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We show that an open quantum system in a non-Markovian environment can reach steady states that it
cannot reach in a Markovian environment. As these steady states are unique for the non-Markovian regime,
they could offer a simple way of detecting non-Markovianity, as no information about the system’s
transient dynamics is necessary. In particular, we study a driven two-level system (TLS) in a semi-infinite
waveguide. Once the waveguide has been traced out, the TLS sees an environment with a distinct memory
time. The memory time enters the equations as a time delay that can be varied to compare a Markovian to a
non-Markovian environment. We find that some non-Markovian states show exotic behaviors such as

population inversion and steady-state coherence beyond 1=
ffiffiffi
8

p
, neither of which is possible for a driven

TLS in the Markovian regime, where the time delay is neglected. Additionally, we show how the coherence
of quantum interference is affected by time delays in a driven system by extracting the effective Purcell-
modified decay rate of a TLS in front of a mirror.

DOI: 10.1103/PhysRevLett.128.083603

There are no truly closed quantum systems. In one way
or another, a quantum system is always in contact with a
noisy environment and will inevitably lose its quantum
properties [1]. If the dynamics are Markovian in nature, the
environment can be considered memoryless, and there is no
backflow of information. Such systems are described by a
quantum dynamical semigroup, whose generator governs a
master equation in Lindblad form [2,3]. In many realistic
systems, the requirements for a Markovian time evolution,
such as weak interaction and short environment correlation
times, are not satisfied, and long-time memory effects of
the environment influence the system dynamics. In what
ways such interaction affects the evolution of a quantum
system is not only interesting from a fundamental per-
spective, but could also prove useful to probe properties of
the environment [4,5], and ultimately lead to a better
understanding of the decoherence mechanisms of quantum
systems [6].
Although one cannot translate the classical definition

of a Markov process directly to the quantum regime [7],
several definitions and corresponding measures of non-
Markovianity for open quantum systems have been intro-
duced [8–13]. These measures are all constructed to detect
deviations fromMarkovianity by characterizing the system’s
transient dynamics. To our knowledge, the question whether
a non-Markovian environment can be distinguished from the

steady-state of a driven system has not been addressed.
That would not only simplify the characterization of non-
Markovianity in such cases, but it is also an interesting
question in itself.
In this Letter, we show that a driven two-level quantum

system coupled to a non-Markovian environment can reach a
unique set of steady states that are out of reach for the system
coupled to a Markovian environment. We call these states
“non-Markovian steady states,” as they can be distinguished
from any state in the Markovian regime. These states are
different from the oscillatory non-Markovian steady states
for undriven systems discussed, e.g., in Refs. [14] and [15].
To quantify these steady states’ uniqueness, we propose a
measure based on trace distance and distinguishability [16].
We note that our measure does not attempt to quantify the
degree of non-Markovianity in these systems but rather gives
a quantitative measure on how easily one can distinguish
these states from the states in the Markovian regime.
To demonstrate when non-Markovian steady states can

occur, we study a driven two-level system (TLS) in a semi-
infinitewaveguide (an atom in front of a mirror) [17–25], see
Fig. 1. The drive amplitude and the system’s coupling
strength to the waveguide are taken as fixed parameters
throughout the system evolution. Once the waveguide has
been traced out, the distance to the mirror gives the
environment seen by the TLS a distinct memory time.
This memory time enters the equations for the system
dynamics as a time delay, which can be set to zero for
comparison between a Markovian and a non-Markovian
environment. Thus, the physical origin of any non-
Markovian effects in this system has an easy interpretation
in terms of coherent quantum feedback. Additionally, an
atom in front of a mirror has been realized with both artificial
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and natural atoms in a variety of systems already [26–32], so
the physics discussed in this Letter could be further inves-
tigated experimentally immediately. We also note that a
similar system to the atom in front of amirror (in fact, they are
fully mappable to each other in some parameter regimes) is
the giant atom [15,33–36], which was recently realized in
both theMarkovian [37,38] and non-Markovian regime [39].
Despite being an archetypical quantum-optical model

system for decades [17], the atom in front of a mirror has
remained a hard system to simulate without resorting to
substantial approximations. The propagation time delay
between the atom and the mirror prohibits a treatment
based on Markovian master equations, and earlier work on
non-Markovianity has been limited to either few excitations
[40,41] or short timescales [42,43]. It was only recently that
Pichler et al. [23] proposed a method based on matrix
product states (MPSs) which could allow the system to be
integrated all the way to steady state, while still allowing for
many excitations in the feedback loop and long delay times.
There, it was shown that the time delay does in fact alter the
steady state of the atom. However, that does not imply that
the state is unique for the non-Markovian regime, i.e., that
the same state cannot be reached using a different drive
strength and neglecting the time delay. It could also happen
that a non-Markovian environment reduces the purity of the
steady state, in which case the effect of the non-Markovian
environment could be captured by adding additional pure
dephasing to a fully Markovian treatment. In fact, we find
that the non-Markovian environment mostly produces
steady states one cannot distinguish from those reachable
in the Markovian environment. For some system param-
eters, however, we find non-Markovian steady states that
are not only unique for the non-Markovian regime but also

show exotic behaviors such as population inversion in the
TLS or steady-state coherence beyond 1=

ffiffiffi
8

p
, neither of

which is possible in the Markovian regime.
Definition of non-Markovian steady states.—In the

Markovian regime, the dynamics of the TLS is given by
the Markovian master equation in Lindblad form [2,17,26],

_ρM ¼ −i½HTLS; ρ� þ
γ

2
ð2σ−ρσþ − fσþσ−; ρgÞ

þ γϕð2σþσ−ρσþσ− − fσþσ−; ρgÞ; ð1Þ
where γϕ is a pure dephasing rate, γ is a renormalized decay
rate due to the mirror γ ¼ 2γ0 cosðϕÞ, where γ0 is the bare
decay rate (without the mirror), ϕ is a phase shift,
HTLS ¼ Δσþσ− þ ðΩ=2Þðσþ þ σ−Þ, where Δ ¼ ωd − ω0

is the detuning between the TLS transition frequency ω0

and the drive frequency ωd, Ω is the amplitude of the
driving field, and σþðσ−Þ creates (annihilates) an excitation
in the TLS. The solutions to Eq. (1) yield an elliptical area
in the Bloch sphere of possible steady states, whose outer
boundary is given by Ω=γ ¼ ½0;∞� and γϕ ¼ 0, see Fig. 2.
The mirror is thus irrelevant for determining possible
steady states; it only rescales the decay rate. Finite Δ does
not change the possible steady states and for that reason we
always consider resonant driving throughout the Letter,
Δ ¼ 0. We let ρMðγ; γϕÞ denote the steady state solution to
Eq. (1) for a fixed drive strength, and ρ denote the steady-
state reduced density matrix of the TLS in a non-Markovian
environment. Then, the ability to distinguish the non-
Markovian regime from the Markovian regime can be
captured by

(a)

(b)

FIG. 1. (a) Schematic of an atom in front of a mirror. Photons
emitted to the left are reflected from the mirror and interacts with
the atom again, giving the atom’s environment an effective
memory time. (b) Representation of one time step in the evolution
of the setup in (a) as a MPS. The waveguide is represented
by time bins (gray), which moves in a conveyor belt fashion
one time step, Δt, at a time, and interacts with the atom
(turquoise) twice.

FIG. 2. Markovian versus non-Markovian regimes of steady
states for a driven TLS in front of a mirror. By neglecting the time
delay, the system evolves according to a Markovian master
equation and can only reach states lying either on the solid black
line (for no pure dephasing) or its inside (with dephasing). If the
time delay is taken into account the system can reach steady states
which are, e.g., outside of the Markovian regime (green crosses),
precisely on the boundary between the two regimes (magenta
triangles), or well inside the Markovian regime (blue circles). In
all cases the following parameters were used: γ ¼ γL þ γR ¼ 1,
γL=R ¼ γ=2, and Ω=γ ¼ ½0.1; 4� (Ω=γ ¼ ½0.1; 3.5� for ϕ ¼ π=2).
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N ss ¼ min
γ;γϕ

T½ρ; ρMðγ; γϕÞ�; ð2Þ

where T½ρ; ρM� ¼ 1
2
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ − ρMÞ†ðρ − ρMÞ

p
is the trace

distance between ρ and ρM. As the trace distance is closely
related to the distinguishability of quantum states [16,44],
we define a steady state as non-Markovian if N ss > 0.
With this definition, a non-Markovian steady state is a state
that is unique for the system in a non-Markovian environ-
ment. For the atom in front of a mirror, we show that most
non-Markovian steady states would correctly be classified
as belonging to a non-Markovian system according to the
definition of non-Markovianity in Ref. [9]. However, we
note that a large degree of non-Markovianity does not
necessarily correspond to a large N ss.
Model.—To model a non-Markovian environment, we

put the driven TLS in a semi-infinite waveguide, see
Fig. 1(a). After the waveguide has been traced out,
the distance to the mirror gives the environment of the
TLS a distinct memory time, τ. Emission towards the
mirror enters a coherent feedback loop, in which it picks up
a propagation phase, ϕ, that in our calculation includes
any extra phase shift imposed by the field’s boundary
condition at the mirror. In a frame rotating with the drive
frequency, ωd, the total Hamiltonian has two parts in the
interaction picture HðtÞ ¼ HTLS þHintðtÞ, where the inter-
action Hamiltonian

HintðtÞ ¼ ið ffiffiffiffiffi
γL

p
b†LðtÞ þ

ffiffiffiffiffi
γR

p
b†RðtÞÞσ− þ H:c:; ð3Þ

can be rewritten in terms of a single bath operator, bðtÞ,
since the mirror couples left- and right-going modes
bRðtÞ ¼ bLðt − τÞeiϕ,

HintðtÞ ¼ i½ ffiffiffiffiffi
γL

p
b†ðtÞ þ ffiffiffiffiffi

γR
p

b†ðt − τÞeiϕ�σ− þ H:c:; ð4Þ

where γL and γR denotes the decay rate into left (L)- and
right (R)-going modes in the waveguide, respectively, ϕ is
the phase shift acquired by a photon (or phonon) traveling
to the mirror and back. The phase shift is in fact related to
the drive frequency, ϕ ¼ ωdτ, but we keep it as an inde-
pendent variable in order to study the effect of the phase
shift and delay time separately. The bosonic operator,
bðtÞ, obeys the quantum white-noise commutation rela-
tion ½bðtÞ; b†ðt0Þ� ¼ δðt − t0Þ, and is defined as bðtÞ ¼R
B dωbðωÞ exp½−iðω − ωdÞt�, where b†ðωÞ [bðωÞ] creates
[annihilates] a photon at frequency ω, satisfying the com-
mutation relation ½bðωÞ; b†ðω0Þ� ¼ δðω − ω0Þ. A full deri-
vation of the interaction Hamiltonian in Eq. (4) can be
found in Ref. [23]. The interpretation, however, is clear: the
TLS interacts with a bosonic bath at time t; after some time
τ the TLS interacts with the bath again; the state of the bath
at this later time has to be the state of the bath at an earlier
time t − τ, taking into account the traveling phase acquired
during this time.

The system dynamics is calculated by solving the
quantum stochastic Schrödinger equation (QSSE)

i
d
dt

jΨðtÞi ¼ HðtÞjΨðtÞi; ð5Þ

using the MPS method formulated in Ref. [23]. Matrix
product states have shown to be efficient representations
of 1D many-body systems [45–51]. Solving the QSSE
is turned into a many-body problem by discretizing
time, tn ¼ nΔt, turning Eq. (5) into a dynamical map
jΨðtnþ1Þi ¼ UnjΨðtnÞi. Throughout the Letter we use a
time step much smaller than all other timescales involved:
Δt ≪ f1=γ; 1=Ωg. The state of the field in the waveguide is
represented by time bins, with associated bosonic noise
increments ΔBðtnÞ ¼

R tnþ1
tn bðtÞdt, which fulfills the com-

mutation relation ½ΔBðtnÞ;ΔB†ðtn0 Þ� ¼ Δtδn;n0 . The oper-
ator ΔB†ðtnÞ can thus be seen as a creation operator for
time bin n, with a corresponding Fock state defined as
jnil ≡ ½ðΔB†

l Þn=
ffiffiffiffiffiffiffiffiffiffiffiffi
n!Δtn

p �jvacil. The unitary, Un, is written
in this time-bin formulation as

Un ¼ exp½iHTLSΔtþ ð ffiffiffiffiffi
γL

p
ΔB†ðtnÞσ−

þ ffiffiffiffiffi
γR

p
ΔB†ðtn−kÞeiϕσ− − H:c:Þ�; ð6Þ

here tk ¼ kΔt is the feedback time τ. The total quantum
state at time tn, for both the bath and the TLS, is then
written as

jΨðtnÞi ¼
X

iT;i1;…;iN

ΨiT;i1;…;iN ðtnÞjiTi ⊗ ji1i ⊗ … ⊗ jiNi;

ð7Þ
where tN ¼ NΔt is the total integration time, iT denotes the
state of the TLS, and ij is the photon number in time bin j.
The initial state is written as a MPS ansatz

ΨiS;i1;…;iN ðt0Þ ¼ M½S�iTM½1�i1…M½N�iN ; ð8Þ

where M½j�ij is a matrix of dimension Dj ×Djþ1. The
maximum matrix dimension Dmax in the MPS chain is
referred to as the bond dimension and sets an upper limit to
the amount of entanglement in the system, which in our
system depends on the length of the feedback loop [23]. We
use a bond dimension of Dmax ¼ 32 for the moderate time
delays considered here. The state amplitudes are updated in
each time step using standard MPS techniques [45,52].
Non-Markovian regime.—Two parameters are important

for quantifying the significance of the feedback: γτ, where
γ ¼ γL þ γR, and Ωτ. Only when both γτ ≪ 1 and Ωτ ≪ 1
does the system not have time to evolve during the
feedback time, and a Markovian treatment is valid. The
situation is thus different from the nondriven TLS in which
the single parameter γτ determines the non-Markovian
properties alone.
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We first study the effect of the time delay, and set ϕ ¼ 0.
The feedback is thus in phase with the drive and they
interfere constructively. In all calculations that follow we
use γ ¼ 2γL ¼ 2γR ¼ 1. In Fig. 2 we plot the steady-state
reduced density-matrix elements of the TLS for drive
strengths in the range Ω=γ ¼ ½0.1; 4� for γτ ¼ 0.5 (green
crosses) and γτ ¼ 3 (magenta triangles). The trace distance
to the closest Markovian steady state, N ss [Eq. (2)], is
plotted for a greater variety of time delays in Fig. 3. From
these two figures we make the following observations:
(i) When the driving is weak, the steady state cannot be
distinguished from a Markovian steady state, independent
of time delay. (ii) The states start to deviate from the
Markovian regime initially for γτ > 0, reach a maximum
deviation at γτ ≈ 0.5, and then start to approach the
Markovian regime again. For sufficiently long time delays
the states cannot be distinguished from a Markovian state
anymore. (iii) For γτ ¼ 0.5 the TLS shows both population
inversion, ρee > 1=2, for sufficiently strong driving, and
larger coherence than what is possible in the Markovian
regime, jρeqj > 1=

ffiffiffi
8

p
. The oscillatory behavior that can be

seen in both Figs. 2 and 3 is due to the additional phase
shift, Ωτ, induced by the drive, primarily noticeable for the
longer time delays. We also note that Fig. 3 could serve as a
mean to extract the delay time experimentally by using τ as
a fitting parameter, which could be easier than, e.g.,
measuring two-time correlation functions.
When the phase shift deviates from 0 mod 2π, the

states either approach or fall well inside the Markovian
regime (blue circles in Fig. 2). Inside the Markovian regime
N ss ¼ 0 per definition.
Coherent quantum interference phenomena play an

important role in many applications in waveguide QED.
It is well known, e.g., that the mirror doubles the TLS’
decay rate to the waveguide due to the Purcell effect in the
Markovian regime (for ϕ ¼ 0). Increasing the distance to
the mirror reduces the coherence of the radiation that comes
back to the TLS. The longer time it takes for the feedback to

come back, the higher chance for spontaneous emission to
occur in the TLS. For long enough time delay, the TLS
should behave as if it was positioned in an infinite
waveguide instead, without the mirror present. This is
precisely what we observe in Fig. 4. We extract the
“effective” decay rate by calculating the ratio between
the output time-bin population and the TLS population,
γeff ¼ hΔB†

outΔBoutiss=ρee. For weak driving we observe
that the decay rate is not affected by the time delay, as
the drive strength increases, however, it approaches the
expected value of γ. We note that the effective decay rate
could have been extracted from the master equation in
Eq. (1) if negative dephasing rates were allowed. In fact, all
the non-Markovian steady states seen in Fig. 2 could be
described by the master equation with a negative dephasing
rate. Since negative dephasing rates have been used to
describe temporary increases in quantum coherence for
non-Markovian systems [53,54], we find it interesting
to note that such effects can persist all the way to the
steady state.
Non-Markovianity measure of the transient dynamics.—

Finally, we make the remark that maximizing N ss is not
necessarily the same thing as maximizing the non-
Markovianity of the system in a traditional sense. For this

FIG. 3. Non-Markovianity of the steady state evaluated using
the measure introduced in Eq. (2). A phase shift of ϕ ¼ 0 was
used unless it is stated otherwise in the figure. A largeN ss means
that the state is easily distinguishable from any state in the
Markovian regime.

FIG. 4. Effective decay rate for ϕ ¼ 0 as a function of drive
strength for various time delays.

FIG. 5. Non-Markovianity according to the measure in Eq. (9)
as a function of time delay. Dashed lines are for the same drive
strengths as written in the figure but for ϕ ¼ π=2. By comparing
with Fig. 2 we conclude that a large non-Markovianity does not
correspond to a steady state that can be distinguished from the
Markovian regime.
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argument, we compare N ss to the measure proposed in
Ref. [9],

N ¼ maxρ1;2

Z
σ>0

dtσðt; ρ1;2Þ; ð9Þ

where σðt; ρ1;2Þ ¼ ðd=dtÞT½ρ1ðtÞ; ρ2ðtÞ�, and T½ρ1; ρ2�
denotes the trace distance. The maximum is taken over
all pairs of initial states. For our system, we can safely
choose the ground and excited states as the two initial states
[55]. We plot N as a function of time delay for various
drive strengths in Fig. 5 for both ϕ ¼ 0 (solid lines) and
ϕ ¼ π=2 (dashed lines). In Fig. 3, we saw the largest N ss
for γτ ≈ 0.5–1, which is barely non-Markovian according
to N , whereas longer time delays and stronger driving
increases N significantly.
Conclusion.—We have introduced the concept of non-

Markovian steady states as a set of steady states unique for
open quantum systems in a non-Markovian environment.
The system cannot reach these states if it is coupled to a
Markovian environment and could thus offer a simple
way of detecting non-Markovianity as only a steady state
measurement is required. Moreover, we introduced an
appropriate measure for these states’ uniqueness based
on the trace distance to the closest Markovian steady state.
As an example, we show that non-Markovian steady
states occur in a driven TLS in a semi-infinite waveguide.
Among the non-Markovian steady states, we find states
with population inversion in the TLS, or steady state
coherence larger than 1=

ffiffiffi
8

p
, two impossible scenarios in

the Markovian regime. Additionally, we showed that time
delay could have a detrimental effect on coherent quantum
interference in waveguides by extracting the effective
Purcell-modified decay rate as a function of time delay
and drive strength.
Further studies need to be made in order to generalize

the findings of this work to more general non-Markovian
environments which could be of practical importance,
e.g., in the field of quantum optics. Here, we specially
note the Redfield theory, which can be used to capture non-
Markovian effects for time delays comparable to the system
relaxation timescale [56,57], which is indeed where we find
non-Markovian steady states.
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acknowledge funding from the Swedish Research Council
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edges funding from the Knut and Alice Wallenberg
Foundation (KAW) through the Wallenberg Centre for
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