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Abstract 
Industrial chemicals are important for many aspects of modern life, though they can 

be harmful to the environment and human health. Environmental or safety concerns 
identified during the early design and selection of chemicals could motivate choices as to 
safer alternatives and process setups. There is a growing interest in developing more 
rapid, and streamlined assessment methods to obtain a first indication of the potential 
impacts linked to the nature and use of industrial chemicals.  

This work applies predictive modeling and streamlined techniques to estimate the 
potential environmental, health, and safety hazards associated with specific chemical 
structures. The assessment is performed during the design and selection of promising 
candidates for a particular process as part of the computer-aided molecular design 
(CAMD) and process setup. The case of phase-change solvents used for post-combustion 
carbon capture is examined. Furthermore, the refinement of predictive models through 
the incorporation of knowledge already existing in the field (prior knowledge) is 
investigated. A procedure for knowledge extraction from scientific articles that applies 
text mining is proposed.  

The results show that incorporating impact assessment criteria into the CAMD 
facilitates the molecular design by enriching the Pareto front of candidates. The use of 
predictive models that estimate molecular properties, such as acute aquatic toxicity, 
bioconcentration, and persistency are found to support the identification of the optimal 
solvents for CO2 capture. Given the role of sustainability-related properties in tasks such 
as CAMD, the improved performance and the interpretability of the aquatic toxicity 
predictive models developed here and using prior knowledge are important. The process 
level assessment of the phase-change solvent systems indicated that phase-change solvent 
alternatives could provide benefits, not only in terms of reduced energy consumption but 
also lower impacts on human health and the environment.  However, the degradation 
behaviors of these compounds should be properly assessed and controlled to ensure 
beneficial performances compared to conventional carbon capture solvents. Overall, 
predictive modeling and streamlined life-cycle assessments (LCAs), as well as 
environmental, health, and safety evaluation methods were revealed to be valuable for 
defining the critical aspects that influence the potential impacts of chemicals and in 
supporting decisions concerning the molecular and process designs.  

 
 

Keywords: Predictive modeling, knowledge extraction, LCA, EHS, CAMD, phase-
change solvents, carbon capture, acute aquatic toxicity 
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1  Introduction 
In 2019, the European Commission (EC) initiated the European Green Deal (EGD)1 

to tackle imminent threats related to climate change and environmental degradation. One 
of the objectives of the EGD is to achieve zero pollution in air, water and soil by Year 
2050. The main goal of the Chemicals Strategy as part of the EC’s zero-pollution ambition 
is to protect human health and the environment by transitioning to the use of chemicals 
that are sustainable by design2.   

The “benign-by-design” concept for developing less-hazardous materials is already 
used by the pharmaceutical and chemical industries. Behind this concept lie the 12 
Principles of Green Chemistry, which outline actions to minimize the use or production 
of toxic compounds and waste the during synthesis, processing, and analysis of products3. 
The protection of human health and the environment means that the focus is on the 
potentially toxic activities of molecules and materials during development for the market 
and use4. However, despite our constant exposure to existing chemical substances, safety 
data are missing for many of these agents5.  Apart from the existing compounds, 
numerous chemical structures are continuously being developed for use as catalysts, 
solvents, working fluids etc. Evaluation of their potential effects on human health and the 
environment should be required before their synthesis and use. In advanced computer-
aided molecular design (CAMD) approaches, such molecules are first synthesized in 
silico, which allows for many molecular structures to be screened and assessed with 
respect to their technical and sustainability profiles, prior to the selection of candidates 
for experimental testing. It has become clear that the design phase has more freedom to 
influence critical decisions at an early stage. Rapid evaluation of the environmental, 
health, and safety (EHS) aspects of the molecular structures early during the chemical’s 
design and selection phases might help to direct resources and effort away from the 
candidates that are linked to negative environmental or safety concerns6. Thus, there is 
growing interest in developing quicker, more streamlined assessment methods to obtain 
a first indication of the potential impacts already during the molecular design period.  

Early-stage assessments of processes that employ new chemicals might ensure safer 
chemicals, operating conditions, and process designs prior to significant financial and 
physical assets being invested in large-scale systems development. 

1.1 Objective & Scope 

The purpose of this thesis is to perform early impact assessments of novel chemicals 
using predictive modeling and streamlined techniques, in order to promote the selection 
of more- sustainable (greener) chemical alternatives. The work addresses the following 
research questions: 

1. In what way does the impact assessment of new molecular structures during 
molecular design contribute to the selection of safer and more environmentally 
benign chemicals? (Paper II) 
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Answering the first research question involves the development of methods to 
incorporate data and predictive models regarding molecular properties relevant to 
environmental impacts into computer-aided screening approaches (e.g., CAMD). The 
second research question addresses the issue of missing molecular property data for newly 
designed molecular structures: 

2. How can the data gaps that exist for novel molecular structures be filled by 
predictive modeling and streamlined techniques? (Papers I, II, and V) 

Related to the second question is: 

3. How can the knowledge from scientific articles be processed more efficiently 
to assist the predictive modeling? (Paper IV) 

 When applied to industrial process, the behaviors of chemicals are influenced by 
the operational conditions of the process, as well as by other compounds present in the 
system. Likewise, the environmental impact of a single molecule can be affected 
considerably by the industrial context in which it is used. Even though the industrial 
context is known, it is practically impossible to include in the molecular design all the 
process-relevant conditions under which the substance will be applied. Thus, the impacts 
of the molecules during their use might differ compared to the impact of just a single 
substance. Therefore, the fourth research question seeks to investigate the challenges 
associated with the use of the newly designed molecules: 

4. What are the potential behaviors and impacts of the new chemical substances 
when applied in the process, and how do the predictive modeling and 
streamlined techniques impact the assessment? (Paper III) 

To answer research questions 1, 2, and 4, phase-change solvents for post-
combustion CO2 capture or structurally similar molecules were considered. Research 
question 3 addresses the need for more-efficient data acquisition and processing within 
the broad field of interdisciplinary research. The acute aquatic toxicity domain relevant 
for the EHS hazard assessment of chemicals is used as an example. 

The work considers two different levels of assessment: substance and process. The 
substance level comprises the predictive models and the design of the more-sustainable 
CO2 capture phase-change solvents. The process level assessment evaluates the potential 
impact of a capture system that utilizes the selected phase-change solvents (Figure 1).  



3 
 

 
Figure 1. Scope of the work of this thesis. 

 
Paper I examines the possibility of using a local lazy learning approach (k-nearest 

neighbors) to estimate the molecular properties (bioaccumulation, persistence, and acute 
aquatic toxicity), being a prerequisite for the impact assessment of chemicals.  

Paper II presents a framework for the for the simultaneous assessments of life-cycle 
and EHS impacts (also referred to as the ‘impact assessment’)  in CAMD. The effects of 
using impact assessment functions during CAMD compared to a procedure without such 
an assessment are also discussed.  

Paper III evaluates the impacts associated with using selected phase-change 
solvents in the post-combustion CO2 capture process. The work focuses on the potential 
behaviors of the solvents in relation to the operational conditions of the system and their 
roles in the impact assessment.    

Paper IV proposes a semi-automated method for extracting useful sentences and 
data from published scientific articles. The method is applied to extract and classify 
relevant information (knowledge) about acute aquatic toxicity for subsequent use in 
predictive modeling.   

Paper V investigates the feasibility of integrating knowledge into the predictive 
models. For the case of acute aquatic toxicity, the study evaluates the pure data science 
models and examines the use of prior knowledge at various points during the model 
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development (pre-analysis, during the construction of the model, and post-analysis 
approaches). 

1.2 Outline of the thesis 

The thesis summarizes the theoretical background relevant to the work and the key 
findings presented in the papers. The thesis is organized as follows: 

Chapter 2 presents work in relation to the early assessment of chemicals.  It 
introduces the data-driven methods for the impact assessment and provides background 
information on the CO2 processes and phase-change solvent systems.  

Chapter 3 describes the methods used in the work, including life-cycle assessment, 
EHS hazard assessment, semi-automated prior knowledge extraction, and the k-nearest 
neighbors data-mining approach.  

Chapter 4 presents and discusses the key findings reported in the papers.  
Chapter 5 lists the conclusions and suggestions for future work.  
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2 Early assessment of chemicals and process 
designs 

This chapter provides background information relevant to the study. The role of the 
current work in terms of its contributions to the existing body of knowledge is also 
discussed.  

2.1 Impact assessment during early process design 

Life-cycle assessment (LCA) is a valuable method to estimate the environmental 
impacts of products, processes, and services. While the original methodology focused on 
existing systems, there is a need for a method that applies life-cycle principles to 
developing the new technologies7 and early process designs. The recently developed 
concept of prospective LCA refers to LCA studies that assess the technologies in an early 
development phase, so as to forecast the potential environmental consequences of their 
large-scale implementation8. Similar concepts of ex ante and anticipatory LCAs are being 
used to address the environmental impacts of technologies that are still in the R&D 
phase9. These types of early-phase studies are characterized by simplifications, 
conservative assumptions, and scenario analysis. Even though a few studies10,11 have 
presented more-general frameworks for conducting such LCA assessments, most early-
stage LCAs have been applied to a specific domain12–16.  

With additional criteria that take into account other environmental and social 
aspects, LCA indicators are often used to explore trade-offs between different impact 
categories17 and scenarios. Many sustainability assessment tools enable such an analysis 
based on process flowsheets. For example, the frameworks proposed by Azapagic and 
Perdan (2000)18, Gonzalez and Smith (2004)19, and Guillén-Gosálbez et al. (2008)20 have 
been designed to assist industries with the implementation of more-sustainable practices. 
It is also common to integrate the LCA indices with a hazard assessment to allow 
evaluation of the EHS impacts of different industrial processes. 

Frameworks created to estimate the EHS hazards during process design have been 
in place for decades. Classical qualitative methods, such as HAZOP (hazard and 
operability)21 and fault tree analysis (FTA)22, rely on the availability of a detailed plant 
layout23. Simpler techniques that use just molecular property data and the laboratory stage 
of the process design have also been developed. The simpler quantitative methods are 
more suitable for the early-stage process assessments. While many of the details regarding 
the system maybe lacking, the choices (materials, equipment, operating conditions, etc.) 
made at this step can significantly restrict the degrees of freedom for later design stages. 
For instance, the Dow Fire/Explosion and Chemical Exposure24 indices evaluate fire and 
explosion hazards and the acute toxicity risks of a chemical process using the physical 
and chemical properties of the materials and simplified process flow sheets25. The Mond 
Fire, Explosion, and Toxicity Index26 extends the Dow Fire/Explosion Index, to include 
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additional hazard considerations25. The Safety Weighted Hazard Index (SWeHI) 
developed by Khan (2001)25 identifies and ranks various hazards according to hazardous 
substances and operating conditions, applying a more-rigorous quantification of the 
impact of safety measures. The Integrated Inherent Safety Index (I2SI) method of Khan 
and Amyotte (2005)27 refines the technique through the inclusion of environmental 
effects. The inherent safety concept, first introduced by Kletz (1976)28 and subsequently 
extended by Edwards and Lawrence (1993)29 and Heikkilä et al. (1999)30, among others, 
strives to avoid and reduce hazards at the source instead of relying on safety control 
measures. Koller (2000)31 proposed an EHS method that used 11 effect categories 
(mobility, fire/explosion, acute toxicity, etc.) as a solution to ensure the flexibility of 
index methods and their applicability when data on the substances are missing. A set of 
effect categories represents each aspect (E, H, and S). Each effect category can be 
assessed using several physical or chemical properties, which are prioritized according to 
data quality. These priorities and the scoring methods have been updated by Sugiyama et 
al. (2008)31 and Banimostafa et al. (2012)32. Sugiyama et al. (2008) have also revised the 
environmental aspect by adding the short-term effects of accidental release. Patel et al. 
(2012)33 have modified the approach to assessment by incorporating basic reaction mass 
balance information, along with data on raw material prices, greenhouse gas (GHG) 
emissions, and qualitative indicators.  

Although the early-stage assessments are often streamlined and inherently 
uncertain34,35, they help to provide novel insights36 during the advancement of new 
materials and technologies35,37. For instance, even though CO2 capture is an important 
technology for mitigating climate change, the risks associated with the use of new 
advanced materials and techniques should be accessed before their adoption at a larger 
scale.  Paper III aims to address this issue by exploring during the early design phase the 
key components of the CO2 capture technology applying novel phase-change solvents.  

2.2 Estimation of missing data 

Despite the unquestionable benefits of early-stage assessments, the limited 
availability of data hinders their use. An additional challenge is posed by processes that 
entail the use of chemicals. The behaviors of chemicals, which are influenced by many 
factors, can be difficult to predict. Furthermore, there is often a lack of information on 
physical and chemical properties (e.g., boiling point, solubility, toxicity) and of data 
relevant to LCA (e.g., inventory data, characterization factors), especially for newer 
chemical structures that are not yet mass-produced. Thus, streamlined techniques 
supported by surrogate data, qualitative models, and regression equations that are valid 
for specific domains are used to perform simplified impact assessments38.  

2.2.1 Molecular properties data 

The hazard assessment of chemical processes requires information on the molecular 
property data, which are traditionally obtained experimentally. Molecular properties are 
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evaluated through predictive modelling, to reduce the need for experimental testing and 
fill the gaps in the missing datasets. Predictive modeling is a technique that can be used 
to assess the future untested behaviors of chemicals. Computational techniques facilitate 
the selection and optimization of compounds for synthesis and for tests related to their 
physicochemical properties39. Such computational approaches are based on theory, 
experimental data, and a combination of thereof. For example, thermodynamics or 
quantum mechanics can be used to make a prediction. Methods such as expert and rule-
based systems, quantitative structure-activity(property) relationships (QSA(P)R)s39, and 
“additivity-principle” approaches that include group contribution (GC) methods40 can 
combine theoretical aspects with patterns retrieved from existing datasets. 

Expert and rule-based systems (e.g., qualitative prediction of toxicity system, 
DEREK41) rely on knowledge that comprises facts and heuristics42. The rules, generated 
either manually or automatically, can comprise structural alerts and reaction rules and are 
straightforward to apply39. Another approach, the read-across method, is based on the 
observed similarities in molecular properties between structurally similar compounds. 
The read-across method assumes for the initial hypothesis that a (quantitative) structure-
activity relationship exists43. 

Most of the QSA(P)Rs are regression-based models, which are often given in the 
form of a linear correlation (Eq.1) between the molecular descriptors (X) and molecular 
property (Y), with some coefficients (𝑎𝑎, 𝑏𝑏, 𝑐𝑐)44: 

 
         𝑌𝑌 = 𝑏𝑏 + 𝑎𝑎𝑋𝑋 1 + 𝑐𝑐𝑋𝑋2 ….                                                                                                       (1) 
 

The GC methods use the molecular groups that constitute the molecule to make a 
prediction. The methods follow the so-called “additive principle”, in which the molecular 
property value (X) is obtained by summing the contributions of all the molecular groups40  
(Figure 2). 

 

 
Figure 2. Schematic representation of the ‘additivity-principle’. 

 
It was first noticed more than 100 years ago that the molecular structure determines 

the molecular properties of a chemical. This idea of a correlation between the structure 
and property of a molecule is widely used to predict molecular property data, such as 
boiling and flash points or enthalpy of vaporization, to name but a few. Different QSAR 
and GC models have been developed over the years. The QSARs and GC methods are 
relatively simple to apply and can easily be automated, enabling their use in approaches 
such as CAMD. 
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2.2.2 LCA data 

Over the last few years, efforts have been made to create methods that can estimate 
the missing cradle-to-gate life-cycle impacts through applying data science methods. The 
first automated LCA impact methods were those of Wernet et al. (2008, 2009)45,46 who 
used neural networks, principal component analysis and molecular descriptors to develop 
a tool for estimating for single molecules the cumulative energy demand (CED), global 
warming potential (GWP), and an endpoint of Eco-indicator 99 (EI99). More recent 
studies have proposed an improved version based on this approach. Song et al. (2017)47 
have created deep artificial neural network (ANN) models to estimate the life-cycle 
impacts of chemicals. The multilayer ANNs use molecular structures to predict the life-
cycle impacts of chemicals in six impact categories: cumulative energy demand; global 
warming (IPCC 2007); acidification (TRACI); human health (Impact 2000+); ecosystem 
quality (Impact 2000+); and EI99 (I,I, total)47. The method of Calvo-Serranoa et al. 
(2018)48 applies a mixed-integer programming (MIP) optimization framework to 
construct predictive models to estimate CED, GWP, and EI99. This method expands upon 
that proposed by Wernet et al. (2008)45 by including thermodynamic properties and 
automatic selection of the optimal chemical attributes, thereby generating better 
predictions. The final multi-linear models are easily combined with other software 
packages for molecular and process design. 

2.3 Phase-change solvents for CO2 capture 

Liang Hu first patented the concept of phase-change solvents in the context of gas-
liquid absorption in 200549. More recently the concept has found application in CO2 
capture and these solvents has attracted increased interest as third‐generation absorbents 
(e.g., biphasic, enzymatic-enhanced, and encapsulated absorbents)50.  

Phase-change or biphasic solvents are miscible solute-solvent mixtures that are 
undergoing a phase liquid-liquid or liquid-solid separation that is promoted by CO2 
absorption and alterations in temperature51. CO2-triggered solvents generate two phases 
as a result of changes in (i) polarity, called switchable-polarity solvents; or (ii) ionic 
strength, named switchable water solvents; or (iii) hydrophilicity, called switchable-
hydrophilicity solvents when the solute reacts with the CO2. Switchable-polarity solvents 
are usually nonaqueous mixtures. The reversible switching from low to high polarity that 
follows the CO2 absorption results in a change in the solubility of the solutes in the 
solvents and, thereby, separation of the phases. The phase separation in switchable water 
solvents occurs when an ionogenic compound of an aqueous mixture becomes ionic 
during the dissolution of CO2 in water. As a result, a homogeneous mixture of low ionic 
strength is transformed into a bicarbonate salt solution with higher ionic strength, leading 
to a liquid-liquid phase separation51. Switchable-hydrophilicity solvents are hydrophobic 
liquids that exhibit poor miscibility with water until they are exposed to CO2. Absorption 
of CO2 makes the solvent hydrophilic and fully miscible with water52. The desorption of 
CO2 leads to separation of the phases. Among the CO2-triggered solvent mixtures that are 
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suitable for CO2 capture are the nonaqueous (i.e., amine-alcohol, amino acid-alcohol, 
ionic liquid-amino acid blends) and aqueous (i.e., water-amines mixtures or solutions of 
the salts of amino acids51) types.  

Solvent phase separation triggered by changes in temperature (with so-called 
‘thermomorphic solvents’) is typically obtained using mixtures of lipophilic amines and 
water. Phase separation occurs in such mixtures when the increase in the process 
temperature breaks the intermolecular hydrogen bonds between the amine and water51.  

Nonaqueous solvents have lower regeneration temperatures than aqueous solvents 
due to the replacement of water with organic solubilizers or ionic liquids. Organic 
solubilizers or ionic liquids are advantageous in terms of solvent degradation and 
evaporation, corrosiveness, and the heat requirements for solvent regeneration. However, 
practical application of nonaqueous solvents for carbon capture might be restricted by the 
presence of water in the flue gas that is sent for treatment. The presence of water could 
affect the efficiency of the process, necessitating additional water management51. 
However, CO2 capture with nonaqueous solvents has not yet been fully assessed and 
requires further research. Capture processes that use aqueous solvents have been studied 
extensively, with some aqueous phase-change solvents reaching technology readiness 
levels of 4 and 553. Table 1 gives examples of phase-change solvents and the drivers for 
their phase separation.  

 Solvent blends (e.g., salts of amino acids) that result in a solid CO2-rich phase 
might create process-related challenges due to precipitation. In contrast, mixtures that 
exhibit liquid-liquid separation are easily incorporated into the existing 
absorption/desorption systems through the addition of a mechanical separation step53 
(Figure 3). For this reason, most of the phase-change solvents introduced as CO2 capture 
solvents, which are also those investigated in this work, are solvents that exhibit liquid-
liquid phase separation.   

 

Table 1. Examples of phase-change solvents with various phase separation drivers 

Solvent Phases Phase separation driver 

CO2-triggered 

Dipropylamine (DPA) Liquid-solid Change in the polarity54  
MEA/iso-octanol Liquid-liquid Change in the polarity51  

Tetrabutylphosphonium N-
trifluoromethanesulfonylleucine (ionic 
liquid)/water  

Liquid-liquid Change in the 
hydrophilicity52  

N-methyldiethanolamine/water Liquid-liquid Change in the ionic strength 
(switchable water)52  
 

Potassium taurate (amino acid salt) / water Liquid-solid Change in the polarity51  
 

MAPA/DEEA/water Liquid-liquid Change in the ionic strength 
(switchable water)52  
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Thermomorphic 

DPA/DMCA /water Liquid-liquid Change in miscibility 
triggered by a temperature 
change51 

DMX solvent Liquid-liquid 

MCA/DMCA/AMP Liquid-liquid 

 
 

 
Figure 3. CO2 capture using phase-change solvents55 

 
2.4 Contribution of this work  

The section summarizes the contributions of this thesis to the field. The major 
contributions involve integrating the impact assessment into CAMD, the evaluation of 
novel phase-change solvents and carbon capture systems, and the use of knowledge for 
predictive modeling.  

2.4.1 CAMD with simultaneous impact assessment  

Several CAMD studies have incorporated EHS indicators56–59, and a few studied 
considered the LCA impact constraints. For instance, Mehrkesh and Karunanithi (2014)60 
included downstream LCA impacts associated with the emissions of ionic liquid solvents. 
Heintz et al. (2014)61 and Weis and Visco (2010)62 used a single LCA score, which was 
estimated based on quantitative-structure property relationships (QSPRs) derived from 
the available data for 46 frequently used solvents. The main challenge associated wuth 
incorporating more-recent streamlined LCA methods lies in the lack of models that can 
be easily integrated into the CAMD framework without significantly affecting 
computational performance. No systematic and broad screening of new phase-change 
solvent alternatives has been performed, particularly not with respect to the sustainability-
related properties.   

The work described in Paper II addresses both aspects of incorporation of the EHS 
and LCA indices into CAMD, as well as the use of the combined approach to identify 
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potential phase-change solvents. An analysis of the effects of such early integration of the 
impact assessment into CAMD is also performed.  

2.4.2 Impact assessment of phase-change CO2 capture systems 

The performances of the phase-change solvents in terms of reduced energy 
consumption have been widely investigated. However, little attention was given to other 
environmental, health, and safety aspects of these emerging materials51. The negative 
health and environmental impacts of amine-based capture systems have been receiving 
much attention in recent years. The negative effects are associated with the formation of 
hazardous substances, such as nitrosamines and nitramines during operation63, as well as 
other emissions from the capture systems64. The operating conditions of the process are 
reported to have a significant impact on the magnitude of the potential adverse effects23.   

The work introduced in Paper III aims to gain insights into the impact of the carbon 
capture systems caused by the use of phase-change solvents. The work identifies the 
potential hotspots of such systems in terms of impact and aspects of increased concern. 
The results can facilitate decision-making and trigger targeted experimentation at pilot 
and demonstration scales, towards defining the optimal conditions for the operation of 
the CO2 capture systems.  

2.4.3 Predictive modeling 

The predictive capacity of the GC method is sufficient to estimate the 
thermodynamic properties, such as boiling or flash points, of the chemicals. However, 
there remains room for improvement of the GC and other quantitative-structure property 
relationship (QSPR) models for predicting the molecular parameters used in LCA and 
EHS assessments. The advanced models that apply data science methods (mostly machine 
learning, ML) often show superior performance65,66. However, the results from such ML 
models are often difficult to interpret65, as they are black box models requiring a large 
amount of training data. Paper I evaluates the performance of a simple ML approach for 
automated estimation of molecular properties, such as acute aquatic toxicity, 
bioconcentration, and persistency. The evaluation aims to support the integration of the 
impact assessment into the CAMD procedure.  

Even though QSAR, GC, or ML methods are used to reduce the need for 
experimental testing, they are still based on chemical property data, which are often scarce 
and can show significant variability even for the same compound44. For instance, toxicity 
data are traditionally obtained through extensive experimental testing on living 
organisms, which is undesirable from both the economic and ethical perspectives. In fact, 
EU legislation encourages the development and use of alternative in vitro or in silico 
approaches to replace cruel animal testing67.  

One of the ways to address these limitations is to generate hybrid models that 
incorporate other knowledge that already exists in the field (i.e., prior knowledge). Prior 
knowledge refers to data labeling, generic conclusions, functional trends in the 
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relationships between target and predictor variables, simplified input/output models for 
specific classes of chemicals, etc. The approach has been successfully applied in various 
fields, such as medicine68, drug safety69, materials70, and image recognition71, although it 
has not yet been applied to the molecular properties of interest for LCA and EHS 
assessments. One of the main reasons for this is that prior knowledge is not systematically 
extracted, classified, and formulated in ways that allow it to be effectively used for hybrid 
modeling.  

Paper IV proposes an approach for semi-automated knowledge extraction that 
enables the systematic extraction and classification of knowledge from a high number of 
scientific articles published in the field of acute aquatic toxicity. The method can be 
valuable in interdisciplinary research when rapid acquisition of knowledge is needed for 
different types of work (e.g., impact assessments). 
         Paper V presents extensive results regarding knowledge extraction and utilization 
in the field of acute aquatic toxicity. The main trends, patterns, and other important 
aspects of aquatic toxicity are collated and classified to facilitate further use of the 
knowledge. The extracted knowledge is then applied in predictive models to estimate the 
toxicities of chemicals that are structurally similar to the phase-change solvents. The 
performances of the predictive models with and without prior knowledge are evaluated.  
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3 Methods 
This work evaluated the impact of phase-change solvents and similar to them 

saturated aliphatic compounds. The potential impact of capture systems applying the 
phase-change solvents was also assessed. The impacts were assessed by using a 
combination of LCA and EHS hazard assessments. The evaluations were performed at 
the substance level and process levels. The substance level assessment analyzed the 
integration of sustainability indicators into the CAMD procedure. The process level 
looked at the impacts of phase-change solvent carbon capture systems. The aspects of 
molecular property estimation were addressed using predictive models and field (prior) 
knowledge.   

3.1 Impact assessment at the substance level  

The substance level assessment aimed to identify molecules with lower EHS 
impacts during the CAMD, for applications as phase-change solvents for CO2 capture. 
To assess the impacts of the molecules generated in CAMD, LCA and individual 
environment (E), health (H), and safety (S) hazard assessment indices were computed for 
all the molecular alternatives in each iteration of the CAMD optimization procedure. 
Thereafter, together with the other CAMD constraints and molecular properties, they 
were used to calculate the objective function. This “on-line calculation” relies on the 
availability of empirical and analytical predictive models for all the molecular properties 
included in the computation of the indices, which means that no data gaps are allowed. 
The integration of the LCA and E, H, and S indices calculations with the CAMD is shown 
in Figure 4.  

The molecular structures were presented as a set of functional groups, together with 
the number of their appearance in the molecules. The following functional groups were 
considered for the CAMD approach CH3, CH2, CH, C, OH, CH2NH2, CH2NH, CH2N, 
CHNH2, CHNH, CH3NH, and CH3N. As an example, one molecular structure could be 
decoded as follows: [CH3, CH2, CH2NH2] [1,4,1]. The number of functional groups 
present in each molecule ranged from 6 to 16. Up to one amine group was allowed in each 
functional group. This allowed for the generation of simpler molecules with fewer 
isomers, making it easier to interpret the results. Details of the integration procedure can 
be found in Paper II.  

3.1.1 LCA indices  

Within the CAMD, the LCA indices were calculated automatically using 
streamlined FineChem models46, which estimate the environmental impact of producing 
the solvent based on its molecular structure. Since the phase-change molecules are not 
yet synthesized or utilized on a large scale, they are not present in the LCA inventory 
databases. The FineChem models estimated the LCA impact associated with the 
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production of 1 kg of a substance. The “cradle-to-gate” boundaries were used to consider 
the synthesis of the solvents. The same boundaries were applied for the processes that 
produced the material and energy consumed during the process. The FineChem models 
rely on industrial production data complemented with background data inputs from the 
ecoinvent database46. Selected were the Global warming potential (GWP 100a)72, 
cumulative energy demand (CED), and an endpoint of the Eco-indicator 99 (EI99) impact 
assessment method73; these LCA metrics are predicted more accurately by the FineChem 
models.  

The FineChem models use the information on a number of molecular features 
obtained from a SMILE (Simplified Molecular Input Line Entry Specification) form of 
molecular alternatives generated in CAMD. These molecular features are46: 

• molecular weight 
• number of functional groups (total) 
• number of oxygen atoms in the keto and aldehyde groups 
• number of oxygen atoms not in the keto and aldehyde groups 
• number of nitrogen atoms 
• number of halogen atoms 
• number of aromatic or aliphatic rings 
• number of ternary or quaternary carbon atoms 
• number of heteroatoms in rings 
• number of unique substitutes on aromatic rings 

 
The SMILEs were formed for all the possible isomers of a molecule given as a set of 
functional groups and the number of times they appeared, as obtained from the CAMD 
(Figure 4). Thus, isomers of the same molecule can have different LCA values. For 
example, some isomers can have a ternary carbon, resulting in higher impact for the 
production of such a molecular structure. The final LCA indices returned to the main 
algorithm were the average values among all the isomers generated for a set of functional 
groups.   
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3.1.2 EHS indices  

The E, H, and S indices were computed based on the effect categories and 
parameters/ molecular properties summarized in Table 2. The selection of certain 
parameters and molecular properties was dictated by the availability of online 
(automated) estimation methods easy to integrate into CAMD. The online estimation 
methods used for prediction are also given in Table 2. The environmental (E) aspect 
evaluates the potential damage if a solvent molecule is released to the environment as a 
consequence of everyday operation or accidents. The health (H) aspect assesses the 
influence of daily contact with chemicals on workers' health. The safety (S) aspect relates 
to the hazards of using a solvent in the process, its potential to lead to accidents, and its 
short-term effects on plant workers.  

Various effect category indices were computed for each molecular alternative to 
estimate their E, H, and S scores. The effect categories are based on the physical or 
chemical properties of the compounds (Table 2). The S score is based on three effect 
categories: mobility, flammability/explosiveness, and acute toxicity. The chronic toxicity 
effect was used to compute the H score. The E score considers the magnitude of water-
mediated effects, degradation, air-mediated effects, and accumulation74. The E, H, and S 
scores were calculated via an index (I), taking a value between 0 and 1, depending on the 
value for the particular effect category. Figure 5 presents an example of the index-effect 
category scale for acute aquatic toxicity. The rankings of the parameters were derived 
from the works of Koller (2000)74 and Badr (2016)23. The final scores were computed 
using Eq. (2): 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = ∑ 𝐼𝐼𝑖𝑖,𝑗𝑗𝑛𝑛

𝑗𝑗=1                                                                                                                          (2) 
 

where Scorei is the E, H, or S index of a substance, and Ii,j= Ii,j+Fi,j  is an effect category 
index in the corresponding hazard category modified by a fate index (F) according to 
Koller (2000)74. The fate index is a function of molecule volatility and persistence in the 
environment; the higher the volatility and persistence of the substance, the higher the risk 
that the molecule will cause an undesired effect 23. The term n represents the number of 
effect categories considered for E, H, or S.  
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Table 2. Dangerous properties of chemicals for use in the EHS hazard assessment and their 
estimation methods 75. 

Effect category Parameter/Molecular property On-line 
estimation 

method 

Safety (S) 

Mobility  Difference between the boiling point of the pure substance and 
the highest process temperature 

Group 
contribution 76 

Flammability/ 
Explosiveness 

Difference between the flashpoint of the pure substance and the 
highest process temperature 

Group 
contribution76 

Acute toxicity LD50 (rat) – the amount of orally ingested chemical that causes 
50% of the rats to die (mg/kg body weight) 
 

Group 
contribution+ 77  

Health (H) 

Chronic toxicity Permissible exposure level (PEL) – a US legal exposure limit 
(mg/m3) for an employee to a chemical, given as the average 
exposure concentration over 8 hours  
 

Group 
contribution +77 

Environment (E) 

Water-Mediated 
Effects 

Toxicity (LC50aq) – concentration (mg/l) of a chemical in the 
water that causes death/effect to 50% of most-sensitive aquatic 
species  

Similarity 78,79 

Degradation in 
the environment 

Persistency (P) (in days) represents the half-life of a chemical 
in the environment  

Similarity 78,79 
 

Air-Mediated 
Effects 

Chronic toxicity index calculated based on permissible 
exposure limit (PEL) 

Group 
contribution +77   

Accumulation The bioconcentration factor (BCF) reflects the accumulation of 
a chemical in a living organism. It is calculated as the 
concentration of an chemical in an aquatic organism divided by 
the concentration of that chemical in the water. 

Similarity 78,79 

 
Figure 5. Water-mediated effects index calculation based on LC50/EC50 values. 

 

3.2 Process level assessment 

The process level assessment focused on the impact of the phase-change carbon 
capture systems. The evaluation entailed LCA and EHS hazard assessments, 
supplemented with an exposure analysis. The assessment included the process-specific 
features of the phase-change systems and an analysis of the problems that are typical of 
conventional carbon capture systems, which might appear in the new systems applying 
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phase-change solvent alternatives. The issues could be linked to the molecular structures 
of the phase-change solvents, the feed flue gas quality, or the process design of the phase-
change capture system. Such an analysis was required to introduce the necessary 
mitigation equipment and to improve the process design. The LCA and EHS hazard 
assessments were then used to evaluate whether the improved system could still harm the 
plant workers and environment. The aspects of the system that might require particular 
attention55 were identified.  

Figure 6 shows the process structure after introduction of the necessary mitigation 
equipment and the scope of the LCA and EHS hazard assessments. Under process 
conditions, solvent molecules tend to react with species other than CO2 (NOx, SOx, O2, 
soot), which enter the system with the flue gas. For example, reaction of an amine solvent 
with NOx substances can lead to the formation of carcinogenic nitrosamines. Even low 
concentrations of nitrosamines in the air, in the range of 2.39-7.55 mg/m3 23, are harmful 
to human health. SOx and soot particles affect the levels of emissions from the capture 
system. Thus, if a flue gas that is entering the capture unit contains high levels of NOx 
and SOx, a pre-treatment step (e.g., NOx/SOx scrubber) may be needed. The presence of 
oxygen, the high temperature of the solvent regeneration process, and the molecular 
structure all influence the rate of degradation of the solvent molecules. To prevent the 
accumulation of degradation products within the system, it is necessary to reclaim the 
solvent. Washing units are needed to remove the volatile degradation products and 
emissions of the solvent carried by the treated flue gas as it leaves the absorber. The 
washing unit and reclaimer waste flows are sent to the wastewater treatment unit, which 
is estimated by wastewater treatment models80. The solvent lost during the process needs 
to be continuously replaced through increased solvent production.  

 

 
Figure 6. Process structure and scope of the LCA and EHS hazard assessments of the carbon capture process 
with a solvent exhibiting liquid-liquid phase separation. Note that the position of the heat exchanger (HEX) 

might be before or after the decanter depending on the type of phase-change solvent used. Source: Paper III. 
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3.2.1 LCA assessment 

The process level LCA was designed to evaluate the impact of capturing 1 tonne of 
CO2 (90% capture rate, 98% purity by mole) with a capture system that uses phase-change 
solvents under steady-state operation of the process. It was also intended to compare the 
results with those of similar studies using conventional solvents (i.e., MEA). The system 
boundary was cradle-to-gate, including only the impacts from chemical auxiliaries and 
energy utilities that are solvent- or process-dependent. The amounts of energy required to 
transport the CO2-containing flue gas to the capture site and for the compression and 
transportation of the captured CO2 for further use or storage were excluded. As delivering 
the flue gas to the capture site is not expected to depend upon the type of solvent or 
process, the delivery was assumed to be the same for all the solvent-based capture 
systems. The mode of transportation or usage, which mainly determines the CO2 
compression for storage or utilization, was assumed to be independent of the process or 
solvent type, since the solvent itself did not require specific process conditions (for 
example, high pressure in the absorber or stripper). Background data in the form of 
inventories for the production of chemical auxiliaries and energy utilities were obtained 
from the ecoinvent ver. 3.4 database81. The foreground data (i.e., process inventory data) 
were derived from process flowsheets created using experimentally derived equilibrium 
data.  

The following impact categories were considered for the life-cycle impact 
assessment: Global warming potential (GWP 100a), Cumulative energy demand (CED), 
and a single score from the ReCiPe-2008 method based on a hierarchist weighting scheme 
(ReCiPe)82. The selection of the impact categories used in the assessment was based on 
the limited number of impacts estimated by the FineChem models (CED, GWP, EI99) for 
the solvent production process. The ReCiPe score for the solvent production was 
calculated based on correlation with the EI9983, computed by the FineChem model. The 
correlation was developed after the CAMD results were obtained. Thus, only EI99 was 
used at the substance level in the assessment. 

More information on the procedure and the data considered in the LCA calculations 
can be found in the Supplementary material to Paper III.  

3.2.2 EHS hazard assessment 

The EHS process level hazard assessment considered the inherent properties of the 
solvent molecule and other chemicals used in the capture system and their corresponding 
flows and hold-ups in the process equipment. The effect categories used for the process 
level assessment were computed based on the material safety data sheets (MSDS) and 
other sources that documented the experimentally obtained properties of the chemicals. 
If the experimental data were missing, values for the properties were estimated by the 
online methods applied during the substance level assessment. During the process level 
assessment, the aggregated E, H, and S scores were computed, and thereafter combined 
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with other sustainability indices for decision-making. The total E, H, and S scores were 
calculated according to Eqs. (3)–(5). 

 
𝑆𝑆 =  ∑ 𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹�∑ 𝑚𝑚𝑗𝑗

𝐹𝐹
𝑗𝑗 𝐼𝐼𝑗𝑗𝑖𝑖𝑖𝑖�𝑖𝑖𝑖𝑖                                                                                                             (3) 

 
where 𝑚𝑚𝑗𝑗

𝐹𝐹is the mass flow of a specific substance j in-stream F of the CO2 capture process 
system per kg of CO2 captured under the same conditions as in the LCA (e.g., 90% 
recovery and 98% mole purity), and 𝐼𝐼𝑗𝑗𝑖𝑖𝑖𝑖is an index of substance j for an effect category i 
representing the safety aspect. 
 

𝐻𝐻 =  ∑ 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗�𝑚𝑚𝑗𝑗
1𝐼𝐼𝑗𝑗𝐻𝐻�𝐻𝐻                                                                                                              (4) 

 
where 𝑚𝑚𝑗𝑗

1represents 1 kg of chemical substance j. The amount of chemical here is fixed 
due to the long-term aspects considered as part of the health hazard, which mainly depend 
on the existence of hazardous substances for the design of mitigation measures rather than 
on the amounts of such substances31. 𝐼𝐼𝑗𝑗𝐻𝐻 is an index of substance j for an effect category 
listed for the health score. 
 

𝐸𝐸 =  ∑ ∑ �𝑧𝑧 𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹�𝑚𝑚𝑗𝑗
𝐹𝐹�𝐼𝐼𝑗𝑗𝑖𝑖𝑖𝑖� +  ∑ ∑ �𝑚𝑚𝑗𝑗

𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑗𝑗𝑖𝑖𝑖𝑖�𝑗𝑗𝑖𝑖𝑖𝑖  𝑗𝑗𝑖𝑖𝑖𝑖                                                           (5) 
 

where z is a fraction of the mass emitted to the environment in case of an accident, and 
𝑚𝑚𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜 is the specific amount of chemical substance j per kg of CO2 captured under the 

same conditions as in the LCA (e.g., 90% recovery and 98% mole purity), leaving the 
system to waste treatments units, for example, except for the product flow. 𝐼𝐼𝑗𝑗𝑖𝑖𝑖𝑖 is an index 
of substance j for an effect category - i used for the environment score. 

In addition to the individual E, H, and S scores calculated for the capture systems, 
the potential of danger (PoD)74 was also computed, as this evaluates the magnitude of the 
EHS effects in terms of a physical unit, for instance, the releasable energy content of the 
system (in MJ) or the volume of air/water (in m3) required to dilute a dangerous 
chemical74. The overall impact is a combination of the PoDs values for all the chemicals 
used or formed during the capture process. The PoD was calculated using Eq.(6)74: 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖 × 10𝑎𝑎𝑖𝑖×𝐼𝐼𝑗𝑗−𝑏𝑏𝑖𝑖                                                                                                           (6) 
 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖  is the PoD for chemical i for the jth effect category, Ij is an effect category 
index, 𝑚𝑚𝑖𝑖 is the maximum mass of substance in the process per kg CO2 captured under 
the same conditions as in the LCA (e.g., 90% recovery and 98% mole purity), and  ai and 
bi are exponential parameters84.  

The PoDs were calculated so as to perform multi-criterion assessments and to 
evaluate the most-potent impacts of single substances in specific categories. The PoD 
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values allow comparisons of different chemicals in the system to identify which chemical 
can be attributed the strongest impact.     

3.2.4 Exposure analysis 

The exposure analysis evaluated the process-specific hazards (such as leakages or 
spills) that lead to workers being exposed to harmful substances present in the capture 
system.  Occupational exposure concentrations (OELs), which represent the maximum 
airborne concentrations of chemicals to which workers can be exposed over a period of 
time without experiencing adverse health effects85, have been established for many 
chemicals. The concentrations of chemicals that induce lethal health effects following 
dermal or oral exposure are given as acute toxicity limits, expressed as the LD50 (oral, 
dermal) or LC50 (inhalation) values86. Information on the OELs and acute toxicity 
chemicals is provided by manufacturers in the MSDS or can be found in databases87,88 or 
chemical directories and guidelines. If no experimental data exist, estimation methods, 
such as GC for PEL (permissible exposure level) can be used.  

The focal points of the analysis were exposure to solvent via leakages (long-term) 
and spills (short-term) and accumulation in the system of nitrosamines at concentrations 
exceeding the safety range of 13.7–14  mM23,89, leading to harmful concentrations of the 
nitrosamines in the air. The concentration of solvent in the air in the case of leakage or 
spillage was estimated by the equations provided by Nicas (2016)90 and Keil and Nicas 
(2003)91. A case of leakage assumed a constant amount of the solvent being released to 
the working environment at a constant evaporation rate. Very low, difficult to detect, 
levels of leaked solvent were assumed, resulting in prolonged periods of exposure. Thus, 
the resulting air concentration of the solvent was compared to the regulatory TWA (the 
time-weighted average limit for an 8-hour workday with repeated exposure but with no 
adverse effects). Different spillage volumes were assessed at decreasing-with-time 
emission rates in the case of a spill. Dangerous-to-health air concentrations for the solvent 
were assumed to be present during the first seconds of the spill. The air concentrations 
were compared to IDHLs (immediately dangerous to life or health) or to the inhalation 
toxicity (LC50) limits for humans, indicating possible adverse effects induced by the 
exposure. In both cases, the air concentration of the solvent was also calculated after 15 
minutes of a leakage or spillage incident. This was compared to the STEL (short-term 
exposure) or TWA to judge whether safe concentrations were reached within that period 
of 15 minutes.  

Unlike the solvent, the concentration profile of nitrosamines in the system is 
unknown. Thus, a different approach was required to assess the level of exposure to 
nitrosamines. To avoid a dangerous concentration of nitrosamines in the air, the potential 
steady-state concentration of nitrosamines89 in the system was calculated and compared 
to the safe level.   

More details of the methodology are given in Paper III and Supplementary 
material to Paper III.  
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3.3 Predictive modeling  

The predictive modeling addresses aspects of the data gaps relevant to the newly 
designed and existing structures. The models that are developed to estimate the missing 
properties are based on a simple kNN (k-nearest neighbors) algorithm. Several ways to 
use prior knowledge for development of the models are introduced.  

3.3.1 kNN  

The kNN supervised ML algorithm allows estimation of a missing property value 
using the molecules that are structurally most-similar (nearest neighbors) with known 
property values (Figure 7). Together with the GC methods, the algorithm was applied to 
estimate the missing values for the acute aquatic toxicity, bioconcentration, and 
persistency of the molecular structures generated during the CAMD procedure (Papers I 
and II). The kNN algorithm was also employed to test different options for prior 
knowledge use towards enhancing and evaluating the acute aquatic toxicity estimation 
models (Paper V).  

 

 
Figure 7. Schematic representation of k-nearest neighbors (kNN) algorithm approach. 

 
The nearest neighbors were identified in two ways: (i) the Manhattan distance 

between the molecular descriptor vectors representing the molecules; and (ii) the 
Tanimoto similarity between molecular fingerprints (i.e., molecular features encoded to 
bit strings92). The Manhattan distance between two points x and y in n-dimensional space 
is the sum of the absolute differences between their coordinates. Manhattan distance is 
defined by Eq.(7)93: 

 
𝑑𝑑𝑀𝑀 =  ∑ |𝑥𝑥𝑖𝑖 −  𝑦𝑦𝑖𝑖|𝑛𝑛

𝑖𝑖=1                                                                                                       (7) 
 

where 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 are the 𝑖𝑖-th descriptors of molecular vectors 𝑥𝑥 and 𝑦𝑦.  
The Tanimoto coefficient measures the similarity between two sets of molecular features 
defined by the common and total number of the sets’ features. The Tanimoto coefficient 
is computed according Eq. (8):   
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𝑆𝑆𝑖𝑖,𝑙𝑙 = 𝑐𝑐𝑖𝑖,𝑙𝑙

𝑎𝑎𝑖𝑖+𝑏𝑏𝑙𝑙−𝑐𝑐𝑖𝑖,𝑙𝑙
                                                                                               (8) 

 
where ai and bl are features of molecules i and l (on bits), while ci,l is the number of 
molecular features common to the two molecules. The following molecular features were 
considered: hydrogen bond donor, hydrogen bond acceptor, basicity, acidity, aromatic 
ring, and halogens (F, Cl, Br, I)94. The features were encoded in the form of a Morgan 
molecular fingerprint (nBits=1,024).  
The descriptors, fingerprints, and Tanimoto similarity were calculated with the help of 
the open-source cheminformatics tool RDKit94. The estimation of the toxicity value 
during the CAMD procedure and for the fingerprint-based models without the use of prior 
knowledge was performed using Eq. (9)79,95. The average of the neighbors’ toxicity values 
was taken for the descriptor-based approach and all the hybrid models using prior 
knowledge.  

 

          𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 = ∑ 𝑆𝑆𝑖𝑖,𝑙𝑙
∑ 𝑆𝑆𝑖𝑖,𝑗𝑗𝑘𝑘
𝑗𝑗=1

𝑘𝑘
𝑙𝑙=1 ∗ 𝑦𝑦𝑙𝑙,𝑑𝑑𝑑𝑑                                                                                 (9) 

 
where 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖  is designed to predict the property of molecule i. The 𝑆𝑆𝑖𝑖,𝑙𝑙 term is a similarity 
value between molecule i for which property predictions are sought and a molecule l 
found in a database, for which the desired property value 𝑦𝑦𝑙𝑙,𝑑𝑑𝑑𝑑 is available, and k is the 
optimal number of similar neighbors used in the prediction, as discovered form a cross-
validation procedure (also for the descriptor-based approach).  

3.3.2 Dataset 

The aquatic toxicity data used in this study were retrieved from the PBT 
(persistency, bioaccumulation potential, toxicity) database collated by Strempel (2012)96. 
The original database created by Strempel (2012) contains 94,483 chemicals. Chemicals 
identified as inorganics, epoxides, and peroxides and those with molecular weight >1,000 
were excluded to avoid the errors encountered with prediction tools such as ECOSAR. 
The ECOSAR databases and the prediction were used to obtain the acute aquatic toxicity 
values for most of the chemicals in the original database. For approximately 2,000 
chemicals, the toxicity data were obtained from the Aquire ECOTOX, Canadian 
Domestic Substance list, and EnviChem databases96. “The most-sensitive species” 
approach was followed, i.e., the lowest effect concentration with LC50 and EC50 and 
duration of either 96 hours for fathead minnow or 48 hours for Daphnia magna was 
selected. For those chemicals for which no data were available in ECOSAR (7,783 
molecules), the baseline toxicity was calculated based on the octanol-water partition 
coefficient. 

Due to the variability of the data sources, data quality, and the absence of an 
indication of the origin of every value, the data are associated with some uncertainty and 
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inaccuracy. For instance, the reported accuracy level (the predicted LC50 falls within the 
same regulatory category, i.e., high, moderate, low, no hazard, as the measured LC50) of 
the ECOSAR predictions is only around 60%97.  

The reduced dataset of saturated aliphatic compounds that contain only C, H, N, 
and O atoms was used in the present study. These restrictions in terms of the molecular 
composition and structure were defined by the scope of the study being limited to only 
saturated aliphatic phase-change solvents. The limited number of molecular structures 
decreased the computational time when testing the combined CAMD with the 
sustainability indicators approach and different hybridization options.  

3.3.3 Prior knowledge for predictive modeling 

A lot of information exists for almost every domain. However, due to the amount 
of manual work required to process this information98, identifying and using the relevant 
knowledge can cumbersome. One of the sources of the domain’s prior knowledge is 
scientific publications. While utilization of the knowledge that exists in scientific articles 
is challenging99, the need for making such knowledge more accessible to researchers and 
non-professional users is growing. This part of the work explores a semi-automated 
system for knowledge extraction from scientific publications in the acute aquatic toxicity 
domain. A few ways for the use of such knowledge in predictive modeling are also 
evaluated.   

The method used for the extraction of knowledge from scientific articles is 
presented in Figure 8. The knowledge extraction process starts with article collection, 
followed by text mining, analysis of the obtained results, and additional article screening. 
The semi-automation of the method aims to accelerate the processing of large volumes of 
primary information. The results of the automated part also provide information that 
guides further processing of the extracted knowledge using human judgment.  

 

 
Figure 8. Knowledge extraction process for a specific domain of interest. 

 



25 
 

Article collection. Knowledge extraction was performed on scientific articles 
collected from the ScienceDirect, PubMed, and Web of Science databases. “Aquatic 
toxicity” and a period covering 21 years (2000–2020), were used as the search parameters. 
Papers with titles related to predictive ecotoxicity, QSARs, information on the aquatic 
toxicity of the separate chemical classes (groups), and modes of action (MoA) were 
collected. The article collection step resulted in the identification of around 400 
publications. Analysis of the bibliometric information for the collected articles is 
presented in Figures S1-1 and S1-2 (Supporting Information 1 for Paper IV). 

Text mining. Automated text mining consists of three parts: extraction of article 
texts and single sentences, key phrases, and relevant sentences. First, the text of the 
articles was recognized and pre-cleaned, such that the title, abstract, and references were 
removed, as well as extra spaces that appeared during the text recognition and e-mails. 
After the text-cleaning process, single sentences were identified based on sentence 
terminators (dot, exclamation and question marks, quotation marks, brackets). These 
complete sentences led to the extraction of relevant sentences. The relevant sentences 
were identified based on the reader-provided input, namely the presence of preselected 
“main terms” and “connection words”. The main terms included the words “toxicity”, 
“acute”, “LC50”, and “EC50”. The following words served as the connection words (as 
complete words or lemmas): “increase”, “decreas”, “relat”, “correlate”, “structure”, 
“fragment”, “class”, “significant”, “high”, “affect”, “low”, “link”, “reason”, “determin”, 
“predict”, “influence”, “severe”, and “depend”. The text mining generated a list of 
relevant sentences for every article. 

Analysis of the results and article screening. The extracted set of the relevant 
sentences was then evaluated manually to identify useful sentences. In this study, a 
sentence was considered useful if it contained information that could be used in hybrid 
predictive modeling (i.e., the sentence referred to aspects influencing acute aquatic 
toxicity values). The useful sentences were collected either as directly extracted 
knowledge or to identify articles and parts of the text for additional manual screening. 
The information retrieved in this step in the form of useful sentences, models, figures, 
and tables was used for structuring knowledge via the development of a classification 
scheme. 

Knowledge collection consists of knowledge classification and updating. The 
information extracted from the articles published in the period 2000-2014 (225 articles) 
was used to develop the initial classification scheme. The information extracted from the 
remainder of the articles (165 articles) was used to update the classification scheme and 
demonstrate a procedure that combined the classification scheme with knowledge 
acquired in the future.  

An overview of the knowledge extraction method can be found in Paper IV, while 
the methodological details and extensive results are presented in Paper V.  

The collected knowledge was then used for predictive modeling. In this work, two 
types of models were constructed: with and without prior knowledge. Models that were 
constructed without using prior knowledge were designated as ‘standard’ models, and the 
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models that did utilize prior knowledge were termed ‘hybrid’ models. The standard 
models were developed for the purposes of comparison, to evaluate the impact of the 
knowledge incorporation on the performances of the models. The hybrid models used the 
part of the extracted knowledge that was relevant to the dataset (i.e., concerning the 
toxicities of aliphatic compounds for fish and crustaceans).   

The prior knowledge was applied before, during, and after the kNN algorithm 
approach, according to different schemes presented in Figure 9. For model H0 (Figure 
9a), a portion of the data was removed before the estimation was performed wit the kNN 
algorithm. According to prior knowledge, the toxicity of a chemicals increases with an 
increase in their molecular weight (MW). For many molecules in the dataset with MW < 
300 g/mol, a positive correlation of the MW with the toxicity values was observed. In 
contrast, a weak correlation was noted for the compounds with MW > 300 (187 
molecules), so these compounds were removed.  

For model H1 (Figure 9b), a descriptor (predictor) selection based on prior 
knowledge was performed, such that descriptors (“MolLogP”, “AATSC0p”, “TPSA”, 
ETA_dEpsilon_A”, “SHBd”, “Mi”) that were stated as having a strong influence on 
aquatic toxicity were selected to represent the molecular structures. The full names of the 
descriptors used for the model and introduced in Table 3 can be found in Table S3-7 of 
Supporting Information 3 for Paper V. In the case of model H2 (Figure 9c), the toxicity 
value was estimated using either a prior knowledge-based (PKM) or a standard kNN 
model, depending on the octanol-water partition coefficients of the molecules (log P). 
Large errors were observed for molecules that had log P values lower than 1.5 and higher 
than 4.0 when a standard kNN model was used to predict toxicity. Thus, the standard 
kNN approach was complemented by a PKM model for toxicity estimations of the 
molecules with the specified log P values. Model H3 (Figure 9d) applies the PKM model 
to assist the kNN model in selecting the neighbors; molecules with the closest estimations 
(smallest difference between the predictions) to those obtained by the PKM model are 
considered the nearest neighbors. The hybridization H4 (Figure 9e) applies a modeling 
post-assessment technique. A set of rules derived from prior knowledge is used to 
evaluate the final toxicity prediction models. The rules are presented in Table 3. More 
details on the knowledge extraction and its use for predictive modeling can be found in 
Paper V.  
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Figure 9. Schematic representation of the use of prior knowledge in the development of hybrid models. PK, 
prior knowledge; PKM, prior knowledge model (GC+QSAR) 
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Table 3. Set of rules identified for the dataset and used for evaluation of the performance of 
the models. 

Main toxicity trends Expressed in descriptors 

Toxicity increases with 
hydrophobicity100,101  

Toxicity increases with an increase of MolLogP (RDkit) 

Toxicity increases with polarizability101–103 

Toxicity increases with an increase of molar refractivity 
MR (RDkit) 

Toxicity decreases with an increase of GATS1p 
(PaDELPy) 

Toxicity increases with an increase of AATSC0p 
(PaDELPy) 

Toxicity has a negative correlation with 
topological polar surface area101,104 

Toxicity decreases with an increase in TPSA (RDkit ) 

Most of the toxic compounds act as 
hydrogen-bonding acceptors, while the 
least- toxic compounds act mainly as 
hydrogen-bonding donors105,106 

Toxic compounds have lower SHBd (PaDELPy) 

Toxic compounds have lower maxHBint2 (PaDELPy) 

There is a positive effect of unsaturation 
and electronegative atom count107  

Toxicity decreases with an increase of ETA_dEpsilon_A 
(PaDELPy) 

Toxicity decreases with ionization 
potential increase102,103 

Toxicity decreases when Mi (PaDELPy) increases 

The larger the “GATS1i” (PaDELPy), the less likely the 
compound will be to react and generate toxicity103 

Molecular size and bulk have positive 
influences on toxicity101,107–109 

With an increase of MW (RDkit), the toxicity increases 

Toxicity is higher for higher values of ETA_Alpha 
(PaDELPy) 

There is an inverse effect of branching on 
toxicity101,104,107,110 

Toxicity decreases with an increase of ETA_EtaP_B 
(PaDELPy) 

Toxicities of primary, secondary, and 
dimethyl tertiary amines increase with 
increasing chain length111 

Toxicity of molecules containing N or amine group 
increases if the number of carbon atoms increases 

Toxicity increases with the increasing 
alkyl chain length in ethoxylates112 

Toxicity of molecules containing the methoxy group 
increases if the number of carbon atoms increases 

Substitution of H-atom with a methyl 
group (-CH3) on the N-atom reduces the 
toxicity of amine surfactants113 

The toxicity of molecules decreases with the number of 
N-CH3 fragments 
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4 Results and Discussion 
The chapter summarizes the main results of the work of this thesis. The first part 

discusses aspects of the impact assessment at the substance level. The effects of 
integrating EHS hazard and LCA impact criteria into the CAMD procedure and the usage 
of prior knowledge for predictive modeling are described. The second part addresses the 
process level assessment. The elements with potentially significant influences on the 
environmental health and safety performance are identified for phase-change carbon 
capture systems.  

4.1 Role of impact assessment in the design of safer chemicals  

Pareto fronts for some of the property categories obtained during the simultaneous 
CAMD and integrated sustainability assessment of the molecules are visualized as Case 
2 in Figure 10. Case 1 depicts the results of the CAMD without the use of the 
sustainability-related indices, instead performing the impact assessment of the molecules 
obtained through CAMD as a post-design step. The best-performing structures are 
presented in Table 4. The use of the sustainability criteria led to the identification of a 
broader set of structures in the obtained Pareto front (~100 structures), as compared to 
having only thermodynamic properties as objective functions (Case 1, ~40 structures). 
The search, however, was found to be biased towards OH-containing molecules. 
Although these molecules are preferable from the sustainability point-of-view, they might 
be less-beneficial in terms of phase-change due to their higher polarity and,  consequently, 
greater miscibility in water as a result of the strong hydrogen bonds of the OH-group and 
water (Figure 11). 

Nevertheless, OH-containing molecules were identified as possible solutions, in 
that they satisfied the constraint of the Hansen solubility parameter difference to water, 
indicating a phase-change behavior. Thus, molecules with the -OH group may still exhibit 
the phase-change behavior, albeit to a lesser extent. This idea remains to be tested with 
advanced group-contribution methods and/or experiments. 

The increased polarity and ability to form strong hydrogen bonds reduce the 
mobility, boiling point, and flash point of an OH-containing molecule, thereby decreasing 
the hazards to health and safety. Furthermore, the increased hydrophilicity due to polarity 
makes OH-group-containing molecules less-toxic for aquatic life. Such an effect can be 
explained by the hydrophilic groups being less likely to attach to the lipids of living 
cells114. Superior performances of the OH-containing molecules (alkanolamines) in terms 
of GWP and the EI99 index have also been observed. These may be linked to the 
substitution of an alkyl for an OH- group, which reduces the number of potential isomers 
that contain quaternary carbon- or nitrogen-bearing centers (atoms with four substitutes). 
The quaternary centers are characterized by higher impact values, as they are difficult to 
synthesize115,116. In contrast, the CED values of the alkanolamines (estimated by the 
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FineChem model) were found to be slightly higher than those predicted for the 
alkanamines. This indicates a more-energy-intensive alkanolamine production process 
(compared to those for alkyl-containing compounds) or it may reflect uncertainty 
introduced by the FineChem prediction.  

Phase-change characteristics that determine the energy and cost penalties of the 
CO2 capture process are the main drivers for adopting the technology. Thus, this solvent 
feature may need to be prioritized. In such a case, the preferred route maybe the 
decomposed approach, in which strong phase-change candidates are identified by means 
of CAMD as a first step and then a second step of further screening is performed 
according to the results of the impact assessment. However, the simultaneous approach 
that resulted in a wider set of structures in the Pareto fronts still contained structures 
similar to those proposed by the decomposed approach. Furthermore, new OH-containing 
molecules that exhibited the phase-change behavior became apparent. These kinds of 
molecules have not been studied to the same extent as alkane- or other types of non-OH 
amines, though they might be worth investigating in the future. The detailed analysis of 
the results obtained for both cases is presented in Paper II.  

The process whereby the sustainability framework is integrated into the CAMD 
revealed the lack of reliable in silico methods to estimate the properties of the molecules 
that have missing experimental data. This prompted the idea of developing the hybrid 
prediction models that use knowledge existing in the field. The first step in the 
development of the hybrid models, namely knowledge extraction, illuminated the trends 
described above.  

 

   

 
 

Figure 10.  Pareto points of the selected properties as a function of the J index for the molecular structures 
obtained after CAMD in Case 1 (triangles) and Case 2 (circles). The ID numbers of the molecules shown in red 

indicate high-performing options. Source: Paper II.  
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Table 4. Best-performing options among all the structures designed in Cases 1 and 2, with J 
score lower than -5. Adapted from Paper II.  

ID Groups Group 
frequency 

GWP 
[kg 

CO2-
eq/kg] 

CED 
[MJ-

eq/kg] 

EI99 
[Pt] S H E 

C2111 [CH3,CH2,CH2NH2] [1,6,1] 3.58 93.45 0.3 1.25 0.18 1.23 

C234/ 
C119 [CH3,CH2,CH2NH2] [1,5,1] 3.53 93.91 0.29 1.47 0.26 1.15 

C224/ 
C123 
(DEEA) 

[CH3,CH2,OH,CH2N]  [2,3,1,1] 3.31 107.38 0.23 1.49 0.19 1.24 

C217/ 
C112 
(HEXA) 

[CH3,CH2,CH2NH2]  [1,4,1] 3.48 94.22 0.28 1.72 0.35 1.07 

C242 [CH3,CH2,OH,CHNH] [2,4,1,1] 3.24 108.11 0.24 1.19 0.26 1.27 

C278 [CH3,CH2,CH,OH,CH2N] [3,3,1,1,1] 3.62 117.11 0.32 1.19 0.08 1.04 

C227 [CH3, CH2,OH,CHNH] [2,3,1,1] 3.31 107.38 0.23 1.32 0.34 1.23 

C16 [CH3,CH,OH,CH2N] [3,1,1,1] 3.38 106.67 0.23 1.86 0.34 0.96 

C256 
(DBA) [CH3,CH2,CH2NH]  [2,5,1] 3.58 93.45 0.3 1.54 0.18 1.07 

C116 
(DPA) [CH3,CH2,CH2NH]  [2,3,1] 3.48 94.22 0.28 2.07 0.38 1.05 

 

 

 
Figure 11. Histograms showing the molecular distributions for OH-containing and non-OH-containing 

molecules in the selected property categories. The relative number of observations is the number of 
observations in the bin, divided by the total number of observations. Source: Paper II. 
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The process of simultaneous CAMD and impact assessment was extended to 

include additional functional groups to design cyclic and bi-functional (with two amino 
groups) amine structures. This led to the identification of 120 solvent structures which 
were expanded into 624 isomers117. Among the designed structures were experimentally 
verified phase-change solvents such as DMCA (N,N-dimethylcyclohexanamine), MCA 
(N-methyl-cyclohexanamine), DPA (di-n-propylamine), HEPTA (heptanamine), and 
SBPA (N‐sec‐butyl‐n‐propylamine)118. This confirmed the efficiency of the proposed 
approach for designing phase-change solvents that exhibit desirable CO2 capture 
performance. Cyclic molecular structures were also identified. The cyclic, multi-
functional amines were reported to have higher absorption capacities than the mono-
functional options, while exhibiting higher boiling points, thereby reducing the mobility 
and vapor losses of the solvent118,119. The analysis of the cyclic structures resulted in the 
selection of a novel solvent alternative – S1N (cyclohexylpropane-1,3-diamine) – due to 
its structural resemblance to the identified cyclic candidates but with a considerably lower 
price. Combined with DMCA, the solvent mixture exhibited high cyclic capacity and low 
regeneration energy requirements, in similarity to other good phase-change solvents. 
Further details of the solvent selection procedure and experimental testing results can be 
found in the work of Papadopoulos et al. (2021)117.  

4.2 Prior knowledge for predictive modeling 

The results of the systematic extraction and collection of knowledge of the acute 
aquatic toxicity domain are presented in this section. The effects of the this extracted 
knowledge in predictive modeling are also demonstrated and analyzed.   

4.2.1 Extraction and classification of knowledge 

The main advantage of the partly automated literature review was a significant 
reduction of the text for initial reading (>85%) (Table S1-1 Supporting Information of 
Paper V). Most of the sentences extracted by the automated text-mining procedure were 
useful, in that they could be used for hybrid modeling or pointed out specific parts of the 
initial article for subsequent manual screening. Overall, the method did not require 
extensive knowledge of the field, as only some prior understanding was needed to define 
the main terms and connection words that would guide the search for relevant 
information.  

Figure 12 presents the classification scheme based on the information collected 
using the proposed procedure for knowledge extraction. Despite limitations as to the 
number and types of articles used for the knowledge mining, many important aspects of 
toxicity were identified, that could be useful for use in hybrid modeling or other 
applications.
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QSAR models. The QSAR models that arose from the data acquisition approach 
outlined in Section 3.3.3 were developed for prediction of the toxicity value or 
classification of chemicals according to different toxicity levels and MoA classes. Most 
of the QSARs applied linear modeling (e.g., multilinear regression, principal component 
analysis, linear partial least squares, ordinary least square method), due to its simplicity 
and interpretability. The nonlinear models often showed higher levels of accuracy than 
the linear models developed using the same set of chemicals. The nonlinear models 
included, for instance, support vector machine (SVM), k-nearest neighbors (kNN), neural 
networks (NN), tree-based methods and gradient boosting (GB). A general outcome from 
the QSAR studies was that ensemble or consensus models that combined several methods 
outperformed the models based on a single method120–123. Improved performance was 
also observed when similar chemicals were grouped on the basis of MoA124 or other 
similarity criteria124,125 before developing the prediction model.  

A wide variety of descriptors was used in the collected QSAR models. The majority 
of the QSAR studies applied single descriptors as the predictor variables, and only a few 
later studies worked with molecular fingerprints. The fingerprints resulted in a better 
performance106,126. However, when the amount of training data was limited, single 
descriptors seemed to be more beneficial to use106.   

The descriptors with the strongest impacts on the acute toxicity value were found 
to be associated with: hydrophobic features, i.e., log Kow, log P, log D, Crippen log P, 
B08[C-C]; electrophilicity, i.e., ELUMO, Amax; polarizability, i.e., α, GATS1p; 
acceptors and donors of hydrogen bonds, i.e., Ca, NHdon Hacc, polar group descriptors; 
molecular size and branching, i.e., Vm, ElipVol, RDCHI; and polar surface area, i.e., 
TPSA. According to Gramatica et al. (2018)127, the nX (number of halogen atoms) and 
nBondsM (number of multiple bonds) descriptors, which are related to halogen 
substitution and unsaturation, increase the PBT behaviors of chemicals. The descriptors 
linked to the decrease in PBT index were MAXDP2 (maximal electrotopological positive 
variation) and nHDonLipinski (number of donor atoms for H bonds). These two 
descriptors encode the ability of a chemical to form electrostatic and dipole-dipole 
interactions, as well as hydrogen bonds in the surrounding environment. Hossain & Roy 
(2018)128 and Önlü & Saçan (2018)129 have developed QSAR models for Contaminants 
of Emerging Concern (CECs), including for instance pharmaceuticals, personal care 
products, pesticides, and surfactants. They have concluded that the toxicities of CECs are 
mostly related to hydrophobicity128,129, aromaticity128, polarizability, and molecular size 
and shape129. Ionization was shown to affect the bio-uptake and mechanisms of 
interaction with macromolecules at the target sites130,131. Descriptors with a low impact 
can also be collected by changing the objective of the work and adding connection words 
that allow to identify also the low-impact descriptors.  

Various species were used to obtain toxicity information. The most commonly used 
species in the QSAR and other types of studies were the following (with the most 
frequently used toxicological dose descriptors): the algal Tetrahymena pyriformis (T. 
pyriformis) (IGC50); crustacean Daphnia magna (D. magna) (EC50, LC50); and fish 
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Pimephales promelas (fathead minnow) (LC50). The T. pyriformis dataset is often 
preferred due to its size, molecular diversity, and high-quality data132. The interspecies 
quantitative structure–activity-activity relationships (QSAARs) can be regarded as a 
separate class of the QSAR models. These models are typically based on a small volume 
of data and have a linear functional form with very few predictor variables. Good 
performance (R2>0.7) was observed for the species mentioned above132–134. The fish-
based model was considered to be superior for predicting missing toxicity data (i.e., for 
T. pyriformis and D. magna)132.  

Identified toxicity alerts, trends, and patterns.  The extracted data suggest a 
consensus among researchers that acute toxicity is defined by the mode of toxicological 
action and the chemical characteristics135. The increased toxicity has often been reported 
to be correlated with increased lipohilicity101,136,137. The toxicities of the most-toxic 
compounds were related to both hydrophobicity and their behaviors as hydrogen-bonding 
or electron-acceptors (e.g., hydrophobic nitroaromatic compounds with halogen and 
amino substituents104,105,138–140). Khan et al. (2019)141 have concluded that if a 
hydrophobic group is necessary during the design of a drug compound, a higher polarity 
substitution should be preferred. Voutchkova et al. (2011)142 have suggested using a 
logPo/w of <2 and ∆E (LUMO-HOMO) > 9 eV to improve the probability of designing 
a compound with low aquatic toxicity. 

Specific functional groups, such as cyano135, isothiocyanate143, and halogens136,144–

146, enhance the toxicities of molecules. However, the extent of the increase appears to be 
dependent upon the molecular structure and position of the group in the molecule. A study 
carried out on T. pyriformis (IGC50)145 found that mono-isothiocyanate analogs with a 
branch hydrocarbon moiety, especially in the β-position, were less-toxic and less-
reactive. Di-isothiocyanates and the allyl- and propargyl derivatives were more-toxic and 
more-reactive than their 1-alkyl homologs147. A significant increase in toxicity was 
observed for compounds with a halogen in the α-position to the cyano group: C(#N)[CX4] 
[F, Cl, Br, I]145 and carbonyl group145,148. All halogens are reported to increase toxicity. 
In the case of the addition of non-activated halogens, the contribution to toxicity is 
equivalent to its hydrophobicity. However, the contribution to toxicity is much more 
significant if the halogen is activated (e.g., adjacent to an ester or other unsaturated 
bond)143,145. Analysis of the data for the bacterium Vibrio fisheri and ciliate T. pyriformis 
showed that branching, especially at the α- or β-carbon, inhibited the reactive center 
sterically, thereby decreasing the reactivities of the molecules143,149.   

Among the other toxicity alerts found in the literature were amino groups, the 
presence of additional (one or more) aromatic rings with highly electronegative 
substituents close to each other (5–7 Å apart)150, nitro group, nitrile, disulfide, phosphoric 
acid derivatives, pyrazolyl group, and formamide groups151, ring aromaticity, sulfur, 
aromatic esters and vinyl moiety104, double and triple bonds, and acrylate groups152, to 
name the most frequently encountered. As in the case of the halogenated aliphatics, the 
magnitude of the toxicity increase was dependent upon the position of the toxicity alert, 
i.e., a structural fragment having a direct influence on the toxicity of a molecule. For 
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example, in the substituted benzenes, the nature and position of the substituent in the ring 
defined the toxicity. Aromatic compounds with two hydroxyl and/or amino groups in the 
ortho and para orientation displayed increased toxicity owing to their ability to oxidize to 
more-toxic Michael-type acceptors145,153,154. The ortho-substituted phenols, anilines, and 
nitrobenzenes exhibited lower levels of toxicity than the corresponding meta and para-
substituted compounds139,155–158.  

Applicability domains based on the extracted knowledge. Affinity for a specific 
chemical class or MoA was often seen as a critical determinant for predicting and 
understanding chemical toxicity159–162, with MoA being more challenging to 
determine163. The most-covered applicability domain in MοA seems to be non-polar and 
polar narcosis, followed by specifically acting chemicals. Within the specifically acting 
chemicals domain, many studies have addressed chemicals with electro(nucleo)philic 
reactivity, weak acid respiratory uncouplers (WARUs), and anticholinesterase activity . 

The chemical classes that were most highly represented in the collected knowledge 
were nitrobenzene and phenol derivatives, pesticides, pharmaceuticals, and halogenated 
aliphatics. Other chemical classes, such as aliphatic alcohols, amines, amides, and acids, 
were represented to a lesser extent, probably because their toxicity effects are instead 
studied in the context of a particular MoA. Compounds with double and triple bonds, such 
as vinyl/allyl group-containing chemicals, nitriles, propargyl alcohols, carbonyl-
containing α,β-unsaturated chemicals, carbamates, and quinones have often been 
examined separately, likely due to their reactive nature110,146,164–166.  

Most of the knowledge collected under the applicability domain termed ‘global’ 
was related to the QSAR models100,120,121,125,163,167–175. Despite the clear benefits of 
assigning compounds to certain chemical classes or MoAs, the different behaviors of 
chemicals even within the same chemical category and the inability to assign some 
(especially newly developed or untested) chemicals to a specific MoA class176 motivated 
the researchers to build models that were not limited by chemical class or MoA. 

The academic field of aquatic toxicity is very diverse and extensive, both from the 
quantitative and qualitative perspectives. On the one hand, this diversity fosters the 
collection of relevant information, and is therefore useful for predictive modeling. On the 
other hand, the wide variety of descriptors used in the studies, variable quality of the 
toxicity data, and limitations linked to the applicability domain, to name some important 
factors, make it quite challenging to apply directly the knowledge without analyzing the 
available information and constraints associated with its use. Thus, mapping and 
evaluating the domain knowledge before its application are required to facilitate the 
navigation of the data. Based on this mapping, some strategies for using prior knowledge 
in predictive modeling are described in the next section. 
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4.2.2 Hybrid modeling  

The performances of the standard and hybrid (with the use of prior knowledge) 
kNN models are presented in Table 5. It is evident that the hybridization improves the 
coefficient of determination (R2) and Spearman’s correlation coefficient (Spr_m) for the 
standard descriptor-based models (DESC). The fingerprint-based models (FPNs), both 
standard and hybrid, show lower R2 and Spr_m coefficients. The lower R2 and Spr_m 
values can, to some extent, be explained by the PKM model being built on a different set 
of data before integration into the hybrid models H2 and H3.  

The heatmap in Figure 13 illustrates how closely the predictions made by the 
models follow the rules presented in Table 3. It is clear that the dataset toxicity values 
(Data) show better correlations with some of the rules but not with others. The rules 
related to ETA_EtaP_B (branching) and methoxy group (nC methoxy) are not supported 
by the data. Poor correlation of the data regarding the ethoxylates might imply a different 
behavior of the methoxy group- containing molecules compared with the remainder of 
the dataset. A low diversity of the dataset in terms of branching might result in the low 
correlation of toxicity values with the ETA_EtaP_B descriptor. The toxicity estimations 
made by the standard descriptor-based models (DESC_2 and DESC_8) show similar 
trends to the Data, while the fingerprint-based models (FPN_2 and FPN_7) show lower 
levels of compliance with the rules.  

The values for the hybrid models often follow the rules better than the toxicity 
values obtained through the standard models. A very low correlation of the H0 (dataset 
of molecules with MW<300) model predictions with amines containing a >N-CH3 
fragment might indicate that these amines are the high-molecular-weight molecules that 
exhibit weak correlations with the MW. 

The performance of the H1 models using a reduced set of predictions is similar to 
or slightly lower than the rest of the descriptor-based models and data. This may suggest 
that a limited number of descriptors can fully represent the molecules in the dataset. The 
involvement of the PKM model based on a GC method may explain the better correlation 
between the toxicities predicted by hybrid models H2 and H3 and specific fragments (i.e., 
number of carbon atoms in the amine- and methoxy group-containing molecules). 
However, models H2 and H3 exhibit worse performances in relation to considering the 
electronegativity and topology of molecules (lower correlations for GATS1p, TPSA, 
GATS1i, ETA_dEpsilon_A), as compared to the standard models. In summary, we show 
how the use of prior knowledge as a post-analysis step for the evaluation of an ensemble 
of models provides an additional measure with respect to model interpretability. This can 
be used along with traditional prediction accuracy measures towards the selection of a 
quantitative and qualitative multi-criteria model. A more detailed analysis of the results 
is given in Paper V.  
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Table 5. Summary of the performance of the models in terms of the coefficient of 
determination R2 and Spearman correlation coefficient Spr_m. DESC and FPN specify the 
descriptor-based and fingerprint-based models, respectively. H0, H1, H2 H3 are the applied types of 
hybridization. The designations _2 to _14 indicate the numbers of closest neighbors used for the 
prediction. 

Model R2 Spr_m 

DESC_2 0.83 0.94 

DESC_4 0.85 0.95 

DESC_5 0.85 0.95 

DESC _6 0.86 0.95 

DESC _8 0.86 0.95 

DESC_H0_3 0.95 0.98 

DESC_H0_7 0.95 0.98 

DESC_H1_2 0.92 0.98 

FPN_2 0.70 0.84 

FPN_5 0.74 0.86 

FPN_7 0.74 0.86 

FPN_12 0.73 0.86 

FPN_14 0.73 0.86 

FPN_H2_2 0.43 0.80 

FPN_H2_7 0.45 0.80 

FPN_H2_12 0.46 0.80 

FPN_H3_12 0.52 0.76 

FPN_H3_14 0.53 0.76 
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4.3 Process level impact assessment 

The impact assessment at the process level evaluated the performances of the phase-
change solvent-based systems in mitigating the emissions from two reference plants: a 
quicklime plant, producing 150 tonnes of CaO per day, and a 400-MW natural gas-fired 
power plant. The compositions of the flue gases differed with respect to their contents of 
CO2, O2, NOx, and SOx. The flue gas from the quicklime plant contained 3-times (mol-
%) more CO2 and significant amounts of SOx and NOx, 350 and 400 mg/Nm3, 
respectively, as compared to the flue gas exiting the power plant, which contained a much 
lower level of NOx (21 mg/Nm3) and no SOx but twice as much O2. Both the gases 
contained soot. 

CO2 capture processes with two selected solvents for the two reference plants were 
designed using a shortcut model of an absorption/desorption system for CO2 capture. The 
model provided an assessment of the reboiler duty required in the desorber177. The 
shortcut model accounted for the non-ideal behavior of the solvents by considering the 
vapor-liquid-liquid phase-equilibrium (VLLE) relation for each solvent. This relation, 
obtained from the experimental data collected during the pilot plant testing, was used in 
the model to calculate the energy requirements of the desorption based on the various 
process operating parameters, such as the mass flowrate, the solvent lean- and rich-
loading temperatures, and the pressure. The processes were optimized for the solvents 
based on minimization of the total cost of the process177. 

Two phase-change solvent alternatives were studied: a novel mixture of S1N and 
DMCA identified through the CAMD117; and the known phase-change solvent MCA118. 
S1N, which contains both primary and secondary amine groups, serves as an absorption 
activator in the solvent mixture, while DMCA acts as a promoter of regeneration117. 
During the phase-separation, hydrophilic S1N tends to accumulate in the water phase, 
while hydrophobic DMCA is concentrated in the organic phase.  

In the S1N+DMCA-based capture system, the CO2-rich flow contains significant 
amounts of water, whereas the CO2-lean phase, which is recycled back to the absorber, 
carries half the amount of CO2 and a small amount of water178. In comparison, the CO2-
lean flow of the MCA system consists of water and a very small amount of CO2. The 
S1N+DMCA and MCA solvents capture systems differ in terms of the placement of the 
liquid-liquid phase-separator. In the process that uses S1N+DMCA, the phase-separator 
is placed before the intermediate heat exchanger because the liquid-liquid phase-split 
occurs at 40°C. The phase-separator is placed after the intermediate heat exchanger in the 
MCA process because the phase-split appears at 90°C.  

Both the S1N+DMCA and MCA solvents showed beneficial performances in terms 
of rich loading and cyclic capacity compared to the performance of MEA. The main 
operating parameters of the capture systems are presented in Table 6. More details on the 
generation of the process flowsheets can be found in the work of Kazepidis et al. (2020)177 
and in Paper III. 
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Table 6. Critical operating parameters of the optimized systems178. Source: Paper III 

 S1N+DMCA 
Quicklime plant 

S1N+DMCA 
Power plant** 

MCA  
Quicklime plant 

MCA  
Power plant 

Solvent per CO2 
captured, kg/tonne 
CO2 

11000 10000 8000 14000 

𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿

, mol/l* 6.7 23.5 7.93 16.1 

Temperature in the 
absorber, °C 

45 45 73 71 

Solvent regeneration 
temperature, °C 

90 85 106 101 

Reboiler duty, 
MJ/tonne CO2 

2340 2083 2346 2091 

*Ratio of inlet flue gas flow to circulating liquid flow rate. 
**The lower solvent flow for the same plant case is a consequence of economic optimization of the 
flowsheets, which decreases the solvent flow in relation to its price, rather than the solvent properties. S1N 
is considerably more expensive than MCA. 
 
 

To perform the impact assessments of the designed capture units, the material flows 
derived via the optimization procedure178 were adjusted to incorporate important LCA 
and EHS aspects that were not tested experimentally, such as loss of the solvent due to 
degradation aerosol formation, and solvent reclaiming. Furthermore, the material flows 
of the auxiliary units (e.g., pre-treatment of the flue gas for the power plant case, washing 
of the treated flue gas, and wastewater treatment) were added.  

Degradation of the solvent molecules is one of the main causes of solvent loss 
during the capture process. Estimation of solvent loss early during the design of the 
process relies on the availability of experimental studies, which are limited for novel 
materials such as phase-change solvents. In the cases of MCA and DMCA, experimental 
tests have been conducted by Zhang (2013)118 to assess the oxidative and thermal 
degradation of the molecules. According to the results, MCA degrades oxidatively at a 
1.2–3.0-fold higher rate and thermally at a 2.0-fold higher rate than MEA. DMCA, which 
is a tertiary sterically hindered amine, is resilient to both oxidative and thermal 
degradation, degrading at lower rates than MEA. As there are no experimental data on 
the degradation behavior of S1N, the degradation behaviors of the structurally similar 
molecules MAPA and MCA were used for the analysis. Thus, the oxidative degradation 
rate were assumed to be between 3-fold and 10-fold higher than the degradation rate of 
the MEA.  

Allylamine and propyl formamide were taken as the main degradation products of 
S1N. Ammonia and other amines were assumed to be the degradation products of DMCA, 
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and ammonia and cyclohexanone oxime were assumed to be formed during the 
degradation of MCA. Based on these assumptions, different scenarios were assessed.   

The purge of the lean solvent stream going to the reclaimer was adjusted to keep 
the steady-state concentration of the non-volatile degradation products at less than 1.5 wt. 
% in the circulating flow. The reclaimer waste flows were estimated, assuming a 5% loss 
of the purged flow in the reclaimer179. To remove the volatile degradation products in the 
flow of the treated flue gas leaving the absorber, washing units were modeled with the 
help of the Aspen Plus simulation software. Acid and water washes were assumed for the 
MCA system to neutralize ammonia. Only the water wash was modeled for the 
S1N+DMCA system to capture allylamine, which is volatile and highly soluble in water. 
The flows in the washing section were estimated based on the assumption that aerosol 
formation would increase the volatile emissions by one order of magnitude. Still, most of 
these emissions were avoided due to the use of a NOx/SOx wet scrubber. The NOx/SOx 
scrubber was assumed only for the power plant flue gas that contain high levels of SOx 
and NOx.   

The detailed analysis of the possible degradation behaviors of the solvent 
molecules, the degradation scenarios considered, and all the introduced assumptions can 
be found in Paper III.  

4.3.1 LCA 

The results of the LCA performed for the carbon capture phase-change systems 
with the selected solvents are presented in Figure 14. The net CO2 savings ranged from 
0.33 to 0.47 kg of CO2 per kg of CO2 captured for the various investigated cases. It can 
be seen that the main contributor to the overall environmental impact for all the systems 
in all three life-cycle impact categories is the steam used for solvent regeneration, 
followed by the electricity required to deliver seawater for the cooling processes. 
However, the impacts of the remaining contributors vary depending on the system and 
the impact category. The flue gas of the power plant is characterized by a lower level of 
CO2 (3.6 vol%), as compared to the flue gas of the quicklime plant (12.3 vol%). This 
explains the almost 3-fold higher impact coming from the flue gas blower and the 
increased amount of cooling media needed to reduce the temperature of the flue gas to 
the temperature required for the absorption process (40°C).   

The lowest overall impact was observed for the MCA quicklime plant-based 
capture system, which has the smallest solvent loss due to degradation and the lowest 
solvent flow required to capture 1 tonne of CO2. The MCA quicklime plant system also 
performs best of all the cases when the highest solvent degradation rates are applied 
(Figure 14, dashed lines). In contrast, the S1N+DMCA system demonstrates the most-
severe variations in performance level, depending on the highest or lowest solvent 
degradation rates being applied for the assessment. For the case with the minimum 
degradation rate, the strongest impact is observed for the MCA power plant, which has 
the highest flow rate of solvent per tonne CO2, while the environmental performances of 
the other three systems are similar. The high rate of solvent degradation has a significant 
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effect on the impact of the S1N+DMCA system, whereby the worst-possible degradation 
rate is assumed to be 10-fold higher than the degradation rate of the conventional solvent 
MEA. In such a case, the increase in impact is explained by the increased loss through 
degradation, resulting in a higher flow rate of the makeup solvent. That places an 
additional burden on the reclaimer dealing with the products of the degradation, as well 
as the reclaimer waste treatment facilities.  

It can be concluded that the use of renewable electricity and industrial waste heat 
(i.e., at temperatures in the range of 90-100°C) can decrease the LCA impact of the phase-
change capture unit by 70%-90%. The remaining impact will be dominated by the 
degradation behaviors of the solvent molecules. The detailed analysis of the LCA results 
for various solvent degradation scenarios can be found in Paper III.  
  

 
 

Figure 14. Contributors to the LCA impact per tonne CO2 captured based on the scenarios with the minimum 
degradation rate of the solvent. Dashed lines indicate the increase in the impact when highest solvent 

degradation rate is applied. Adapted from Paper III.  
 

0
10
20
30
40
50
60
70

S1N+DMCA
quicklime

plant

S1N+DMCA
power plant

MCA
quicklime

plant

MCA
power plant

ReCiPe, pt

Max impact

Electricity for cooling (sea) water delivery

Waste water treatment

Washing section

NOx,SOx cleaning

Solvent makeup

Reclaiming

Steam for solvent regeneration

Electricity for blower

Electricity for pumps

0
100
200
300
400
500
600
700

S1N+DMCA
quicklime

plant

S1N+DMCA
power plant

MCA
quicklime

plant

MCA
power plant

GWP, kg CO2-eq

0
2000
4000
6000
8000

10000
12000

S1N+DMCA
quicklime

plant

S1N+DMCA
power plant

MCA
quicklime

plant

MCA
power plant

CED, MJ-eq



44 
 

4.3.2 EHS hazard assessment 

The solvent molecules, the auxiliary process chemicals, and various compounds 
formed during the degradation of the solvent molecules can be hazardous for both the 
plant personnel and the environment. The EHS hazard impact of the chemical is defined 
according to the inherent properties and abilities of the chemical to cause harm to human 
health and the environment. It is also determined by the chemical’s mass, which scales 
the inherent potential for hazard of the chemical. The contributions of every chemical 
present in the system to the potential of danger in some of the EHS subcategories are 
shown in Figure 15. It is clear that in terms of the mobility and water-mediated effects, 
the overall impact is dominated by the mass of the solvent molecules that are present in 
the system at the highest levels, compared to all the other chemicals. In comparison, the 
potential hazards associated with chronic toxicity and air-mediated effects are defined by 
an inherent property of the substances, namely the occupational exposure limits. That 
means that even low concentrations of some substances can be dangerous to human 
health.  

The high mobility of the MCA, due to its lower boiling point compared to DMCA 
and S1N, explains it having the strongest impact in the Safety category. It is followed by 
the impact of the DMCA molecule that has a similar boiling point, and that dominates the 
overall impact of the S1N+DMCA carbon capture system. However, the impact of the 
S1N+DMCA is considerably lower due to the lower amount of mobile DMCA solvent 
needed to capture 1 tonne of CO2 compared to MCA. Of the three solvent molecules, S1N 
has the highest boiling point, and exhibits the lowest hazard in terms of plant safety.  

The large mass flows of the phase-change solvents circulating in the capture system 
increase the risk of the solvents being emitted to water sources, thereby affecting aquatic 
life. Considerable contributions to water-mediated effects are observed for sodium 
hypochlorite (NaOCl) and sodium nitrite (NaNO2), substances that are present in the 
pretreatment of the quicklime plant flue gas. These chemicals are highly toxic to aquatic 
life.  

High chronic toxicities for humans are expected from the allylamine, ammonia, and 
nitrosamines formed during the degradation of the solvent molecules, as well as from 
auxiliary chemicals such as sulfuric acid (H2SO4), NaOCL, and sodium hydroxide 
(NaOH) if people are frequently exposed to these substances. The health category is 
independent of mass, so the impacts are based on the inherent toxicity property of these 
chemicals.  

The air-mediated effects rely on the chemicals’ mass and toxicity properties. Thus, 
significant contributions are observed for the DMCA and S1N solvent molecules. MCA 
does not appear in the air-mediated effects because of its much lower chronic toxicity 
(PEL = 235 mg/m3) for humans, as compared to DMCA (PEL = 5 mg/m3) and S1N (PEL 
= 10 mg/m3). The major impact is expected to come from nitrosamines due to their known 
harmful effects on humans, even at very low concentrations (2.39 mg/m3 23). The highest 
steady-state concentrations of nitrosamines are expected to be seen for the power plant-
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based capture systems due to their lower stripper temperatures and higher ratio of inlet 
flue gas flow to circulating liquid flow. The graphs for all the subcategories, together with 
the detailed analysis can be found in Paper III. The accumulation of nitrosamines was 
also separately studied in the exposure analysis part. 

 
 

  
 

a. Safety                                                             b. Health 
 

 
 

c. Environment 
 

Figure 15. Examples of the potential of danger per tonne of CO2 captured in the different categories (Health 
category uses a fixed mass of 1 kg) at NOx= 5 ppm. CO2, H2O, O2, and N2 molecules are considered non-

hazardous and are omitted. Note that the average values for the different scenarios are presented, and only 
chemicals with a contribution of more than 2% are shown. Source: Paper III 
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The multi-criteria assessment for the MCA and S1N+DMCA CO2 capture systems 
are presented in Figure 16. The impacts of the studied carbon capture systems are 
normalized to the impact of the conventional MEA-based system23,180 (Table 7). The 
phase-change systems show beneficial performances in terms of the reboiler duty, the H, 
E, CED, and the GWP values, as compared to the MEA. However, it should be noted that 
the results are a first indication; additional experimental data, especially regarding solvent 
degradation, are required to ensure a more-accurate comparison. 

 
 

 
 
 

Figure 16. Multicriteria comparison of the environmental, health, and safety impacts of the different solvent 
systems for CO2 capture, normalized to the impact of the conventional MEA system. 

 
 
Table 7.  MEA system impact data. All the values are per tonne of CO2 captured 

 Reboiler duty, 
GJ 

S H E CED, 
MJ-eq 

GWP, 
kg CO2-eq 

ReCiPe**, 
pt 

MEA* 
4.1 15,369.6 2.0 4,433.2 10,000.0 600.0 38.6 

*A conventional MEA (30 wt%)-based carbon capture system at a solvent regeneration temperature of 
120°C. The solvent-rich and lean-loadings are 0.49 and 0.2 mol CO2/mol solvent, respectively180.  
**ReCiPe value is calculated from the EI99 value based on the correlation88. 
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4.3.3 Exposure analysis 

If leakages or spills of the solvent occur within the capture plant, the solvent 
concentration in inhaled air might pose a danger to the workers’ health. The exposure 
analysis aims to determine whether leakages and spillage accidents pose a hazard to 
personnel working in close proximity to or farther away from the place of the accident. 
The analysis shows that for the MCA capture system, solvent leakages and spills up to 
1,000 mL do not pose a hazard to humans. However, special care should be taken with 
spills of larger volumes, especially spills of pure MCA (Figure 17a). For the S1N+DMCA 
solvent system, the analysis demonstrates that leakages of pure solvents or solvent 
mixtures do not result in airborne concentrations of DMCA or S1N that would raise 
concern. However, spills of pure DMCA and solvent mixtures leaving the stripper might 
pose an immediate danger to workers’ health (i.e., due to the resulting air concentrations 
of DMCA) when the spill volume is > 100 mL (Figures 17b-e).  

The estimation of the steady-state concentrations of nitrosamines in the circulating 
flow of the solvent show that nitrosamines can reach and exceed the safety threshold 
values (13.7-14.0 mM23,89), leading to a dangerous concentration of the nitrosamines in 
the working environment. For the power plant-based CO2 capture case, this can happen 
already at NOx concentrations of 5 ppm for the S1N + DMCA system and 10 ppm for the 
MCA system. The lower NOx limit for the power plant-based S1N+DMCA system can 
be explained by the higher gas-to-liquid ratio and the slightly lower stripper temperature. 
The detailed analysis can be found in Paper III.  

The process level assessment shows that phase-change solvent systems have the 
potential to act as a better alternative to the conventional amine solvent systems, due to 
the reduced reboiler duty and first indications of a lower impact on the environment in 
terms of short-term and long-term EHS hazard-related effects. Preference should be given 
to less-mobile solvents, which are clearly better with respect to plant safety. A possible 
drawback is that the process design of the capture systems with the phase-change solvents 
might promote the accumulation of carcinogenic nitrosamines, so their concentrations 
should be carefully monitored. In terms of life-cycle impact, the steam demand for solvent 
regeneration and the electricity required to deliver the cooling media are the main 
contributors to the impact. The use of renewable electricity and industrial waste heat (i.e., 
at 90°-100°C) can decrease the LCA impact of the phase-change capture plant by 70%-
90%. The remaining impact will be dominated by the degradation behaviours of the 
solvent molecules, which means that experimental tests to evaluate the degradation 
behaviours of the solvents and measures to reduce the degradation rates are of the utmost 
importance. 
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                                                                    a. 
 

 
                                 b.                                                             c. 
 
 

 
                         d.                                                          e. 

 
Figure 17. Air concentrations of MCA (a), and DMCA, and S1N (b-e) (in mg/m3) in the case of a spill of pure 

or mixed solvent. “Peak” indicates the concentration during the first seconds of the spill, NF is the 
concentration in the near- field zone (1 m from the center of the spill), and FF indicates the concentration in 

the far-field zone (10 m from the center of the spill). The circles marked with a red outline indicate values that 
exceed the safe limits. Source: Paper III. 
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5 Conclusions and outlook 
The overall aim of the thesis was to evaluate the environmental, health, and safety 

impacts of novel chemicals during early process design. The role of predictive modeling 
and streamlined techniques in the early impact assessment of chemical structures were 
also examined. This chapter summarizes the main conclusions drawn in response to the 
research questions posed, and provides some suggestions for future research.  

5.1 Main conclusions  

The first research question addressed the impact assessment of new molecular 
structures during molecular design to identify safer and more environmentally benign 
chemicals. Incorporating the impact criteria into the computer-aided molecular design 
(CAMD) of novel phase-change solvents for CO2 capture (simultaneous approach) led to 
the identification of a more-comprehensive set of candidate structures. The additional 
design criteria favored the OH- containing molecules, which are preferable from the 
sustainability point-of-view, although they are less-well-investigated in terms of their 
phase-change behaviors. A comparison was also made with the decomposed approach 
when the impact assessment was performed as a post-assessment of the CAMD-derived 
structural alternatives (without impacts criteria). Even though, during the decomposed 
approach the search was focused on CO2 capture-related properties that facilitate the 
identification of beneficial phase-change solvents, the simultaneous approach resulted in 
the identification of several structures similar to those discovered using the decomposed 
technique. In addition, new alternatives were proposed. Thus, the simultaneous 
application of the CAMD and integrated impact assessment is advantageous for the 
identification of a vast number of molecular candidates, including potential alternatives 
that warrant further research.   

The second research question was concerned with the problem of the data gaps 
that exist for novel or existing molecular structures with missing information on their 
properties. Predictive modeling can be applied to estimate the missing data when the 
empirical or commonly used prediction models, such as GC or QSARs, are unavailable. 
It is shown that despite the approximations introduced by predictive models that estimate 
some of the parameters required to perform the impact assessment, the ability of the 
CAMD to identify the top solvents is not affected. Furthermore, the predictive models 
can be advanced using domain knowledge. It is demonstrated that prior knowledge can 
be incorporated in various ways before, after, and during the property estimation.  This 
work shows that prior knowledge improves the performance of the predictive models for 
estimating the acute aquatic toxicity value in terms of either the prediction accuracy or 
compliance with previously observed trends derived from scientific publications.  

The extraction of knowledge from scientific articles was the topic of the third 
research question. It is shown here that the semi-automated procedure of knowledge 
extraction has the potential to reduce significantly the manual work required to process a 
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high number of scientific papers. The extracted knowledge in the field of acute aquatic 
toxicity appears to be diverse and extensive. Development of the knowledge classification 
and update schemes was found to be useful for systematic knowledge collection, 
evaluation, and determination of possible usage. The proposed knowledge extraction 
procedure can assist interdisciplinary research when rapid acquisition of knowledge is 
required. The knowledge extraction method and approaches for knowledge incorporation 
into predictive models are generic and can be used in many other knowledge domains. 
The knowledge extraction method can easily incorporate more resources (in tems of 
amount and type), while the classified knowledge allows for more hybrid alternatives, 
also depending on the machine learning approach used (i.e., neural networks and deep 
learning approaches, classification trees, random forest regression, etc.). 

The fourth and the final research question examined the potential impact and 
challenges associated with the employment of the newly designed molecules. The lack of 
information regarding the behaviors of the molecules represents the main challenge 
during the impact evaluation of the process with the novel compounds. Experimental data 
obtained during pilot plant testing often provide information for shortcut models to 
estimate only the main process parameters, such as the energy requirement for the 
desorption process. The behaviors of the chemicals that influence the safety, health, and 
environmental performance have to be estimated using predictive modeling techniques 
and scenario analyses. The evaluation of the potential impacts of the carbon capture 
systems with phase-change solvents, considering some aspects of early process design 
and streamlined assessment uncertainties, showed that the choice and the behavior of the 
solvent, which are strongly influenced by the system's operating conditions, can have a 
significant effect on the potential impact of the system. 

The predictive modeling is proven to be useful for closing the data gaps that are 
increasingly common in early impact assessments of chemicals. Together with 
streamlined techniques, the tool guides the selection of safer chemical alternatives and 
process designs. Ultimately, the early assessment techniques, assisted by advances in 
machine learning, play an important role in transitioning to the use of chemicals that are 
sustainable by design.  

5.2 Future work 

The results of early impact assessments that apply predictive and streamlined 
techniques are intrinsically uncertain. The level of uncertainty could be reduced by 
targeted experimental work, method refinement, and increasing the level of detail. 
Experimental work that focuses on the behaviors of phase-change solvent molecules in 
terms of degradation and emergence of hazardous substances during the long-term 
operation of the carbon capture systems would validate the results of the process level 
assessment.  

Different types of predictive models that apply various algorithms and modes of 
knowledge integration can be explored. The models developed in this work were 
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primarily focused on acute aquatic toxicity and a limited range of chemical species. It 
would be interesting to study the knowledge extraction and utilization applied to other 
chemical classes and domains.   

The procedure for knowledge extraction could be enhanced by improving the text-
mining approach to reduce even further the need for the manual processing. An additional 
pretraining step might be introduced to generate the text-mining models that are directed 
towards extracting relevant pieces from the articles pertaining to the specific domain. The 
method can also be extended to allow the processing of the images and tables found in 
the papers.  

Further research is required to explore an iterative approach to optimal integration 
between the streamlined techniques and experimentation when the streamlined methods 
highlight specific domains and where more experimentation is needed, and thereafter, the 
new data are used to update and improve the streamlined techniques.  
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