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A B S T R A C T

We formulate in this paper a multiscale numerical framework that handles small-scale bubble dynamics in
turbulence. Our framework involves bubbles with arbitrary density ratios with the carrier phase. We use
a Moving Reference Frame method that follows a bubble to deal with a fast rising of bubbles present at
high density ratios between the phases. We use a Proportional Integral Derivative controller to handle an
additional acceleration term in the governing equations that stems from the change of a coordinate system
from a fixed to a non-inertial one. Our framework accounts for the fact that the dynamics of bubbles are
significantly influenced by the unsteadiness of the small-scale turbulent liquid fluctuations that modify the
bubble shapes and alter their motion. In addition, we improve and speed up, with at least two orders
of magnitude in computational time, the numerical framework recently proposed by Milan et al. (2020).
The developed numerical framework can capture processes occurring at time scales even smaller than the
Kolmogorov times. It can be applied to droplets, bubbles or particle systems in both laminar and turbulent
flows, using any general DNS technique that handles two-phase flows.
1. Introduction

Predicting the dynamics of bubbly flows is still an unsolved problem
in fluid mechanics (Magnaudet and Eames, 2000) even in the absence
of phase transitions. The main challenges are due to their multiscale na-
ture, where the phenomenologies occurring at the smallest scales of the
order of a bubble diameter (micro-/millimeters) affect the macroscales
of the order of an industrial apparatus (meters) and vice versa. This
huge scale separation cannot be captured even with the most advanced
experimental or numerical techniques. Consequently, the design and
scale-up of large industrial systems like bubble column reactors are ex-
traordinarily complicated and based on empirical correlations (Conesa,
2019).

The classic modeling approach in multiphase flows is based on a
bottom-up hierarchical strategy (van der Hoef et al., 2008) to
parametrize the physical phenomenologies occurring at different length
scales starting from the small to the large scales of the system using
different and separate approaches. In particular, the small-scale simu-
lations resolve the dynamics and deformation of every single bubble in
an Eulerian grid (bubble-resolved DNS) (Bunner and Tryggvason, 1999;
Dijkhuizen et al., 2010; Tripathi et al., 2014; Cano-Lozano et al., 2016)
in simple steady configurations such as quiescent or linear shear flows.
This microscopic approach (grid size much smaller than the bubble
diameter) requires a high computational cost, and for this reason, only
domains of the order of several bubble diameters can be simulated.
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The main objective of the microscopic approach is to increase our
physical understanding and to formulate empirical models, e.g. interfa-
cial force coefficients, breakup and coalescence criteria, bubble shape
and deformation characteristics, that can be used for larger-scale sim-
ulation approaches like Eulerian–Lagrangian (EL) or Eulerian–Eulerian
(EE) frameworks (Delnoij et al., 1999; Ferrante and Elghobashi, 2004;
Sardina et al., 2019; Jareteg et al., 2017; Panicker et al., 2020).
However, the bottom-up hierarchical modeling strategy does not con-
sider the complex multiscale coupling that exists in multiphase flows.
The small-scale dynamics cannot be approximated as a steady flow
since, in reality, unsteady intermittent turbulent fluctuations are still
present even at the smallest turbulent scales (Kolmogorov scale) and
affect the bubble shape, deformation and dynamics. Given the current
computational limitations, there is a need to develop such numerical
methodologies where the bubbles are subjected to realistic turbulent
fluctuations and shear rates, while preserving the ability of the frame-
work to fully resolve bubble deformation occurring at scales smaller
than their diameter.

Recently, Milan et al. (2020) developed a multiscale approach to
study droplet dynamics and deformation in isotropic turbulence when
the droplet diameter is of the same order or smaller than the smallest
turbulent length scale. In particular, their methodology computes an
unsteady external flow field via a pseudo-spectral simulation, describ-
ing the trajectory of a passive tracer in isotropic turbulence, and use
vailable online 31 January 2022
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this external flow as boundary conditions in a Lattice-Boltzmann solver
containing a single droplet. In this way, the microscopic scale dynamics
of the droplet are coupled with the macroscopic properties of the
underlying turbulent flow. Their results show an excellent agreement
between the predicted droplet deformation and previous theoretical
models. This work constitutes a first fundamental step towards coupled
multiscale simulations of multiphase flows. Nevertheless, the approach
has two constraints: (1) the turbulent signals extracted following a
passive tracer are different from the ones calculated following rising
bubbles or falling droplets at finite relaxation times, since these objects
tend to preferentially sample high-vorticity (bubbles) or high-strain
rate (droplets) regions (Toschi and Bodenschatz, 2009), (2) the droplet
and the carrier fluid share the same density. While the first issue can
be trivially fixed by extracting the turbulent velocity and shear rates
following a Lagrangian bubble or droplet, the second one regarding
density ratios larger or smaller than unity and the consequent effect
of gravity is a considerable challenge to the development of a general
multiscale approach.

For example, rising bubbles exhibit a fascinating variety of trajec-
tory behaviors, some of which develop over relatively long spatial and
temporal scales. (Cano-Lozano et al., 2016) performed DNS simulations
of the rise of a single bubble in a quiescent liquid and classified bub-
ble motions into rectilinear, zigzagging, spiraling and chaotic regimes
depending on the problem parameters. For the bubble path to develop
into those regimes, the required size of the computational domain was
at least 128 bubble diameters. The presence of shear in the continuous
phase introduces additional requirements in the computational domain.
Since the shear flow field advects the bubble, the latter travels further
in the transversal direction than does a corresponding bubble in a
quiescent liquid, reaching the lateral boundaries of the domain. The
required domain size is challenging to determine a priori and leads
to unfeasible DNS simulations in case of fast-rising bubbles (excessive
vertical lengths) or high-shear flows (excessive transversal lengths).
Moreover, the initial domain size is problematic to select if we want to
investigate the breakup process where the breakup location and time
are unknown.

In this work, we extend the multiscale approach by Milan et al.
(2020) to bubbles with arbitrary density ratios between the phases
(our methodology can also be applied to arbitrary density droplets).
In particular, the challenge induced by a different density ratio and
coupled with the presence of the gravitational force has been solved
by adopting a change of a coordinate system to a frame moving one
with a bubble. The same change of coordinates was used in the seminal
paper by Maxey and Riley (1983) to analytically derive the equation of
motion of a rigid particle in Stokes flow.

The change of the coordinate system into a moving reference frame
(MRF) introduces an additional acceleration term in the Navier–Stokes
equations that is proportional to the bubble acceleration. The MRF
technique can be implemented in different ways, for example, following
a single bubble or droplet by updating the velocity of the MRF using the
particle volume-averaged velocity (Lörstad and Fuchs, 2004; Lörstad
et al., 2004). Also Rusche (2002) studied the dynamics of a single
bubble using a reference frame moving with the bubble. The velocity
of that MRF was updated based on the bubble displacement from its
initial relative position combined with relaxation factors.

Updating the velocity of the MRF with the bubble velocity intro-
duces a numerical drift of the bubble from its initial position. The
reason is that an explicit update of the MRF velocity introduces a small
difference between the bubble and MRF velocities that results in a
bubble displacement that accumulates over time. Moreover, updating
the MRF velocity based on the bubble displacement may cause highly
varying and even unstable velocity corrections during high bubble
accelerations. A different approach was used by Fan et al. (2021)
and Kekesi et al. (2016) that studied bubble and droplet deformation
and breakup dynamics using DNS simulations and kept the fluid par-
2

ticle in the center of the domain by applying an artificial body force
on the particle. In the former study, a Proportional Integral Derivative
(PID)-controller was used to specify the body force. The body force acts
on the dispersed phase and balances the drag and lift forces induced by
the flow, thus keeping the moving object stationary in the domain.

We succeeded to combine the MRF technique and the PID-controller
approach into a numerical method that allows for efficient multiscale
DNS simulations in the reference frame of the bubbles. This method
reduces the required size of the computational domain and thus reduces
the computational cost. In our method, we employ a PID-controller,
but instead of applying an artificial force on the bubbles, we uniformly
accelerate the entire computational domain so that the domain follows
the motion of the bubbles. The PID controller determines the MRF
acceleration based on the bubble displacement (in the P and I parts)
and the relative bubble velocity (in the D part). This approach gives
superior performances in minimizing artificial numerical drifts even
in the presence of large bubble accelerations induced by the external
turbulent flow.

In addition, we have increased the computational speed of the
methodology of Milan et al. (2020) by at least two orders of magni-
tude, using additional body forces proportional to the time derivatives
of the boundary conditions and avoiding computationally expensive
sub-iterations in the algorithm.

A detailed description of the modeling setup, assumptions and
numerical algorithm is provided in Section 2. The multiscale approach
for single-phase flows is validated in Section 3.1, while the ability of
the PID-controller and the MRF technique to correctly describe the
dynamics of rising bubbles in simple laminar flows and in a number
of situations (e.g. coalescence and breakup of bubbles) is evaluated in
Sections 3.2–3.4 and in Appendix B. Section 3.5 describes the motion
of a deformable bubble in a turbulent flow field and, finally, Section 4
presents the conclusions.

2. Description of the numerical framework

Our methodology couples two fluid dynamics solvers. In particular,
we study the detailed dynamics and deformation of bubbles at the mi-
croscale using a Volume of Fluid (VOF) solver with unsteady boundary
conditions sampled from a Lagrangian bubble trajectory in an external
turbulent field. This multiscale coupling can capture the large-scale
characteristics of turbulence and simulate a more realistic flow around
the bubble whose size is comparable to or smaller than the Kolmogorov
scale 𝜂 = (𝜈3∕𝜀)1∕4, where 𝜈 is the liquid kinematic viscosity and 𝜀 is
the turbulent kinetic energy dissipation rate. A simple illustration of
the algorithm is presented in Fig. 1 where an instantaneous vorticity
field of the macroscale simulation is plotted on the left side. In the
same figure, the right side shows an instantaneous configuration of
a deformed rising bubble in the microscale framework. The turbulent
macroscale vorticity field has been obtained using a pseudo-spectral
Eulerian–Lagrangian solver. The microscale VOF result includes the
streamlines of the flow field surrounding the particle with contours
proportional to the intensity of the vorticity vector. The two different
solvers and the coupling algorithms are presented in the following two
sections.

2.1. Macroscale framework–Eulerian-Lagrangian (EL) solver and genera-
tion of the external turbulent flow

The external turbulent flow (or macroscale flow) is generated using
a pseudospectral solver that simulates homogeneous isotropic turbu-
lence. Assuming a low bubble volume fraction, the liquid velocity
satisfies the standard incompressible Navier–Stokes equations:

𝜕𝑢𝑒𝑖
𝜕𝑥𝑒𝑖

= 0 , (1)

𝐷𝑢𝑒𝑖
𝐷𝑡

=
𝜕𝑢𝑒𝑖
𝜕𝑡

+ 𝑢𝑒𝑗
𝜕𝑢𝑒𝑖
𝜕𝑥𝑒𝑗

= −1
𝜌
𝜕𝑝𝑒

𝜕𝑥𝑒𝑖
+ 𝜈

𝜕2𝑢𝑒𝑖
𝜕𝑥𝑒𝑗𝜕𝑥

𝑒
𝑗
+ 𝑓𝑖 (2)



International Journal of Multiphase Flow 150 (2022) 103976N. Hidman et al.
Fig. 1. Simplified sketch of the multiscale approach with instantaneous configurations of the macroscale (left side) and the microscale (right side) frameworks. The two solvers are
coupled with the turbulent flow field characteristics extracted in the macroscale simulation following a spherical Lagrangian bubble (center). The contour levels of all subfigures
are proportional to the magnitude of the liquid vorticity.
where 𝑡 and 𝑥𝑒𝑖 indicate the time and the spatial coordinate vector, 𝑢𝑒𝑖
and 𝑝𝑒 are the external liquid velocity and pressure, 𝜌 is the liquid
density, and 𝑓𝑖 is a random forcing field necessary to maintain the
turbulent velocity in a statistically steady state. We assume periodic
boundary conditions in the three directions and a cubic computational
domain. The equation system (1)–(2) is solved in the Fourier space
employing a fast Fourier transform. The nonlinear terms are evaluated
in physical space using the classic 2/3 rule to avoid any aliasing
error. Time integration is performed with a third-order, low-storage
Runge–Kutta method where the diffusive terms are analytically calcu-
lated while an Adam–Bashforth scheme is employed for the nonlinear
terms. The stochastic forcing is evaluated in the Fourier space and acts
isotropically on the first shell of wave vectors. The forcing amplitude
is constant and the field is delta-correlated in time and uniformly
distributed in phase and directions. The bubbles are evolved in a
Lagrangian framework and are subjected to the following forces: added
mass, pressure gradient, drag, buoyancy, gravity and lift. The bubble
equation of motion reads:

𝑑𝑥𝑏𝑖
𝑑𝑡

= 𝑣𝑏𝑖 , (3)

𝑑𝑣𝑏𝑖
𝑑𝑡

= 𝛽
𝐷𝑢𝑒𝑖
𝐷𝑡

+
𝑢𝑒𝑖 − 𝑣𝑏𝑖

𝜏𝑏
𝑓 (𝑅𝑒𝑏) + (1 − 𝛽)𝑔𝛿𝑖3 − 𝜖𝑖𝑗𝑘(𝑣𝑏𝑗 − 𝑢𝑒𝑗 )𝜔𝑘, (4)

where 𝑥𝑏𝑖 is the bubble position, 𝛽 = 3𝜌∕(𝜌 + 2𝜌𝑏) is the density ratio
with 𝜌𝑏 the bubble density, 𝜏𝑏 = 𝑑2𝑏∕8𝜈𝛽 is the bubble relaxation time
where 𝑑𝑏 is the bubble diameter, 𝑓 (𝑅𝑒𝑏) a nonlinear drag coefficient
depending on the bubble Reynolds number 𝑅𝑒𝑏 = |𝑢𝑖 − 𝑣𝑏𝑖 |𝑑𝑏∕𝜈, 𝑔 the
gravitational acceleration, 𝛿 and 𝜖 are the Kronecker delta and Levi-
Civita symbols, 𝜔 is the fluid vorticity at the particle position. The
nonlinear correction for the drag is given by the following expression:

𝑓 (𝑅𝑒𝑏) = 1 +
𝑅𝑒𝑏

8 + 1
2

(

𝑅𝑒𝑏 + 3.315
√

𝑅𝑒𝑏
) , (5)

found by Mei and Klausner (1992) and employed in Spandan et al.
(2016). We assume the added mass and the lift coefficient equal to
3

0.5. The same Runge–Kutta scheme employed for the Eulerian solver
is used to integrate the bubble equation of motion. The liquid velocity
and vorticity components at the bubble positions are calculated with a
second-order interpolation scheme. The same interpolation scheme is
employed to extract the unsteady liquid velocities 𝑢𝑒,𝑏𝑖 (𝑡) and velocity
gradients 𝜕𝑢𝑒,𝑏𝑖 ∕𝜕𝑥𝑒𝑗 (𝑡) along the bubble trajectory that will be used as
boundary conditions for the microscopic approach. The spatial resolu-
tion of the liquid phase must be fine enough to capture even the flow
velocity gradients. More numerical details on the Eulerian–Lagrangian
(EL) solver can be found in Sardina et al. (2015) for droplet-laden
and Sardina et al. (2019) for bubble-laden flows.

2.2. Microscale framework–volume of fluid solver in the MRF

To solve the microscale multiphase problem, we employ the Volume
of Fluid (VOF) numerical approach. In this framework, the position of
the two phases is tracked using a volume fraction field 𝑐. The volume
fraction field is either one if the phase is present or zero if the other
phase is. The governing equations are the incompressible Navier–Stokes
equations together with the advection of the volume fraction according
to

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 , (6)

𝜌
(

𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

)

= 𝜌𝑔𝑖 −
𝜕𝑝
𝜕𝑥𝑖

+ 𝜕
𝜕𝑥𝑗

(

𝜇
(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

))

+ 𝜎𝜅𝛿𝑆𝑛𝑖 , (7)
𝜕𝑐
𝜕𝑡

+
𝜕(𝑐𝑢𝑖)
𝜕𝑥𝑖

= 0 (8)

where 𝑢𝑖 and 𝑔𝑖 are the microscale fluid velocity and gravitational
acceleration, 𝜎 is the surface tension, 𝛿𝑆 is the Dirac distribution
function that localizes the surface tension term at the interface and 𝜅
and 𝑛𝑖 are the curvature and the normal vector of the interface. The
density 𝜌 and viscosity 𝜇 are defined as

𝜌(𝑐) = 𝑐𝜌 + (1 − 𝑐)𝜌 , (9)
𝑙 𝑔
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𝜇(𝑐) =
(

𝑐
𝜇𝑙

+ 1 − 𝑐
𝜇𝑔

)−1
(10)

here the symbols 𝑙 and 𝑔 indicate the liquid and the gas phases. The
iscosity is computed using a harmonic mean that is in general more
ccurate for interfaces with a continuous shear stress that we aim at
esolving with the current framework (Tryggvason et al., 2011).

In this work, we mostly focus on a single bubble rising in a liquid.
his problem is completely described by the following four dimen-
ionless parameters (Tripathi et al., 2014): the Galilei number 𝐺𝑎 =
𝑙
√

𝑔𝐷𝐷∕𝜇𝑙 that relates buoyancy to viscous forces, the Eötvös number
𝑜 = 𝜌𝑙𝑔𝐷2∕𝜎 that relates buoyancy to surface tension forces, the den-

ity ratio 𝜌𝑟 = 𝜌𝑙∕𝜌𝑔 and the dynamic viscosity ratio 𝜇𝑟 = 𝜇𝑙∕𝜇𝑔 . Here,
is the spherical equivalent bubble diameter and for all cases in this

aper (unless otherwise stated) we use the density and viscosity ratios
f 𝜌𝑟 = 1000 and 𝜇𝑟 = 100 that are similar to a water-air system. If the
ubble is rising in a shear liquid flow, also the dimensionless shear rate
s introduced 𝑆𝑟 = 𝜔𝐷

√

𝑔𝐷
, where 𝜔 is the shear rate of the surrounding

liquid flow. In the remainder of this work (unless otherwise stated), all
variables are made non-dimensional by the diameter 𝐷, gravitational
acceleration 𝑔, the surrounding liquid density 𝜌𝑙 and the liquid viscosity
𝜇𝑙: 𝑥∗𝑖 = 𝑥𝑖∕𝐷, 𝑢∗𝑖 = 𝑢𝑖∕

√

𝑔𝐷, 𝑡∗ = 𝑡∕
√

𝐷∕𝑔, 𝜌∗ = 𝜌∕𝜌𝑙, 𝜇∗ = 𝜇∕𝜇𝑙,
𝑝∗ = 𝑝∕(𝜌𝑙𝑔𝐷), 𝑔∗𝑖 = 𝑔𝑖∕𝑔 and 𝜅∗ = 𝜅𝐷.

.3. Non-inertial Moving Reference Frame (MRF)

To solve the problem in a reference frame that moves with the
ubble, we make the following change of variables:

̂∗𝑖 = 𝑥∗𝑖 − 𝑥∗𝑚𝑟𝑓,𝑖 , (11)

𝑢̂∗𝑖 = 𝑢∗𝑖 − 𝑢∗𝑚𝑟𝑓,𝑖 , (12)

𝑡∗ = 𝑡∗ (13)

here 𝑥̂∗𝑖 represents the non-dimensional relative position in the MRF
nd 𝑢̂∗𝑖 is the relative velocity within the MRF, 𝑥∗𝑚𝑟𝑓,𝑖 and 𝑢∗𝑚𝑟𝑓,𝑖 are
he absolute position and velocity of the MRF. An illustration of the
oordinate systems is shown in Fig. 2. Omitting the asterisks, the
on-dimensional governing equations for the flow in the MRF become:

𝜕𝑢̂𝑖
𝜕𝑥̂𝑖

= 0 , (14)

𝜌
(

𝜕𝑢̂𝑖
𝜕𝑡

+ 𝑢̂𝑗
𝜕𝑢̂𝑖
𝜕𝑥̂𝑗

)

= 𝜌
(

𝑔𝑖 − 𝑎𝑚𝑟𝑓,𝑖
)

−
𝜕𝑝
𝜕𝑥̂𝑖

+ 1
𝐺𝑎

𝜕
𝜕𝑥̂𝑗

(

𝜇
(

𝜕𝑢̂𝑖
𝜕𝑥̂𝑗

+
𝜕𝑢̂𝑗
𝜕𝑥̂𝑖

))

+
𝜅̂𝛿𝑆𝑛𝑖
𝐸𝑜

, (15)

𝜕𝑐
𝜕𝑡

+
𝜕𝑐𝑢̂𝑖
𝜕𝑥̂𝑖

= 0 , (16)

with the notable addition of the term representing the acceleration
of the MRF in the momentum Eq. (15). For an equal density case
between the two phases as in Milan et al. (2020), the additional
acceleration term can be included in a modified pressure term because
the momentum equations are invariant under rectilinear acceleration
of the frame (extended Galilean invariance, Pope (2001)).

This system of partial differential equations is solved using the open-
source code Basilisk on cell-centered Cartesian grids with the option to
use a tree-based adaptive grid refinement technique (Popinet, 2015). A
time-splitting projection method is used with standard, second-order,
numerical schemes for the spatial gradients, and the velocity advec-
tion term is estimated with the Bell–Colella–Glaz second-order unsplit
upwind scheme (Popinet, 2003). With this approach, the problem is
reduced to a Helmholtz–Poisson equation for the pressure and the
velocity components and a Poisson problem for the pressure correction.
These equations are solved using a multilevel solver on the tree-based
grid-structure. A second-order staggered discretization in time is used
for the scalar and velocity fields so that the velocity is computed at
time 𝑛+ 1 and the scalar fields at 𝑛+ 1∕2. The advection of the volume
4

Fig. 2. Illustration of the moving reference frame with the centered bubble and the
absolute and relative coordinate systems. The 𝑥𝑖 and 𝑢𝑖 represent the spatial coordinates
and velocity field in the MRF. The external velocity field 𝑉𝑖 is defined in an absolute
eference frame and this field is imposed on the MRF as described in Section 2.5.

raction is achieved with the Volume of Fluid piecewise-linear interface
econstruction method that, at each computational time step and a cell
ontaining the interface, reconstructs the advected interface by a line
n 2D or a plane in 3D (Scardovelli and Zaleski, 1999). The advection
f the volume fraction is then performed with a geometrical flux esti-
ation based on the reconstructed interface (Popinet, 2015). Because

f the reconstruction, a sharp interface is maintained throughout the
imulations. The surface tension term is handled using a balanced-
orce approach that ensures that the pressure gradient and volume
raction gradients are discretized consistently. The interface curvature
s estimated using a generalized height-function method in cell stencils
t the interface (Popinet, 2015) that provides accurate estimates of the
urvature.

.4. PID-controller

The aim of the MRF is to keep the bubble at its initial relative
osition. This can be achieved in several ways. In this work, the
cceleration of the MRF is updated at every time step using a PID-
ontroller where the error value 𝑒𝑖 is the distance between the bubble
elative center of mass 𝑥̂𝑛,𝑏𝑖 and its initial relative position 𝑥̂0,𝑏𝑖 . The error

n the derivative part
𝑑𝑒𝑛𝑖
𝑑𝑡

is thus the relative velocity of the bubble. The
MRF acceleration and velocity are determined as

𝑎𝑛+1𝑚𝑟𝑓,𝑖 = 𝐾𝑃 ,𝑖

(

𝑒𝑛𝑖 +
1
𝑇𝐼,𝑖 ∫

𝑡𝑛

0
𝑒𝑖(𝑡′)𝑑𝑡′ + 𝑇𝐷,𝑖

𝑑𝑒𝑛𝑖
𝑑𝑡

)

, (17)

𝑢𝑛+1𝑚𝑟𝑓,𝑖 = 𝑢𝑛𝑚𝑟𝑓 ,𝑖 + 𝑎𝑛+1𝑚𝑟𝑓,𝑖𝛥𝑡 , (18)

𝑒𝑛𝑖 = 𝑥̂𝑛,𝑏𝑖 − 𝑥̂0,𝑏𝑖 , (19)

where 𝐾𝑃 ,𝑖, 𝑇𝐼,𝑖 and 𝑇𝐷,𝑖 are the 𝑖th component of the proportional,
integral and derivative coefficients, respectively. In this work, the
heuristic, and systematic, Ziegler–Nichols (Ziegler et al., 1942) tuning
method is used to obtain the coefficients. Generally, the method starts
by setting the proportional, integral and derivative gains to zero (𝐾𝑃 ,0 =
0, 𝑇𝐼,0 = ∞, 𝑇𝐷,0 = 0). Then, the proportional gain 𝐾𝑃 is increased
until an ultimate gain 𝐾𝑈 is reached where the output signal 𝑎𝑚𝑟𝑓 (𝑡)
displays stable and consistent oscillations. The oscillation period is
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defined as 𝑇𝑈 and, together with 𝐾𝑈 , these parameters determine
appropriate coefficients according to 𝐾𝑃 = 𝐾𝑈∕3, 𝑇𝐼 = 𝑇𝑈∕2, 𝑇𝐷 =
𝑈∕3 (McCormack and Godfrey, 1998).

Instead of starting from 𝐾𝑃 ,0 = 0 in the Ziegler–Nichols method,
e determine an approximate value for 𝐾𝑃 used as an improved

tarting point. For this estimation, we assume that the maximum nec-
ssary output signal is the bubble acceleration just after initialization,
ax(𝑎𝑚𝑟𝑓 (𝑡)) ≈ 𝑎𝐵(𝑡 = 0+). At this instant, the relative velocity is almost

ero so that the buoyancy and added mass forces govern the bubble
cceleration. For bubbles, the density ratio 𝜌𝑟 ≫ 1 and the added mass
oefficient 𝑐𝐴𝑀 = 1∕2 give 𝑎𝐵(𝑡 = 0+) ≈ 2𝑔 (for droplets 𝜌𝑟 ≪ 1 and
𝐵(𝑡 = 0+) ≈ 𝑔). Neglecting the integral and derivative parts by setting
𝐼,𝑖 = ∞, 𝑇𝐷,𝑖 = 0 and 𝑎𝑚𝑟𝑓 = 𝑎𝐵 in Eq. (17), gives 𝐾𝑃 ,𝑖 = 𝑎𝐵∕𝑒𝑖.

Even during the high initial bubble acceleration we want the bubble
isplacement 𝑒𝑖 < (𝐷∕100). For bubbles, a reasonable starting point
hen becomes 𝐾𝑃 ,0 > 2𝑔∕(𝐷∕100) and for droplets 𝐾𝑃 ,0 > 𝑔∕(𝐷∕100).
n this work, we study bubbles with 𝐷 = 𝑔 = 1 (in nondimensional
nits) which gives 𝐾𝑃 ,0 ∼ 200 as a reasonable starting point. Using this
tarting point in the Ziegler–Nichols method, we got the parameters
𝐾𝑃 ,𝑖 = 330, 𝑇𝐼,𝑖 = 0.2 and 𝑇𝐷,𝑖 = 0.13) that gave stable regulations and
mall bubble displacements for all our simulation cases in both 2D and
D.

Alternatively, the PID-controller can calculate a correction to the
RF velocity 𝑢𝑛+1𝑚𝑟𝑓,𝑐𝑜𝑟𝑟,𝑖 so that the updated velocity is 𝑢𝑛+1𝑚𝑟𝑓,𝑖 = 𝑢𝑛𝑚𝑟𝑓 ,𝑖 +

𝑢𝑛+1𝑚𝑟𝑓,𝑐𝑜𝑟𝑟,𝑖. With this approach, the acceleration of the MRF becomes
𝑎𝑛+1𝑚𝑟𝑓,𝑖 = 𝑢𝑛+1𝑚𝑟𝑓,𝑐𝑜𝑟𝑟,𝑖∕𝛥𝑡. Thus, the MRF acceleration becomes large for
the cases where the correction velocity is large and, especially, the
variable time step size 𝛥𝑡 is small. The velocity-correction approach was
also tested and, indeed, gave less stable regulations for the cases where
the time step size varied significantly. The proposed acceleration-based
method in Eqs. (17) and (18) ensures that the change of the MRF
velocity (𝑢𝑛+1𝑚𝑟𝑓,𝑖 − 𝑢𝑛𝑚𝑟𝑓 ,𝑖) → 0 when 𝛥𝑡 → 0. This property provides a
smooth acceleration of the MRF and hence a smooth acceleration of the
velocity field 𝑢𝑖 inside the domain. The same property does not hold for
the velocity-correction method which can potentially result in highly
varying accelerations between discrete time steps. In all the cases in
this work we employ the acceleration-based method.

2.5. Imposing external velocity field and boundary conditions

The velocity of the MRF is updated at every time step by uniformly
applying the MRF acceleration from Eq. (17) into the momentum
Eq. (15) and by updating all Dirichlet velocity conditions at the inlet
boundaries as

̂𝐵𝐶,𝑖(𝑥𝑗 , 𝑡) = 𝑉 (1)
𝑖 (𝑥𝑗 , 𝑡) − 𝑢𝑚𝑟𝑓,𝑖(𝑡) , (20)

here 𝑉 (1)
𝑖 is the linearized external liquid flow field.

The coupled algorithm uses the unsteady liquid velocity and gra-
ient tensor at the bubble position extracted from the macroscale
imulations as boundary conditions in the microscale VOF solver. The
iquid velocity at the bubble position in the macroscale simulations
an be evaluated using an interpolation scheme along the bubble
rajectory for dilute suspensions (one-way coupling). For dense suspen-
ions (two-/four-way coupling), the evaluation is slightly more complex
ecause the feedback force induced by each bubble to the carrier phase
odifies the flow, generating a self-induced velocity disturbance. The
ndisturbed velocity along the bubble trajectory must be corrected
y removing the self-induced disturbance generated by the bubble
tself, and several algorithms have been developed in the last decade
ddressing this specific question (Gualtieri et al., 2015; Horwitz and
ani, 2018; Balachandar et al., 2019; Evrard et al., 2020).

For length scales comparable to the Kolmogorov scale, the liquid
5

elocity field surrounding the bubble can be approximated as a linear a
Table 1
Boundary conditions for the pressure and velocity components. Here, 𝑛 denotes the
normal direction and 𝑡 the tangential directions of the specific boundary. The lateral
boundaries are specified as either inlet or outlet depending on the direction of the
normal relative velocity.

Boundary Pressure Normal velocity Tangential
velocity

Top ∇𝑛𝑝 = −𝜌𝑙𝑔 𝑢̂𝑛 = 𝑢̂𝐵𝐶,𝑛 ∇𝑡 𝑢̂ = ∇𝑡𝑉 (1)

Bottom 𝑝 = 0 ∇𝑛 𝑢̂ = ∇𝑛𝑉 (1) ∇𝑡 𝑢̂ = ∇𝑡𝑉 (1)

Lateral ∇𝑛𝑝 = 0 or 𝑝 = −𝜌𝑙𝑔𝑦 𝑢̂𝑛 = 𝑢̂𝐵𝐶,𝑛 or ∇𝑛 𝑢̂ = ∇𝑛𝑉 (1) ∇𝑡 𝑢̂ = ∇𝑡𝑉 (1)

function of the spatial coordinate (Pope, 2001) since the velocity incre-
ments 𝛿𝑢𝑖(𝑥𝑖, 𝑟𝑖) = 𝑢𝑖(𝑥𝑖+𝑟𝑖)−𝑢𝑖(𝑥𝑖) ∝ 𝑟𝑖, where 𝑟𝑖 is the distance between
two points. Using Taylor’s expansion, this flow field is expressed as:

𝑉 (1)
𝑖 (𝑥𝑖, 𝑡) = 𝑢𝑒,𝑏𝑖 (𝑡) +

𝜕𝑢𝑒,𝑏𝑖
𝜕𝑥𝑗

(𝑡)(𝑥𝑗 − 𝑥̂𝑏𝑗 ) , (21)

where 𝑢𝑒,𝑏𝑖 (𝑡) and
𝜕𝑢𝑒,𝑏𝑖
𝜕𝑥̂𝑖

(𝑡) are the absolute velocity and gradients, re-
spectively, of the liquid velocity field at the bubble position and time
𝑡 extracted from the macroscale simulations. We impose 𝑉 (1)

𝑖 as an
undisturbed velocity field in the microscopic solver and, in this context,
this velocity field is denoted the external flow field. We remark that
Eq. (21) is valid for computational domain lengths in the microscale
simulations that are comparable with the viscous scale of the flow.

If the external flow field is indeed unsteady, i.e. accelerating, the
flow field in the MRF should be accelerated correspondingly. Therefore,
additional non-uniform acceleration source terms are introduced into
the momentum Eq. (15) according to

𝑎(1)𝑉 ,𝑖(𝑥𝑖, 𝑡) =
𝑑
𝑑𝑡

(𝑢𝑒,𝑏𝑖 ) + 𝑑
𝑑𝑡

(

𝜕𝑢𝑒,𝑏𝑖
𝜕𝑥𝑗

)

(𝑥𝑗 − 𝑥̂𝑏𝑗 ) . (22)

The MRF computational domain is outlined in Fig. 2 and constitutes
a box in 3D with gravity acting in the negative 𝑦-direction. The domain
boundary conditions are specified in Table 1 where the hydrostatic
pressure field is imposed on the domain. The lateral boundaries switch
between inlet and outlet boundary conditions depending on the normal
relative velocity direction at the boundary according to Eq. (20).

The position of the MRF and the absolute position and velocity of
the bubble are evaluated by

𝑥𝑛+1𝑚𝑟𝑓,𝑖 = 𝑥𝑛𝑚𝑟𝑓 ,𝑖 +
1
2
(𝑢𝑛+1𝑚𝑟𝑓,𝑖 + 𝑢𝑛𝑚𝑟𝑓 ,𝑖)𝛥𝑡 , (23)

𝑥𝑛,𝑏𝑖 = 𝑥𝑛𝑚𝑟𝑓 ,𝑖 + 𝑥̂𝑛,𝑏𝑖 , (24)

𝑢𝑛,𝑏𝑖 = 𝑢𝑛𝑚𝑟𝑓 ,𝑖 + 𝑢̂𝑛,𝑏𝑖 , (25)

where the bubble relative position and velocity are determined from

𝑚𝑏 = ∫𝛺
(1 − 𝑐)𝜌𝑑𝛺 , (26)

𝑥̂𝑏𝑖 =
1
𝑚𝑏 ∫𝛺

(1 − 𝑐)𝑥̂𝑖𝜌𝑑𝛺 , (27)

𝑢̂𝑏𝑖 =
1
𝑚𝑏 ∫𝛺

(1 − 𝑐)𝑢̂𝑖𝜌𝑑𝛺 . (28)

ere, 𝛺 denotes the entire computational spatial domain and 𝑚𝑏 is
he mass of the bubble. In summary, for the microscopic solver with a
oving reference frame, the governing Eqs. (14)–(16) for the internal

low field are solved together with Eqs. (17)–(28) that handle the
otion of the reference frame and the evolution of the external velocity

ield.

. Validations and simulation results

.1. Turbulent external velocity field

We first validate the coupled numerical framework by looking at
single-phase flow case. In particular, we want to show that by
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extracting the unsteady velocity components and velocity gradients
in the macroscale simulations, we can reproduce the linear profile
(Eq. (21)) in the microscale VOF framework. The macroscale pseudo-
spectral simulation corresponds to homogeneous isotropic turbulence
with the Taylor Reynolds number 𝑅𝑒𝜆 = 𝑢𝑟𝑚𝑠𝜆∕𝜈 = 180 where 𝑢𝑟𝑚𝑠 is the
root mean square of the velocity fluctuations and 𝜆 =

√

𝜀∕15𝜈𝑢𝑟𝑚𝑠 is the
Taylor length scale. We employed a resolution of 2563 grid points in a
cubic computational domain of 2𝜋3. The non-dimensional Kolmogorov
length scale is 0.015 and the Kolmogorov time is 0.35. Assuming water
as a fluid and a turbulent dissipation rate of 1.5 10−5 m2∕s3, the
Kolmogorov scales correspond to 0.5 mm for the length and 0.26 𝑠 for
the time.

In Appendix A, we show the turbulent kinetic energy and dissipation
spectra from the macroscale simulation. Based on the dissipation spec-
trum, the spatial resolution of the macroscale simulation is sufficient to
capture all relevant turbulent length scales.

We test the convergence of the microscale simulations using a
similar approach as described in Milan et al. (2020), where the lin-
ear velocity profile is reproduced in the microscale simulation using
unsteady boundary conditions proportional to the gradient of the ve-
locity field of the macroscale simulation extracted along a Lagrangian
trajectory. From this test, we can confirm that the coupling algorithm at
the microscale recovers the turbulent velocity components and velocity
gradients of the macroscale simulations. The top panel of Fig. 3 shows
the time series of the modulus of the rate of the strain tensor |𝑆𝑒

𝑖𝑗 | =
√

𝑆𝑒
𝑖𝑗𝑆

𝑒
𝑖𝑗 (𝑆𝑒

𝑖𝑗 is the symmetric part of the velocity gradient 𝜕𝑢𝑒,𝑏𝑖 ∕𝜕𝑥̂𝑗)
as a function of time representing the behavior of a typical turbulent
signal for the gradients with localized peaks much larger than the av-

erage value. Given the signal of 𝑢𝑒,𝑏𝑖 (𝑡) and
𝜕𝑢𝑒,𝑏𝑖
𝜕𝑥̂𝑗

(𝑡) from the macroscale

simulation, the desired linear velocity field in the microscale simulation
at a given time is obtained by Eq. (21).

The normalized error function between the calculated velocity field
in the microscale simulation 𝑢̂𝑖(𝑥𝑖, 𝑡) and the linear field 𝑉 (1)

𝑖 (𝑥𝑖, 𝑡) is
iven by:

(1) = 1
𝑉 (1)
𝑟𝑚𝑠(𝑡)

√

√

√

√
1
𝐿3 ∫

3
∑

𝑖=1

(

𝑢̂𝑖(𝑥𝑖, 𝑡) − 𝑉 (1)
𝑖 (𝑥𝑖, 𝑡)

)2
𝑑𝑥̂1𝑑𝑥̂2𝑑𝑥̂3 (29)

where 𝐿 indicates the domain length. Since we apply an unsteady
velocity boundary condition, the numerical solution at the center of the
domain will not instantaneously adapt to the linear solution. However,
it will require a finite convergence time until the error defined in (29)
becomes sufficiently small. Milan et al. (2020) minimized the error
by performing a number of finite sub-iterations for each physical time
step. In particular, the number of iterations ranges between 200 and
1200 depending on the domain length to achieve a computational error
smaller than 10% with a corresponding increase of the computational
times. Here, we present an alternative approach to drastically speed
up the run times, avoiding the need for sub-iteration by adding to
the momentum equation an additional body force proportional to the
time derivatives of the boundary conditions as described in Eq. (22).
This algorithm is applied to a single-phase simulation with unsteady
boundary conditions, a domain length of almost 16𝜂 and a numerical
resolution of 643 equispaced computational cells. The bottom panel
of Fig. 3 shows the error 𝐸(1) that is always less than 10% at each
computational time, and, after the initial period, the error stays below
5% even during the sudden peak of |𝑆𝑒

𝑖𝑗 | at 𝑡∕𝜏𝜂 ≈ 3.8. Consequently,
the novel approach is at least 200 times computationally faster since it
is free from additional sub-iterations.

3.2. Bubble rising rectilinearly in quiescent liquid

Before fully coupling the two frameworks for the rising bubble mul-
tiscale simulations, we validate the PID-controlled MRF approach for
the microscale simulations in steady laminar flows. This step is crucial
6

Fig. 3. Time series of the modulus of the symmetric part of the velocity gradient
tensor 𝑆𝑒

𝑖𝑗 (top panel) and the error between the numerical and linearized velocity
fields (bottom panel).

when high-density contrasts between the two phases are present and
large buoyancy/gravity forces induce a relative rising/sinking motion
of the dispersed phase. We start to study a simple case such as the
rise of a 2D bubble in a domain of 2𝐷 × 4𝐷 for increasingly complex

otions of the MRF in a quiescent liquid, so that 𝑉 (1)
𝑖 = 0. The bubble

ynamics predicted in the different cases are compared with results
rom an absolute (stationary) reference frame. In the absolute reference
rame, the initial bubble position is in the center of the domain and
𝐷 above the bottom, while for the other reference frames, the initial
osition is 2𝐷 above the bottom. The governing parameters are 𝐺𝑎 = 10
nd 𝐸𝑜 = 1, which results in an approximately spherical bubble. In this
ase, we use a uniform grid of 32 cells/𝐷 to exclude possible effects
rom the adaptive grid refinement technique.

RF at constant velocity. Here we test the simplest case of a reference
rame moving with a constant velocity. From the simulation with the
bsolute reference frame, the non-dimensional terminal velocity of
he bubble is 𝑢𝑏𝑦,𝑇 ≈ 0.3. To maintain the bubble close to its initial

position, we specify the constant velocity of the MRF equal to the
terminal velocity of the bubble. Since the MRF velocity is constant, the
MRF is still an inertial reference frame where the unaltered governing
Eqs. (6)–(8) are valid. The results from this simulation should therefore
compare well with the simulation in the absolute reference frame. The
motion of the bubble in the absolute reference frame is computed using
Eqs. (23)–(25).

MRF at constant acceleration. In this case, we increase the complexity
of the MRF motion by considering a non-inertial reference frame with
a constant acceleration. The acceleration is chosen as the approximate
average bubble acceleration until it reaches the terminal velocity ac-
cording to 𝑎𝑏𝑦 = 0.1. This value ensures that the bubble stays close to
the center of the domain during the entire simulation time.

PID-controlled MRF. Finally, we let the PID-controller specify the ac-
celeration of the MRF that aims at keeping the bubble at its initial
relative position. Now, the acceleration source terms in Eq. (15) and
the velocity boundary conditions in Eq. (20) are updated continuously
through the simulation.

The predicted absolute rise velocities using the different refer-
ence frames are shown in Fig. 4. We note rise velocities in excellent
agreement between the MRF’s and the absolute reference frame. This
agreement indicates that our implementation of the MRF method can

handle both inertial and non-inertial reference frames consistently.
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Fig. 4. Nondimensional absolute bubble rise velocities over nondimensional time in the
case of a 2D bubble rising rectilinearly in a quiescent liquid. The governing parameters
are 𝐺𝑎 = 10 and 𝐸𝑜 = 1. All of the moving reference frames predict bubble rise velocities
in excellent agreement with the absolute reference frame.

3.3. Lift force on a bubble rising in linear shear flow

Here, we perform a quantitative validation of the numerical method
by examining the motion of a bubble in a linear shear flow using the
PID-controlled MRF and compare the predicted lift force coefficient
with existing experimental and numerical studies (Aoyama et al., 2017;
Dijkhuizen et al., 2010). In a shear flow, the bubble obtains a pref-
erential lateral drift direction depending on the problem parameters.
Interestingly, for an air bubble in water, the lateral drift direction
changes at a critical bubble diameter of about 5 mm (Tomiyama et al.,
2002). In a polydisperse bubbly flow, such as in a bubble column, it is
crucial to have accurate sub-grid models for the lift force to predict the
spatial distribution of the bubbles (Ertekin et al., 2021).

In this validation case, the problem parameters are 𝐺𝑎 = 35,
𝐸𝑜 = 2.4 and the dimensionless shear rate is 𝑆𝑟 = −0.04. These
parameters are similar to the case studied numerically by Dijkhuizen
et al. (2010). The bubble is initially placed at 𝑥𝑖 = 0 and then rises in
the positive 𝑦-direction due to buoyancy. The external liquid velocity
profile 𝑉 (1)

𝑦 = 𝑆𝑟𝑥 induces a lift force on the bubble so that it migrates
n the transverse 𝑥-direction. By setting up a steady-state force balance
n the bubble, using the lift, drag, added mass and buoyancy forces,
e can calculate the lift force coefficient. Using the same formulation
f the lift force as in Tomiyama et al. (2002), the expression for the lift
orce coefficient is

𝐿 = −
𝑢𝑟𝑥

(𝑢𝑟𝑦)2 + (𝑢𝑟𝑥)2

(

1
𝑆𝑟

−
𝑢𝑟𝑥
2

)

. (30)

ere, we use the non-dimensional relative velocities 𝑢𝑟𝑖 = 𝑢𝑏𝑖 − 𝑉 (1)
𝑖 and

ssume 𝜌𝑟 ≫ 1 and the added mass coefficient as 1∕2.
The computational domain is (10𝐷)3 with the bubble kept in the

enter of the domain using the MRF approach. To reduce the computa-
ional cost, we make use of the adaptive grid refinement technique in
asilisk with a maximum grid resolution of more than 200 cells/𝐷.

The instantaneous lift force coefficient is computed using Eq. (30)
nd is shown in Fig. 5. Once the bubble reaches a steady state relative
otion, the predicted lift force coefficient agrees well with existing
umerical and experimental studies. This result shows that the Basilisk
ode with our PID-controlled MRF implementation predicts results in
uantitative agreement with existing numerical and experimental data.
ext, we qualitatively validate the MRF method for a multiple bubble

ystem.
7

Fig. 5. Comparison between the predicted lift force coefficient using the PID-controlled
MRF and the numerical study of Dijkhuizen et al. (2010) with the parameters (𝐺𝑎 =
35, 𝐸𝑜 = 2.5, 𝑆𝑟 = 0.04) and the experimental study by Aoyama et al. (2017) with the
parameters (𝐺𝑎 = 44, 𝐸𝑜 = 2.25, 𝑆𝑟 = 0.12). We note a good agreement between our
simulation results and the existing studies for a similar case of a bubble rising in a
linear shear flow.

3.4. Coalescence of two bubbles

In this section we validate the ability of the PID-controlled MRF to
keep the center of mass of two bubbles in the center of the computa-
tional domain and capture the bubble coalescence process. Since the
bubble breakup and coalescence processes can significantly alter the
bubble size distribution in bubbly flow systems, these processes need to
be accurately resolved to understand the dynamics of the entire system.
A demonstration case for bubble breakup in linear shear flow using our
MRF method is presented in Appendix B.

According to the film drainage model, the coalescence process
follows three main steps (Ozan and Jakobsen, 2019). First, the two
bubbles come close to each other and trap a liquid film between
them. Second, if the forces exerted by the bubbles on the liquid film
are sufficiently large, the liquid film drains out and breaks, inducing
coalescence. Our simulations in this section aim to showcase how the
present method deals with such a bubble collision process.

We simulate two initially spherical bubbles placed 1.75𝐷 between
their centers of mass in the vertical direction. The buoyancy force
accelerates the bubbles upwards, and because of the wake of the top
bubble, the bottom bubble rises faster, eventually colliding with the top
bubble. The vorticity in the wake of the top bubble lowers the pressure
at the rear stagnation point, thereby attracting the bottom bubble. On
the other hand, a repulsive effect is generated in the gap between the
bubbles where the liquid velocity reaches a minimum that induces a
pressure maximum. Depending on whether or not the net attractive
force from these opposing effects is large enough to drain the thin liquid
film, the bubbles may either coalesce, bounce or stay in contact for a
long time (Zhang et al., 2021).

We use a 2D computational domain of 20𝐷 × 20𝐷 with the two
bubbles close to the center of the domain. The PID-controlled MRF
ensures that the center of mass of the bubbles remains in the center
of the domain. The bubbles rise in a quiescent liquid, and the problem
parameters are 𝐺𝑎 = 30 and 𝐸𝑜 = 0.1. In the VOF framework, the
bubbles inherently coalesce when the bubble interfaces occupy the
same computational cell. To accurately resolve the drainage of the film
and to avoid premature coalescence, a high grid resolution is required
in the liquid between the bubbles. For this purpose, we use the adaptive
grid with a maximum refinement close to the bubble corresponding to
more than 200 cells/𝐷.
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Fig. 6. Validation case for the coalescence process of two bubbles rising in a quiescent liquid using our MRF method. At a density ratio of 𝜌𝑟 = 100 the bubbles coalesce while at
𝜌𝑟 = 1000 there is no coalescence. The instants are taken at the non-dimensional time 𝑡∕

√

𝐷∕𝑔 and the governing parameters are 𝐺𝑎 = 30 and 𝐸𝑜 = 0.1. The coarse black line is
the bubble interface, the contour levels represent the vorticity field, and the arrows illustrate the velocity field relative to the bubble’s center of mass. The center of mass of the
two-bubble system is kept in the center of the computational domain using the PID-controlled MRF method. Note that the subfigures do not show the full domain.
Our MRF results are validated by comparing the predicted coales-
cence process with the DNS results of Innocenti et al. (2021). They
studied the same problem setup, at varying 𝜌𝑟, in a periodic domain and
found that coalescence occurs up to a density ratio of around 𝜌𝑟 = 200.
They also found that grid independence is reached at about 200 cells/𝐷,
indicating that the thin liquid film is sufficiently resolved.

We simulate a case with 𝜌𝑟 = 100 at which coalescence should occur
and a second case with 𝜌𝑟 = 1000 where coalescence should not occur.
Instants from the simulation case with 𝜌𝑟 = 100 are shown in Fig. 6(a-b)
and for 𝜌𝑟 = 1000 in Fig. 6(c-d).

As indicated in Fig. 6, the bubbles in both simulation cases come
into contact at around 𝑡 = 8. At this instant, the process of squeezing
the thin liquid film between the bubbles starts. At 𝜌𝑟 = 100, the net
attractive force between the bubbles is sufficient to drain the liquid
film between them. Consequently, at 𝑡 = 9, the bubbles coalesce into
a larger bubble that again tends to retrieve an approximately spherical
shape with a minimum of interfacial energy. However, at 𝜌𝑟 = 1000,
the net attractive force is too small for the liquid film to drain, and
the bubbles instead bounce apart. These results are in good qualitative
agreement with the numerical study of Innocenti et al. (2021).

This validation case shows that we can capture the process of
coalescence in a multiple bubble system using our MRF method. The
inherent ability to follow multiple bubbles stems from Eq. (27) that
determines the relative center of mass for the entire bubble phase
in the computational domain. With this approach, the PID-controller
can track an arbitrary number of localized bubbles without any mod-
ifications. Although this is a simple configuration, an extension to
8

more complex systems, such as localized bubble swarms with possible
coinciding breakup and coalescence processes, is straightforward due
to the general methodology of the MRF method.

3.5. Bubble rising in turbulent flows

Finally, we combine the macro and microscale frameworks to sim-
ulate a rising bubble in a turbulent environment. This case represents
a multiphase simulation of a bubble rising in a homogeneous isotropic
turbulence. The macroscale turbulent field is the same as described in
Section 3.1, while the rising bubble is characterized by 𝐺𝑎 = 65 and
𝐸𝑜 = 10 that corresponds to a 0.76 mm air bubble in water but with
a reduced surface tension to obtain larger deformations of the bubble.
The bubble is kept in the center of a (10𝐷)3 PID-controlled MRF domain
with the unsteady external velocity field imposed as described in
Section 3.1. The computational spatial domain is discretized using the
adaptive grid refinement technique with a maximum grid resolution of
more than 50 cells/𝐷. The time step size is also variable and determined
using the CFL-criterion with a Courant number of 0.5. With this setup,
we resolve the small-scale bubble dynamics in response to the turbulent
external velocity field obtained from the macroscale solver described in
Section 2.1.

In the MRF, an initially spherical bubble is placed in the linearized
velocity field 𝑉 (1)

𝑖 (𝑥𝑖, 𝑡 = 0). Then, the bubble starts to deform and
to rise due to buoyancy. The external velocity field at the bubble
position and its gradients are obtained at the bubble position in the
macroscale simulation as 𝑢𝑒,𝑏(𝑡) = 𝑢𝑒(𝑥𝑏(𝑡)), and then imposed in the
𝑖 𝑖 𝑖
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Fig. 7. Instantaneous visualization of the deformed bubble with contours representing
the relative velocity magnitude in a framework moving with the bubble. The contour
values have been normalized with the characteristic velocity scale

√

𝑔𝐷. The orientation
angle 𝛷 represents the angle between the bubble semi-minor axis (denoted 𝑎) and the
vertical 𝑦-axis. The bubble aspect ratio 𝜒 is the ratio of the bubble semi-minor and
semi-major (denoted 𝑏) axes.

Fig. 8. Time series of the bubble aspect ratio (top panel), modulus of the external
velocity field strain rate (central panel) and the bubble orientation angle (bottom panel)
until around 4 Kolmogorov times. The aspect ratio and orientation angle are obtained
from the microscale framework where we resolve the small-scale bubble dynamics in
response to the turbulent external velocity field given by the macroscale framework.
In the bottom panel, time is made non-dimensional using the capillary time scale 𝜏𝜎 .

MRF domain using Eq. (21) and (22) at the same physical time 𝑡.
Since the two numerical frameworks use different time step sizes, we
use a linear interpolation in time to map the velocity field and its
gradients from the macroscale to the microscale framework. In the cur-
rent version of the numerical algorithm, the bubble trajectories in the
9

microscale and macroscale systems are different because the equations
of motion in the Eulerian–Lagrangian approach are modeled under the
hypothesis of undeformable spheres and using empirical coefficients for
estimating the different forces acting on the bubble. Consequently, the
coupling between the two systems is one-way, with the dynamics at
the macroscale affecting those at the microscale. However, we plan to
extend the numerical framework by extracting the velocity and gra-
dients from the macroscale simulation at the absolute bubble position
predicted by the microscale framework if we combine the two different
solvers and execute them simultaneously. The tracking of a Lagrangian
bubble in the macroscale framework will be substituted by just an
interpolation routine at a specific location dictated by the microscale
bubble trajectory. This extension will allow a full two-way coupling
between the frameworks.

An instantaneous visualization of the relative velocity field obtained
by a simultaneous event of the rising bubble and turbulence is shown
in Fig. 7. We note that the bubble from an initial spherical shape has an
ellipsoidal configuration with an aspect ratio 𝜒 = 𝑏∕𝑎 ≃ 3, where 𝑏 and
𝑎 denote the semi-major and semi-minor axes, respectively. The contour
levels show the relative velocity field normalized with the velocity scale
√

𝑔𝐷 including the wake released by the rising bubble.
To better quantify the bubble deformation dynamics, we compute

the bubble aspect ratio according to the definition by Bunner and
Tryggvason (2003) where 𝜒 is defined as the ratio between the larger
and smaller eigenvalues, 𝜒 = 𝑏∕𝑎 ≈ (𝐼𝑚𝑎𝑥∕𝐼𝑚𝑖𝑛)1∕2, of the second
moment of inertia tensor

𝐼𝑖𝑗 =
1
𝑚𝑏 ∫𝛺𝑏

(𝑥̂𝑖 − 𝑥̂𝑏𝑖 )(𝑥̂𝑗 − 𝑥̂𝑏𝑗 )𝜌
𝑏𝑑𝑉 , (31)

where 𝛺𝐵 is the bubble volume.
The top panel of Fig. 8 shows a time series of the bubble aspect ratio

during the first 4 computational times of the simulation in Kolmogorov
units. Initially, 𝜒 = 1 since the bubble is spherical, but, due to the
combination of the rising motion and the turbulent fluctuations, the
bubble becomes ellipsoidal with a fluctuating value of the aspect ratio
𝜒 ≈ 3. The characteristic time scale and the intensity of the fluctuations
of 𝜒 are correlated with the variation of the external turbulent velocity
gradients (𝜒 and |𝑆𝑒

𝑖𝑗 | have a Pearson’s correlation coefficient of 0.5
in the interval 𝑡∕𝜏𝜂 = [0.5, 4]) by comparing with the middle panel of
Fig. 8, where the time series of the macroscale rate of strain intensity
is shown.

The bubble orientation angle plotted in the bottom panel of Fig. 8,
however, shows a different dynamics. The orientation angle is defined
as the angle between the vertical 𝑦-axis and the bubble semi-minor axis.
The time series of the orientation angle is characterized by a faster
dynamics compared to the smallest-scales of the turbulence, with a
characteristic time much smaller than the Kolmogorov time. In partic-
ular, we note that the characteristic time scale of the orientation angle
oscillation period is proportional to the capillary time scale (Popinet,
2018) 𝜏𝜎 =

√

𝜌𝑙𝐷3∕𝜎 ≈ 0.1𝜏𝜂 that is an order of magnitude smaller
than the Kolmogorov time. Therefore, the coupled framework can solve
both the bubble deformations induced by turbulent fluctuations and the
fastest dynamics due to the capillary time scale when 𝜏𝜎 < 𝜏𝜂 .

4. Conclusions

We have formulated a numerical multiscale framework that is able
to handle bubbles or droplets with arbitrary density ratios compared to
the carrier phase and with diameters comparable or smaller than the
Kolmogorov length scale. To take into account a high-relative velocity
between the phases induced by gravity or buoyancy, we computed the
equations of motion in the reference frame of the bubble (a moving
reference frame). The new equations contain an additional accelera-
tion term that was estimated using a PID controller. The numerical
scheme has been validated in simple shear flows, obtaining excellent
comparisons with previous numerical or experimental results. An addi-
tional body force proportional to the time derivatives of the boundary
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Fig. A.9. Turbulent kinetic energy (left panel) and dissipation (right panel) spectra from the pseudo-spectral simulations in Section 3.1. The values are normalized in Kolmogorov
units.
Fig. B.10. Illustration of the breakup process for a rising 3D bubble in a high shear flow. The indicated instants are the nondimensional time 𝑡∕
√

𝐷∕𝑔 and the governing parameters
are 𝐺𝑎 = 1000, 𝐸𝑜 = 200 and 𝑆𝑟 = −1. The black arrows show the relative velocity field. The initially spherical bubble is deformed due to the shear liquid flow and the interface
ruptures at around 𝑡 = 1.0. The breakup produces a liquid jet that penetrates the bubble and results in the generation of satellite bubbles.
conditions improves the efficiency of the algorithm (at least two or-
ders of magnitudes) compared to the framework suggested by Milan
et al. (2020). The novel methodology can resolve both large-scale
effects induced by turbulent properties and small-scale phenomenolo-
gies induced by surface tension. In particular, we have found that the
characteristic time of the bubble orientation angle (and therefore the
bubble trajectory) corresponds to the capillary time scale 𝜏𝜎 =

√

𝜌𝑙𝐷3∕𝜎
that for highly deformable particles (low surface tension) can be smaller
than the Kolmogorov time scale. The proposed algorithm has been
presented in a general way, and it can be applied to any DNS technique
that handles two-phase flows (VOF, level-set, lattice-Boltzmann, diffuse
interface approach).

It would be interesting, as future work, to investigate the statistics
of deformation and orientation angle with bubbles/droplets at different
𝐺𝑎 and 𝐸𝑜 numbers and different density ratios. Moreover, the current
10
framework can be further improved by matching and running in paral-
lel the two multiscale codes such that the turbulent external velocity
and gradients in the macroscale simulation are directly calculated
along the object trajectory predicted by the microscale framework.
The extension will allow a full multiscale two-way coupling between
the small scales of the deformable objects and the properties of the
turbulent field.
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ppendix A. Single-phase turbulent spectra

The turbulent kinetic energy (left panel) and dissipation spectra
right panel) are shown in Fig. A.9. The turbulent kinetic energy
pectrum (left panel) shows the classic −5∕3 power-law in the inertial
ange and the exponential viscous closure at high-wave numbers corre-
ponding to the properties of a fully homogeneous isotropic turbulent
low. For our simulations, it is fundamental to be able to solve and
orrectly estimate the velocity gradients. The quality of the resolution
hen solving the turbulent gradients can be easily checked by looking
t the content of the dissipation spectrum in the right panel of Fig. A.9.
ecause the dissipation spectrum is negligible at the smallest scales
𝑘𝜂 > 1), we argue that the velocity gradients are well-resolved in our
imulation.

ppendix B. Bubble breakup in a linear shear flow

We demonstrate the capability of the MRF approach to study the
reakup process of a 3D bubble in a linear shear flow 𝑉 (1)

𝑦 = 𝑆𝑟𝑥.
he bubble breakup occurs when the dynamic pressure difference on
pposite sides of the bubble exceeds the bubble capillary pressure (Kol-
ogorov, 1949). In a shear flow, the relative velocity between the

ubble and the liquid phase varies across the bubble interface. These
ifferences induce variations of the dynamic pressure that can lead to
he bubble breakup.

In this case, the problem parameters are 𝐺𝑎 = 1000, 𝐸𝑜 = 200 and
𝑟 = −1 that represent a system with relatively high shear, high inertial
nd low surface tension forces. These force ratios are favorable for the
ubble breakup to occur. Initially, a spherical bubble is placed in the
enter of the (10𝐷)3 domain. Here, we use a maximum grid refinement
orresponding to more than 100 cells/𝐷.

Four instantaneous visualizations that illustrate the breakup process
re shown in Fig. B.10. Initially, the bubble is spherical, but due to
he shear flow, it becomes almost elliptical at around 𝑡 = 0.5. The
ubble shape is increasingly elongated until the bubble interface, due
o the high relative liquid velocity, ruptures at around 𝑡 = 1.0. The
upture induces, due to surface tension, a liquid jet that penetrates the
ain bubble. At around 𝑡 = 2.6, the elongated part of the bubble has

ollapsed, and this process continues beyond 𝑡 = 8.8.
This case shows that the PID-controlled MRF can capture the bubble
11

reakup process and track the resulting multiple bubbles.
eferences

oyama, S., Hayashi, K., Hosokawa, S., Lucas, D., Tomiyama, A., 2017. Lift force acting
on single bubbles in linear shear flows. Int. J. Multiph. Flow 96, 113–122.

alachandar, S., Liu, K., Lakhote, M., 2019. Self-induced velocity correction for
improved drag estimation in Euler–Lagrange point-particle simulations. J. Comput.
Phys. 376, 160–185.

unner, B., Tryggvason, G., 1999. Direct numerical simulations of three-dimensional
bubbly flows. Phys. Fluids 11 (8), 1967–1969.

unner, B., Tryggvason, G., 2003. Effect of bubble deformation on the properties of
bubbly flows. J. Fluid Mech. 495, 77.

ano-Lozano, J.C., Martinez-Bazan, C., Magnaudet, J., Tchoufag, J., 2016. Paths and
wakes of deformable nearly spheroidal rising bubbles close to the transition to path
instability. Phys. Rev. Fluids 1 (5), 053604.

onesa, J.A., 2019. Chemical Reactor Design: Mathematical Modeling And Applications.
John Wiley & Sons.

elnoij, E., Kuipers, J., van Swaaij, W.P.M., 1999. A three-dimensional CFD model for
gas–liquid bubble columns. Chem. Eng. Sci. 54 (13–14), 2217–2226.

ijkhuizen, W., van Sint Annaland, M., Kuipers, J., 2010. Numerical and experimental
investigation of the lift force on single bubbles. Chem. Eng. Sci. 65 (3), 1274–1287.

rtekin, E., Kavanagh, J.M., Fletcher, D.F., McClure, D.D., 2021. Validation studies
to assist in the development of scale and system independent CFD models for
industrial bubble columns. Chem. Eng. Res. Des. 171, 1–12.

vrard, F., Denner, F., van Wachem, B., 2020. Euler-Lagrange modelling of dilute
particle-laden flows with arbitrary particle-size to mesh-spacing ratio. J. Comput.
Phys.: X 8, 100078.

an, Y., Fang, J., Bolotnov, I., 2021. Complex bubble deformation and break-up
dynamics studies using interface capturing approach. Exp. Comput. Multiph. Flow
3 (3), 139–151.

errante, A., Elghobashi, S., 2004. On the physical mechanisms of drag reduction in
a spatially developing turbulent boundary layer laden with microbubbles. J. Fluid
Mech. 503, 345–355.

ualtieri, P., Picano, F., Sardina, G., Casciola, C.M., 2015. Exact regularized point
particle method for multiphase flows in the two-way coupling regime. J. Fluid
Mech. 773, 520–561.

an der Hoef, M.A., van Sint Annaland, M., Deen, N., Kuipers, J., 2008. Numerical
simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu.
Rev. Fluid Mech. 40, 47–70.

orwitz, J., Mani, A., 2018. Correction scheme for point-particle models applied to a
nonlinear drag law in simulations of particle-fluid interaction. Int. J. Multiph. Flow
101, 74–84.

nnocenti, A., Jaccod, A., Popinet, S., Chibbaro, S., 2021. Direct numerical simulation
of bubble-induced turbulence. J. Fluid Mech. 918, A23.

areteg, K., Ström, H., Sasic, S., Demazière, C., 2017. On the dynamics of instabilities
in two-fluid models for bubbly flows. Chem. Eng. Sci. 170, 184–194.

ekesi, T., Amberg, G., Wittberg, L.P., 2016. Drop deformation and breakup in flows
with shear. Chem. Eng. Sci. 140, 319–329.

olmogorov, A., 1949. On the disintegration of drops in a turbulent flow. In: Dokl.
Akad. Nauk SSSR. 66, (825–828), p. 30.

örstad, D., Francois, M., Shyy, W., Fuchs, L., 2004. Assessment of volume of fluid and
immersed boundary methods for droplet computations. Int. J. Numer. Methods
Fluids 46 (2), 109–125.

örstad, D., Fuchs, L., 2004. High-order surface tension VOF-model for 3D bubble flows
with high density ratio. J. Comput. Phys. 200 (1), 153–176.

agnaudet, J., Eames, I., 2000. The motion of high-Reynolds-number bubbles in
inhomogeneous flows. Annu. Rev. Fluid Mech. 32 (1), 659–708.

axey, M.R., Riley, J.J., 1983. Equation of motion for a small rigid sphere in a
nonuniform flow. Phys. Fluids 26 (4), 883–889.

cCormack, A.S., Godfrey, K.R., 1998. Rule-based autotuning based on frequency
domain identification. IEEE Trans. Control Syst. Technol. 6 (1), 43–61.

ei, R., Klausner, J.F., 1992. Unsteady force on a spherical bubble at finite Reynolds
number with small fluctuations in the free-stream velocity. Phys. Fluids A: Fluid
Dyn. 4 (1), 63–70.

ilan, F., Biferale, L., Sbragaglia, M., Toschi, F., 2020. Sub-Kolmogorov droplet
dynamics in isotropic turbulence using a multiscale lattice Boltzmann scheme. J.
Comput. Sci. 45, 101178.

zan, S.C., Jakobsen, H.A., 2019. On the role of the surface rheology in film drainage
between fluid particles. Int. J. Multiph. Flow 120, 103103.

anicker, N., Passalacqua, A., Fox, R.O., 2020. Computational study of buoyancy driven
turbulence in statistically homogeneous bubbly flows. Chem. Eng. Sci. 216, 115546.

ope, S.B., 2001. Turbulent Flows. IOP Publishing.
opinet, S., 2003. Gerris: a tree-based adaptive solver for the incompressible Euler

equations in complex geometries. J. Comput. Phys. 190 (2), 572–600.
opinet, S., 2015. A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi

equations. J. Comput. Phys. 302, 336–358.
opinet, S., 2018. Numerical models of surface tension. Annu. Rev. Fluid Mech. 50,

49–75.
usche, H., 2002. Computational fluid dynamics of dispersed two-phase flows at high
phase fractions. (Ph.D. thesis). University of London.

http://refhub.elsevier.com/S0301-9322(22)00005-2/sb1
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb1
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb1
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb2
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb2
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb2
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb2
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb2
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb3
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb3
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb3
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb4
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb4
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb4
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb5
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb5
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb5
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb5
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb5
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb6
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb6
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb6
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb7
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb7
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb7
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb8
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb8
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb8
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb9
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb9
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb9
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb9
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb9
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb10
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb10
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb10
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb10
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb10
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb11
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb11
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb11
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb11
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb11
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb12
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb12
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb12
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb12
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb12
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb13
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb13
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb13
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb13
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb13
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb14
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb14
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb14
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb14
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb14
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb15
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb15
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb15
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb15
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb15
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb16
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb16
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb16
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb17
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb17
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb17
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb18
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb18
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb18
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb19
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb19
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb19
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb20
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb20
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb20
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb20
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb20
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb21
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb21
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb21
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb22
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb22
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb22
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb23
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb23
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb23
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb24
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb24
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb24
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb25
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb25
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb25
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb25
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb25
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb26
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb26
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb26
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb26
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb26
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb27
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb27
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb27
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb28
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb28
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb28
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb29
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb30
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb30
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb30
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb31
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb31
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb31
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb32
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb32
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb32
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb33
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb33
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb33


International Journal of Multiphase Flow 150 (2022) 103976N. Hidman et al.
Sardina, G., Jareteg, K., Ström, H., Sasic, S., 2019. Assessing the ability of the Eulerian-
Eulerian and the Eulerian-Lagrangian frameworks to capture meso-scale dynamics
in bubbly flows. Chem. Eng. Sci. 201, 58–73.

Sardina, G., Picano, F., Brandt, L., Caballero, R., 2015. Continuous growth of droplet
size variance due to condensation in turbulent clouds. Phys. Rev. Lett. 115 (18),
184501.

Scardovelli, R., Zaleski, S., 1999. Direct numerical simulation of free-surface and
interfacial flow. Annu. Rev. Fluid Mech. 31 (1), 567–603.

Spandan, V., Ostilla-Mónico, R., Verzicco, R., Lohse, D., 2016. Drag reduction in
numerical two-phase Taylor–Couette turbulence using an Euler–Lagrange approach.
J. Fluid Mech. 798, 411–435.

Tomiyama, A., Tamai, H., Zun, I., Hosokawa, S., 2002. Transverse migration of single
bubbles in simple shear flows. Chem. Eng. Sci. 57 (11), 1849–1858.
12
Toschi, F., Bodenschatz, E., 2009. Lagrangian properties of particles in turbulence.
Annu. Rev. Fluid Mech. 41, 375–404.

Tripathi, M.K., Sahu, K.C., Govindarajan, R., 2014. Why a falling drop does not in
general behave like a rising bubble. Sci. Rep. 4, 4771.

Tryggvason, G., Scardovelli, R., Zaleski, S., 2011. Direct numerical simulations of
gas–liquid multiphase flows. Cambridge University Press.

Zhang, J., Ni, M.-J., Magnaudet, J., 2021. Three-dimensional dynamics of a pair of
deformable bubbles rising initially in line. Part 1. Moderately inertial regimes. J.
Fluid Mech. 920.

Ziegler, J.G., Nichols, N.B., et al., 1942. Optimum settings for automatic controllers.
Trans. ASME 64, 11.

http://refhub.elsevier.com/S0301-9322(22)00005-2/sb34
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb34
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb34
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb34
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb34
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb35
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb35
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb35
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb35
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb35
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb36
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb36
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb36
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb37
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb37
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb37
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb37
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb37
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb38
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb38
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb38
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb39
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb39
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb39
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb40
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb40
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb40
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb41
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb41
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb41
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb42
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb42
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb42
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb42
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb42
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb43
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb43
http://refhub.elsevier.com/S0301-9322(22)00005-2/sb43

	A multiscale methodology for small-scale bubble dynamics in turbulence
	Introduction
	Description of the numerical framework
	Macroscale framework–Eulerian-Lagrangian (EL) solver and generation of the external turbulent flow
	Microscale framework–volume of fluid solver in the MRF
	Non-inertial Moving Reference Frame (MRF)
	PID-controller
	Imposing external velocity field and boundary conditions

	Validations and simulation results
	Turbulent external velocity field
	Bubble rising rectilinearly in quiescent liquid
	Lift force on a bubble rising in linear shear flow
	Coalescence of two bubbles
	Bubble rising in turbulent flows

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Single-phase turbulent spectra
	Appendix B. Bubble breakup in a linear shear flow
	References


