to recent work, the methodology herein presented
determines the statistically equivalent fiber distribution directly from cross-section micrographs,
instead of generating random fiber arrangements. For this purpose, several regions, with different
sizes and from different locations, are cropped from main cross-section micrographs and different
spatial descriptor functions are adopted to characterize the microstructures in terms of agglomeration
and periodicity of the fibers. Detailed information about the adopted spatial descriptors and the
algorithm implemented to identify the fiber distribution, as well as to define the location of cropped
regions, are given. From the obtained statistical characterization results, the minimum size of the
equivalent volume required to be representative of the fiber distribution, which is found in the
cross-section micrographs of 3D-printed composite materials, is presented. To support the findings,
as well as to demonstrate the effectiveness of the proposed methodology, the homogenized properties
are also computed using representative equivalent volumes obtained in the statistical characterization
and the results are compared to those experimentally measured, which are available in the literature.

Keywords: polymer–matrix composites (PMCs); mechanical properties; computational mechanics;
3D printing; representative volume element (RVE)

1. Introduction

Over recent years, the Additive Manufacturing (AM) of reinforced polymers has been
playing an important role in the production of high-performance components, opening
the door for new applications in the manufacturing of lightweight structures. Inserted
into the material extrusion-based category, the Fused Filament Fabrication (FFF) [1–6],
often referred to by the term 3D printing, is an Additive Manufacturing process that can
work with continuous fiber-reinforced thermoplastics [7–21]. From a mechanical behavior
point of view, both the printing process parameters and individual constituent character-
istics, e.g., fiber distribution, affect the resulting performance of 3D-printed composite
materials [22–26]. Since experiments for determining the mechanical properties of com-
posite materials are relatively expensive, several approaches have been employed, either
for predicting the resulting mechanical properties or guiding the setup of experiments. In
regards to the available techniques for predicting the mechanical properties of 3D-printed
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composite materials, recent work has reported the use of classical mean-field approaches
although only longitudinal elastic properties (along fiber direction) were computed and
compared with experimental results [7–11]. On the other hand, different numerical tech-
niques can be found in the available literature to predict the mechanical properties of
traditional composite materials. In this context, computational homogenization techniques
are very suitable to describe the mechanical behavior of heterogeneous materials, mostly
when this behavior is difficult to be obtained experimentally. Generally, a sub-volume
which is representative of a whole is discretized using finite element methods, consequently
reducing the simulation time with good results [27–35]. On the other hand, fractal solutions
are also able to determine different characteristics of fibrous porous media [36,37].

To improve the prediction of the mechanical behavior of heterogeneous materials,
recent studies have presented methodologies to create sub-volumes with random mi-
crostructures which attempt to capture the effects of fiber arrangement on the homogenized
properties, and also on the distribution of the stresses at microscopic level [38–48]. These
approaches are very interesting from the point of view of more realistic representations
when compared to classical periodic fiber arrangement. However, they assume that the mi-
crostructure of a composite material is completely random regardless of other factors, e.g.,
the manufacturing process which can affect the fiber spatial and pores distribution [49,50].
Furthermore, this strategy may not provide suitable results when fiber-reinforced materials
with relatively low fiber volume fractions, ca. 32%, are analyzed, which is the case of
the continuous fiber-reinforced 3D-printed materials [7,13]. In general, traditional pre-
impregnated composite materials present a higher fiber volume fraction which results in
fiber arrangements better distributed than those seen in 3D-printed composite materials.

Objective and Contributions

It is verified from the literature that a different strategy should be applied to define
an equivalent microstructure of 3D-printed fiber-reinforced composite materials, mostly
when they present relatively low fiber volume fractions. In this context, it is believed that a
methodology to obtain equivalent microstructures directly from cross-section micrographs,
which are determined according to spatial descriptors functions, is more suitable for this
purpose. Additionally, it is also believed that adopting this strategy some particularities
inherent to the manufacturing process could be contemplated in the models. Based on this
line of thought, the authors introduced a methodology in a previous work [26] and infor-
mation was given about the size of the equivalent microstructures, as well as the adopted
spatial descriptor functions. However, important information about the complete image
processing methodology, as well as specific results of the fiber distribution characterization,
could not be detailed. In view of these aspects, the present work aims to describe in detail
the methodology applied to obtain statistically equivalent volumes representing the mi-
crostructures found in 3D-printed continuous fiber-reinforced composites. To demonstrate
the effectiveness of the methodology, the homogenized elastic properties are computed
using the equivalent microstructures computed using the proposed algorithm. The nu-
merical results are then compared to those experimentally measured that are available in
the literature.

Among the advantages of employing the proposed methodology, the capability to
include characteristics inherent to the manufacturing process, the low computational
cost, and the flexibility to identify different types of microstructures can be highlighted.
In addition, the methodology herein presented is highly suitable for parametric studies
related to several aspects involving micromechanics. For instance, given a set of cross-
section micrographs, the proposed methodology could provide parameterized equivalent
microstructures to determine the stresses and strains at microscopic level as well as to study
the mechanisms of failure acting at the constituent level. In addition, a parameterized
study involving the interface between fiber and matrix could also be possible. In this case,
the interface size could be parameterized in function of the size of the fibers found by the
algorithm, and the influence of its main characteristics could be evaluated.
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Regarding paper structure, detailed information about the adopted spatial descriptors,
as well as about the process of fiber distribution identification and cropped regions defini-
tion, i.e., the proposed algorithm for image processing, are given in Sections 2 and 3. The
application of the proposed algorithm is presented in Section 4 according to parameters
defined in function of the fiber diameter. In this parametric analysis, a bank of images is
generated from three cross-section micrographs previously obtained. The results obtained
from the statistical characterization are detailed in Section 5, where the minimum size
of a representative microstructure for 3D-printed continuous fiber-reinforced composite
materials is given in terms of the parameters previously defined. Lastly, the homogenized
properties are predicted using the obtained equivalent microstructures and the results
are presented in Section 6, where the effect of the equivalent fiber distribution on the
homogenized elastic properties is also discussed. To support the discussion, the obtained
numerical results are compared to those experimentally measured.

2. Adopted Spatial Descriptor Functions

Recent investigations [39,41,42,47,51–55] applied different statistical techniques for
characterizing spatial distributions of individuals in populations. These individuals, fre-
quently represented by points in a certain arrangement, are viewed in the context of
fiber-reinforced composite materials as the center of fibers distributed in the cross-sectional
area of unidirectional composites. Among the techniques, the computation of Voronoi
polygon areas and neighboring distances, as well as the calculation of the nearest neigh-
bor distances and the second-order intensity function have been widely applied on the
composite materials field [39,51,52,55].

In general, these statistical techniques can provide information about the periodicity
and/or the agglomeration of individuals in a distribution, which are then used to quantita-
tively characterize them. For instance, Ref. [39] noted that the standard deviation of the
areas represented by the Voronoi polygons gives information about the periodicity of the
distribution, i.e., in a periodic distribution the standard deviation is zero since all polygons
are equal and consequently have the same area. The neighboring fiber distances, which
is determined by the average distance between an individual and its neighbors, is also a
measure of the periodicity of a distribution. Analogously to the characterization based on
the Voronoi polygons, in a periodic distribution the standard deviation of the computed
neighboring distances is also zero.

From the literature [39,51,52], it can be seen that the probability density function of
the smallest distance from one individual to its neighbors is normally computed in the
nearest neighbor distance technique. In addition, the second and third nearest neighbor
distances may also be computed providing more information about the interaction between
the individuals. For its part, the second-order intensity function was considered by some
authors [39,56] as one of the most informative descriptors of spatial distributions providing
information about the periodicity and agglomeration.

Since all techniques presented above have been demonstrated to be effective in the
quantitative characterization of spatial distributions, the present work focuses on the nearest
neighbor distance and the second-order intensity function to quantitatively characterize
the fiber arrangement obtained from cross-section micrographs of 3D-printed carbon fiber-
reinforced thermoplastic composites. It is worth noting that the approach assumed herein
for characterizing the fiber arrangement in cross-section micrographs using the nearest
neighbor distance, is particularly different from that generally adopted in the literature.
Detailed information is given as follows.

2.1. Nearest Neighbor Distance

As mentioned before, the neighboring fiber distances can be determined by the
average Euclidean distance between an individual and its neighbors. Thus, let P ={

p1(x1, y1), p2(x2, y2), · · · , pnp(xnp , ynp)
}

be a set of np points containing the centers of
fibers, distributed in the cross-sectional area of a unidirectional fiber-reinforced composite.
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Thus, the nearest neighbor distance d̂i between a fiber pi ∈ P, with center (xi, yi), and its
neighboring fibers pj ∈ P, with centers (xj, yj), can be written as [26]

d̂i(pi, pj) = min
pi ,pj∈P

{√(
xi − xj

)2
+
(
yi − yj

)2
}
∀i 6= j, (1)

where the indices i and j are defined as i, j = 1 · · · np.
The probability density function of the nearest neighbor distances d̂ obtained for all

points p ∈ P is typically computed to provide information about the periodicity of a certain
distribution. For instance, the probability density function plot of the nearest neighbor
distances computed for a set of points in a periodic arrangement, e.g., square or hexagonal,
would be a straight vertical line since all the nearest neighbor distances are equal. On
the other hand, in a random distribution the probability density function is expected to
follow a Gaussian distribution [55]. According to Melro et al. in [39], information about
clustering in a distribution can be also obtained verifying if the probability density function
plot of the nearest neighbor distances exhibits a peak for a specific distance followed by a
steep decrease.

Following the methodology previously introduced in [26], instead of computing the
probability density function, the mean and the standard deviation values of the nearest
neighbor distances, necessary to compute the probability density function, are analyzed
separately. Defining r f as the radius of fibers in a distribution, the mean value µ̂(d̂/r f ) tends
to 2 if the fibers are in a condition of maximum agglomeration. Higher values of µ̂(d̂/r f )
indicate that the fibers in the distribution are more spaced or dispersed. Although the ratio
µ̂(d̂/r f ) of the nearest neighbor distances for an extreme case of maximum agglomeration
also gives information about periodicity, the standard deviation of the nearest neighbor
distances σ̂(d̂) is computed for this purpose. If σ̂(d̂) tends to 0 it can be verified that the
fibers are arranged in a periodic distribution, since all the nearest neighbor distances are
equal. The more distant from zero, the less periodic is the distribution. Table 1 summarizes
the criteria adopted for quantitatively characterizing a fiber distribution using the nearest
neighbor distance.

Table 1. Adopted criteria for quantitatively characterizing a fiber distribution using the nearest
neighbor distances.

Characteristic Criteria

Agglomerated µ̂(d̂/r f )→ 2
Dispersed µ̂(d̂/r f ) > 2
Periodic σ̂(d̂)→ 0
Non-periodic σ̂(d̂) > 0

Since the spatial descriptor functions are applied in the present work to determine
fiber arrangements equivalent to the fiber distributions found in the cross-section mi-
crographs of 3D-printed composite materials, the criteria herein adopted is shown to be
more convenient, given that the agglomeration and periodicity of the fibers are computed
separately and the computation of second and third nearest neighbor distances are not
required. Moreover, it is possible to compute the mean and the standard deviation values
of the nearest neighbor distances for several small portions, i.e., small cropped regions,
of a cross-section micrograph and compare the results with those obtained for the whole
cross-section micrograph. In this case, the minimum size of a cropped region would be that
whose values are converged to those obtained for the whole cross-section micrograph.

2.2. Second-Order Intensity Function

The second-order intensity function, also referred to in the literature as Ripley’s K-
Function, is a well-known spatial descriptor of individuals in a population [57]. In the
context of fiber-reinforced composite materials, the second-order intensity function can be
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defined as a ratio between the number of fibers expected to lie within a radial distance hk
from an arbitrary fiber, and the number of fibers per unit of area.

Thus, let P =
{

p1(x1, y1), p2(x2, y2), · · · , pnp(xnp , ynp)
}

be a set of np points, which
represents the centers of fibers distributed in the cross-sectional area of a unidirectional
fiber-reinforced composite, L = {l1, l2, · · · , ln} a set of line segments delimiting the region
of study and A the area of study, the second-order intensity function K(p, hk, L), for a given
radial distance hk and center points p ∈ P, can be defined as [26,51,57]

K(p, hk, L) =
A
n2

p

np

∑
i

np

∑
j 6=i

I
[
d
(

pi, pj
)
, hk
]

w
(

pi, hk, lj
) , (2)

where the distance d
(

pi, pj
)

between the centers of fibers pi(xi, yi) and pj(xj, yj) is

d
(

pi, pj
)
=
√(

xi − xj
)2

+
(
yi − yj

)2, ∀j 6= i, (3)

the indicator function I
[
d
(

pi, pj
)
, hk
]

is

I
[
d
(

pi, pj
)
, hk
]
=

{
1, for d

(
pi, pj

)
≤ hk,

0, for d
(

pi, pj
)
> hk,

(4)

and w(pi, hk, L) is a weight function that takes into account the edge effects returning
the proportion of the circumference with radius hk contained within the region of study
bounded by the line segments L to the whole circumference with radius hk.

Let d(pi, lj) be the distance between a point pi(xi, yi) and a line segment with end

points (x
lj
1 , y

lj
1 ) and (x

lj
2 , y

lj
2 ) given by

d(pi, lj) =

∣∣∣(y
lj
2 − y

lj
1

)
xi −

(
x

lj
2 − x

lj
1

)
yi + x

lj
2 y

lj
1 − y

lj
2 x

lj
2

∣∣∣√(
y

lj
2 − y

lj
1

)2
+
(

x
lj
2 − x

lj
1

)2
. (5)

Thus, the weight function w
(

pi, hk, lj
)

can be computed as [57]

w
(

pi, hk, lj
)
=

{
1, for d(pi, lj) ≥ hk,
α

2π
, for d(pi, lj) < hk,

(6)

where

α = 2
{

π − arccos
[d(pi, lj)

hk

]}
. (7)

To simplify the notation, the second-order intensity function K(p, hk, L) is hereinafter
referred to as K(h). In a complete random distribution, the second-order intensity function
K(h) = Kp(h) is defined as [57]

Kp(h) = πh2. (8)

Taking into account the fiber distribution in the cross-sectional area of a unidirectional
fiber-reinforced composite material, if the plot K(h)× h provides a monotonic positive
response, the fiber distribution can be considered to be non-periodic. Moreover, comparing
the plot of K(h) to the plot Kp(h) it is possible to verify if the fibers are either dispersed
or agglomerated. For instance, if K(h) < Kp(h) it can be assumed that the distribution
presents some degree of dispersion. Contrariwise, a K(h) > Kp(h) response means that
the fibers in the distribution are more agglomerated or clustered. Figure 1 shows the
second-order intensity function plots expected for arrangements with same number of
fibers and same area of study, distributed in random, hexagonal, and square patterns. It is
possible to observe from Figure 1 the resulting stair-shaped of function K(h) for the periodic
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distributions in square and hexagonal arrangements. In addition, it can be realized that the
fibers arranged in the periodic distributions in Figure 1 have some degree of dispersion,
since their plots K(h) are under the plot Kp(h) for different values of h.

h

K
(h

)

Second Order Intensity Function

Kp(h)
Hexagonal
Square

(a)

PERFECT 
HEXAGONAL

RANDOM 
ARRANGEMENT

PERFECT
SQUARE

(b)

Figure 1. Response of the second-order intensity function K(h), or Ripley’s K-Function, expected
for arrangements with same number of fibers and same area of study (a), distributed in random,
hexagonal, and square patterns (b). Adapted from [52].

In an attempt to summarize the criteria adopted for quantitatively characterizing a
fiber distribution using the second-order intensity function, Table 2 describes the conditions
with respect to both agglomeration and periodicity criteria.

Table 2. Conditions for characterizing a fiber arrangement as agglomerated/dispersed and
periodic/non-periodic based on the second-order intensity function.

Characteristic Function K(h)

Agglomerated K(h) > Kp
Dispersed K(h) < Kp
Periodic Stair-shaped
Non-periodic Monotonic Positive

3. Algorithm for Image Processing

To provide the data required for identifying representative equivalent volumes on
the microstructure of 3D-printed carbon fiber-reinforced thermoplastics, the present work
proposes a complete methodology to compute and analyze cropped regions, also referred
to as portions, of cross-section micrographs. Additionally, the proposed methodology also
provides information for building finite element models used in computational homog-
enization analyses. The methodology herein proposed identifies the microstructure of
cropped regions supported by a fiber identification algorithm, which is based on pixels de-
termination, and verifies if the fiber volume fractions computed from the microstructure of
the cropped regions are within the defined range. In this section, the steps of the proposed
methodology are described, and details are given about the generated bank of images
used in the statistical characterization. It is important noting that the performance of the
methodology herein proposed is directly linked to the image quality. If the image presents
marks or blurred portions, the accuracy of the processed data can be compromised.

The proposed methodology was implemented using commercial software MATLAB
and follows the procedure presented in Figure 2. First, a cross-section micrograph of the
material is read and input data about the regions to be cropped are informed. Initially, it
is required to inform the mean radius r f of the fibers, the limits Vf ,min and Vf ,max for the
targeted fiber volume fraction, the number nimages of output cropped regions and the size δ
of the cropped regions. The size δ is defined as a multiplication factor applied over the fiber
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radius where the edge sizes of the cropped regions are given by ledge = r f iber × δ. Figure 3
depicts a schematic illustration of a cropped region with edge sizes r f iber × δ. A reference
value for the fiber radius r f iber was initially measured with the support of scanning electron
microscope images. In this case, a fiber radius r f iber ≈ 4 µm was found. This value was later
confirmed analyzing the cross-section micrographs of the 3D-printed composite material.

Start

Define random
position of cropped

region
Yes

No

Region within 
defined limits?

Find centers based on
Circular Hough

Transform

Determine pixels
corresponding to

fibers

Binarize 
image

Compute fiber 
volume fraction

Yes

No Fiber volume fraction 
within range?

NoYes Cropped region intersecting 
another region?

Save 
cropped image

Create file with 
fiber arrangement

End

Figure 2. Proposed algorithm for cross-section micrograph processing.

Thus, in the first step of the algorithm in Figure 2 a random initial position (x0, y0)
for the cropped region is defined and it is verified if the whole cropped region is within
the cross-section micrograph. Otherwise, a new position is defined, and the verification is
also performed. The idea behind randomly sampling the position of the cropped regions
is related to the independence of the location in the microstructure that a statistic-based
representative volume should have [58,59].

𝑟𝑓𝑖𝑏𝑒𝑟  ∙  𝛿 

𝑟 𝑓
𝑖𝑏

𝑒
𝑟

 ∙
 𝛿

 

Figure 3. Schematic illustration of a cropped region and its size in function of the parameter δ.

The second main step is related to the fiber identification. Basically, the algorithm
computes the fiber distribution by identifying the material constituents, i.e., matrix and
fiber, based on the Circular Hough Transform [60] and, after determining the pixels cor-
responding to fibers, converts the original image to a binary image, e.g., assigning 0 for
the matrix and 1 for the fiber. The Circular Hough Transform was applied in the algorithm
through the function imfindcircles() already available in MATLAB. More details about the
function imfindcircles() is available in [61]. In addition to the inputs already defined in the
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previous step, the function imfindcircles() requires a sensitivity factor and an edge threshold.
The sensitivity factor is the sensitivity for the Circular Hough Transform accumulator
array. Increasing the sensitivity factor, the function imfindcircles() detects more circular
objects, including weak and partially obscured circles. However, too high sensitivity values
increase the risk of false detection. Thus, if the constituents have pixels with close values in
a gray scale, the threshold shall be finely adjusted. Lower values for the edge threshold lead
the function imfindcircles() to detect more circular objects with both weak and strong edges.
When increasing the value of the threshold, it detects fewer circles. For all the cross-section
micrographs analyzed in the present work, a sensitivity value equal to 0.95 and an edge
threshold equal to 0.4 worked well in identifying the edges of the fibers.

In the next step, the fiber volume fraction of the cropped region is obtained computing
the proportion of the number of pixels representing the fibers to the total number of pixels
of cropped regions. More details about this adopted strategy are presented in following
paragraphs. Depending on the position where the region is cropped from the cross-section
micrograph, the fiber volume fraction may change. For instance, if the defined position lies
in a portion that has a high concentration of matrix, a low value of fiber volume fraction
is computed. On the other hand, if the defined position lies in a portion that has a high
concentration of fiber, a high value of fiber volume fraction is then computed. Therefore,
if the computed fiber volume fraction is not within the range previously defined, the
algorithm goes back to the first step where a new position for the cropped region is defined.
If the computed fiber volume fraction is within the defined range, it is then verified if the
cropped region is intersecting, or overlapping, another cropped region previously defined.
This step is particularly important to avoid the similarity between the cropped regions
ensuring the diversity of images in the generated bank.

Lastly, the cropped image is saved and an output file, which is used as an input
data to computational homogenization analyses, is written. This output file contains the
geometrical position and the pixels assigned values which corresponds to the material
constituents, e.g., 0 for the matrix and 1 for the fibers. As mentioned before, in the proposed
algorithm the fiber volume fraction is obtained computing the proportion of the number
of pixels representing the fibers to the total number of pixels of cropped regions. If the
resolution of the image is particularly fair or the size of the cropped region is relatively
small, this strategy may provide some values for the fiber volume fraction that may not
represent those experimentally measured. The deviations which may appear are depicted
in Figure 4. It is possible to verify in Figure 4 that a low ratio between the pixel size and the
fiber radius may result in an area of fiber pixels lower/higher than the fiber circumference
areas. In the next section, the quantitative effect of the adopted strategy with respect to the
computation of the fiber volume fraction is presented. For this purpose, the fiber volume
fraction of the cropped regions computed using the pixels counting is then compared to
those computed using the circumference areas.
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(a) (b)

Figure 4. Representation of a fiber/matrix distribution with deviations between the expected area
for the whole circumference (a) and the area of a set of pixels within a circumference (b). The white
squares represent the pixels corresponding to the fibers and the gray squares represent the pixels
corresponding to the matrix. The red dashed lines represent the circles obtained with the support of
MATLAB function imfindcircles().

4. Applying Proposed Algorithm in the Analysis of Cross-Section Micrographs

To provide a bank of images to be quantitatively characterized using the spatial de-
scriptor functions mentioned in Section 2, three cross-section micrographs, from different
samples of the 3D-printed carbon fiber-reinforced composite material, were used. The sam-
ples were extracted from specimens previously manufactured for tensile and compression
tests. After cutting and mounting the samples, they were prepared with grinding papers
and polishing suspensions using an automated machine equipped with programmable
burst dispensing. The images were acquired using an optical microscope Olympus model
DSX-HRSU equipped with a 5×magnification lens. The samples were labeled as TE-0-1-1,
TE-90-4-1, and TE-90-4-2. The adopted alphanumeric sequence presents information of fiber
orientation, feedstock material number, 3D-printed plate number, and specimen number.

The methodology summarized in Figure 2 was applied to sampling the regions from
the main micrographs. To cover a wide range of sizes of cropped regions, i.e., from a
minimum representative size up to the limit imposed by the vertical size of the cross-section
micrograph, the parameter δ was set to δ = {10, 20, 30, · · · , 150}. For each parameter
δ, a set of ten non-intersecting random regions was defined. Therefore, in the present
work 150 regions were cropped from each one of the cross-section micrographs totalizing
450 analyzed images. Figure 5 shows the regions cropped from the cross-section micrograph
of the sample TE-90-4-1 for δ = 50, δ = 100, and δ = 150. The dashed red rectangles in
Figure 5 show the area of search and the red squares depicts the random cropped regions.
The target fiber volume fraction was set to V∗f = {Vf : 0.315 ≤ Vf ≤ 0.320}, which is close
to that experimentally measured and to that found in the literature.
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(a) Random cropped regions for δ = 50.

(b) Random cropped regions for δ = 100.

(c) Random cropped regions for δ = 150.

Figure 5. Cross-section micrograph of sample TE-90-4-1 with random cropped regions for δ = 50,
δ = 100, and δ = 150, and target fiber volume fraction V∗f = {Vf : 0.315 ≤ Vf ≤ 0.320}.

Figures 6–8 present reproductions of regions cropped from the cross-section micro-
graphs samples TE-0-1-1, TE-90-4-1, and TE-90-4-2, in addition to their respective mi-
crostructures computed using the algorithm summarized in Figure 2. The size of the
cropped regions in Figures 6–8 is δ = 50. To support the visualization of the computed
microstructures, the fibers had their color changed to red in Figures 6b, 7b and 8b. The fiber
volume fraction, calculated using the pixels counting method, is also shown for each one of
the computed microstructures.

(a) (b)

Figure 6. Application of the proposed algorithm in a cropped region of specimen TE-0-1-1: (a) repro-
duction of a cropped region from original micrograph used for computing the microstructure and
(b) computed microstructure using the proposed algorithm. The computed fiber volume fraction is
Vf = 31.85%.
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(a) (b)

Figure 7. Application of the proposed algorithm in a cropped region of specimen TE-90-4-1: (a) re-
production of a cropped region from original micrograph used for computing the microstructure and
(b) computed microstructure using the proposed algorithm. The computed fiber volume fraction is
Vf = 31.96%.

(a) (b)

Figure 8. Application of the proposed algorithm in a cropped region of specimen TE-90-4-2: (a) re-
production of a cropped region from original micrograph used for computing the microstructure and
(b) computed microstructure using the proposed algorithm. The computed fiber volume fraction is
Vf = 31.71%.

Figure 9 presents the number of fibers that were identified in the cropped regions for
each one of the analyzed cross-section micrographs. Since the range adopted for targeting
the fiber volume fraction was considerably tight, the standard deviations, represented
by the error bars, of the counted fibers for a given size δ are very small and can barely
be seen in the curves for all samples. Another consequence of the tight targeted fiber
volume fraction is the overall similarity between the curves obtained for all samples, i.e.,
the number of fibers identified in one of the samples, for a given size δ, is practically the
same of those obtained for the other samples. From the methodology point of view, it
can be said that the algorithm herein proposed to identify the fibers from cross-section
micrographs is very robust and effective.
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Figure 9. Number of fibers computed for different sizes of cropped regions.

Previously, in Section 3, the methodology applied for determining the fiber volume
fraction was presented. In this case, the proportion of the number of pixels representing
the fibers to the total number of pixels of cropped regions was computed. Therefore,
prior to the statistical characterization of the cropped regions, the effect of the adopted
strategy in comparison to the fiber volume fraction computed using circumference areas
was verified. Figure 10 displays the mean and standard deviation (represented by the error
bars) values for the fiber volume fraction, computed using both the pixels counting and
circumference areas, obtained for the regions cropped from the cross-section micrographs
samples TE-0-1-1, TE-90-4-1, and TE-90-4-2 for different δ sizes.
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(b) Specimen TE-90-4-1.
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(c) Specimen TE-90-4-2.

Figure 10. Fiber volume fraction computed for different sizes of cropped regions based on pixels
counting and circumference areas.

As verified in Figure 10, for small values of δ the standard deviation of the fiber
volume fraction computed using the circumference areas is particularly high although
the mean values are slightly close to those obtained from the pixels counting. For all the
samples in Figure 10, it is verified that the fiber volume fraction obtained for the cropped
regions with size values of δ ≥ 50 present suitable results, i.e., the plots of fiber volume
fraction computed using both methods are very close for size values of δ ≥ 50. In addition
to the points previously noted, the results shown in Figure 10 also illustrate the robustness
and effectiveness of the herein proposed algorithm to identify fibers from cross-section
micrographs. Analogously to that verified in Figure 9, observing the curves related to the
pixels counting in Figure 10 it is possible to verify that the resulting fiber volume fraction
is practically the same for all sizes δ of the cropped regions. Small values of standard
deviation for a given δ is also observed.

5. Statistical Characterization of Cross-Section Micrographs

In Section 2, spatial descriptor functions used to quantitatively characterize distribu-
tions were introduced. The criteria used in both techniques for characterizing a distribution



Polymers 2022, 14, 972 13 of 24

according to its periodicity and agglomeration were also presented. In the present sec-
tion, the bank of images obtained from the cross-section micrographs samples TE-0-1-1,
TE-90-4-1, and TE-90-4-2, for different sizes δ and with targeted fiber volume fractions,
are quantitatively characterized according to the criteria adopted for the nearest neighbor
distance and second-order intensity function. As previously noted, for every size δ, ten
regions were cropped from a given main region of the cross-section micrograph. Therefore,
the mean values of the respective functions computed for all cropped regions, for a given
size δ, are plotted in the following figures. In the same curves, the error bars represent the
standard deviation of their respective functions computed for the cropped regions given a
size δ.

5.1. Nearest Neighbor Distance Characterization

Figure 11 shows the results for the periodicity characterization obtained computing
the standard deviation of nearest neighbor distance σ̂(d̂) for different sizes δ of the cropped
regions. A reference value of the standard deviation σ̂M(d̂) computed for the main region
of the cross-section micrograph, i.e., the standard deviation σ̂M(d̂) computed for the whole
area of search, exemplified in Figure 5, is also plotted in Figure 11. A preliminary inspection
on the results shown in Figure 11 confirms that the fiber arrangement of the 3D-printed
reinforced layers is non-periodic since σ̂M(d̂) ≈ 1.9. It is also verified in Figure 11a that
the results obtained for cropped regions with size δ ≥ 60 converge to those obtained
for the main region of the cross-section micrograph from sample TE-0-1-1. From the
results obtained for the samples TE-90-4-1, shown in Figure 11b, and TE-90-4-2, shown
in Figure 11c, it is possible to verify that the cropped regions with size δ ≥ 50 are able to
represent their respective main regions of the cross-section micrograph according to the
periodicity criteria adopted for the nearest neighbor distance.
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Figure 11. Standard deviation of nearest neighbor distance d̂ computed for different sizes of
cropped regions.

Figure 12 displays the results for the agglomeration characterization obtained comput-
ing the mean value of nearest neighbor distance µ̂(d̂/r f ) for different sizes δ of the cropped
regions. Analogously to the results presented for the periodicity characterization, the mean
value µ̂M(d̂/r f ) computed for the main region of the cross-section micrograph is also plot-
ted in Figure 12. The results obtained for the main region of the cross-section micrograph
confirm that the fiber arrangement of the 3D-printed reinforced layers has a high degree of
agglomeration since µ̂M(d̂/r f ) ≈ 2.1. It is verified in Figure 12a,b that the results obtained
for cropped regions with size δ ≥ 50 converge to those obtained for the main regions of
the cross-section micrographs from samples TE-0-1-1 and TE-90-4-1. In Figure 12c, it is
possible to verify that the results obtained for the cropped regions converge to a value
slightly lower than that obtained for the main region of the cross-section micrograph of
sample TE-90-4-2. However, it is also possible to observe that the results obtained for the
cropped regions with size δ = 50 and δ = 60 are very close to that obtained for the main
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region of the cross-section micrograph. Based on the previous notes, it is suggested that
cropped regions with size δ = 50 or δ = 60 are suitable to represent their respective main
regions of the cross-section micrograph according to the agglomeration criteria adopted for
the nearest neighbor distance.
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Figure 12. Mean value of ratio d̂/r f computed for different sizes of cropped regions.

5.2. Second-Order Intensity Function Characterization

Figures 13 and 14 present the plots K(h)× h/r f computed for the cropped regions
of the cross-section micrographs, as well as those computed for the main region of the
cross-section micrograph, represented by the dashed lines, and also for a complete random
distribution, represented by the dash-dotted lines. To facilitate the visualization, and
consequently the analysis of the curves, the results for different size of δ were plotted in
groups of three in addition to the results plotted for the main region and those for the
random distribution. From the overall results presented in Figures 13 and 14, it can be first
verified that the results obtained for all the cropped regions, in addition to those obtained
for the main cross-section micrographs, have characteristics of non-periodic distributions
since all the curves are monotonic positive, i.e., it is not possible to identify stair-shaped
regions. Additionally, it is also verified that all the results obtained for the main region of
the cross-section micrographs are above those obtained for random distributions which
means that the fibers have some degree of agglomeration or clustering. Both characteristics
were visually identified throughout the cross-section micrographs analysis performed prior
to the statistical characterization.

5.3. Statistical Characterization Discussion

First, it is worth mentioning that the results presented in Sections 5.1 and 5.2 show
that the characteristics of the fiber distribution on the 3D-printed reinforced layers obtained
using the Nearest Neighbor Distance are totally in accordance with those obtained with the
Second-Order Intensity Function. In other words, it is a confirmation that both techniques
can properly capture the main characteristics of the fiber distribution found on 3D-printed
fiber-reinforced thermoplastics. According to the periodicity criteria adopted for the
Nearest Neighbor Distance, cropped regions with size δ ≥ 50 are representative of their
respective main regions of the cross-section micrograph, which is verified in Figure 11.
Additionally, according to the results obtained using the agglomeration criteria adopted for
the same spatial descriptor, and shown in Figure 12, it is suggested that cropped regions
with size δ = 50 or δ = 60 are suitable to represent their respective main regions of the
cross-section micrograph. Regarding the characterization carried out adopting the Second-
Order Intensity Function, the results are not entirely straightforward requiring a more
developed discussion, which is given as follows.

From the results shown in Figure 13a–c it is suggested that cropped regions with small
sizes δ are not recommended to represent the main region of the cross-section micrographs,
according to the Second-Order Intensity Function. For instance, the results obtained for
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the cropped regions with δ = 10 are considerably far from those obtained for the main
cross-section micrograph mostly for higher values of the h/r f . Similar behavior is identified
for the results obtained for the cropped regions with size δ = 20 although for the sample
TE-90-4-2 the results are significantly better than those obtained for δ = 10. For the cropped
regions with size δ = 30, the results are slightly better than those obtained for the cropped
regions with size δ = 10 and δ = 20. However, it can be verified that they are closer to
those obtained for random distributions than to those obtained for the main region for the
cross-section micrographs.
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(c) Specimen TE-90-4-2.
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(d) Specimen TE-0-1-1.
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(e) Specimen TE-90-4-1.
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(f) Specimen TE-90-4-2.
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(g) Specimen TE-0-1-1.
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Figure 13. Second-order intensity function obtained for cropped regions of size δ = [10, 90], as well
as for the main region of the cross-section micrograph (dashed lines) and for a complete random
distribution (dash-dotted lines).
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(c) Specimen TE-90-4-2.
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(d) Specimen TE-0-1-1.
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(e) Specimen TE-90-4-1.
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Figure 14. Second-order intensity function obtained for cropped regions of size δ = [100, 150], as
well as for the main region of the cross-section micrograph (dashed lines) and for a complete random
distribution (dash-dotted lines).

The results shown in Figure 13d–f, indicate that cropped regions with sizes δ = 50
and δ = 60 can be suitable to represent the main region of their respective cross-section
micrographs. This is verified more specifically in Figure 13d,e where the curves plotted
for the sizes δ = 50 and δ = 60 are amid the curves obtained for the main region of cross-
section micrograph and for the random distribution. The results obtained for the cropped
regions with size δ = 40, although can be also considered to be good representations, are
closer to the results obtained for the random distributions than to those obtained for the
main region of the cross-section micrographs. Similar behavior is identified for the results
obtained for the sample TE-90-4-2 and shown in Figure 13f where it can be verified that all
plots are closer to the results obtained for the random distributions than to those obtained
for the main region of the cross-section micrographs.

The results shown in Figure 13g–i reveal some degree of convergence between the
plotted curves since they are very close to each other. More specifically, the results obtained
for the samples TE-0-1-1, displayed in Figure 13g, and TE-90-4-1, displayed in Figure 13h,
are particularly close to those obtained for the main region of the cross-section micrographs.
Similar behavior is seen for the results obtained for the cropped regions with sizes δ = 100,
δ = 110, and δ = 120 and displayed in Figure 14a–c. In this case, the difference between the
curves obtained for the cropped regions barely can be seen. Additionally, it must be noted
that the results in Figure 14a,b are substantially close to those obtained for the respective
main region of the cross-section micrograph. Regarding the results displayed in Figure 14
for the cropped regions with sizes δ = 130, δ = 140, and δ = 150, the obtained curves can
be considered well converged and considerably close to the those obtained for the main
region of the cross-section micrograph.

Based on the discussion presented above, it is possible to conclude that cropped regions
with size δ = 50 are statistically equivalent to their respective main regions of the cross-
section micrographs. In other words, it means that cropped regions with a minimum size
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δ = 50, from any one of the three characterized specimens, represent the microstructure
of the 3D-printed fiber-reinforced thermoplastics herein analyzed. To summarize this
point, Table 3 describes the minimum recommended size δ of the cropped regions, which
are statistically representative of the microstructures found in the analyzed specimens.
In addition, attempting to verify the validity of the proposed methodology in terms of
microstructure representation, the results summarized in Table 3 were compared to those
obtained by Trias et al. in [51]. Although in their work a carbon fiber-reinforced epoxy was
investigated, the results herein obtained can be considered in agreement with theirs, where
a minimum recommended size for a representative volume was found to be δ = 50.

Table 3. Summary of minimum recommended size δ according to the adopted criteria.

Specimen Nearest Neighbor Distance 2nd Order Intensity Function

Periodicity Agglomeration Periodicity Agglomeration

TE-0-1-1 δ ≥ 60 δ ≥ 40 δ ≥ 10 δ ≥ 50
TE-90-4-1 δ ≥ 50 δ ≥ 50 δ ≥ 10 δ ≥ 50
TE-90-4-2 δ ≥ 50 δ ≥ 50 δ ≥ 10 δ ≥ 40

6. Homogenized Properties

According to the literature, different techniques were adopted to verify the accuracy
of volumes that are equivalent to the whole non-periodic domain. Typically, investigations
about the effect of the geometric characteristics of a representative volume on the resulting
homogenized elastic properties were carried out [28,29,39,40,43,46–48,51,52,55,56,62]. From
this point of view, it can be realized that the statistically equivalent volumes herein deter-
mined shall also be representative in terms of homogenized elastic properties. Therefore,
attempting to demonstrate the effectiveness of the proposed methodology, the homoge-
nized elastic properties of 3D-printed continuous carbon fiber-reinforced thermoplastics are
determined and compared to those experimentally measured, according to the data avail-
able in the literature. For the numerical computations, the Asymptotic Homogenization
method is employed. Detailed information about the adopted representative equivalent
volumes, as well as about the finite element models, are given as follows.

6.1. Numerical Modeling

As verified in Section 5, equivalent volumes with size δ ≥ 50 can represent the
microstructure of 3D-printed fiber-reinforced thermoplastics in terms of fiber distribution.
Thus, to use computationally feasible models on the analysis, and be representative in
terms of variability, representative equivalent volumes with size δ = [10, 60] obtained for
the sample TE-90-4-1 are used. More specifically, the cropped regions whose results were
the closest (with respect to the chosen statistical criteria) to the result obtained for the main
region of the respective cross-section micrograph were selected. Table 4 describes in detail
the information about the selected cropped regions.

Table 4. Cropped regions and their respective spatial descriptors.

Size Cropped Vf σ̂(d̂) µ̂(d̂/r f ) K(h)
∣∣∣
h=6δ Region

10 CR05 31.72% 2.0065 2.2921 1222
20 CR05 31.66% 1.8620 2.0823 2145
30 CR07 31.81% 1.8499 2.1752 2668
40 CR07 31.51% 1.8445 2.0874 3072
50 CR01 31.96% 2.0606 2.1472 3035
60 CR02 31.75% 1.8470 2.1051 2926
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The implementation of the Asymptotic Homogenization technique followed the
methodology fully described in [63], which was also applied in [26]. More specifically,
the models were implemented in ABAQUS® software with the application of periodic
boundary conditions, assuming that the fiber distribution determined in the previous
section are equivalent to those found in the cross-section micrographs. It is worth not-
ing that the application of periodic boundary conditions on ABAQUS® are not directly
available. In this case, it requires the definition of linear constraints using equations to
determine the relative motion between the degrees of freedom of two or more nodes, as
can be seen in [63]. In addition, the fibers were assumed as continuous in the finite element
discretization, which leads the solution to be independent of the coordinate along the fiber
direction. Therefore, it was not necessary to refine the mesh along this direction. However,
it is worth remarking that in other different cases, e.g., modeling short fiber-reinforced
composite materials and/or composite materials with inclusions, the mesh refinement is
important in all directions. Table 5 presents the mechanical properties of the carbon fiber
and thermoplastic matrix [7,8] adopted in the finite element discretization.

Table 5. Adopted mechanical properties of carbon fiber and resin matrix [7,8].

Mechanical Properties Carbon Fiber Thermoplastic Matrix

Longitudinal Modulus [GPa] 230 3.2
Transverse Modulus [GPa] 15 3.2
Longitudinal Shear Modulus [GPa] 15 1.2
Transverse Shear Modulus [GPa] 15 1.2
Poisson ratio 0.2 0.3

The finite element model uses eight-node linear hexahedral elements with reduced
integration of type C3D8R available on ABAQUS®. More details about the element formu-
lation is displayed in Figure 15 and additional information can be found in [64]. Table 6
summarizes details of the finite element discretization used in the Asymptotic Homoge-
nization models.
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Figure 15. Eight-node linear hexahedral elements with reduced integration of type C3D8R available
on ABAQUS®.

Table 6. Finite element discretization details.

Size δ Number of Elements Number of Nodes

10 2601 5408
20 10,201 20,808
30 22,801 46,208
40 40,401 81,608
50 63,001 127,008
60 90,601 182,408
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As an illustration of the finite element models adopted in the current analysis, Figure 16
displays the finite element discretization applied to the cropped regions with size δ = [10, 60],
where the thermoplastic matrix is represented in blue, and the fibers are represented in
red. In Figure 16 the cropped regions were discretized according to the details in Table 6.
To provide a direct comparison between the size of the discretized regions, dashed line
squares with size δ = 60 were also included in Figure 16. For all the finite element models
herein adopted, the element size corresponds to one pixel size according to their respective
computed microstructures.

Figure 16. Discretized cropped regions with size δ = 10 (a), δ = 20 (b), δ = 30 (c), δ = 40 (d), δ = 50
(e) and δ = 60 (f). For all the finite element models, the element size corresponds to one pixel size
according to their respective computed microstructures.

6.2. Numerical Results and Discussion

Table 7 summarizes the homogenized mechanical properties obtained for the 3D-
printed continuous carbon fiber-reinforced thermoplastics using the Asymptotic Homoge-
nization technique applied to the cropped regions listed in Table 4. As already expected,
the variations on the homogenized longitudinal elastic modulus E1 are barely noticeable. In
contrast to the transverse in-plane elastic modulus E2, which seemed to be not affected by
the size of the equivalent volume, the transverse out-of-plane elastic modulus E3 presented
some variation for the equivalent volume with size δ = 40 that is not observed for those
with size δ = 50 and δ = 60. Nevertheless, it is worth remarking that the variations
observed for the homogenized extension moduli in function of the size of the equivalent
volume are considerably low being less than 3.5% for all the moduli presented in Table 7.

Table 7. Results obtained for the homogenized mechanical properties.

Size E1 E2 E3 G12 G13 G23 ν12 ν13 ν23δ [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

10 75,187 5189 5153 2399 2292 2024 0.267 0.185 0.339
20 75,067 5165 5194 2361 2390 2032 0.269 0.182 0.336
30 75,397 5147 5178 2314 2360 2048 0.269 0.182 0.338
40 74,718 5156 5333 2231 2531 1991 0.276 0.175 0.323
50 75,748 5209 5262 2340 2454 2026 0.271 0.179 0.330
60 74,945 5172 5188 2364 2387 2036 0.269 0.183 0.336

Avg 75,177 5173 5218 2335 2402 2026 0.270 0.181 0.334
CoV 0.48% 0.44% 1.28% 2.49% 3.40% 0.95% 1.1% 2.00% 1.85%
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In addition, it can be seen from Table 7 that the results obtained for the transverse
out-of-plane shear elastic modulus G23, are not highly affected by the equivalent volume
size where the maximum variation found is less than 3%. For their part, the in-plane shear
elastic modulus G12 and the transverse out-of-plane shear elastic modulus G13 are slightly
more affected by the equivalent volume size. However, the maximum variation computed
for the homogenized shear elastic moduli was 7.5% for G12 and 10.4% for G13 which are
not considerably high since they are at the same level of variations occasionally found
on experimental testing data, when comparing the results from one sample to another.
Furthermore, these maximum values of variation are observed for the equivalent volume
with size δ = 40 in comparison to that with size δ = 10 for both G12 and G13. Comparing the
results obtained for the equivalent volume with size δ = 40, with the results obtained for
the equivalent volumes with sizes δ = 50 and δ = 60, these variations are strongly reduced.

Analogously, the results obtained for the Poisson ratios seemed to be not highly
affected by the size of the equivalent volume. Some variations are observed, mostly for
the homogenized Poisson ratios ν13 and ν23, though the maximum difference was found
to be 3.1%, 5.9%, and 4.9% respectively for ν12, ν13, and ν23. These values can be normally
acceptable since they were found for the representative equivalent volume with size δ = 40
in comparison to the representative equivalent volume with size δ = 10. As with the
results presented for the homogenized shear moduli, comparing the results obtained for
the representative equivalent volume size δ = 40 with those obtained for the volumes with
δ = 50 and δ = 60 these variations are strongly reduced. Therefore, it can be concluded
from Table 7 that the values obtained for different sizes slightly differ in value from one
to another which results in a coefficient of variation (CoV) that is particularly small. As
expected, it is also verified that the results obtained for the representative equivalent volume
with size δ = 50 are considerably close to those obtained for the representative equivalent
volume with size δ = 60 indicating that some degree of convergence has been achieved.

To demonstrate the validity of the proposed methodology, the homogenized elastic
properties E1, E2, and G12 obtained for the representative equivalent volumes with size
δ = 50 and δ = 60 were compared in detail with those experimentally measured from
specimens tested in tension (longitudinal and transverse) and in-plane shear as presented
in [17]. To offer more understanding of the validity of the proposed methodology, the
results herein obtained were also compared to those numerically determined in [17] using
a perfect square unit cell representing the fiber arrangement. Table 8 summarizes the
comparison.

Table 8. Comparison of homogenized elastic properties with experimental data where ∆ = 100×
|(EXP − HM)/EXP| with EXP the experimental data and HM the homogenized properties computed for
the respective representative equivalent volume size.

Mech.
Prop.

Experimental Perfect Square Representative
Data Unit Cell Equivalent Volume

From [17] From [17] ∆ [%] δ = 50 ∆ [%] δ = 60 ∆ [%]

E1 [MPa] 74,970 76,401 1.91% 75,748 1.04% 74,945 0.03%
E2 [MPa] 5529 5257 4.92% 5209 5.79% 5172 6.46%
G12 [MPa] 2352 2153 8.46% 2340 0.51% 2364 0.51%

It can be verified from Table 8 that the differences between the homogenized properties
and experimental data computed for E1 and G12 are negligible for both representative
equivalent volumes. The differences computed for E2 are not negligible although they are
relatively small, especially for the representative equivalent volume with size δ = 50. From
the overall results point of view, it can be said that the homogenized elastic properties
E1, E2, and G12 accurately agreed with their respective elastic properties experimentally
measured. The same agreement is verified when comparing the results obtained for the
representative equivalent volumes with those obtained using the perfect square unit cell,
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which corroborates to the validity of the methodology herein proposed. Nevertheless, at this
point a relevant discussion about the fiber distribution is worth of mentioning. According
to the literature, Pyrz [56] evaluated the influence of the constituent spatial distribution on
the field quantities and concluded that the variability of stresses, in particular the maximal
radial stresses, was considerably affected as the constituent spatial distribution changed.
In similar studies, Matsuda et al. [62] and Trias et al. [51] showed that the “randomness”
of a fiber distribution strongly affects the microscopic distribution of stresses and strains.
Therefore, even though the results obtained for the representative equivalent volumes
are particularly close to those obtained using the perfect square unit cell, the proposed
methodology provides equivalent volumes considerably more representative in terms of
both fiber distribution and stresses/strains distribution at microscopic level.

7. Conclusions

In the present work, a methodology based on the statistical characterization of the
microstructure found in 3D-printed fiber-reinforced thermoplastics was proposed. Since
the microstructure of these materials cannot be considered completely random regardless
of other factors, e.g., the manufacturing process, which can affect the fiber spatial and pores
distribution, a different strategy was adopted and a methodology to define a region that
could represent the main cross-section micrograph, in terms of size and fiber arrangement,
was defined. For this purpose, spatial descriptor functions, namely the nearest neighbor
distance and the second-order intensity function, were adopted to statistically characterize
the cropped regions. Then, a simple algorithm for processing the cross-section micrographs,
i.e., for defining the regions to be cropped, identifying the fibers and creating a bank of
images, was presented. In view of the relatively low fiber volume fraction found in 3D-
printed fiber-reinforced thermoplastics, the proposed methodology was highly suitable to
define the microstructure of sub-volumes accounting for their specific characteristics, such
as some degree of non-periodicity and agglomeration.

In the statistical characterization, a parametric study was conducted using the cross-
section micrographs from three different samples. In this context, several images of sub-
regions, previously cropped from the original cross-section micrographs, were used to
determine both the fiber arrangement and the minimum size of the sub-region which are
statistically equivalent to the whole material. From the obtained results, it was confirmed
that the fiber arrangement was neither periodic nor completely random. In addition, it is
also concluded that representative equivalent volumes with size δ = 50 can reproduce with
strong fidelity the fiber spatial distribution of the 3D-printed fiber-reinforced thermoplas-
tics. To verify the effectiveness of the proposed methodology in terms of microstructure
representation, the obtained results were compared to those available in the literature for
carbon fiber-reinforced epoxy, since there is still a lack of these studies for 3D-printed
fiber-reinforced thermoplastics. In any case, the results herein obtained were considered in
agreement with theirs in terms of a minimum equivalent volume size required to represent
the spatial fiber distribution of fiber-reinforced materials.

In complement to the validation in terms of fiber distribution, the effectiveness of
the proposed methodology was also validated in terms of homogenized elastic properties,
which were computed using different sizes of sub-domains. The obtained results were
then compared to those available in the literature showing excellent agreement in view
of the computed variations. In this context, the smaller adopted cropped region that
represents the main micrograph better from the computational micromechanics point of
view, since less computational efforts are required. However, for particular small sizes of
sub-domains, some variations were found when comparing the homogenized properties
with those computed from experimental results. More specifically, it was concluded that
small representative equivalent volumes may present some variations in the homogenized
elastic properties of 3D-printed fiber-reinforced thermoplastics. Although these variations
were relatively small, the stress/strain distribution at the microscopic level can be highly
affected by the fiber arrangement as seen in the literature survey.
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As mentioned above, specific characteristics found in the microstructures of 3D-printed
fiber-reinforced thermoplastics, such as degrees of non-periodicity and agglomeration as
well as the fiber distribution, are of great importance, mostly when conducting mechanism-
based failure analyses, which have the stresses/strains at microscopic level as the main
input. In this line of thought, it is worth noting that voids should be also contemplated
in this analysis, since their content can be particularly high, which is aggravated by their
irregular distribution. Therefore, an extension of the methodology herein presented to
include more than two constituents is part of future research. In terms of the proposed
algorithm, its extension is particularly straightforward due to its high flexibility. Never-
theless, alternative imaging techniques may be required to provide clearer cross-section
micrographs, consequently improving the efficiency of the proposed methodology.
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