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Abstract
If Q is a real, symmetric and positive definite n × n matrix, and B a real n × n matrix whose
eigenvalues have negative real parts, we consider the Ornstein–Uhlenbeck semigroup on
R

n with covariance Q and drift matrix B. Our main result says that the associated maximal
operator is ofweak type (1, 1)with respect to the invariantmeasure. The proof has a geometric
gist and hinges on the “forbidden zones method” previously introduced by the third author.

Keywords Ornstein–Uhlenbeck semigroup · Maximal operator · Gaussian measure ·
Mehler kernel · Weak type (1,1)

Mathematics Subject Classification 47D03 · 42B25

1 Introduction

In this paper we prove a weak type (1, 1) theorem for the maximal operator associated to
a general Ornstein–Uhlenbeck semigroup. We extend the proof given by the third author in
1983 in a symmetric context. Our setting is the following.
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In R
n we will consider the semigroup generated by the elliptic operator

L = 1

2

n∑

i, j=1

qi j
∂2

∂xi∂x j
+

n∑

i, j=1

bi j xi
∂

∂x j
,

or, equivalently,

L = 1

2
tr
(
Q∇2) + 〈Bx,∇〉,

where∇ is the gradient and∇2 the Hessian. Here Q = (qi j ) is a real, symmetric and positive
definite n × n matrix, indicating the covariance of L. The real n × n matrix B = (bi j ) is
negative in the sense that all its eigenvalues have negative real parts, and it gives the drift of
L.

The semigroup is formally Ht = etL, t > 0, but to write it more explicitly we first
introduce the positive definite, symmetric matrices

Qt =
∫ t

0
es B Qes B∗

ds, 0 < t ≤ +∞, (1.1)

and the normalized Gaussian measures γt in R
n , with t ∈ (0,+∞], having density

y 	→ (2π)−
n
2 (det Qt )

− 1
2 exp

(
−1

2
〈Q−1

t y, y〉
)

with respect to Lebesgue measure. Then for functions f in the space of bounded continuous
functions in Rn one has

Ht f (x) =
∫

f (et B x − y) dγt (y) , x ∈ R
n , (1.2)

a formula due to Kolmogorov. The measure γ∞ is invariant under the action ofHt ; it will be
our basic measure, replacing Lebesgue measure.

We remark that
(Ht

)
t>0 is the transition semigroup of the stochastic process

χ(x, t) = et B +
∫ t

0
e(t−s)B dW (s),

where W is a Brownian motion in Rn with covariance Q.
We are interested in the maximal operator defined as

H∗ f (x) = sup
t>0

∣∣Ht f (x)
∣∣.

Under the above assumptions on Q and B, our main result is the following.

Theorem 1.1 The Ornstein–Uhlenbeck maximal operator H∗ is of weak type (1, 1) with
respect to the invariant measure γ∞, with an operator quasinorm that depends only on the
dimension and the matrices Q and B.

In other words, the inequality

γ∞{x ∈ R
n : H∗ f (x) > α} ≤ C

α
‖ f ‖L1(γ∞), α > 0, (1.3)

holds for all functions f ∈ L1(γ∞), with C = C(n, Q, B).
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For large values of the time parameter, we also obtain a refinement of this result. Indeed,
we prove in Proposition 6.1 that

γ∞
{

x ∈ R
n : sup

t>1
|Ht f (x)| > α

}
≤ C

α
√
logα

(1.4)

for large α > 0 and all normalized functions f ∈ L1(γ∞). Here C = C(n, Q, B), and
this estimate is shown to be sharp. It cannot be extended to H∗, since the maximal operator
corresponding to small values of t only satisfies the ordinary weak type inequality. This
sharpening is not surprising, in the light of some recent results for the standard case Q = I
and B = −I by Lehec [8]. He proved the following conjecture, proposed by Ball, Barthe,
Bednorz, Oleszkiewicz and Wolff [2]:

For each fixed t > 0, there exists a function ψt = ψt (α), with lim
α→+∞ ψt (α) = 0,

satisfying

γ∞{x ∈ R
n : |Ht f (x)| > α} ≤ ψt (α)

α

for all large α > 0 and all f ∈ L1(γ∞) such that ‖ f ‖L1(γ∞) = 1. Lehec proved this
conjecture with ψt (α) = C(t)/

√
logα independent of the dimension, and this ψt is sharp.

Our estimates depend strongly on the dimension n, but on the other hand we estimate the
supremum over large t .

The history of H∗ is quite long and started with the first attempts to prove L p estimates.
When

(Ht
)

t>0 is symmetric, i.e., when each operatorHt is self-adjoint on L2(γ∞), thenH∗
is bounded on L p(γ∞) for 1 < p ≤ ∞, as a consequence of the general Littlewood–Paley–
Stein theory for symmetric semigroups of contractions on L p spaces [16, Ch. III].

It is easy to see that the maximal operator is unbounded on L1(γ∞). This led, about fifty
years ago, to the study of the weak type (1, 1) of H∗ with respect to γ∞. The first positive
result is due to B. Muckenhoupt [13], who proved the estimate (1.3) in the one-dimensional
case with Q = I and B = −I . The analogous question in the higher-dimensional case was
an open problem until 1983, when the third author [15] proved the weak type (1, 1) in any
finite dimension. Other proofs are due to Menárguez, Pérez and Soria [11] (see also [10, 14])
and to Garcìa-Cuerva, Mauceri, Meda, Sjögren and Torrea [7]. Moreover, a different proof
of the weak type (1, 1) ofH∗, based on a covering lemma halfway between covering results
by Besicovitch and Wiener, was given by Aimar, Forzani and Scotto [1]. A nice overview of
the literature may be found in [17, Ch.4].

In [4] the present authors recently considered a normal Ornstein–Uhlenbeck semigroup
in R

n , that is, we assumed that Ht is for each t > 0 a normal operator on L2(γ∞). Under
this extra assumption, we proved that the associated maximal operator is of weak type (1, 1)
with respect to the invariant measure γ∞. This extends earlier work in the non-symmetric
framework by Mauceri and Noselli [9], who proved that if Q = I and B = λ(R − I ) for
some positive λ and a real skew-symmetric matrix R generating a periodic group, then the
maximal operator H∗ is of weak type (1, 1).

In Theorem 1.1 we go beyond the hypothesis of normality. The proof has a geometric
core and relies on the ad hoc technique developed by the third author in [15]. It is worth
noticing that, while the proof in [4] required an analysis of the special case when Q = I
and B = (−λ1, . . . ,−λn), with λ j > 0 for j = 1, . . . , n, and then the application of
factorization results, we apply here directly, avoidingmany intermediate steps, the "forbidden
zones" technique introduced in [15].
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Since the maximal operator H∗ is trivially bounded from L∞ to L∞, we obtain by inter-
polation the following corollary.

Corollary 1.2 The Ornstein–Uhlenbeck maximal operator H∗ is bounded on L p(γ∞) for all
p > 1.

This result improves Theorem 4.2 in [9], where the L p boundedness of H∗ is proved for
all p > 1 in the normal framework, under the additional assumption that the infinitesimal
generator of

(Ht
)

t>0 is a sectorial operator of angle less than π/2.
In this paper we focus our attention on the Ornstein–Uhlenbeck semigroup inRn . In view

of possible applications to stochastic analysis and to SPDE’s, it would be very interesting
to investigate the case of the infinite-dimensional Ornstein-Uhlenbeck maximal operator
as well (see [3, 6, 18] for an introduction to the infinite-dimensional setting). The Riesz
transforms associated to a general Ornstein–Uhlenbeck semigroup in R

n have been studied
in the authors’ paper [5].

The scheme of the paper is as follows. In Sect. 2 we introduce the Mehler kernel Kt (x, u),
that is, the integral kernel ofHt . Some estimates for the norm and the determinant of Qt and
related matrices are provided in Sect. 3. As a consequence, we obtain bounds for the Mehler
kernel. In Sect. 4 we consider the relevant geometric features of the problem, and introduce
in Sect. 4.1 a system of polar-like coordinates. We also express Lebesgue measure in terms
of these coordinates. Sections 5, 6, 7 and 8 are devoted to the proof of Theorem 1.1. First,
Sect. 5 introduces some preliminary simplifications of the proof; in particular, we restrict the
variable x to an ellipsoidal annulus. In Sect. 6 we consider the supremum in the definition of
the maximal operator taken only over t > 1 and prove the sharp estimate (1.4). Section 7 is
devoted to the case of small t under an additional local condition. Finally, in Sect. 8 we treat
the remaining case and conclude the proof of Theorem 1.1, by proving the estimate (1.3) for
small t under a global assumption.

In the following, we use the “variable constant convention”, according to which the sym-
bols c > 0 and C < ∞ will denote constants which are not necessarily equal at different
occurrences. They all depend only on the dimension and on Q and B. For any two nonnega-
tive quantities a and b we write a � b instead of a ≤ Cb and a � b instead of a ≥ cb. The
symbol a � b means that both a � b and a � b hold.

By N we mean the set of all nonnegative integers. If A is an n × n matrix, we write ‖A‖
for its operator norm on Rn with the Euclidean norm | · |.

2 TheMehler kernel

For t > 0, the difference

Q∞ − Qt =
∫ ∞

t
es B Qes B∗

ds (2.1)

is a symmetric and strictly positive definite matrix. So is the matrix

Q−1
t − Q−1∞ = Q−1

t (Q∞ − Qt )Q−1∞ , (2.2)

and we can define

Dt = (Q−1
t − Q−1∞ )−1Q−1

t et B , t > 0. (2.3)
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Then formula (1.2), the definition of the Gaussian measure and some elementary compu-
tations yield

Ht f (x) = (2π)−
n
2 (det Qt )

− 1
2

∫
f (et B x − y) exp

[
−1

2
〈Q−1

t y, y〉
]

dy

=
(det Q∞
det Qt

)1/2
exp

[
1

2
〈Q−1

t et B x, Dt x − et B x〉
]

×
∫

f (u) exp

[
1

2
〈(Q−1∞ − Q−1

t )(u − Dt x) , u − Dt x〉
]

dγ∞(u) , (2.4)

where we repeatedly used the fact that Q−1∞ − Q−1
t is symmetric. We now express the matrix

Dt in various ways.

Lemma 2.1 For all x ∈ R
n and t > 0 we have

(i) Dt = Q∞e−t B∗
Q−1∞ ;

(ii) Dt = et B + Qt e−t B∗
Q−1∞ .

Proof (i) The formulae (2.1) and (1.1) imply

Q∞ − Qt = et B Q∞et B∗
(2.5)

(see also [12, formula (2.1)]). From (2.3) and (2.2) it follows that

Dt = Q∞(Q∞ − Qt )
−1 et B ,

and combining this with (2.5) we arrive at (i).
(ii) Multiplying (2.5) by e−t B∗

Q−1∞ from the right, we obtain

Q∞e−t B∗
Q−1∞ − Qt e

−t B∗
Q−1∞ = et B ,

and (ii) now follows from (i).
��

By means of (i) in this lemma, we can define Dt for all t ∈ R, and they will form a
one-parameter group of matrices.

Now (ii) in Lemma 2.1 yields

〈Q−1
t et B x, Dt x − et B x〉 = 〈Q−1

t et B x, Qt e
−t B∗

Q−1∞ x〉 = 〈Q−1∞ x, x〉.
Thus (2.4) may be rewritten as

Ht f (x) =
∫

Kt (x, u) f (u) dγ∞(u) ,

where Kt denotes the Mehler kernel, given by

Kt (x, u)

=
(det Q∞
det Qt

)1/2
exp

(
R(x)

)
exp

[
−1

2

〈
(Q−1

t − Q−1∞ )(u − Dt x) , u − Dt x
〉]

(2.6)

for x, u ∈ R
n . Here we introduced the quadratic form

R(x) = 1

2

〈
Q−1∞ x, x

〉
, x ∈ R

n .
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3 Some auxiliary results

In this section we collect some preliminary bounds, which will be essential for the sequel.

Lemma 3.1 For s > 0 and for all x ∈ R
n the matrices Ds and D−s = D−1

s satisfy

ecs |x | � |Ds x | � eCs |x |,
and

e−Cs |x | � |D−s x | � e−cs |x |.
This also holds with Ds replaced by e−s B and e−s B∗

.

Proof We make a Jordan decomposition of B∗, thus writing it as the sum of a complex
diagonal matrix and a triangular, nilpotent matrix, which commute with each other. This
leads to expressions for e−s B∗

and es B∗
, and since B∗ like B has only eigenvalues with

negative real parts, we see that

‖e−s B∗‖ � eCs and ‖es B∗‖ � e−cs . (3.1)

From (i) in Lemma 2.1, we now get the claimed upper estimates for D±s . To prove the
lower estimate for Ds , we write

|x | = |D−s Ds x | � e−cs |Ds x |.
The other parts of the lemma are completely analogous. ��

In the following lemma, we collect estimates of some basic quantities related to the
matrices Qt .

Lemma 3.2 For all t > 0 we have

(i) det Qt � (min(1, t))n;
(ii) ‖Q−1

t ‖ � (min(1, t))−1;
(iii) ‖Q∞ − Qt‖ � e−ct ;
(iv) ‖Q−1

t − Q−1∞ ‖ � t−1 e−ct ;

(v) ‖
(

Q−1
t − Q−1∞

)−1/2 ‖ � t1/2 eCt .

Proof (i) and (ii) Using (3.1), we see that for each t > 0 and for all v ∈ R
n

〈Qtv, v〉 =
〈∫ t

0
es B Qes B∗

v ds, v

〉
=

∫ t

0
〈Q1/2es B∗

v, Q1/2es B∗
v〉 ds

=
∫ t

0

∣∣Q1/2es B∗
v
∣∣2 ds �

∫ t

0

∣∣es B∗
v
∣∣2 ds

�
∫ t

0
e−cs ds |v|2 � min(1, t) |v|2.

Since ‖
(

es B∗)−1 ‖ = ‖e−s B∗‖ � eCs , there is also a lower estimate

∫ t

0

∣∣es B∗
v
∣∣2 ds �

∫ t

0
e−Cs ds |v|2 � min(1, t)|v|2.

Thus any eigenvalue of Qt has order of magnitude min(1, t), and (i) and (ii) follow.
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(iii) From the definition of Qt and (3.1), we get

‖Q∞ − Qt‖ =
∥∥∥∥
∫ ∞

t
es B Qes B∗

ds

∥∥∥∥ � e−ct .

(iv) Using now (ii) and (iii), we have

‖Q−1
t − Q−1∞ ‖ = ‖Q−1

t (Q∞ − Qt )Q−1∞ ‖ � ‖Q−1
t ‖ ‖Q∞ − Qt‖

� (min(1, t))−1 e−ct � t−1 e−ct .

(v) Since ‖A1/2‖ = ‖A‖1/2 for any symmetric positive definite matrix A, we consider
(Q−1

t − Q−1∞ )−1, which can be rewritten as

(Q−1
t − Q−1∞ )−1 = (Q−1∞ (Q∞ − Qt )Q−1

t )−1 = Qt (Q∞ − Qt )
−1Q∞. (3.2)

It follows from (2.5) that (Q∞ − Qt )
−1 = e−t B∗

Q−1∞ e−t B ,

so that

‖(Q∞ − Qt )
−1‖ � eCt

as a consequence of (3.2). Inserting this and the simple estimate ‖Qt‖ � t in (3.2), we obtain
‖(Q−1

t − Q−1∞ )−1‖ � teCt , and (v) follows. ��
Proposition 3.3 For t ≥ 1 and w ∈ R

n, we have

〈(Q−1
t − Q−1∞ )Dt w, Dt w〉 � |w|2.

Proof By (2.3) and Lemma 2.1 (i) we have

〈(Q−1
t − Q−1∞ )Dt w, Dt w〉 = 〈Q−1

t et Bw , Q∞e−t B∗
Q−1∞ w〉

= 〈Q∞Q−1
t et Bw , e−t B∗

Q−1∞ w〉.
Since Q∞Q−1

t = I + (Q∞ − Qt )Q−1
t , this leads to

〈(Q−1
t − Q−1∞ )Dt w, Dt w〉

= 〈et Bw , e−t B∗
Q−1∞ w〉 + 〈(Q∞ − Qt )Q−1

t et Bw , e−t B∗
Q−1∞ w〉

= 〈Q−1∞ w,w〉 + 〈e−t B(Q∞ − Qt )Q−1
t et Bw , Q−1∞ w〉.

Here 〈Q−1∞ w,w〉 � |w|2. Using (2.1) and then the definition of Q∞, we observe that the last
term can be written as

〈∫ ∞

t
e(s−t)B Qe(s−t)B∗

ds et B∗
Q−1

t et Bw , Q−1∞ w

〉

= 〈
Q∞ et B∗

Q−1
t et Bw , Q−1∞ w

〉

= 〈 et B∗
Q−1

t et Bw , w〉
= ∣∣Q−1/2

t et Bw
∣∣2. (3.3)

Since
∣∣Q−1/2

t et Bw
∣∣2 � |w|2 for t ≥ 1 by Lemmata 3.1 and 3.2 (ii), the proposition follows.��

We finally give estimates of the kernel Kt , for small and large values of t . When t ≤ 1,
one has ‖(Q−1

t − Q−1∞ )1/2‖ � t−1/2 and ‖(Q−1
t − Q−1∞ )−1/2‖ � t1/2, by (iv) and (v) in

Lemma 3.2. Combined with (2.6), this implies
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eR(x)

tn/2 exp

(
−C

|u − Dt x |2
t

)
� Kt (x, u) � eR(x)

tn/2 exp

(
−c

|u − Dt x |2
t

)
, 0 < t ≤ 1.

(3.4)

Lemma 3.4 For t ≥ 1 and x, u ∈ R
n, we have

eR(x) exp
[

− C
∣∣D−t u − x

∣∣2
]

� Kt (x, u) � eR(x) exp
[

− c
∣∣D−t u − x

∣∣2
]
. (3.5)

Proof This follows from (2.6), if we write u − Dt x = Dt (D−t u − x) and apply Proposition
3.3 with w = D−t u − x . ��

4 Geometric aspects of the problem

4.1 A system of adapted polar coordinates

We first need a technical lemma.

Lemma 4.1 For all x in R
n and s ∈ R, we have

〈B∗Q−1∞ x, x〉 = −1

2
|Q1/2 Q−1∞ x |2; (4.1)

∂

∂s
Ds x = −Q∞ B∗ Q−1∞ Ds x = −Q∞e−s B∗

B∗Q−1∞ x; (4.2)

∂

∂s
R
(
Ds x

) = 1

2

∣∣Q1/2Q−1∞ Ds x
∣∣2 � ∣∣Ds x

∣∣2. (4.3)

Proof To prove (4.1), we use the definition of Q∞ to write for any z ∈ R
n

〈B∗z, Q∞z〉 =
∫ ∞

0
〈B∗z, es B Q es B∗

z〉 ds

=
∫ ∞

0
〈es B∗

B∗z, Q es B∗
z〉 ds

= 1

2

∫ ∞

0

d

ds
〈es B∗

z, Q es B∗
z〉 ds

= −1

2
|Q1/2 z|2.

Setting z = Q−1∞ x , we get (4.1).
Further, (4.2) easily follows if we observe that

∂

∂s
Ds x = ∂

∂s

(
Q∞e−s B∗

Q−1∞ x
)

= −Q∞ B∗ Q−1∞ Q∞e−s B∗
Q−1∞ x = −Q∞ B∗ Q−1∞ Ds x .

Finally, we get by means of (4.2) and (4.1)

∂

∂s
R (Ds x) = 1

2

∂

∂s
〈Q−1/2∞ Ds x, Q−1/2∞ Ds x〉

= −〈Q−1/2∞ Q∞ B∗Q−1∞ Ds x, Q−1/2∞ Ds x〉
= 1

2

∣∣Q1/2Q−1∞ Ds x
∣∣2 ,

and (4.3) is verified. ��
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We observe here that an integration of (4.2) leads to

|x − Dt x | � t |x |, 0 ≤ t ≤ 1. (4.4)

Fix now β > 0 and consider the ellipsoid

Eβ = {x ∈ R
n : R(x) = β} .

As a consequence of (4.3), the map s 	→ R(Ds z) is strictly increasing for each 0 �= z ∈ R
n .

Hence any x ∈ R
n, x �= 0, can be written uniquely as

x = Ds x̃ , (4.5)

for some x̃ ∈ Eβ and s ∈ R. We consider s and x̃ as the polar coordinates of x . Our estimates
in what follows will be uniform in β.

Next, we shall write Lebesgue measure in terms of these polar coordinates. A normal
vector to the surface Eβ at the point x̃ ∈ Eβ is N(x̃) = Q−1∞ x̃ , and the tangent hyperplane at
x̃ is N(x̃)⊥. For s > 0 the tangent hyperplane of the surface Ds Eβ = {Ds x̃ : x̃ ∈ Eβ} at the
point Ds x̃ is Ds(N(x̃)⊥), and a normal to Ds Eβ at the same point is w = (D−1

s )∗(N(x̃)) =
D∗−s Q−1∞ x̃ = Q−1∞ es B x̃ .

The scalar product of w and the tangent of the curve s 	→ Ds x̃ at the point Ds x̃ is,
because of (4.2) and (4.1),

〈
∂

∂s
Ds x̃, w

〉

= −〈Q∞e−s B∗
B∗Q−1∞ x̃, Q−1∞ es B x̃〉 = −〈B∗Q−1∞ x̃, x̃〉 = 1

2
|Q1/2 Q−1∞ x̃ |2 > 0. (4.6)

Thus the curve s 	→ Ds x̃ is transversal to each surface Ds Eβ . Let d Ss denote the area
measure of Ds Eβ . Then Lebesgue measure is given in terms of our polar coordinates by

dx = H(s, x̃) d Ss(Ds x̃) ds, (4.7)

where

H(s, x̃) =
〈

∂

∂s
Ds x̃,

w

|w|
〉

= |Q1/2 Q−1∞ x̃ |2
2 |Q−1∞ es B x̃ | .

To see how d Ss varies with s, we take a continuous function ϕ = ϕ(x̃) on Eβ and extend
it to Rn \ {0} by writing ϕ(Ds x̃) = ϕ(x̃). For any t > 0 and small ε > 0, we define the shell

�t,ε = {Ds x̃ : t < s < t + ε, x̃ ∈ Eβ}.
Then �t,ε is the image under Dt of �0,ε, and the Jacobian of this map is det Dt = e−t tr B .
Thus

∫

�t,ε

ϕ(x) dx = e−t tr B
∫

�0,ε

ϕ(Dt x) dx,

which we can rewrite as
∫

t<s<t+ε

∫

x̃∈Eβ

ϕ(x̃) H(s, x̃) d Ss(Ds x̃) ds

= e−t tr B
∫

0<s<ε

∫

x̃∈Eβ

ϕ(x̃) H(s, x̃) d Ss(Ds x̃) ds.
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Now we divide by ε and let ε → 0, getting
∫

Eβ

ϕ(x̃) H(t, x̃) d St (Dt x̃) = e−t tr B
∫

Eβ

ϕ(x̃) H(0, x̃) d S0(x̃).

Since this holds for any ϕ, it follows that

d St (Dt x̃) = e−t tr B H(0, x̃)

H(t, x̃)
d S0(x̃).

Together with (4.7), this implies the following result.

Proposition 4.2 The Lebesgue measure in R
n is given in terms of polar coordinates (t, x̃) by

dx = e−t tr B |Q1/2 Q−1∞ x̃ |2
2 |Q−1∞ x̃ | d S0(x̃) dt .

Wealso need estimates of the distance between twopoints in terms of the polar coordinates.
The following result is a generalization of Lemma 4.2 in [4], and its proof is analogous.

Lemma 4.3 Fix β > 0. Let x (0), x (1) ∈ R
n \ {0} and assume R(x (0)) > β/2. Write

x (0) = Ds(0) (x̃ (0)) and x (1) = Ds(1) (x̃ (1))

with s(0), s(1) ∈ R and x̃ (0), x̃ (1) ∈ Eβ .

(i) Then
∣∣x (0) − x (1)

∣∣ � c
∣∣x̃ (0) − x̃ (1)

∣∣. (4.8)

(ii) If also s(1) ≥ 0, then
∣∣x (0) − x (1)

∣∣ � c
√

β |s(0) − s(1)|. (4.9)

Proof Let 
 : [0, 1] → R
n \ {0} be a differentiable curve with 
(0) = x (0) and 
(1) = x (1).

It suffices to bound the length of any such curve from below by the right-hand sides of (4.8)
and (4.9).

For each τ ∈ [0, 1], we write

(τ) = Ds(τ ) x̃(τ ),

with x̃(τ ) ∈ Eβ and x̃(i) = x̃ (i), s(i) = s(i) for i = 0, 1. Thus


′(τ ) = −s′(τ ) ∂
∂s Ds

∣∣s=s(τ )
x̃(τ ) + Ds(τ ) x̃ ′(τ ).

The group property of Ds implies that

∂

∂s
Ds

∣∣s=s(τ )
= Ds(τ )

∂

∂s
Ds

∣∣s=0
,

and so


′(τ ) = Ds(τ ) v,

with

v = −s′(τ ) ∂
∂s Ds

∣∣s=0
x̃(τ ) + x̃ ′(τ ).
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The vector x̃ ′(τ ) is tangent to Eβ and thus orthogonal to N(x̃). Then (4.6) (with s = 0)
implies that the angle between ∂

∂s Ds
∣∣s=0

x̃(τ ) and x̃ ′(τ ) is larger than some positive constant.

It follows that

|v|2 � |s′(τ )|2
∣∣∣

∂

∂s
Ds

∣∣s=0
x̃(τ )

∣∣∣
2 + ∣∣x̃ ′(τ )

∣∣2 � |s′(τ )|2 β + ∣∣x̃ ′(τ )
∣∣2, (4.10)

where we also used the fact that, by (4.2),
∣∣∣

∂

∂s
Ds

∣∣s=0
x̃(τ )

∣∣∣ � |x̃(τ )| � √
β.

Since

|v| = ∣∣D−s(τ ) 
′(τ )
∣∣ ≤ ∥∥D−s(τ )

∥∥ ∣∣
′(τ )
∣∣ � e−C min(s(τ ),0)

∣∣
′(τ )
∣∣

because of Lemma 3.1, we obtain from (4.10)
∣∣
′(τ )

∣∣ � eC min(s(τ ),0) (√
β |s′(τ )| + ∣∣x̃ ′(τ )

∣∣). (4.11)

Next, we derive a lower bound for s(0); assume first that s(0) < 0. The assumption
R(x (0)) > β/2 implies, together with Lemma 3.1,

β/2 ≤ R(Ds(0) x̃ (0)) �
∣∣Ds(0) x̃ (0)

∣∣2 � ec s(0)
∣∣x̃ (0)

∣∣2 � ec s(0)β.

It follows that

s(0) > −s̃,

for some s̃ with 0 < s̃ < C , and this obviously holds also without the assumption s(0) < 0.
Assume now that s(τ ) > −s̃ − 1 for all τ ∈ [0, 1]. Then (4.11) implies

∣∣
′(τ )
∣∣ �

√
β |s′(τ )|

and
∣∣
′(τ )

∣∣ � |x̃ ′(τ )|.
Integrating these estimates with respect to τ in [0, 1], we immediately see that one can control
the length of 
 from below by the right-hand sides of (4.8) and (4.9).

If instead s(τ ) ≤ −s̃ − 1 for some τ ∈ [0, 1], we can proceed as in the proof
of Lemma 4.2 in [4]. More precisely, since the image s([0, 1]) contains the interval
[−s̃ − 1,max(s(0), s(1))], we can find a closed subinterval I of [0, 1] whose image s(I ) is
exactly the interval [−s̃ − 1,max(s(0), s(1))]. Thus we may use (4.11) to control the length
of 
 by
∫ 1

0

∣∣
′(τ )
∣∣ dτ ≥

∫

I

∣∣
′(τ )
∣∣ dτ �

√
β

∫

I
|s′(τ )| dτ ≥ √

β
(
max (s(0), s(1)) + s̃ + 1

)
.

Here
√

β
(
max (s(0), s(1)) + s̃ + 1

)
�

√
β � diam Eβ ≥ ∣∣x̃ (0) − x̃ (1)

∣∣,

and (4.8) follows. Under the additional hypothesis s(1) ≥ 0 of (ii), we have

s̃ ≥ max (−s(0),−s(1)) = −min (s(0), s(1)).
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Then
√

β
(
max (s(0), s(1)) + s̃ + 1

)
�

√
β

(
max (s(0), s(1)) − min (s(0), s(1))

)

= √
β |s(0) − s(1)|,

and (4.9) follows. ��

4.2 The Gaussianmeasure of a tube

We fix a large β > 0. Define for x (1) ∈ Eβ and a > 0 the set

� =
{

x ∈ Eβ :
∣∣∣x − x (1)

∣∣∣ < a
}

.

This is a spherical cap of the ellipsoid Eβ , centered at x (1). Observe that |x | � √
β for x ∈ �,

and that the area of � is |�| � min (an−1, β(n−1)/2). Then consider the tube

Z = {Ds x̃ : s ≥ 0, x̃ ∈ �}. (4.12)

Lemma 4.4 There exists a constant C such that β > C implies that the Gaussian measure
of the tube Z fulfills

γ∞(Z) � an−1

√
β

e−β .

Proof Proposition 4.2 yields, since H(0, x̃) � |x̃ | � √
β,

γ∞(Z) �
∫ ∞

0
e−s tr B e−R(Ds x̃)

∫

�

H(0, x̃) d S(x̃) ds �
√

β an−1
∫ ∞

0
e−s tr Be−R(Ds x̃) ds.

By (4.3) we have

R(Ds x̃) − R(x̃) �
∫ s

0

∣∣Ds′ x̃
∣∣2ds′ � s|x̃ |2 � sβ,

which implies

γ∞(Z) �
√

β an−1 e−β

∫ ∞

0
e−s tr B e−csβ ds.

Assuming β large enough, one has cβ > −2 tr B, and then the last integral is finite and no
larger than C/β. The lemma follows. ��

5 Simplifications

In this section, we introduce some preliminary simplifications and reductions for the proof
of (1.3), i.e., of Theorem 1.1.

(1) We may assume that f is nonnegative and normalized in the sense that

‖ f ‖L1(γ∞) = 1,

since this involves no loss of generality.
(2) We may assume that α is large, α > C , since otherwise (1.3) and (1.4) are trivial.
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(3) In many cases, we may restrict x in (1.3) and (1.4) to the ellipsoidal annulus

Eα =
{

x ∈ R
n : 1

2
logα ≤ R(x) ≤ 2 logα

}
.

To begin with, we can always forget the unbounded component of the complement of
Eα , since

γ∞{x ∈ R
n : R(x) > 2 logα}

�
∫

R(x)>2 logα

exp(−R(x)) dx � (logα)(n−2)/2 exp(−2 logα) � 1

α
. (5.1)

(4) When t > 1, we may forget also the inner region where R(x) < 1
2 logα. Indeed, from

(3.5) we get, if (x, u) ∈ R
n × R

n with R(x) < 1
2 logα,

Kt (x, u) � eR(x) <
√

α < α,

since α is large. In other words, for any (x, u) ∈ R
n × R

n

R(x) <
1

2
logα ⇒ Kt (x, u) � α, (5.2)

for all t > 1.
Replacing α by Cα for some C , we see from (3) and (4) that we can assume x ∈ Eα in
the proof of (1.3) and (1.4), when the supremum in the maximal operator is taken only
over t > 1.

Before introducing the last simplification, we need to define a global region

G =
{
(x, u) ∈ R

n × R
n : |x − u| >

1

1 + |x |
}

and a local region

L =
{
(x, u) ∈ R

n × R
n : |x − u| ≤ 1

1 + |x |
}

.

Notice that the definition of G and L does not depend on Q and B.

(5) When t ≤ 1 and (x, u) ∈ G, we shall see that (5.2) is still valid, and it is again enough
to consider x ∈ Eα .

To prove this, we need a lemma which will also be useful later.

Lemma 5.1 If (x, u) ∈ G and 0 < t ≤ 1, then

1

(1 + |x |)2 � t2|x |2 + |u − Dt x |2.

Proof From the definition of G and (4.4) we get

1

1 + |x | ≤ |x − u| ≤ |x − Dt x | + |Dt x − u| � t |x | + |u − Dt x |.

The lemma follows. ��
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To verify now (5.2) in the global region with t ≤ 1, we recall from (3.4) that

Kt (x, u) � eR(x)

tn/2 exp

(
−c

|u − Dt x |2
t

)
.

It follows from Lemma 5.1 that

t2 � 1

(1 + |x |)4 or
|u − Dt x |2

t
� 1

(1 + |x |)2t
. (5.3)

The first inequality here implies that

Kt (x, u) � eR(x) (1 + |x |)n � e2R(x),

and (5.2) follows. If the second inequality of (5.3) holds, we have

Kt (x, u) � eR(x)

tn/2 exp

(
− c

(1 + |x |)2t

)
� eR(x) (1 + |x |)n,

and we get the same estimate. Thus (5.2) is verified.
Finally, let

HG∗ f (x) = sup
0<t≤1

∣∣∣∣
∫

Kt (x, u) χG(x, u) f (u) dγ∞(u)

∣∣∣∣ ,

and

HL∗ f (x) = sup
0<t≤1

∣∣∣∣
∫

Kt (x, u) χL (x, u) f (u) dγ∞(u)

∣∣∣∣ .

6 The case of large t

In this section, we consider the supremum in the definition of the maximal operator taken
only over t > 1, and we prove (1.4).

Proposition 6.1 For all functions f ∈ L1(γ∞) such that ‖ f ‖L1(γ∞) = 1,

γ∞
{

x : sup
t>1

|Ht f (x)| > α

}
� 1

α
√
logα

, α > 2. (6.1)

In particular, the maximal operator

sup
t>1

|Ht f (x)|

is of weak type (1, 1) with respect to the invariant measure γ∞.

Proof We can assume that f ≥ 0. Looking at the arguments in Sect. 5, items (3) and (4),
we see that it suffices to consider points x ∈ Eα . For both x and u we use the coordinates
introduced in (4.5) with β = logα, that is,

x = Ds x̃, u = Ds′ ũ,

where x̃, ũ ∈ Elogα and s, s′ ∈ R.
From (3.5) we have

Kt (x, u) � exp(R(x)) exp
( − c

∣∣D−t u − x
∣∣2)
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for t > 1 and x, u ∈ R
n . Since x ∈ Eα and D−t u = Ds′−t ũ, we can apply Lemma 4.3 (i),

getting
∣∣D−t u − x

∣∣ �
∣∣x̃ − ũ

∣∣,

so that
∫

Kt (x, u) f (u) dγ∞(u) � exp
(
R(Ds x̃)

) ∫
exp

( − c
∣∣x̃ − ũ

∣∣2) f (u) dγ∞(u).

In viewof (4.3), the right-hand side here is strictly increasing in s, and therefore the inequality

exp
(
R(Ds x̃)

) ∫
exp

( − c
∣∣x̃ − ũ

∣∣2) f (u) dγ∞(u) > α (6.2)

holds if and only if s > sα(x̃) for some function x̃ 	→ sα(x̃), with equality for s = sα(x̃).
Since α > 2 and ‖ f ‖L1(γ∞) = 1, it follows that sα(x̃) > 0.

For some C , the set of points x ∈ Eα where the supremum in (6.1) is larger than Cα is
contained in the set A(α) of points Ds x̃ ∈ Eα fulfilling (6.2). We use Proposition 4.2 to
estimate the γ∞ measure ofA(α). Observe that H(0, x̃) � |x̃ | � √

logα and that Ds x̃ ∈ Eα

implies s � 1, so that also e−s tr B � 1. We get

γ∞(A(α)) =
∫

A(α)∩Eα

e−R(x)dx

�
√
logα

∫

Elogα

∫ C

sα(x̃)

e−R(Ds x̃) ds d S(x̃)

�
√
logα

∫

Elogα

∫ +∞

sα(x̃)

exp
(−R(Dsα(x̃) x̃) − c logα (s − sα(x̃))

)
ds d S(x̃),

where the last inequality follows from (4.3), since |Ds x̃ |2 � |x̃ |2 � logα. Integrating in s,
we obtain

γ∞(A(α)) � 1√
logα

∫

Elogα

exp
( − R(Dsα(x̃) x̃)

)
d S(x̃).

Now combine this estimate with the case of equality in (6.2) and change the order of inte-
gration, to get

γ∞(A(α)) � 1

α
√
logα

∫ ∫

Elogα

exp
( − c

∣∣x̃ − ũ
∣∣2) d S(x̃) f (u) dγ∞(u)

� 1

α
√
logα

∫
f (u) dγ∞(u) ,

which proves Proposition 6.1. ��

Finally, we show that the factor 1/
√
logα in (6.1) is sharp.

Proposition 6.2 For any t > 1 and any large α, there exists a function f normalized in
L1(γ∞) and such that

γ∞ {x : |Ht f (x)| > α} � 1

α
√
logα

.
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Proof Take a point z with R(z) = log α, and let f be (an approximation of) a Dirac measure
at the point u = Dt z. Then, as a consequence of (3.5), Kt (x, u) � exp(R(x)) when x
is in the ball B(D−t u, 1) = B(z, 1). We then have Ht f (x) = Kt (x, u) � α in the set
B = {x ∈ B(z, 1) : R(x) > R(z)}, whose measure is

γ∞ (B) � e−R(z) 1√
R(z)

= 1

α
√
log α

.

��

7 The local case for small t

Proposition 7.1 If (x, u) ∈ L and 0 < t ≤ 1, then

∣∣Kt (x, u)
∣∣ �

exp
(
R(x)

)

tn/2 exp

(
−c

|u − x |2
t

)
.

Proof In view of (3.4), it is enough to show that

|u − Dt x |2
t

≥ |u − x |2
t

− C . (7.1)

We write

|u − Dt x |2 = |u − x + x − Dt x |2 = |u − x |2 + 2〈u − x, x − Dt x〉 + |x − Dt x |2
≥ |u − x |2 − 2|u − x | |x − Dt x |.

By (4.4),

|u − x | |x − Dt x | � |u − x | t |x | ≤ t

since (x, u) ∈ L , and (7.1) follows. ��
Proposition 7.2 The maximal operator HL∗ is of weak type (1, 1) with respect to the invariant
measure γ∞.

Proof The proof is standard, since Proposition 7.1 implies

HL∗ f (x) � sup
0<t≤1

exp
(
R(x)

)

tn/2

∫
exp

(
− c

|x − u|2
t

)
χL (x, u) f (u) dγ∞(u).

The supremum here defines an operator of weak type (1, 1)with respect to Lebesguemeasure
in R

n . From this the proposition follows, cf. [7, Section 3]. ��

8 The global case for small t

In this section, we conclude the proof of Theorem 1.1.

Proposition 8.1 The maximal operator HG∗ is of weak type (1, 1) with respect to the invariant
measure γ∞.

Proof We take f and α as in items (1) and (2) of Sect. 5. Then item (5) tells us that we need
only consider HG∗ f (x) for x ∈ Eα .
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For m ∈ N and 0 < t ≤ 1, we introduce regions Sm
t . If m > 0, we let

Sm
t =

{
(x, u) ∈ G : 2m−1√t < |u − Dt x | ≤ 2m√

t
}

.

If m = 0, we replace the condition 2m−1√t < |u − Dt x | ≤ 2m√
t by |u − Dt x | ≤ √

t .
Note that for any fixed t ∈ (0, 1] these sets form a partition of G.

In the set Sm
t we have, because of (3.4),

Kt (x, u) � exp(R(x))

tn/2 exp
(−c22m)

.

Then setting

Km
t (x, u) = exp(R(x))

tn/2 χSm
t
(x, u),

one has, for all (x, u) ∈ G and 0 < t < 1,

Kt (x, u) �
∞∑

m=0

exp
(−c22m)Km

t (x, u) .

Hence, it suffices to prove that for m = 0, 1, . . .

γ∞

{
x ∈ Eα : sup

0<t≤1

∫
Km

t (x, u) f (u) dγ∞(u)> α

}
� 2Cm

α
, (8.1)

for large α and some C , since this will allow summing in m in the space L1,∞(γ∞).
Fix m ∈ N and assume that (x, u) ∈ Sm

t for some t ∈ (0, 1], so that |u − Dt x | ≤ 2m√
t .

Then Lemma 5.1 leads to

1 � (1 + |x |)4t2 + (1 + |x |)2 22m t ≤ ((1 + |x |)2 22m t)2 + (1 + |x |)2 22m t .

Consequently, a point x ∈ Eα satisfies

(1 + |x |)2 22m t � 1 (8.2)

as soon as there exists a point u with Km
t (x, u) �= 0, and then t ≥ ε > 0 for some ε =

ε(α, m) > 0. Hence the supremum in (8.1) will be the same if taken only over ε ≤ t ≤ 1,
and it follows that this supremum is a continuous function of x ∈ Eα .

To prove (8.1), the idea, which goes back to [15], is to construct a finite sequence of
pairwise disjoint balls

(B(�)
)�0
�=1 in R

n and a finite sequence of sets
(Z(�)

)�0
�=1 in R

n , called
forbidden zones. These zones will together cover the level set in (8.1). We will then verify
that

{
x ∈ Eα : sup

ε≤t≤1

∫
Km

t (x, u) f (u) dγ∞(u) ≥ α

}
⊂

�0⋃

�=1

Z(�), (8.3)

that for each �

γ∞(Z(�)) � 2Cm

α

∫

B(�)

f (u) dγ∞(u), (8.4)

and that the B(�) are pairwise disjoint. This would imply
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γ∞
( �0⋃

�=1

Z(�)
)

� 2Cm

α

�0∑

�=1

∫

B(�)

f (u) dγ∞(u) � 2Cm

α
,

and thus also (8.1) and Proposition 8.1.
The sets B(�) and Z(�) will be introduced by means of a sequence of points x (�), � =

1, . . . , �0, which we define by recursion. To start, we choose as x (1) a point where the
quadratic form R(x) takes its minimal value in the compact set

A1(α) =
{

x ∈ Eα : sup
ε≤t≤1

∫
Km

t (x, u) f (u) dγ∞ ≥ α

}
.

However, should this set be empty, (8.1) is immediate.
We now describe the recursion to construct x (�) for � ≥ 2. Like x (1), these points will

satisfy

sup
ε≤t≤1

∫
Km

t (x (�), u) f (u) dγ∞ ≥ α.

Once an x (�), � ≥ 1, is defined, we can thus by continuity choose t� ∈ [ε, 1] such that
∫

Km
t� (x (�), u) f (u) dγ∞ ≥ α. (8.5)

Using this t�, we associate with x (�) the tube

Z(�) =
{

Ds η ∈ R
n : s ≥ 0, R(η) = R(x (�)), |η − x (�)| < A 23m √

t�
}

,

Here the constant A > 0 is to be determined, depending only on n, Q and B.
All the x (�) will be minimizing points of R(x). To avoid having them too close to one

another, we will not allow x (�) to be in any Z(�′) with �′ < �. More precisely, assuming
x (1), . . . , x (�) already defined, we will choose x (�+1) as a minimizing point of R(x) in the
set

A�+1(α) =
{

x ∈ Eα \
�⋃

�′=1

Z(�′) : sup
ε≤t≤1

∫
Km

t (x, u) f (u) dγ∞(u) ≥ α

}
, (8.6)

provided this set is nonempty. But if A�+1(α) is empty, the process stops with �0 = � and
(8.3) follows. We will see that this actually occurs for some finite �.

Now assume thatA�+1(α) �= ∅. In order to assure that a minimizing point exists, we must
verify that A�+1(α) is closed and thus compact, although the Z(�′) are not open. To do so,
observe that for 1 ≤ �′ ≤ �, the minimizing property of x (�′) means that there is no point x
in A�′(α) with R(x) < R(x (�′)). Thus we have the inclusions

A�+1(α) ⊂ A�′(α) ⊂
{

x : R(x) ≥ R(x (�′))
}

, 1 ≤ �′ ≤ �.

It follows that

A�+1(α) = A�+1(α) ∩
⋂

1≤�′≤�

{x : R(x) ≥ R(x (�′))}

=
�⋂

�′=1

{
x ∈ Eα \ Z(�′) : R(x) ≥ R(x (�′)), sup

ε≤t≤1

∫
Km

t (x, u) f (u) dγ∞(u) ≥ α

}
.
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For each �′ = 1, . . . , � we have

{x ∈ Eα \ Z(�′) : R(x) ≥ R(x (�′))}
=

{
Ds η ∈ Eα : s ≥ 0, R(η) = R(x (�′)), |η − x (�′)| ≥ A23m√

t�′
}

,

and this set is closed. It follows thatA�+1(α) is compact, and a minimizing point x (�+1) can
be chosen. Thus the recursion is well defined.

We observe that (8.2) applies to t� and x (�), and |x (�)| is large, so
|x (�)|2 22m t� � 1. (8.7)

Further, we define balls

B(�) ={u ∈ R
n : |u − Dt� x (�)| ≤ 2m√

t� } .

Because of the definitions of Km
t and Sm

t , the inequality (8.5) implies

α ≤ exp
(
R(x (�))

)

tn/2
�

∫

B(�)

f (u) dγ∞(u). (8.8)

It remains to verify the claimed properties of B(�) and Z(�). The arguments below follow the
lines of the proof of Lemma 6.2 in [4], with only slight modifications.

Lemma 8.2 The balls B(�) are pairwise disjoint.

Proof Two balls B(�) and B(�′) with � < �′ will be disjoint if
∣∣Dt� x (�) − Dt�′ x (�′)∣∣ > 2m(

√
t� + √

t�′). (8.9)

By means of our polar coordinates with β = R(x (�)), we write

x (�′) = Ds x̃ (�′)

for some x̃ (�′) with R(x̃ (�′)) = R(x (�)) and some s ∈ R. Note that s ≥ 0, because R(x (�′)) ≥
R(x (�)). Since x (�′) does not belong to the forbidden zone Z(�), we must have

|x̃ (�′) − x (�)| ≥ A23m√
t�. (8.10)

We first assume that t�′ ≥ M 24m t�, for some M = M(n, Q, B) ≥ 2 to be chosen.
Lemma 4.3 (ii) implies

∣∣Dt� x (�) − Dt�′ x (�′)∣∣ = ∣∣Dt� x (�) − Dt�′+s x̃ (�′)∣∣ � |x (�)| (t�′ + s − t�) � |x (�)| t�′ ,

the last step by our assumption. Using again the assumption and then (8.7), we get

|x (�)| t�′ � |x (�)| √M 22m√
t�

√
t�′ �

√
M 2m√

t�′ � √
M 2m (

√
t�′ + √

t�).

Fixing M suitably large, we obtain (8.9) from the last two formulae.
It remains to consider the case when t�′ < M 24m t�. Then

√
t� >

2−2m−1

√
M

(
√

t�′ + √
t�).

Applying this to (8.10), we obtain (8.9) by choosing A so that A/
√

M is large enough. ��
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We next verify that the sequence (x (�)) is finite. For � < �′, we have (8.10), and Lemma
4.3 (i) implies

∣∣x (�′) − x (�)
∣∣ � A 23m√

t�.

Since t� ≥ ε, we see that the distance
∣∣∣x (�′) − x (�)

∣∣∣ is bounded below by a positive constant.

But all the x (�) are contained in the bounded set Eα , so they are finite in number. Thus the set
considered in (8.6) must be empty for some �, and the recursion stops. This implies (8.3).

We finally prove (8.4) . Observe that the forbidden zoneZ(�) is a tube as defined in (4.12),
with a = A 23m√

t� and β = R(x (�)). This value of β is large since x (�) ∈ Eα , and thus we
can apply Lemma 4.4 to obtain

γ∞(Z(�)) �
(

A23m√
t�

)n−1

√
R(x (�))

exp
(
−R(x (�))

)
.

We bound the exponential here by means of (8.8) and observe that R(x (�)) ∼ |x (�)|2,
getting

γ∞(Z(�)) � 1

α|x (�)|√t�
(A23m)n−1

∫

B(�)

f (u) dγ∞(u).

As a consequence of (8.7), we obtain

γ∞(Z(�)) � 2m

α

(
A23m)n−1

∫

B(�)

f (u) dγ∞(u) � 2Cm

α

∫

B(�)

f (u) dγ∞(u),

proving (8.4). This concludes the proof of Proposition 8.1. ��
Funding Open access funding provided by University of Gothenburg.
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