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A B S T R A C T

The ocean wave distribution in a specific region of space and time is described by its sea state. Knowledge
about the sea states a ship encounters on a journey can be used to assess various parameters of risk and wear
associated with this journey. Two important characteristics of the sea state are significant wave height and
mean wave period. We propose a joint spatial model of these two quantities on the north Atlantic ocean. The
model describes the distribution of the logarithm of the two quantities as a bivariate Gaussian random field,
modeled as a solution to a system of coupled fractional stochastic partial differential equations. The bivariate
random field is non-stationary and allows for arbitrary, and different, smoothness for the two marginal fields.

The parameters of the model are estimated from data using a stepwise maximum likelihood method. The
fitted model is used to derive the distribution of accumulated fatigue damage for a ship sailing a transatlantic
route. Also, a method for estimating the risk of capsizing due to broaching-to based on the joint distribution
of the two sea state characteristics is investigated. The risks are calculated for a transatlantic route between
America and Europe using both data and the fitted model. The results show that the model compares well
with observed data. It further shows that the bivariate model is needed and cannot simply be approximated
by a model of significant wave height alone.
. Introduction

The sea state characterizes the stochastic behavior of ocean waves
n a region in space and time. Explicit knowledge of the sea state
llows for quantitative assessments of profits, costs, and risks associated
ith naval logistics, fishing, marine operations, and other applications
ffected by the sea surface conditions.

Let us denote the spatio-temporal stochastic process of sea surface
levation as 𝑊 (𝒔, 𝑡), where 𝒔 ∈ , 𝑡 ∈ [0,  ]. Here,  is a small region
n space and [0,  ] is a small interval in time, typically from 20 min
p to about 3 h. The distribution of 𝑊 is equivalent to the sea state at
× [0,  ]. In general, a spatio-temporal stochastic process can be very

omplex to model. However, for waves in deep water the sea surface
levation can often be adequately approximated by Gaussian random
ields. Furthermore, if  and  are small enough, 𝑊 will be a stationary
aussian process. For applications related to floating structures, such
s ships, the deviations of sea elevation from the mean sea level is of
nterest. Hence, 𝑊 could be modeled as a centered stationary Gaussian
rocess and is therefore completely characterized by the directional
pectrum 𝑆(𝜔, 𝜃). Here 𝜔 ≥ 0 is the angular frequency of the waves
nd 𝜃 ∈ [0, 2𝜋] is the direction [1].

∗ Corresponding author.
E-mail address: hildeman@chalmers.se (A. Hildeman).

In this paper our main concern are applications related to ship
safety. For such applications we are mainly interested in sea states
where a dominant part of the wave energy is propagating in a narrow
band of directions, a so called long crested sea. Hence, we will make the
approximation 𝑆(𝜔, 𝜃) = 𝑆(𝜔)𝛿(𝜃 − 𝜃0), where 𝑆(𝜔) = ∫ 2𝜋

0 𝑆(𝜔, 𝜃)𝑑𝜃 is
the temporal spectrum, 𝜃0 is the direction the waves are propagating
from, and 𝛿 is the Dirac delta function. For a long crested sea the sea
state is completely characterized by its temporal spectrum and a wave
direction.

For most applications a few scalar valued quantities are enough to
characterize the temporal spectrum. One such example is the popular
Bretschneider spectrum [2], which has been shown to explain the im-
portant characteristics of sea states for a wide range of applications and
spatial regions. This spectrum is fully characterized by the significant
wave height 𝐻𝑠 and the peak wave period 𝑇𝑝. The Bretschneider spectrum
is defined as

𝑆(𝜔) = 𝑐𝜔−5 exp

(

−1.25
𝜔4
𝑝

𝜔4

)

, 𝑐 = 1.25
4

𝐻2
𝑠𝜔

4
𝑝, 𝜔𝑝 = 2𝜋 ∕𝑇𝑝.

Here, 𝐻𝑠 = 4
√

Var[𝑊 (𝒔, 𝑡)] is four times the standard deviation of the
sea surface elevation. It is a quantity summarizing the distribution of
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wave heights of apparent waves and is measured in units of length,
in this paper in meters [m]. The significant wave height is in general
the most important single quantity when assessing risks to ships in a
given sea state. Another important quantity is the peak wave period. It
is defined as the wave period with the highest energy,

𝑇𝑝 =
2𝜋

argmax𝜔>0 𝑆(𝜔)
,

nd summarizes the distribution of wave periods of apparent waves. It
s measured in units of time, in our paper in seconds [s]. Two other
opular quantities summarizing the distribution of wave periods are
he mean wave period, 𝑇1, and mean zero-crossing period, 𝑇𝑧, defined as

1 = 2𝜋
∫ ∞
0 𝑆(𝜔)𝑑𝜔

∫ ∞
0 𝜔𝑆(𝜔)𝑑𝜔

, 𝑇𝑧 = 2𝜋

√

√

√

√

∫ ∞
0 𝑆(𝜔)𝑑𝜔

∫ ∞
0 𝜔2 𝑆(𝜔)𝑑𝜔

.

In words, 𝑇1 averages over frequencies while 𝑇𝑧 is the mean time
between a zero upcrossing and the consecutive one for a fixed point in
space. Under the assumption of a Bretschneider spectrum, these three
quantities are related as 𝑇𝑝 = 1.408 ⋅ 𝑇𝑧 = 1.2965 ⋅ 𝑇1 [3]. Since all
three quantities are proportional to each other under the assumption
of a Bretschneider spectrum we will use the notation 𝑇 to denote a
quantity of the wave period without explicitly stating which. Hence,
as long as the Bretschneider spectrum is a reasonable approximation
all information about the sea state is encoded in the two quantities 𝐻𝑠
and 𝑇 .

One problem with modeling the random field using a spectrum
is that it assumes stationarity, i.e., the same distributional behavior
for all locations in space and time. This is typically not valid for
large spatial/temporal regions. Hence, it is often assumed that the
stationary model explains the wave distribution on small scales while
the parameters 𝐻𝑠 and 𝑇 are spatially/temporally varying, in this way
allowing for different distributions of apparent waves at different points
in space–time.

The main contribution of this work is to propose a joint spatial
model for 𝐻𝑠 and 𝑇 which can be used to describe the sea state
variations over large regions, where stationarity cannot necessarily be
assumed. It should be mentioned that our model does not assume
a Bretschneider spectrum. However, we will assume a Bretschneider
spectrum later in Section 6 where some examples of possible usages of
such a sea state model are provided.

Probabilistic models of 𝐻𝑠 and 𝑇 jointly for a fixed point in space
and time have been studied extensively. Ochi [4] showed that a bi-
variate log-normal distribution fits the bulk of the marginal probability
distributions of 𝐻𝑠 and 𝑇 for data from the north Atlantic. Other
approaches are to use Placket-models [5,6], or more general Box–Cox
transformations [7], and then model the transformed values with a
bivariate Gaussian distribution. Conditional modeling approaches have
also been proposed where 𝐻𝑠 is first modeled and 𝑇 is later modeled
conditioned on 𝐻𝑠 [8–10]. Also temporal models for 𝐻𝑠 and/or 𝑇 for
a fixed point in space have been studied. These models are often based
on transformations of the marginal data to Gaussianity such that the
temporal correlation can be modeled by ARMA-processes [11, and the
reference within]. Further complexity can be added on top of that by
modeling a storm/non-storm dichotomy through a latent Poisson-style
process [12,13].

As stated above, we are in this work interested in spatial models
for 𝐻𝑠 and 𝑇 (and in extension spatio-temporal models), such models
are important when considering moving ships where the wave state at
points visited on the ships route will be highly dependent. An important
property of a spatial model for any larger region is that it allow for
spatial non-stationarity [14]. Some prior work on modeling 𝐻𝑠 spa-
tially, or spatio-temporally, using transformed Gaussian random fields
exist. Such spatial models are usually based on a chosen parametric sta-
tionary covariance function for which parameters are estimated using
maximum likelihood, posterior distributions and/or minimum contrast
methods. Baxevani et al. [15] considered regions small enough to
2

assume stationarity in order to work with a stationary Gaussian model.
To handle non-stationarity this model was later extended by Baxevani
et al. [14] to a spatial moving average process with a non-stationary
Gaussian kernel and drift. A similar drift model but with a rational
quadratic covariance function was used in Ailliot et al. [16].

In Hildeman et al. [17] a non-stationary and anisotropic model
was proposed based on the SPDE approach [18] and the deformation
method [19]. Compared to the covariance-based models of [15,14,16]
this model is based on a description of the random field through a
stochastic partial differential equation (SPDE). Approaching the char-
acterization of the random field from an SPDE perspective has some
distinct benefits. For example, it facilitates modeling on complex spatial
domains, simplifies the introduction of non-stationarity, and can be
used to reduce the computational cost of inference and sampling.

The model we propose in this work is an extension of the model for
𝐻𝑠 by Hildeman et al. [17]. Specifically, we will assume that the joint
distribution of 𝐻𝑠 and 𝑇 is Gaussian after logarithmic transformation
of both variables, as proposed by Ochi [4]. We will then model log(𝐻𝑠)
and log(𝑇 ) using a bivariate extension of the model by Hildeman
et al. [17] where we also allow for arbitrary smoothness of the two
random fields as well as a spatially varying cross-correlation of the two
quantities.

The proposed model is purely spatial, not spatio-temporal. Hence,
it assumes that the probability distribution in space is the same for all
point in time. Such an assumption is not viable over the whole year
due to seasonal variations. We therefore focus on one month at a time,
approximating the spatial distribution during the course of a month to
be stationary in time. In this work, 39 years of data from the north
Atlantic during the month of April will be used to estimate the model,
as well as to validate it. In order to avoid making this work too complex
we choose to present the results for one single month, in this case April.
However, note that we could just as well have chosen another month in
our examples. To illustrate the flexibility of the proposed model we will
show how it can be used in two separate applications of naval logistics,
namely fatigue damage modeling of ships and estimation of the risk of
capsizing due to broaching-to.

The structure of the paper is as follows. In Section 2 the proposed
model is introduced. Section 3 describes the finite-dimensional dis-
cretization of the model that is needed for inference and simulation. In
Section 4 the data used for parameter estimation and validation of the
model is described. Section 5 goes through the method of estimating
the parameters of the model from the available data, and presents
an assessment of the model fit. Section 6 introduces two applications
where the model can be used to estimate risks and wear associated with
a planned ship journey. Finally, Section 7 concludes with a discussion
of the results and future extensions.

2. Model formulation

As stated above, the goal of this work is to develop a joint spatial
model of significant wave height and wave period. We base this model
on the non-stationary model of Hildeman et al. [17], which has already
been applied successfully to model the spatial distribution of significant
wave height in the North Atlantic.

The original model is defined by interpreting 𝑋(𝒔) = log(𝐻𝑠(𝒔)) as a
solution to the SPDE

𝜅(𝒔)𝛼∕2 (𝜏(𝒔) X(𝒔)) ∶= 𝜅(𝒔)
[

𝐼 − 𝜅(𝒔)−2∇ ⋅𝐻(𝒔)∇
]𝛼∕2 (𝜏(𝒔) X(𝒔)) = (𝒔),

(1)

defined on a spatial domain  ⊂ R𝑑 with 𝑑 = 2. Here,  is Gaus-
sian white noise, 𝐻 a symmetric and positive definite matrix-valued
function, 𝜅 and 𝜏 strictly positive real-valued functions, and 𝛼 > 𝑑∕2 a
constant.

Defining random field models as solutions to a stochastic partial

differential equation (the SPDE-approach) is an alternative way of
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defining the covariance structure of a Gaussian random field implicitly
through the way the solution to a stochastic differential equation
smooths out a white noise process. The particular SPDE of (1) has its
origin in the fact that when  ∶= R𝑑 , 𝜅(𝒔) ∶= 𝜅 > 0, 𝜏(𝒔) ∶= 𝜏 > 0, and
(𝒔) ∶= 𝐼 is the identity matrix, a mean-zero Gaussian random field
ith a Matérn covariance function [20] is a solution to (1). Defining the
odel through the SPDE has the benefits of allowing it to be extended

o arbitrary Riemannian manifolds. It also facilitates the introduction of
on-stationarity by allowing the parameters to be function-valued and
ntroduces important computational benefits [18].

In Hildeman et al. [17] it was noted that a spatial model for signif-
cant wave height needs to be able to explain spatial non-stationary
nd/or anisotropic behavior. To accomplish this the model was ex-
ended by the deformation method [19], i.e., a differentiable and
ijective mapping, F−1(𝒔), maps points on the observational domain,
, to points on a subset to some manifold, . By considering a Matérn
ovariance structure in  (the deformed space) one can acquire a non-
tationary or anisotropic random field in the observable space, . The
arameters 𝜅(𝒔) and 𝐻(𝒔) of the model are functions of the deformation.
pecifically, 𝑋̃(𝒔̃) ∶= 𝑋(F−1(𝒔)) is a unit-variance Gaussian random
ield with a Matérn covariance function with the same smoothness
arameter, 𝛼, as in (1). Because of this, the function F explains the
nisotropy, non-stationarity, and correlation range of 𝑋, whereas 𝜏(𝒔)
etermines the marginal variances, and 𝛼 the smoothness.

The connection between the parameters 𝐻(𝒔), 𝜅(𝒔) of the SPDE in
1) and the mapping F ∶  ↦  is
2(𝒔) = |

|

|

𝐽 [F−1](𝒔)||
|

, 𝐻(𝒔) = 𝜅2(𝒔)𝐽 [F−1]−1(𝒔)𝐽 [F−1]−𝑇 (𝒔),

where 𝐽 [𝐹−1] denotes the Jacobian matrix of 𝐹−1. This means that the
SPDE is completely characterized by the Jacobian matrix of 𝐹 together
with 𝛼 and 𝜏. In fact, the model is well-defined for a broader class
than those which are truly diffeomorphic to a Matérn Gaussian random
field—it is enough that they are locally diffeomorphic to a Matérn
Gaussian random field. That is, any 𝑑×𝑑 matrix-valued function which
is Lipschitz continuous and uniformly positive definite (or uniformly
negative definite) can be used in place of 𝐽 [𝐹−1]. This means that a
true -space does not have to exist. The -space is just a construct
used to acquire the correct SPDE (1) for -space.

In Hildeman et al. [17] it was shown that this SPDE model agreed
well with data of significant wave height in the north Atlantic ocean.
We now extend the model to a bivariate random field for proba-
bilistic modeling of significant wave height and wave period jointly.
We construct a bivariate model for which the distributions 𝐻𝑠 and
𝑇 separately are both part of the class of models defined by (1). Let
us denote 𝑋(𝒔) ∶= log𝐻𝑠(𝒔) and 𝑌 (𝒔) ∶= log 𝑇 (𝒔), and consider 𝑋
and 𝑌 as dependent Gaussian random fields. Bolin and Wallin [21],Hu
et al. [22],Hu and Steinsland [23] developed multivariate models of
Gaussian random fields based on a triangular system of SPDEs. Inspired
by those models we could extend (1) to a bivariate model as,
[

𝑔11 𝑔12
0 𝑔22

]

[

𝜅𝑋
𝛼∕2
𝑋 0

0 𝜅𝑌 
𝛽∕2
𝑌

]

[

𝑋
𝑌

]

=∶ 𝐷

[

𝜅𝑋
𝛼∕2
𝑋 0

0 𝜅𝑌 
𝛽∕2
𝑌

]

[

𝑋
𝑌

]

=
[




]

.

Here  and  are independent and identically distributed Gaussian
white noise on  and 𝑔11, 𝑔12, and 𝑔22 are real-valued where 𝑔11 and
𝑔22 are bounded away from 0 such that 𝐷 is invertible. The pseudo-
differential operators 𝑋 and 𝑌 are defined as in (1) and control
the marginal distributions of 𝑋 and 𝑌 respectively. The term 𝑔12 will
introduce dependence between 𝑋 and 𝑌 . The inverse, 𝑅 = 𝐷−1 can be
used to rewrite the system of SPDEs as
[

𝜅𝑋
𝛼∕2
𝑋 0

0 𝜅𝑌 
𝛽∕2
𝑌

]

[

𝑋
𝑌

]

= 𝑅
[




]

∶=
[

ℎ11 ℎ12
0 ℎ22

] [




]

,

which corresponds to a linear model of coregionalization [21]. The

parameters ℎ11, ℎ12 and ℎ22 are here functions of the spatial location,

3

fully defined by the parameters in the elements of 𝐷. In particular,
12 solely defines the dependency between the two fields. Moreover,
onsidering only one random field at a time, they will have the same
istribution as in the univariate case if ℎ211 + ℎ212 = ℎ222 = 1. Bolin and
allin [21] gives a parameterization of 𝑅 using only one parameter,

, due to the sum-to-one constraint. The parameter 𝜌 ∈ R controls the
orrelation between the fields 𝑋 and 𝑌 but is in general not equal to
he Pearson correlation coefficient. Using 𝜌, the parameters of 𝐷 and 𝑅
re fully identified as,

=
[

ℎ11 ℎ12
0 ℎ22

]

= 1
√

1 + 𝜌2

[

1 𝜌
0

√

1 + 𝜌2

]

,

𝐷 = 𝑅−1 =
[

𝑔11 𝑔12
𝑔22

]

=

[

√

1 + 𝜌2 −𝜌
0 1

]

.

We use this parameterization but extend the model by allowing 𝜌 to
be a spatially varying function. Hence, the model we consider is the
following system of SPDEs
√

1 + 𝜌2𝜅𝑋
𝛼∕2
𝑋 𝑋 − 𝜌𝜅𝑌 

𝛽∕2
𝑌 𝑌 = 

𝜅𝑌 
𝛽∕2
𝑌 𝑌 =  .

(2)

In the case when 𝜅𝑋
𝛼∕2
𝑋 = 𝜅𝑌 

𝛽∕2
𝑌 and 𝜌 is constant the correlation

coefficient between the two fields equals 𝜌
√

1+𝜌2
, in the sense that it

corresponds to the Pearson correlation coefficient between the two
fields at any fixed point in . In the general case the interpretation
of 𝜌 as controlling the correlation still holds and values near zero of
𝜌 give a negligible dependency between the fields while large positive
values give a strong positive correlation and large negative values give
a strong negative correlation. However, a simple explicit relationship
with the pointwise correlation coefficient does not generally exist. The
effect on the pointwise correlation is highlighted in Fig. 1 showing a
realization from such a bivariate Gaussian random field model. Here,
both fields are stationary and anisotropic but with different directions
of the main principal axes and different smoothness parameters. Even
though 𝜌 = −0.98, which would have corresponded to a correlation
of −0.7 if the marginal random fields would have been equal in dis-
tribution, the actual correlation between the fields is lower since the
two fields are not equal in distribution. It is however visible that peaks
in the left field still tend to correspond to valleys in the right field,
indicating a negative correlation.

3. Model discretization

To be able to use the model of the previous section in applications
we must first discretize it. This is performed using a finite element
approximation of the system of SPDEs. In this section we provide the
details of this procedure. We first present the univariate case with 𝛼 = 2,
then generalize to arbitrary 𝛼 > 1, and finally combine the methods for
the multivariate setting.

3.1. The univariate case

In the case when 𝛼 = 2 in (1) the model can be discretized using a
standard Galerkin finite element method as suggested by Lindgren et al.
[18]. The aim is to approximate the solution 𝑋 by a basis expansion
𝑋ℎ(𝐬) =

∑𝑁
𝑗=1 𝑈𝑗𝜙𝑗 (𝐬). Here {𝜙𝑗}𝑁𝑗=1 is a set of piecewise linear functions

nduced by a triangular mesh of the spatial domain. Let 𝑉ℎ be the
space spanned by these basis functions. Augmenting the operator with
homogeneous Dirichlet boundary conditions and considering the weak
formulation of the SPDE on 𝑉ℎ yields the following system of equations
for the coefficients in the basis expansion,
𝑁
∑

𝑗=1

(

⟨𝜏𝜙𝑗 , 𝜙𝑖⟩ + ⟨𝐻∇𝜏𝜙𝑗 ,∇
(

𝜅−2𝜙𝑖
)

⟩

)

𝑈𝑗
𝑑
= ⟨𝜅−1 , 𝜙𝑖⟩, 𝑖 = 1,… , 𝑁,

where ⟨⋅, ⋅⟩ denotes the inner product on . This system of equations
can be written in matrix form as 𝐾𝑈 ∶= (𝐵 + 𝐺)𝑈

𝑑
= 𝑊 , where



A. Hildeman, D. Bolin and I. Rychlik Probabilistic Engineering Mechanics 68 (2022) 103203

𝐵
𝐶
a

i
𝐶
⟨

s
r
r

3

v
b

t

Fig. 1. Realization of a bivariate, anisotropic and stationary Gaussian random field. The left field has a correlation range of 25 in the direction of the principal axis at 45◦ and
a correlation range of 14 in the perpendicular direction. The right field has the principal direction at an angle of −45◦ with the correlation range 30, the perpendicular direction
has a range of 15. The correlation between the fields is controlled by 𝜌 = −0.98. Furthermore, the left field has a smoothness constant of 𝛼 = 1.6 while the right field has 𝛼 = 3.
T
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𝐾
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s
F

√

(
r

𝑖𝑗 ∶= ⟨𝜏𝜙𝑗 , 𝜙𝑖⟩, 𝐺𝑖𝑗 ∶= ⟨𝐻∇𝜙𝑗 ,∇
(

𝜅−2𝜙𝑖
)

⟩, and 𝑊 ∼ N(0, 𝐶) with
𝑖𝑗 ∶= ⟨𝜅−2𝜙𝑗 , 𝜙𝑖⟩. Hence, the stochastic weights of the basis expansion
re 𝑈 ∼ N(0, 𝐾−1𝐶𝐾−𝑇 ).

The important property of using a basis of 𝑉ℎ with compact support
s that 𝐾 and 𝐶 will be sparse matrices. Lindgren et al. [18] showed that

can be approximated by a diagonal matrix, with diagonal elements
𝜙𝑖, 1⟩. With this approximation, the precision matrix 𝐾𝐶−1𝐾 is also
parse and 𝑈 is a Gaussian Markov random field (GMRF). This greatly
educes the computational cost for inference and simulation [24]. We
efer to [17] for further details for the case of a univariate random field.

.2. Rational approximation for arbitrary smoothness

The procedure from the previous subsection can be extended to even
alues of 𝛼 by noting that the solution to 𝜅2𝑋 =  can be obtained
y first solving 𝑋1 = 𝜅−1 and then 𝑋 = 𝑋1. One can therefore use

the discretization from the previous subsection iteratively to obtain a
discretization for even integer values of 𝛼. Lindgren et al. [18] also
stated the solution to 1∕2𝑋 =  as a least square solution, which can
be combined with the iterative procedure to obtain discretizations also
for odd integer values of 𝛼. This was utilized in [17] where only integer
values of 𝛼 were considered.

For large values of 𝛼, the correlation function does not change much
for a small change in 𝛼. However, for small values of 𝛼, restricting it
to integer values constrain the flexibility of the model. For instance,
the exponential correlation function corresponds to 𝛼 = 1.5 and cannot
be modeled by an integer-valued 𝛼. Therefore, in this work we want
o model any well-defined smoothness value, i.e., 𝛼 > 𝑑∕2 and not

only integer values. Until recently it was not clear how to formulate
a FEM approximation for non-integer valued 𝛼. However, Bolin and
Kirchner [25] solved this problem by combining the FEM approxima-
tion with a rational approximation 𝑝𝑙 (𝑥)

𝑝𝑟(𝑥)
of the power function, i.e., 𝑥𝛼∕2,

where 𝑝𝑙 and 𝑝𝑟 are polynomials of some chosen orders. Specifically,
𝑝𝑟(𝑥) =

∑𝑚
𝑖=0 𝑐𝑖𝑥

𝑚−𝑖 and 𝑝𝑙(𝑥) =
∑𝑚+1

𝑗=0 𝑏𝐽𝑥𝑚+𝑚𝛼−𝐽 , where 𝑚 is an integer
controlling the quality of the approximation, and 𝑚𝛼 = max{1, ⌊𝛼∕2⌋}.
By using such a decomposition it was possible to approximate the non-
integer power of a pseudo-differential operator 𝛼∕2 as 𝑝𝑙()𝑝𝑟()−1.
Substituting 𝛼∕2 by 𝑝𝑙()𝑝𝑟()−1 in the equation X =  , one obtains

𝑝𝑙()𝑝𝑟()−1 X𝑅
𝑚 =  ,

where X𝑅
𝑚 is the rational approximation of X. The solution can be

written as a system of equations,

𝑝𝑙()𝑍 = 
𝑅 (3)
𝑋𝑚 = 𝑝𝑟()𝑍. b

4

This is important since a FEM approximation of 𝑝𝑙()𝑍 =  can be
used in order to get a GMRF approximation of 𝑍. More specifically,
by computing the roots of the two polynomials, the discretized FEM
operators 𝑃𝑙 and 𝑃𝑟 can be written as,

𝑃𝑙 ∶= 𝑏𝑚+1𝐾
𝑚𝛼−1

𝑚+1
∏

𝑗=1

(

𝐼 − 𝑟𝑙,𝑗𝐾
)

, 𝑃𝑟 ∶= 𝑐𝑚
𝑚
∏

𝑖=1

(

𝐼 − 𝑟𝑟,𝑖𝐾
)

,

where 𝐾 is the FEM matrix of Section 3.1. The coefficients 𝑏𝑚+1, 𝑐𝑚,
𝑟𝑙,𝑗 , 𝑟𝑟,𝑖 are obtained from the rational approximation of the function
𝑥𝛼∕2 (see Bolin and Kirchner [25]). A larger 𝑚 yields a better approx-
imation but also more terms in the polynomial operators, which will
increase the computational cost by making 𝑃𝑙 and 𝑃𝑟 less sparse as
well as decrease the numerical stability of the corresponding precision
matrix.

The distribution of the stochastic weights is 𝑈 ∼ N(0, 𝑃𝑟𝑃−1
𝑙 𝐶𝑃−𝑇

𝑙
𝑃 𝑇
𝑟 ). Even though both 𝑃𝑟 and 𝑃𝑙 are sparse, their inverses are not.
herefore, the precision matrix of 𝑈 will not be sparse either but
ecause of the two-step procedure of the model formulation in Eq. (3),
ll computational benefits of the GMRF case can be maintained when
sing the model. This is accomplished by using the nested SPDE ap-
roach [26] and write 𝑈 = 𝑃𝑟𝑈̃ , since 𝑃𝑟 is sparse and 𝑈̃ has a sparse

precision matrix 𝑃 𝑇
𝑙 𝐶−1𝑃𝑙.

3.3. FEM for the bivariate model

We are now ready to discretize the model of (2). In the prior
section we saw that we can write a rational FEM approximation of the
operator 𝛼∕2

𝑋 as 𝐾𝑋 = 𝑃𝑙𝑃−1
𝑟 . Likewise, denote the FEM approximation

of the operator 𝛽∕2
𝑌 as 𝐾𝑌 = 𝑄𝑙𝑄−1

𝑟 . Moreover, we can consider
−𝜌𝜅𝑌 

𝛽∕2
𝑌 to be a composition of the three operators −𝜌, 𝜅𝑌 , and

𝛽∕2
𝑌 . Likewise,

√

1 + 𝜌2𝜅𝑋
𝛼∕2
𝑋 as a composition of

√

1 + 𝜌2𝜅𝑋 and
𝛼∕2
𝑋 . By considering an iterative FEM approximation with respect to

hese compositions we acquire the system of linear equations,

𝑋̃𝑈𝑋 +𝐾𝜌𝑈𝑌 = 𝑊

𝐾𝑌 𝑈𝑌 = 𝑉 ,

here 𝑊 and 𝑉 are i.i.d. N(0, 𝐶) random vectors and 𝑈𝑋 and 𝑈𝑌 are the
tochastic weights for the FEM approximation of 𝑋 and 𝑌 respectively.
urthermore, 𝐾𝑋̃ = 𝐶−1𝐶𝑋𝐾𝑋 where 𝐶𝑋 = {⟨

√

1 + 𝜌2(𝒔)𝜅𝑋 (𝒔)𝜙𝑖(𝒔), 𝜙𝑗
(𝒔)⟩}𝑖𝑗 . This derives from the FEM approximation of the operator
1 + 𝜌2(𝒔)𝜅𝑋 (𝒔). Likewise, 𝐾𝑌 = 𝐶−1𝐶𝑌𝐾𝑌 where 𝐶𝑌 = {⟨𝜅𝑌 (𝒔)𝜙𝑖(𝒔), 𝜙𝑗

𝒔)⟩}𝑖𝑗 , and 𝐾𝜌 = −𝐶−1𝐶𝜌𝐾𝑌 where 𝐶𝜌 = {⟨𝜌(𝒔)𝜙𝑖(𝒔), 𝜙𝑗 (𝒔)⟩}𝑖𝑗 . The
eason for dividing the operators into compositions that are estimated
y iterative FEM are due to 𝐾 and 𝐾 being FEM approximations
𝑋 𝑌
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𝑄̃ =

[

𝑃 𝑇
𝑙
(

𝐶𝑇
𝑋𝐶

−3𝐶𝑋
)

𝑃𝑙 −𝑃 𝑇
𝑙
(

𝐶𝑇
𝑋𝐶

−3𝐶𝜌𝐶−1𝐶𝑌
)

𝑄𝑙

−𝑄𝑇
𝑙

(

𝐶𝑇
𝑌 𝐶

−1𝐶𝑇
𝜌 𝐶

−3𝐶𝑋

)

𝑃𝑙 𝑄𝑇
𝑙

(

𝐶𝑇
𝑌 𝐶

−3𝐶𝑌 + 𝐶𝑇
𝜌 𝐶

−1𝐶𝑇
𝑌 𝐶

−3𝐶𝑌 𝐶−1𝐶𝜌

)

𝑄𝑙

]

. (4)
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f the pseudo-differential operators. As such it would be problematic
o include the spatially varying parameters, 𝜅𝑋 , 𝜅𝑌 , and 𝜌 into these
atrices since they would also be affected by a differential operator.

The block covariance matrix for 𝑈𝑋 and 𝑈𝑌 becomes,
[

𝜎𝑋 𝜎𝑋𝑌
𝜎𝑌 𝑋 𝜎𝑌

]

=

[

𝐾−1
𝑋̃

𝐶𝐾−𝑇
𝑋̃

+𝐾−1
𝑋̃

𝐾𝜌𝐾−1
𝑌

𝐶𝐾−𝑇
𝑌

𝐾𝑇
𝜌 𝐾

−𝑇
𝑋̃

−𝐾−1
𝑋̃

𝐾𝜌𝐾−1
𝑌

𝐶𝐾−𝑇
𝑌

−𝐾−1
𝑌

𝐶𝐾−𝑇
𝑌

𝐾𝑇
𝜌 𝐾

−𝑇
𝑋̃

𝐾−1
𝑌

𝐶𝐾−𝑇
𝑌

]

.

The corresponding block precision matrix is,

𝑞𝑋 𝑞𝑋𝑌
𝑞𝑌 𝑋 𝑞𝑌

]

=

[

𝐾𝑇
𝑋̃
𝐶−1𝐾𝑋̃ 𝐾𝑇

𝑋̃
𝐶−1𝐾𝜌

𝐾𝑇
𝜌 𝐶

−1𝐾𝑋̃ 𝐾𝑇
𝑌
𝐶−1𝐾𝑌 +𝐾𝑇

𝜌 𝐶
−1𝐾𝜌

]

.

Note that this is not the sparse matrix needed to acquire the im-
ortant computational advantages of the SPDE approach. However, by
sing the idea introduced in the previous section, we can formulate
he model as a nested model and keep the computational benefits of a
aussian Markov random field. This is done by considering 𝑈𝑋 = 𝑃𝑟𝑈̃𝑋

and 𝑈𝑌 = 𝑄𝑟𝑈̃𝑌 where
[

𝑈̃𝑋 , 𝑈̃𝑌
]

∼ N
(

𝟎, 𝑄̃
)

becomes a GMRF with
q. (4) as given in Box I.
n the last step, the fact that 𝐶 is symmetric was used.

In reality, the precision matrix of Eq. (4) is not Markov since 𝐶−1 is
ot sparse. However 𝐶 can be approximated by a diagonal matrix with
iagonal elements {⟨𝜙𝑖, 1⟩}𝑖. This procedure is known as mass lumping
nd is a necessary approximation for acquiring the important properties
f the original SPDE-approach Lindgren et al. [18], and hence also
ecessary for our method. When assuming that 𝐶 is mass lumped, 𝑄̃
s sparse and 𝐶−1 can be computed easily from 𝐶. Also, it should be
oted that the matrices 𝐶𝑋 , 𝐶𝑌 , and 𝐶𝜌 likewise can be mass lumped.
his is not required but highly beneficial since that yields a sparser 𝑄̃;

and will in general reduce approximation errors rather than enhancing
them. With this formulation of the joint model the method of Bolin
and Kirchner [25] can be used directly to acquire a computationally
efficient model of arbitrary positive smoothness, 𝛼 > 𝑑∕2.

For this work, this bivariate model was implemented in Matlab [27].
Most of the functionality of that implementation is also available in the
free-to-use Python package Fieldosophy [28].

4. Data

In order to test the proposed model we will fit it to data from
the ERA-Interim global atmospheric reanalysis [29] from the European
Centre for Medium-Range Weather Forecasts (ECMWF). The reanalysis
data is based on measurements and interpolated to a lattice grid
in a longitude–latitude projection using ECMWFs weather forecasting
model IFS, cycle 31r2 [30]. The spatial resolution of the data is 0.75◦

nd it is available from 1979 to present. We will use the variables
ignificant wave height of wind and ground swells and mean wave period
rom the dataset as 𝐻𝑠 and 𝑇1 in our analysis. Both variables are
vailable at a temporal resolution of 6 h. However, since we will
ot model the temporal evolution of the data, and therefore want to
pproximate data from different points in time as independent, we thin
he data to a temporal resolution of 24 h. Data from different months

are distributed differently due to the effects of the annual cycle. Because
of this, one has to fit a model to each month (or at least each season)
separately. Since it will be too complex to show results from all 12
months we from now on focus on the month of April. For April we use
5

data from each day during the years 1979 to 2018. We also restrict
the analysis spatially to the north Atlantic, since this region contains
several important trading routes and is known to produce data that is
approximately log-Gaussian distributed [4].

An example of two simultaneous observations of 𝐻𝑠 and 𝑇1 from the
data can be seen in Fig. 2. A bivariate histogram as well as marginal
normal distribution plots of log𝐻𝑠 and log 𝑇1 for one specific point in
space (−32.25◦ longitude and 48.75◦ latitude) are shown in Fig. 3. The
data at this point agrees well with the assumption of a bivariate log-
normal distribution and similar results are obtained for other locations
in the spatial domain.

Fig. 4 shows normal probability plots of log𝐻𝑠 and log 𝑇1 for all
oints in the region. The data were first standardized, pointwise, before
omputing the plot.

The sample mean and sample variance of the logarithmized data
re shown in Fig. 5. Clearly the mean wave height is decreasing close
o the coasts while the variance is increasing slightly. The mean wave
eriod, and to some extent the mean significant wave height, is larger
o the east than to the west. This is caused by the mean wind direction
eing eastwards for most parts of the north Atlantic ocean.

The left columns of Figs. 7 and 8 show the empirical correlation
etween three reference points in space and every other point in the
patial domain. Apparently, the point close to the coast of USA is
howing an anisotropic pattern with the principal axis on the diago-
al. Contrary to this, the spatial correlation of the mid Atlantic and
t the coast of northern Europe has the principal axis in the east–
est direction. It should be noted that the data is portrayed in the

ongitude–latitude coordinate system in Figs. 7 and 8. Other projections
ould yield different shapes of anisotropy—however, it is clear that no

tationary model (on the sphere or in a plane of any of the popular
rojections) can explain the observed behavior.

The considered dataset consists of 1200 days of data. We divide
hese into two equally-sized subsets of training data and test data.
he training set consists of every second day starting from the first
ay available. The test set consists of the remaining days. Hence, the
est- and training sets form a partition of all available days, each set
onsists of 600 days, at least 2 days apart. In the next section we will
se the training set to estimate model parameters. The test set is used to
ompare the fitted model with data for the purpose of model validation.

. Parameter estimation and model fit

Following Hildeman et al. [17], we logarithmize and standardize
he data first, marginally pointwise using sample mean and sample
ariances from the training set. The standardized data is then modeled
y the proposed mean-zero bivariate Gaussian random field (𝜏 is fixed
o a value corresponding to unit marginal variances due to the prior
tandardization). As is common in geostatistical models, we allow for
nugget effect for each dimension while estimating the model. That

s, for a location 𝐬𝑖, we assume that the observed values, 𝑋𝑜𝑏𝑠,𝑖, 𝑌𝑜𝑏𝑠,𝑖,
re 𝑋𝑜𝑏𝑠,𝑖 = 𝑋(𝐬𝑖) + 𝜀𝑋,𝑖 and 𝑌𝑜𝑏𝑠,𝑖 = 𝑌 (𝐬𝑖) + 𝜀𝑌 ,𝑖, where 𝜀𝑋,𝑖 ∼ N(0, 𝜎2𝑋,𝑒)
nd 𝜀𝑌 ,𝑖 ∼ N(0, 𝜎2𝑌 ,𝑒) are independent variables representing measure-
ent noise. The nugget effect can also explain deviations between

bserved values on the same triangles of the FEM mesh, since our FEM
mplementation implicitly assumes a linear relationship between such
bservations.



A. Hildeman, D. Bolin and I. Rychlik Probabilistic Engineering Mechanics 68 (2022) 103203

Fig. 2. Two observations of 𝐻𝑠 and 𝑇1 chosen randomly from the dataset of April month during the years 1979–2018.

Fig. 3. Normal probability plots of the marginal distribution of log𝐻𝑠 and log 𝑇1 as well as their corresponding two dimensional histogram. The data is taken from a point at
latitude 48.75◦ and longitude −35.25◦ from the ERA-Interim dataset.

Fig. 4. Normal probability plots of all data, standardized for each spatial location separately.

Fig. 5. Sample mean and sample variance for 𝐻𝑠 and 𝑇1 in the north Atlantic.

6
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Fig. 6. The north Atlantic with the FEM mesh overlaid. Blue triangles are part of the
spatial domain, . Pink triangles are part of the mesh extension. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version
f this article.)

In order to use the proposed FEM model a triangular mesh has to be
reated over the spatial domain, . Since the spatial domain is in reality
subset of the surface of the globe—we create a mesh approximating 

by a polyhedra, i.e., as a piecewise-planar manifold approximating the
sphere. Hence, the region inside each triangle is planar but the triangles
will not all be part of the same plane. Fig. 6 show the mesh created for
the north Atlantic. The blue triangles correspond to triangles within
 and the pink triangles make up the mesh extension used to remove
boundary effects. As in Hildeman et al. [17], the barrier method [31] is
used to reduce the required size of the mesh extension. Both SPDEs was
equipped with homogeneous Dirichlet boundary conditions, although
the chosen boundary conditions will not matter due to the mesh
extension [18,17].

Since the parameters of the proposed model are not known a priori
they have to be estimated from data. The proposed bivariate model
is defined by the marginal random fields through 𝐾𝑋 and 𝐾𝑌 , and
the cross-correlation function 𝜌(𝒔). The likelihood function of the joint
model can be computed explicitly with a computational cost of (𝑁3∕2),

here 𝑁 are the number of nodes in the triangular mesh. The maximum
ikelihood (ML) estimates of the parameters cannot be computed explic-
tly, instead numerical optimization using a quasi-Newton algorithm is
sed to acquire the parameter estimates. Furthermore, the initial values
f the optimization algorithm is chosen using local parameter estimates
s proposed in [17].

Although the joint likelihood can be optimized numerically we
ropose a stepwise parameter estimation procedure where we fit 𝑋
nd 𝑌 independently in a first step. Then, conditioned on the esti-
ates of the univariate random field parameters, a ML estimate of the

ross-correlation structure, 𝜌(𝒔), is computed. The motivation for this
rocedure is as follows:

One of the strengths of the proposed model is that all parameters
ave intuitive interpretations. The parameters of 𝐾𝑋 and 𝐾𝑌 respec-

tively explain the spatial distribution of the random fields 𝑋 and 𝑌
ndependently of each other. Since the real spatial cross-correlation
tructure between 𝑋 and 𝑌 likely is too complex to be explained
ompletely by just 𝜌(𝒔), some degree of model-misspecification will be
resent. Maximizing the full likelihood function corresponds, asymp-
otically, to minimizing the Kullback–Liebler divergence between the
rue data distribution and the assumed model. However, under model-
isspecification, full ML estimates of the bivariate fields do not neces-

arily estimate the parameters of the original interpretation; instead,
he estimates will correspond to the values that are minimizing the
istance between the true model and the proposed one. This is not a
 c
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desirable feature in many applications—especially if conclusions should
be drawn based on the estimated values of the parameters themselves.

Estimating the parameters of 𝐾𝑋 and 𝐾𝑌 independently has the
additional advantage that it allows a lower dimensionality in the quasi-
Newton optimization; which reduces the computational cost of estima-
tion as well as decreases the risk of finding bad local optima. Also, the
parameters of 𝐾𝑋 and 𝐾𝑌 independently can be computed in paral-
lel, further reducing the wall clock time of the parameter estimation
procedure.

5.1. Estimation of the univariate random fields

The models for 𝑋 and 𝑌 independently are parametrized by the
moothness 𝛼, the nugget effect, as well as the functions 𝐻(𝒔) and 𝜅(𝒔).
s in Hildeman et al. [17], we define
̃ (𝒔)

=
⎡

⎢

⎢

⎣

exp
(

ℎ1(𝒔)
) (

2𝑆(ℎ3(𝒔)) − 1
)

exp
(

ℎ1(𝒔)+ℎ2(𝒔)
2

)

(

2𝑆(ℎ3(𝒔)) − 1
)

exp
(

ℎ1(𝒔)+ℎ2(𝒔)
2

)

exp
(

ℎ2(𝒔)
)

⎤

⎥

⎥

⎦

,

and let 𝜅(𝒔) = |

|

𝐻̃(𝒔)|
|

−1∕2, and 𝐻(𝒔) = 𝜅(𝒔)2𝐻̃ . The functions ℎ1, ℎ2, ℎ3
re defined as low-dimensional regressions on cosine functions over the
omain of interest,

𝑖(𝒔) =
𝑘
∑

𝑝=0

𝑘
∑

𝑛=0
𝛽𝑖𝑛𝑝 cos

(

𝑛
𝜋𝑠1
𝑆1

)

cos
(

𝑝
𝜋𝑠2
𝑆2

)

, 𝑖 = 1, 2, 3, (5)

where 𝒔 = (𝑠1, 𝑠2) and 𝑆1, 𝑆2 denotes the width and height of the
ounding box of the locations of observations. The advantage of this
arameterization is that we do not have any restrictions on the coef-
icients 𝛽𝑖𝑛𝑝 in order to obtain a valid model. We use 𝑘 = 4 in Eq. (5),
eaning that 25 ⋅ 3 + 2 = 77 parameters were estimated simultaneously
sing the quasi-Newton method for each field.

The estimated correlation functions for three reference points are
isualized in Figs. 7 and 8. Thus, the figures show the correlation
etween the reference points and all other points in the domain. These
hree reference points have the coordinates 296◦ longitude, 37◦ latitude
close to the east coast of USA), 320◦ longitude, 44◦ latitude (in the
iddle of the north Atlantic), and 342◦ longitude, 51◦ latitude (close

o the west coast of Ireland). The figures suggests that the correlation
tructures are quite similar between log𝐻𝑠 and log 𝑇1, which makes
ense since they are positively correlated.

The estimated smoothness parameter of log𝐻𝑠 was 𝛼 = 3.66,
orresponding to a random field which is almost surely two times mean-
quare differentiable. In Hildeman et al. [17] the same model was fitted
o log𝐻𝑠 with the difference that it was defined in the longitude–
atitude projection instead of on the sphere and that the smoothness
arameter could only be integer-valued. In that work the smoothness
as found to be 𝛼 = 3. Likewise, the estimated smoothness of log 𝑇1
as 𝛼 = 3.16. Hence, the wave period is spatially a little bit rougher

ompared to the significant wave height.

.2. Estimation of the cross-correlation structure by ML

Given the marginal parameters of 𝑋 and 𝑌 we now want to estimate
heir cross-correlation structure, i.e., 𝜌(𝒔). We parametrize this function
s a regression on cosines as in (5). As a first attempt of estimating 𝜌(𝒔),
e use ML conditioned on the already estimated parameters for 𝑋 and
. Fig. 9 compares the estimated cross-correlation structure with the
mpirical one estimated from data. The reference point used in this
igure was at 320◦ longitude and 44◦ latitude.

Surprisingly, even though the data is strongly positively correlated,
he fitted model yielded a strong negative correlation. It turns out
hat the proposed model of the cross-correlation structure is a bit too
implistic to explain the true dependency between log𝐻𝑠 and log 𝑇1.
he reason being that the point, 𝒔2, where log 𝑇1 has the strongest cross-
orrelation with log𝐻 (𝒔 ) is not 𝒔 . However, this is assumed in the
𝑠 1 1
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e

Fig. 7. Correlation between three different reference points and all other points in log𝐻𝑠. Left column: empirical correlation function from data. Right column: correlation function
from fitted model.
Fig. 8. Correlation between three different reference points and all other points in log 𝑇1. Left column: empirical correlation function from data. Right column: correlation function
from fitted model.
Fig. 9. Cross-correlation from joint maximum likelihood estimation of cross-correlation structure. Top row: comparison of, pointwise cross-correlation between the data and the
stimated model. Middle row: comparison of cross-correlation between log 𝑇1 at a reference point and log𝐻𝑠 for all points in . Bottom row: comparison of cross-correlation

between log𝐻𝑠 at a reference point and log 𝑇1 for all points in .
proposed model of Section 2. For the reference point at 320◦ longitude
and 44◦ latitude the translation between the reference point and the
point of maximum cross-correlation can be seen in Fig. 10. Considering
the value of log𝐻𝑠 in the reference point the corresponding log 𝑇1 is
generally further west, while the opposite relationship holds for log 𝑇1
in the reference point. Corresponding vectors between reference points
8

in log𝐻𝑠 and maximum points of correlation with log 𝑇1 can also be
seen in Fig. 10.

Fig. 11 shows the ratio between the points of highest
cross-correlation and the pointwise cross-correlation. For most regions,
the pointwise cross-correlation is not that much smaller than the
maximum cross-correlation. However, since there is a clear consistent
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Fig. 10. Top row: translation vectors between a reference point 𝒔𝑟 at (320◦ , 44◦) and its maximum cross-correlation value (estimated from data). Cross-correlation between log 𝑇1(𝒔𝑟)
nd log𝐻𝑠(𝒔) for 𝒔 close to 𝒔𝑟 (left) and cross-correlation between log𝐻𝑠(𝒔𝑟) and log 𝑇1(𝒔) (right). Bottom row: translation vectors between 𝐻𝑠 and corresponding maximum

cross-correlation with 𝑇 for several points in the domain.
1
Fig. 11. Ratio between maximum cross-correlation and pointwise cross-correlation for all points in the spatial domain.
increase in cross-correlation when moving away from the reference
point the maximum likelihood estimate of 𝜌 is negative. This obvi-
ous model-misspecification is another reason for using the proposed
stepwise estimation procedure.

These results suggest that the bivariate model will not explain the
joint distribution perfectly. However, it can still be useful if one could
obtain a better method of estimating 𝜌. Let us therefore propose such
a method.

5.3. Estimation of the cross-correlation structure by pointwise ML

Instead of estimating 𝜌 by ML a possible solution is to fit the model
to explain the pointwise cross-correlation, instead of the total cross-
correlation. This corresponds to maximizing a product likelihood of the
bivariate Gaussian random variables for each spatial location, i.e., the
log-likelihood function,

𝑙(𝜌;𝒙, 𝒚) = 𝑙(𝜌; 𝜸̂)

=
𝑀
∑

𝑗=1
𝑂𝑗

[

− log (2𝜋) − 1
2
log

(

1 − 𝛾2𝑗
)

+
𝛾𝑗

1 − 𝛾2𝑗

(𝑂𝑗 − 1
𝑂𝑗

𝛾̂𝑗

)

]

.

Here, 𝑀 is the number of spatial locations in the data, 𝑂𝑗 are the
number of observations for location 𝑗, and 𝛾𝑗 is the pointwise cross-
orrelation between the two fields at location 𝒔𝑗 according to the
odel. The observations, 𝒙 ∶= {𝑥𝑗𝑘}𝑗,𝑘 and 𝒚 ∶= {𝑦𝑗𝑘}𝑗,𝑘 are not
eeded explicitly since the sample pointwise cross-correlations, 𝜸̂, are
ufficient statistics for evaluating the log-likelihood. The pointwise
ross-correlations of the model are 𝜸 = 𝐴𝑗⋅𝑃𝑟𝛴̃𝑋𝑌𝑄𝑇

𝑟 𝐴
𝑇
𝑗⋅, where 𝐴 is

the 𝑀 × 𝑁 observation matrix, mapping the nodal values of the FEM
approximation to values at the observation locations [18]. The matrix
𝛴̃𝑋𝑌 is the 𝑁 × 𝑁 off-diagonal block of 𝛴̃ which is the covariance
matrix of [𝑈̃𝑋 , 𝑈̃𝑌 ], as defined in Section 2 together with 𝑃𝑟 and 𝑄𝑟. To
reduce the computational cost of computing 𝛴𝑗 , we use the Takahashi
equations [32,33] to compute the needed elements of 𝛴̃ based on the
9

corresponding precision matrix—without computing the full inverse
which is non-sparse.

When we estimate the parameters, the pointwise sample cross-
correlations {𝛾̂𝑗}𝑗 are replaced with the sample cross-correlations be-
tween 𝐻𝑠 at location 𝒔𝑗 and 𝑇 at the location which maximized the
pointwise cross-correlation. In this way the fitted model will have
a pointwise cross-correlation corresponding to the maximum cross-
correlation of that point—instead of fitting a true pointwise cross-
correlation that will underestimate the maximum cross-correlation
somewhat.

To get an understanding of the true cross-correlation structure of
the estimated parameters Figs. 12 and 13 show the cross-correlation
between the three reference points in one of the fields and all points in
the other field. Finally, Fig. 14 shows realizations from the final model,
which look similar to the observed data in Fig. 2.

6. Applications

In this section we look into two applications in maritime safety for
which information about both 𝐻𝑠 and 𝑇 are used. One is an extension of
the fatigue damage application considered in Hildeman et al. [17]. The
other is a method of estimating the risk of capsizing due to a specific
capsizing mode known as broaching-to.

6.1. Accumulated fatigue damage

A ship traversing the ocean is subjected to wear due to wave
encounters. These encounters will create microscopic cracks in the hull
of the ship. With time and further exposure to the wave environment
such cracks will grow while new will form. This type of wear damage
is called fatigue. A ship will accumulate a certain amount of fatigue
damage on any journey. However, the accumulated fatigue damage
will vary in severity depending on the sea states encountered en route.

Mao et al. [34] proposed the following formula based on 𝐻𝑠 and 𝑇𝑧 for
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Fig. 12. Cross-correlation between three reference points in log 𝑇1 and all other points in log𝐻𝑠. Left column: empirical cross-correlation function from data. Right column:
ross-correlation function from fitted model using pointwise ML estimates.
Fig. 13. Cross-correlation between three reference points in log𝐻𝑠 and all other points in log 𝑇1. Left column: empirical cross-correlation function from data. Right column:
ross-correlation function from fitted model using pointwise ML estimates.
Fig. 14. Two simulations of 𝐻𝑠 and 𝑇1 from the joint spatial model.
hich the expected rate, 𝑑(𝑡), of accumulated fatigue damage could be
omputed,

(𝑡) ≈
0.47𝐶𝛽𝐻𝛽

𝑠 (𝒔(𝑡))
𝛾

(

1
𝑇𝑧(𝒔(𝑡))

−
2𝜋𝑉 (𝑡) cos𝜙(𝑡)

𝑔𝑇 2
𝑧 (𝒔(𝑡))

)

. (6)

Here, 𝑔 is the gravitational constant (≈ 9.81), 𝑉 is the speed of the ship,
and 𝜙 is the angle between the heading of the ship and the direction
of the traveling waves. Further, 𝛾 and 𝛽 are constants dependent on
the material of the ship and 𝐶 is a constant depending on the ship’s
design [34]. This formula can be used in combination with Monte Carlo
simulations based on 𝐻𝑠 and 𝑇𝑧 from our proposed model to evaluate
the distribution of accumulated fatigue damage on a planned route.

We consider the transatlantic route of Fig. 15(a). The continuous
route is approximated by line segments between 100 evenly spaced
10
locations (in geodesic distance) between the start and end points of
the route. We set the ship speed to a fixed value of 10 [m/s] which
yields a sailing duration of 149.69 h or equivalently 6.23 days. The
heading of the ship, in one of the 100 locations on the route, is
approximated as the mean between the direction acquired from the
two connecting line segments. We consider the journey to take place
in April, since we have estimated the parameters of the model for this
month. A ship traversing the considered route can be modeled by a
curve in space and time, 𝒔𝛾 (𝑡). Since we have neither a spatio-temporal
model nor data with sufficient temporal resolution we consider the sea
states to remain constant in time during the traversal of the route.
We denote the accumulated fatigue damage during the trip up until
time 𝑡 as 𝐷(𝑡), where 𝑡 = 0 corresponds to the start of the trip with
no accumulated damage and 𝑡 = 𝑡 corresponds to the end of the
𝑒𝑛𝑑
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Fig. 15. Route of ship and the mean wave directions during month of April.
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trip with the most accumulated damage. We set the constants specific
to the ship as in [35,34,17], i.e., 𝐶 = 20, 𝛽 = 3, and 𝛾 = 1012.73.
n order to compute the fatigue we also need the propagating waves
ngle in comparison with the ships heading. This is a random quantity
hat is not modeled in this work. Instead we assume that the mean
irection of the wave propagation is the same as the direction that
he contour lines of 𝐻𝑠 moves, i.e. the direction of the gradient of
𝑠 field (this is the same wave direction as used in [35,34,17], which

as shown good results). This direction was estimated in Baxevani and
ychlik [36] and can be seen in Fig. 15(b). Furthermore, assuming

hat the sea states can be characterized by Bretschenider spectrums,
𝑧 =

1.2965
1.408 𝑇1 = 0.9208 ⋅ 𝑇1. With these assumptions, and given values of

𝐻𝑠 and 𝑇1, we use (6) to compute the corresponding values of 𝑑(𝑡) and
pproximate the accumulated fatigue damage as

(𝑇 ) = ∫

𝑡𝑒𝑛𝑑

0
𝑑(𝑡)𝑑𝑡 ≈

100
∑

𝑖=1
𝑑(𝑡𝑖)𝛥𝑡,

where 𝛥𝑡 is the time differences between the 100 consecutive point
locations on the considered route, 𝛥𝑡 = 1.4969 h.

The accumulated fatigue damage is computed for each of the 600
days available in the test set of the data. Hence, we acquire a sample of
600 values of accumulated fatigue damage. Fig. 16 shows the empirical
CDF computed from this sample (blue line). The accumulated damage
is computed for a ship traversing the route in both directions, since the
accumulated damage will depend on the angle between the heading
of the ship and the propagation direction of the waves it will yield a
different result depending on the direction of the route.

In order to assess whether the estimated CDF from data behaves as if
estimated from the model we also estimate 200 CDFs from independent
sets of ‘‘fake’’ data generated from the model. That is, we generate 600
independent realizations of the bivariate 𝐻𝑠, 𝑇𝑧 surface and compute
an empirical CDF. This is then repeated 200 times. In Fig. 16 these 200
estimated CDFs are plotted (green lines) together with the pointwise
upper and lower envelopes of the values (red lines). As can be seen, the
estimated CDF from data is within the envelopes, suggesting that the
true data and the model cannot be distinguished using fatigue damage
predictions.

In Hildeman et al. [17], a similar comparison was performed where
the accumulated fatigue damage was computed using only 𝐻𝑠. Instead
of 𝑇𝑧 the proxy 𝑇𝑧 = 3.75

√

𝐻𝑠 was used, as proposed in [34,35].
ildeman et al. [17] showed that the accumulated fatigue damage of

he model agreed well with observed data. However, in that work only
ata of 𝐻𝑠 was available. Hence, the data that the model was compared

to also used the proxy 𝑇𝑧 = 3.75
√

𝐻𝑠. Since we now have data of both
𝐻𝑠 and 𝑇𝑧 we can compare this proxy with data from the real bivariate
random field. Fig. 17 shows the corresponding CDFs and one can note
that the use of the proxy does not provide accurate estimates of the true
distribution of fatigue damage. In the direction from America to Europe
the model underestimates the damage while in the other direction it
overestimates it. This suggests that it is necessary to use a bivariate
model in order to model accumulated fatigue damage correctly.
11
However, instead of using the full bivariate model another possible
simpler alternative is to model 𝑇 as the pointwise conditional mean
given 𝐻𝑠. In such a model only 𝐻𝑠 has to be modeled spatially.
Compared to the proxy model of Hildeman et al. [17] the pointwise
cross-correlation between 𝐻𝑠 and 𝑇𝑧 would still need to be estimated.
Using this conditional means model for 𝑇𝑧 given 𝐻𝑠 yields the estimated
CDFs as in Fig. 18. Also this simpler model seemed sufficient to explain
the distribution of fatigue damage accumulated on the transatlantic
route.

6.2. Safety of operation in a following sea

Although a capsizing is rare it is important to minimize the risk
of such an event occurring. Measures to avoid capsizing should be
undertaken both in naval architecture of hull designs of new vessels
and for operational recommendations. A natural approach to capsize
modeling is to view it as an extremal problem to be handled by the
machinery of extreme value theory. However, efforts to do this by
fitting specific extreme value distributions, e.g., to maximum roll angle
values, have not been overly successful. The variety of capsize modes
suggests that a variety of modeling approaches may be required. In this
section the so called broaching-to capsize mode will be analyzed using
the method proposed in [37]. The goal is to see if the proposed bivariate
model can be used for modeling risks of broaching-to.

For a vessel sailing in a following sea a large overtaking wave may
trigger a response which may put the vessel in a dangerous situation
and potentially lead to a capsizing. There are several ways such an
event may develop. One of these, referred to as broaching-to, happens

hen an overtaking wave forces a quick and uncontrolled yaw. This
ight place the ship in beam sea or worse, the quick turn might create
centrifugal moment leading to a large heel angle, displacement of load
ith following listing, and/or possibly capsizing [38]. In moderate sea

tates a vessel is likely to broach-to if it runs with high speed and is
lowly overtaken by steep and relatively long waves. However, it may
lso occur at lower speeds if the waves are steep enough.

In order to assure safe operation of vessels, recommendations are
eeded for their heading and speed in terms of sea conditions for 𝐻𝑠
nd 𝑇 . These recommendations should be given such that the risk of a
angerous situation is small. Assuming that each apparent wave during
fixed sea state have equal risk of causing a broaching-to capsize

cenario, that the risk of such an event happening is small for each indi-
idual apparent wave, and that apparent waves are nearly independent,
he time from the start of the journey to the first broaching-to scenario
ill be exponentially distributed (Poisson approximation of a binomial
istribution). Hence, the risk will be measured by the capsize intensity
hich will depend on the type of ship and operating conditions such as

ea state, heading, and speed. We summarize the operating conditions
n a vector of parameters, 𝜃 = (𝐻𝑠, 𝑇𝑧, 𝜙, 𝑣), where 𝜙 is the angle
etween the heading of the ship and the direction of the traveling
aves, and 𝑣 is the speed of the ship. The angle, 𝜙, is estimated in

he same way as in the fatigue example.
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Fig. 16. Empirical CDFs of accumulated fatigue damage for the transatlantic route. Empirical CDF from data (blue line), 200 different empirical CDFs from simulations (green),
and pointwise upper and lower envelopes of the simulated CDFs (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. 17. Results for accumulated fatigue damage as in Fig. 16 but where the univariate spatial model of 𝐻𝑠 was used together with the proxy 𝑇𝑧(𝒔) = 3.75
√

𝐻𝑠(𝒔).
Fig. 18. Results for accumulated fatigue damage as in Fig. 16 but where the univariate spatial model of 𝐻𝑠 is used and 𝑇𝑧 is the conditional mean given 𝐻𝑠 (when using the
pointwise ML estimate).
Let 𝜆(𝜃) denote the Poisson intensity, meaning the expected number
of capsizes in given time unit under the operational conditions 𝜃. In
order to estimate capsize probability a detailed understanding of what
constitutes a ‘‘dangerous wave’’ is necessary, i.e., what geometrical
properties make it more likely to cause capsize when it overtakes a
vessel from behind. Further, it seems likely that the probability of
such a wave causing a capsize will depend on factors such as the
position and motion of the vessel relative to the overtaking wave when
an encounter is initiated. Simulations on the performance of a coast
guard cutter in severe sea conditions, run by the U.S. Coast Guard, was
12
studied in [37]. For capsizes due to broaching-to the vessel track of
the simulated ship along with the shape of the last wave preceding
the capsize event, which we refer to as the ‘‘triggering wave’’, were
recorded. A common denominator of the triggering waves is the similar
(steep) slope between peak and trough. It is therefore reasonable to
define a wave as dangerous if its downward slope lies within some
range of steep slopes as the wave passes the center of gravity of the
vessel. We then want to calculate the rate, 𝜇𝐷(𝜃), in which dangerous
waves are expected to overtake the vessel, and further adjust this by
the estimated probability that a dangerous wave will cause a capsize.



A. Hildeman, D. Bolin and I. Rychlik Probabilistic Engineering Mechanics 68 (2022) 103203

a

w
6
i
o
𝑊
o

𝐹

t
o

𝜇

w
b

a
p
e
w
U
c
(

6

t
t
r
r
d
u
s

w
t
m
t
e

i
c

𝜆

T
h
t
U
s
p
s
T
I
o
a
s

c
t
d
a

𝜆

w
a
s

o
i
c
w
t
p
p
t
t
o

t
c
i
o
c
s
u
m
i
s

f
m
s
b

7

h

6.2.1. Intensities of potentially dangerous overtaking waves
A monochromatic plane wave has wavelength 𝐿 = 2𝜋 𝑔∕𝜔2, period

2𝜋𝜔−1, and velocity 𝑉 = 𝐿∕𝑇 . For the ship traveling with speed 𝑣 > 0
and an angle of 𝜙 ∈ [−𝜋∕2, 𝜋∕2] to the propagating direction of the
wave the intensity of overtaking waves is 𝜇(𝜃) = (𝑉 − 𝑣𝑥)+∕𝐿. Here,
𝑣𝑥 = 𝑣 cos(𝜙) and 𝑎+ = max(𝑎, 0). Note that a wider angle between the
heading of the vessel and the wave direction yields a higher intensity.
Likewise, a smaller ship speed also yields a higher intensity. At the same
time, too large values of 𝜙 will not cause dangerous broaching-to events
since the heading of the ship will not change dramatically; although
encountering big waves perpendicular to the heading of a ship can be
dangerous for other reasons.

Similarly to the monochromatic wave the intensity of an apparent
wave overtaking the center of gravity of the ship in a non-degenerate
Gaussian sea has been shown to be [39],

𝜇(𝜃) = E
[

(𝑉 − 𝑣𝑥)+

𝐿

]

= 1
4𝜋

√

𝑚20
𝑚00

(

−
𝑚11
𝑚20

− 𝑣𝑥 +
√

𝑣2𝑥 + 2
𝑣𝑥𝑚11
𝑚20

+
𝑚02
𝑚20

)

,
(7)

where

𝑚𝑖𝑗 ∶= ∫

∞

0

(

𝜔2

𝑔

)𝑖
𝜔𝑗𝑆(𝜔)𝑑𝜔

re the spectral moments of the Gaussian process.
A ship being overtaken by an apparent wave is only dangerous if the

ave is high and has a steep slope. Analytic derivations [1, Theorem
.2] give an explicit formula for the CDF of 𝑊𝑥(𝑥0, 𝑡0), where, 𝑥0, 𝑡0 are
nstances in space–time where the center of gravity of the ship is being
vertaken by the zero level down-crossing of an apparent wave, and
𝑥 is the partial derivative of 𝑊 with respect to the spatial direction

f the propagating wave. The formula for the CDF is

𝑊𝑥
(𝑟) =

⎧

⎪

⎨

⎪

⎩

2
1−𝜌

(

𝛷(𝑟∕𝜎) − 𝜌 𝑒
− 𝑟2

2𝑚20 𝛷(𝑟𝜌∕𝜎)

)

if 𝑟 ≤ 0,

1 if 𝑟 > 0.
(8)

Here, 𝛷(𝑥) is the CDF of the standard normal distribution, 𝜎2 = 𝑚20(1−
𝜌2), and

𝜌 =
𝑣𝑥𝑚20 + 𝑚11

√

𝑚20(𝑣2𝑥𝑚20 + 2𝑣𝑥𝑚11 + 𝑚02)
.

The intensity of a broaching-prone wave scenario is the product of
he intensity of overtaking waves thinned with the probability that the
vertaking wave has a dangerously steep slope, i.e.,

𝐷(𝜃) = 𝜇(𝜃)P
(

𝑊𝑥(𝑥0, 𝑡0) ∈ 𝐴
)

,

here 𝐴 is an interval of slopes considered dangerous. Inspired by Lead-
etter et al. [37], we choose 𝐴 = [−0.4,−0.2].

Since the spectral moments are known functions of 𝐻𝑠 and 𝑇 ,
ssuming a Bretschneider spectrum, we can compute them for each
oint on the route for a given realization of 𝐻𝑠 and 𝑇 . In the following
xample we computed the spectral moments assuming a limited band-
idth and numerical integration using the Matlab toolbox WAFO [3].
sing the route of Fig. 15(a) and wave directions of Fig. 15(b), 𝜇𝐷(𝒔𝛾 (𝑡))
an be estimated conditioned on a given sea state scenario using (7) and
8).

.2.2. Estimation of 𝜆(𝜃) response surfaces
Conditioned on the ship being overtaken by a ‘‘dangerous’’ wave

he capsizing phenomenon is a result of complicated nonlinear in-
eractions between the wave and the vessel. Direct computations of
isk for capsizes based on random models for sea motion and vessel
esponse are not feasible to obtain. In addition, there are limited
ata of capsizing available. Consequently one must study the problem
sing tank experiments with model ships or by means of computer
imulations of the responses. Since a capsize due to broaching-to occurs
 o

13
ith a small probability tank experiments would require too much
ime to get stable estimates of the capsize probability for all but the
ost severe sea states. Instead, appropriate computer simulations are

he best methods for estimating the probability of capsize and related
vents under moderately high sea conditions.

Leadbetter et al. [37] derived a method for modeling the capsizing
ntensity due to broaching-to, 𝜆, based on Poisson regression on the
ovariates 𝜇𝐷, 𝐻𝑠, and 𝑇1, i.e.,

(𝜃) = 𝜇𝐷(𝜃) exp
(

𝛽0 + 𝛽𝐻 log𝐻𝑠 + 𝛽𝑇 log 𝑇1
)

.

he values of 𝛽0, 𝛽𝐻 , and 𝛽𝑇 depend on the ship type in consideration; a
eavier and larger ship can withstand taller waves without broaching-
o, as compared to a small ship. The parameters of the regression for a
.S. coast guard cutter were estimated in [37]. It turned out that this

tandard linear Poisson regression satisfactorily explained 𝜆(𝜃) with the
arameters 𝛽0, 𝛽𝐻 , and 𝛽𝑇 estimated from capsize data in the computer
imulations. The values were 𝛽0 ≈ log(0.05), 𝛽𝐻 ≈ 7.5, and 𝛽𝑇 ≈ −7.5.
he model was shown to predict intensities of order 10−3 adequately.
t is still not known if the model can be extrapolated to even safer
perating conditions. However, the predicted sea states that should be
voided are in line with the ones found using significant roll threshold,
ee [37, Fig. 22.2].

For a ship traversing the route of Fig. 15(a), 𝜆(𝜃(𝒔𝛾 (𝑡))) is the
onditional capsize intensity of an inhomogeneous Poisson process over
he space–time curve of the ships path given the sea states, 𝜃. The
istribution of capsizes, if assuming that a ship could continue after
capsize, would then be Poisson distributed with intensity,

(𝜃) ∶= ∫

𝑡𝑒𝑛𝑑

0
𝜆(𝜃𝛾 (𝑡))𝑑𝑡 ≈

100
∑

𝑖=1
𝜆(𝜃𝛾 (𝑡𝑖))𝛥𝑡,

here 𝜃𝛾 (𝑡) ∶= 𝜃(𝒔𝛾 (𝑡)). The capsize events can hence be considered as
Cox process where the latent random intensity is given by the sea

tates, 𝜃.
In our example we compute the distribution of 𝜆 as a function

f the bivariate random field 𝐻𝑠, 𝑇 . We use the same coefficients as
n Leadbetter et al. [37], i.e., 𝛽0 = log(0.05), 𝛽1 = 7.5, 𝛽2 = −7.5. When
omputing 𝜆 we consider traversing the route from America to Europe
ith the wave directions as in Fig. 15(b). Furthermore, we choose

he cutoff angle, 𝜙0 = 75◦, meaning that we only consider waves as
otentially dangerous if the angle between the ships heading and the
ropagation direction of the waves are less than 𝜙0. The scenario of
raversing the route from Europe to America was not considered since
he wave direction angle was always more than 𝜙0, i.e., negligible risk
f a dangerous apparent wave overtaking the ship from behind.

The distribution of capsize intensities, 𝜆, as well as corresponding
otal intensities of overtaking waves and dangerous overtaking waves
an be seen in Fig. 19. The figure shows the estimated CDF of the total
ntensities, 𝜇, 𝜇𝐷, and 𝜆, for a ship traversing the transatlantic route
f Fig. 15(a) from America to Europe. The left column correspond to
omputations using the proposed bivariate spatial random model of
ea states. The right column correspond to the simpler model of the
nivariate spatial 𝐻𝑠 model together with the pointwise conditional
ean of 𝑇 , which was found to be sufficient for the fatigue application

n Section 6.1. The CDF computed from the data is compared with 20
imulations of the same size as the data, that is 600 days.

As can be seen in Fig. 19, the simpler model is now clearly deviating
rom the empirical CDF of the data. The proposed bivariate spatial
odel show a better fit although it seems to overestimate the risks

lightly for medium sized intensities. Thus, for this application the
ivariate model is clearly outperforming the simpler alternative.

. Discussion

A joint spatial model of significant wave height and wave period
as been introduced. The model is a bivariate extension of the model

f Hildeman et al. [17] using the multivariate random field approach
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Fig. 19. Empirical CDFs of total 𝜇, 𝜇𝐷 , and 𝜆. The broaching-to risks were computed using two different models of sea states, the proposed bivariate random field model (left)
nd the simpler model of spatial 𝐻𝑠 with the marginal conditional mean of 𝑇 (right). Empirical CDF from data (blue), corresponding empirical CDFs from 20 simulations (green)
nd the pointwise upper and lower envelopes of the empirical CDFs (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
E
l
N
T

f Bolin and Wallin [21],Hu et al. [22]. Furthermore, the model also
ncorporates the rational approximation to Matérn fields of arbitrary
moothness [25]. This means that the spatial model allows for non-
tationary, anisotropic models of bivariate Gaussian random fields,
ach with its own arbitrary smoothness. The model is parametrized
ith a relatively small number of easily interpretable parameters.
 H

14
The model was fitted using data from the month of April from the
RA-Interim global atmospheric reanalysis [29]. A stepwise maximum
ikelihood approach together with numerical optimization by a quasi-
ewton method was used to estimate the parameters of the model.
he univariate models for 𝐻𝑠 and 𝑇 separately agrees well with data.
owever, problems were encountered when fitting the cross-correlation
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structure between 𝐻𝑠 and 𝑇 . The problem is that the cross-correlation is
not at its maximum between the same spatial points in 𝐻𝑠 and 𝑇 , as as-
sumed by the model. This lead to ML estimates of the cross-correlation
structure that did not agree at all with the observed data. Instead,
estimating the cross-correlation structure using a pointwise maximum
likelihood method yielded better results; although the cross-correlation
was clearly underestimated for long distances.

The shift of locations of maximum cross-correlation, as seen in
Fig. 11, is likely an effect of the dynamic nature of ocean waves and
their interaction with wind. It is known from naval architecture practice
that transitions from low sea states to high sea states, so called ‘‘rising
sea’’, are often more dangerous than the high sea states themselves.
This is because during a rising sea the significant wave height can be
high while the mean wave period is small, leading to steeper waves.
This is in accordance with Fig. 10 suggesting 𝑇 as lagging 𝐻𝑠 in the
direction of the flow. Since the proposed model assumes a symmetric
cross-correlation structure with maximum cross-correlation between
the same point in the two fields it cannot accommodate this property
of the joint distribution of 𝐻𝑠 and 𝑇 . Due to the shifts, the real
cross-correlation is not symmetric. It would make sense to incorporate
these shifts into the bivariate model, using the model of Li and Zhang
[40] for instance. This is an interesting extension of the multivariate
modeling approach using systems of SPDEs and was proposed in [23].
Such shifts could be considered as a diffeomorphism between  and
some overlapping region . This diffeomorphism would fulfill that
when log 𝑇 is mapped to , the two fields, log𝐻𝑠 and log 𝑇 , align,
i.e., maximum cross-correlation is between the same point in the two
fields. The proposed model of this paper could then be applied to this
transformed data. An even better solution would be to model 𝐻𝑠 and
𝑇 spatio-temporally. A velocity field corresponding to the ‘‘flow of sea
states’’ would define a Lagrangian frame of reference. Then, the point
of maximum cross-correlation could simply be defined as 𝑇 lagging an
appropriate amount of time in the Lagrangian frame of reference.

The spatial model was evaluated in two applications in naval lo-
gistics. Both applications considered risks of undertaking a journey
between the European and American continents through the north
Atlantic. The first application considered computing the probability dis-
tribution of accumulated fatigue damage acquired during the journey.
It was shown that the spatial model agreed with data. In particular, it
showed that it works better than the approach where 𝑇𝑧 is replaced
by the proxy 𝑇𝑧 = 3.75

√

𝐻𝑠, which was used in [17]. However, a
simpler model using only the univariate spatial random field model of
𝐻𝑠 together with pointwise conditional means of 𝑇 given 𝐻𝑠 yielded
an adequate fit as well.

The second application concerned the risk of capsizing due to
broaching-to. An inhomogeneous Poisson process was derived given the
bivariate sea state surface of 𝐻𝑠 and 𝑇 . The Poisson intensity depended
n the intensity of the ship being overtaken by a wave from behind, the
robability that the overtaking wave is steep, and a Poisson regression
f the probability of capsizing given a dangerous wave. The distribution
f capsizing intensity (corresponding to the risk of capsizing) was
ompared between the proposed bivariate spatial model and the data.
he spatial model showed a reasonable fit but seems to overestimate
he risk slightly. The simpler model, using the univariate random field
f 𝐻𝑠 from [17] together with the pointwise conditional mean of 𝑇 , was
n the other hand clearly deviating from the distribution of the data.
his shows that the bivariate model is indeed important for certain
pplications and cannot simply be substituted by simpler univariate
odels. It should be mentioned that the evaluated risks of capsizing are

onservative estimates. Actual capsizing of a large ship involves many
dditional events, such as cargo shifts, hull damage, human errors,
islocation of main engines and other heavy-machinery. An interesting
uture extension of the risk assessment for broaching-to is that to risks
f high-runs. This extension could be based on the work of Kontolefas
nd Spyrou [41]. High-runs are a similar but more general phenomenon
han broaching-to where a ship can loose steering and experience quick

nd uncontrolled yaws due to complex ship–wave interactions.
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