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Abstract: The correctness of autonomous driving software is of utmost importance, as incorrect
behavior may have catastrophic consequences. Formal model-based engineering techniques can help
guarantee correctness and thereby allow the safe deployment of autonomous vehicles. However,
challenges exist for widespread industrial adoption of formal methods. One of these challenges is the
model construction problem. Manual construction of formal models is time-consuming, error-prone,
and intractable for large systems. Automating model construction would be a big step towards
widespread industrial adoption of formal methods for system development, re-engineering, and
reverse engineering. This article applies active learning techniques to obtain formal models of an
existing (under development) autonomous driving software module implemented in MATLAB.
This demonstrates the feasibility of automated learning for automotive industrial use. Additionally,
practical challenges in applying automata learning, and possible directions for integrating automata
learning into the automotive software development workflow, are discussed.

Keywords: autonomous driving; active learning; formal methods; model-based engineering;
automata learning

1. Introduction

In recent years, the global automotive industry has made significant progress towards
the development of autonomous vehicles. Such vehicles potentially have several benefits
including the reduction of traffic accidents and increased traffic safety [1]. However, these
are highly complex and safety critical systems, for which correct behavior is paramount, as
incorrect behavior can have catastrophic consequences. Ensuring safety of autonomous ve-
hicles is a multi-disciplinary challenge, where software design and development processes
play a crucial role. A strong emphasis is placed on updating current engineering practices
to create an end-to-end design, verification, and validation process that integrates all safety
concerns into a unified approach [2].

Automotive software engineering is faced with several challenges that include non-
technical aspects (organization, strategic processes, etc.) and technical aspects such as the
need for new methodologies that combine traditional control theory and discrete event
systems, quality assurance for reliability, etc. [3,4]. Model-based engineering techniques can
address some of the challenges and help tackle the complexity in developing dependable
automotive software [5–8].

An autonomous vehicle consists of several software and hardware components that
interact to solve different tasks. Software in a modern car typically consists of hundreds of
thousands of lines of code deployed over several distributed units developed by different
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suppliers and manufacturers. The model-based approach to design, test, and integrate
software systems is instrumental in achieving the necessary correctness guarantees for such
complex systems. In this vein, several tools and methods have been developed and used
over the years. In particular, the usage of MATLAB/Simulink [9] has become increasingly
successful in a number of automotive companies [10].

A direct consequence of such software complexity is the possible presence of poten-
tially dangerous edge cases, bugs due to subtle interactions, errors in software design
and/or implementation. Although the automotive industry is constantly evolving, testing
(including model-based testing [11]) is currently a prominent technique for software quality
assurance [12]. However, an approach only based on testing is insufficient and partly
infeasible to guarantee the correctness of autonomous vehicles [13]. Thus, there is a need
for strict measures for quality assurance, and the use of formal methods in this regard
promise to be beneficial [14,15].

Formal verification techniques can indeed be used to identify design errors in MAT-
LAB/Simulink function block networks using Simulink Design Verifier (SDV) [16], and
Polyspace [17] to perform static code analysis on C code generated from the function block
networks. However, there are limitations in SDV; for instance in scalability and in the
verification of temporal properties that cannot be expressed as assertions [18,19]. SDV also
exclusively works with Simulink, which presents a challenge in reasoning about MATLAB
code without Simulink function blocks. Additionally, SDV and Polyspace cannot be used
to reason about function blocks where the internal implementation details are unavail-
able. Thus, in such cases there is a need to use complementary methods to guarantee the
correctness of the complete system under design.

In [20], different formal verification methods were used to verify an existing decision
making software (developed using MATLAB) in an autonomous driving vehicle. Formal
models of the code were manually constructed to perform formal verification and several
insights were presented. Admittedly, formal methods can be more beneficial if introduced
during the early stages of the software development workflow rather than being used
for after-development verification. However, there are several obstacles that impede
the widespread adoption of formal methods [14,21]. Significant trade-offs (e.g., tools
compatible with formal methods, development cost and time) have to be made that disrupt
current industrial best practice. Therefore, any work towards industrial adoption of formal
methods in the automotive domain without significant disruptions on current practice is
definitely rewarding.

Formal verification techniques like model checking [22]—to prove the absence of
errors in software designs—or, formal synthesis techniques like supervisor synthesis [23]—
to generate a controller/supervisor that is correct by construction—require a model that
describes the behavior of the system. However, constructing a formal model that captures
the behavior of the software under design is a challenging task and is one of several
impediments in the industrial adoption of formal methods. Manual construction of models
is expensive, prone to human errors, and even intractable for large systems. Constructing
such a model manually is also time consuming, which further complicates things as the
specification and consequently the implementation changes frequently, especially so for
rapidly evolving systems typical for the autonomous driving domain.

Automating model construction could speed up industrial adoption of formal methods
by reducing the burden of manually constructing the models. Such automated methods
will help find potential errors, as they can automatically generate and verify production
code at regular intervals. This will further strengthen the suitability of formal methods for
industrial use [21,24]. Automatically constructing formal models can also help understand
and reason about ill-documented legacy systems and black-box systems, which is crucial
for quality assurance of large-scale and complex automotive systems.

Active automata learning [25–32] is a field of research that addresses the problem of
automatic model construction. These approaches constitute a class of machine learning
algorithms that actively interact with the target system to deduce a finite-state automa-
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ton [33] describing its behavior. This article is an extended version of [34], in which we
reported results from a case study to automatically learn a formal model of the Lateral State
Manager (LSM), a sub-component of an autonomous driving software (under development)
programmed in MATLAB. In addition, we described an interface between the learning
tool MIDES [35] and MATLAB, which was used to learn a model of the LSM using two
active learning algorithms L∗ and Modular Plant Learner (MPL). The results demonstrated
the feasibility of our approach, but also the practical challenges encountered. This article
extends our previous work [34] with:

• Extensive description of the learning algorithms L∗ [36] and MPL [30] with illustrative
examples.

• An evaluation on the practical applicability of L∗ to automatically learn a model of
the LSM is presented based on experiments using LearnLib, an open-source automata
learning framework [32], in addition to MIDES.

• Analysis of the learning outcome is performed by investigating optimizations that can
potentially help improve the practical applicability of the learning algorithms.

• New insights on the approach of using automata learning to enable formal automotive
software development is presented.

Note that this article does not aim to compare the performance of the different algo-
rithms, but to show the applicability of active automata learning in a MATLAB development
environment. The experiments also showed that a known bug existing in the actual MAT-
LAB code was present in the learned model as well. This is very much desired, because the
analysis of a model can only reveal a bug in the system if the bug also manifests itself in
the model.

This article is structured as follows. Section 1.1 presents a brief overview of related
work. Section 2 describes the system under learning followed by the necessary prelim-
inaries in Section 3. Section 4 illustrates the learning algorithms with an example. A
description of the learning framework and the results from the learning are presented in
Sections 5 and 6, respectively. Section 7 presents the evaluation of the results. Section 8
includes the validation of the formal model learned and the threats to validity. Section 9
presents some insights from the experiments, discusses practical challenges and possible di-
rections for integrating automata learning into automotive software development workflow.
The article is concluded in Section 10 with a summary and some ideas for future work.

1.1. Related Work

Automatically learning finite-state models for formal verification has been done pre-
viously, for instance, from Java source code in [37], and from C code in [38,39]. These
methods rely on extracting an automaton by analyzing the program source code. Hence,
they are specific to the particular programming language and strictly rely on well defined
coding patterns and program annotations. Additionally, the approaches of [37–39] cannot
extract models where the source code is not available, such as when dealing with black-box
systems or binaries. Active automata learning mitigates these restrictions and learns models
of black-box systems through interaction.

There exist works on integrating the MATLAB development environment with tools
compatible for formal verification. For example, in [40], MATLAB/Simulink designs
are translated to the intermediate language Boogie that can later enable the use of SMT
solvers [41] for verification. Other works include developing MATLAB toolboxes to inte-
grate with a theorem prover [42] and a hybrid model checker [43]. Such methods depend
on considerable manual (and skilled) work to understand the semantics of the MATLAB
commands and built-in functions to develop the respective toolboxes. In contrast, by
actively interacting with the actual MATLAB code the work in this article learns a formal
model, which allows us to use general purpose formal methods tools to asses properties of
the code. In addition, knowledge about the semantics of MATLAB code are not needed by
the learning tool.
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Active automata learning has been successfully applied to learn and verify communi-
cation protocols using Mealy machines [26,44], and to obtain formal models of biometric
passports [45] and bank cards [46]. In [47], automata learning is used to learn embed-
ded software programs of printers. Though such research indicates the use of active
automata learning for real-life systems, challenges exist to broaden its impact for practical
use [29,48,49]. There are very limited examples on the use of active automata learning in
an automotive context [50,51] and it is yet to find its place in automotive software develop-
ment. To the best of the authors’ knowledge, active automata learning has not been used
previously to learn formal models from MATLAB.

2. System under Learning: The LSM

The system under learning (SUL), the LSM, is a sub-component of the decision making
and planning module in an autonomous driving system and is responsible for managing
modes during an autonomous lane change. The lane change module is implemented
in MATLAB-code [9] using several classes with different responsibilities. A simplified
overview of the system and the interaction of the LSM with a high level strategic Planner
and a low level Path Planner is shown in Figure 1. The lane change module is cyclically
updated with the current vehicle state (e.g., position, velocity), surrounding traffic state,
and other reference signals.

SENSE  PATH 
PLANNER CONTROLLER

HIGH LEVEL
STRATEGIC
PLANNER 
(Planner) 

LATERAL  
STATE 

MANAGER 
(LSM) 

DECISION MAKING AND PLANNING

Vehicle
State

Traffic
State 

Lane Change
Request 

Direction 

Turn Indication 

Control
Signals 

Vehicle
State

Traffic
State 

Figure 1. The lane change module system overview and interactions between the three components:
Planner, LSM, and Path Planner.

The Planner in the lane change module is responsible for strategic decisions. Depend-
ing on the state of the vehicle, the Planner sends lane change requests to the LSM, indicating
the desired lane to drive in. This request is sent in the form of a laneChangeRequest sig-
nal, which takes one of the three values: noRequest, changeLeft, or changeRight at any
point in time. On receiving a request, the LSM keeps track of the lane change process by
managing the different modes possible during the process, and issues commands to the
Path Planner. If a lane change is requested, the Path Planner plans a path and sends required
control signals to the low level controller to perform a safe and efficient lane change. Once
a lane change is initiated, the LSM needs to remember where in the sequence it is, thus it
is implemented as a finite state machine. A representation of the LSM, which consists of
seven states, is shown in Figure 2. For confidentiality reasons, the state and event names are
not detailed. An example of a state in the LSM state machine is State_Finished, abbreviated
as SF in Figure 2, which represents the completion of the lane change process.
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SA

SB SC

SD SE

SG

SF

Figure 2. A finite state machine representing the LSM.

A call to the LSM is issued at every update cycle. During each call, the LSM undergoes
three distinct execution stages. In the first stage, an associated function updateState
is executed that updates all the inputs according to the function call arguments. Then,
depending on the current state, code is executed to decide whether the system transits
to a new state or not. This code also assigns outputs and internal variables. Finally, if a
transition is performed, the last stage executes code corresponding to the new state entered
and assigns new values to the variables.

3. Preliminaries

An alphabet, denoted by Σ, is a finite, nonempty set of events. A string is a finite
sequence of events chosen from Σ. The empty string, denoted by ε, is the string with zero
events. For two strings, s and t, their concatenation denoted by st, is the string formed such
that s is followed by t. Let Σk be the set of all strings over Σ of length k. Then, Σ2 is ΣΣ and
similarly Σ(n+1) = ΣnΣ. The set of all strings of finite length over an alphabet Σ, including
Σ0 = {ε}, is denoted by Σ∗.

A language L ⊆ Σ∗ is a set of strings over Σ. A string s is a prefix of a string u, if
there exists a string t such that u = st; t is then a suffix of u. For a string s ∈ L ⊆ Σ∗, its
prefix-closure s is the set of all prefixes of s, including s itself and ε. L is said to be prefix-closed
if the prefix-closures of all its strings are also in L, that is L = L. Suffix-closure can be
defined analogously.

Definition 1 (State). Let V = {v1, v2, ..., vn} be an ordered set of state variables, where each
variable vi has a discrete finite domain defined as vD

i . A state is then defined as the assignment of
values to variables, V̂ ∈ VD where VD = vD

1 × vD
2 × · · · × vD

n . V̂ is called a valuation.

Definition 2 (DFA). A deterministic finite automaton (DFA) is defined as a 5-tuple
〈Q, Σ, δ, q0, M〉, where:

• Q is the finite set of states;
• Σ is the alphabet of events;
• δ : Q× Σ ⇀ Q is the partial transition function;
• q0 ∈ Q is the initial state;
• M ⊆ Q is the set of marked states.

The set of all DFA is denoted A. Every DFA A ∈ A determines a language generated,
respectively, marked, by that DFA, defined with help of the extended transition function.

Definition 3 (Extended Transition Function). Given a DFA 〈Q, Σ, δ, q0, M〉, the extended
transition function δ : Q× Σ∗ ⇀ Q is defined as (with s ∈ Σ∗, a ∈ Σ):

• δ(q, ε) = q
• δ(q, sa) = q′ if there exists q′′ ∈ Q s.t. δ(q, s) = q′′ and δ(q′′, a) = q′
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Definition 4 (Generated and Marked Language). Given a DFA A = 〈Q, Σ, δ, q0, M〉, the
languages generated and marked by A, L(A) and Lm(A), respectively, are defined as:

• L(A) = { s ∈ Σ∗ |δ(q0, s) ∈ Q }
• Lm(A) = { s ∈ L(A) |δ(q0, s) ∈ M }

Intuitively, the marked language is the set of all strings that lead to marked states.
While the generated language denotes behavior that is possible but not necessarily accepted,
the marked language denotes possible behavior that is accepted. A language is said to be
regular if it is marked by some DFA. It is well-known [33] that for a given regular language,
there exists a minimal automaton, in the sense of least number of states and transitions, that
accepts that language.

4. The Learning Algorithms

This section introduces and illustrates the learning algorithms used in this article. An
example consisting of two robots, R1 and R2, is used as the SUL. Each robot can perform
two operations, load and unload, represented by the events l1 and u1, respectively, for R1,
and l2 and u2 for R2. The marked languages of R1 and R2 are Lm(R1) = (l1u1)

∗ and
Lm(R2) = (l2u2)

∗, respectively. The behaviors of the robots represented as automata are
shown in Figure 3, to the left. Each robot starts in its respective initial state i, and moves to
the working state w on the occurrence of a load event. Then the robot transits back to its
initial state on the occurrence of an unload event. An automaton representing their joint
behavior is given in Figure 3c.
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Membership Queries: Given a string s ∈ Σ∗, a membership query for s returns 2 if the
string can be executed by the SUL and takes the system (from the initial state)
to a marked state. If the string can be executed but does not reach a marked
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Figure 3. The example system. (a) R1; (b) R2; (c) joint behavior of R1 and R2.

4.1. The L∗ Algorithm

The L∗ algorithm [25] is a well-known active automata learning algorithm that has
inspired a tremendous amount of work [26–29,32,36,46,52]. It learns a minimal automaton
M̂ that generates the regular language L(M̂) ⊆ Σ∗ representing the behavior of the SUL.
L∗ assumes access to an oracle that has complete knowledge of the system, and works by
posing queries to the oracle. The modified L∗ from [36,52] is used in this work. The learning
algorithm interacts with the SUL to answer two types of queries:

Membership Queries: Given a string s ∈ Σ∗, a membership query for s returns 2 if the
string can be executed by the SUL and takes the system (from the initial state) to
a marked state. If the string can be executed, but does not reach a marked state,
1 is returned. Otherwise, 0 is returned. The membership query has the signature:
T : A× Σ∗ → { 0, 1, 2 }, and for A ∈ A and s ∈ Σ∗:

T(A, s) =





2, s ∈ Lm(A)
1, s ∈ L(A) \ Lm(A)
0, s /∈ L(A)

(1)
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Equivalence Queries: Given a hypothesis automatonH, an algorithm verifies ifH represents
the language L(M̂). If not, a counterexample c ∈ Σ∗ must be provided, such that,
either c is incorrectly generated (that is, c ∈ L(H) but c 6∈ L(M̂)), or incorrectly
rejected (that is, c 6∈ L(H) but c ∈ L(M̂)) by H. In this work, equivalence queries
are performed using the W-method [53].

Let M̂ have n states. Given a hypothesisH, with m ≤ n states, the W-method creates
test strings to iteratively extend the hypothesis until it has n ≥ m states.

The learner constantly updates its knowledge about the SUL’s language as an obser-
vation table. The observation table O(S, E, T) is a 2-dimensional table, where S is a set of
prefix-closed strings, and E is the set of suffix-closed strings. The table has rows indexed
by elements of S ∪ (S Σ), and the columns indexed by elements of E. The value of a cell
(s, e) (for s ∈ S ∪ (S Σ) and e ∈ E) is populated using membership queries. The algorithm
ensures that the observation table is closed and consistent [36]. The observation table is
used to obtain a deterministic finite-state automaton, the hypothesis. Then, the learner
performs an equivalence query on the hypothesis automaton. If a counterexample is found,
it is added to the observation table together with all its prefixes. The algorithm loops until
no counterexample can be found.

Example 1. To illustrate the working of the L∗ algorithm, consider the example with the two robots.
L∗ initializes the observation table as seen in Figure 4. The empty event ε is related to the initial
state, which is marked, and hence its membership query results in a value of 2. On the other hand,
the table entries for the l1 and l2 events are 1, as these events are defined from the initial state but do
not reach marked states. Additionally, membership queries for strings that begin with u1 and u2
result in a value of 0, as they are not defined from the initial states. Hence, rows corresponding to
such strings are not included in subsequent observation tables. The rows corresponding to the two
sets of elements belonging to S and S Σ are separated by a horizontal line in the table. For the sake of
compactness, the ε prefix is omitted for non-empty strings.
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Figure 4. L∗—The initial table.

The initial table is made closed, and consistent using membership queries, and the resulting
table is shown in Figure 5a and its corresponding automaton in Figure 5b. States in the automaton
correspond to the row values of the table.

Given the first hypothesis, L∗ now makes an equivalence query resulting in the counterexample
l1l2u1 According to the hypothesis, this string is rejected. However, the membership query for this
string will result in a value 1, as this string is possible in the system, as seen in Figure 3c. This
counterexample and its prefixes are incorporated into the set S, and the learning continues until
a new closed and consistent table, Figure 6a, is obtained. The corresponding hypothesis is seen in
Figure 6b. Since no counterexample can be found at this stage, the algorithm terminates, returning
the hypothesis as the learned model.
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4.2. The Modular Plant Learner

The Modular Plant Learner [30] is a state-based active learning algorithm developed
to learn a modular model, that is, one composed of a set of interacting automata. These
modules together define the behavior of the system. MPL does so by actively exploring the
state-space of a program in a breadth-first search manner. It exploits structural knowledge
of the SUL to search smartly. Hence, it requires access to the SUL’s variables, and a Plant
Structure Hypothesis (PSH) [30] defining the structure of the system. The PSH is a 3-tuple
H = 〈D, E, S〉, where D is a set that provides a unique name for each module that is to be
learned. The cardinality of D defines the number of modules to learn. E is an event mapping
that defines which events belong to which module. S is a state mapping that defines the
relationship between the modules and the variables in the SUL. The algorithm consists of
the Explorer, which explores new states and a ModuleBuilder for each module to keep track
of its module as it is learned.

The Explorer maintains a queue of states that need to be explored, terminating the
algorithm when the queue is empty. The learning is initialized with the SUL’s initial state
in the queue, which becomes the search’s starting state. For each state in the queue, the
Explorer checks if an event from the alphabet Σ can be executed. If a transition is possible,
the Explorer sends the current state (q), the event (σ), and the state reached (q′) to all the
ModuleBuilders.

Each of the ModuleBuilders evaluates if the received transition is relevant to its particu-
lar module. If it is, the transition is added to the module; otherwise it is discarded. The
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ModuleBuilder tracks the learning of each module as an automaton. This is done by maintain-
ing a set Qm containing the module’s states and a transition function Tm : Qm × Σm ⇀ Qm,
for each module m ∈ D. Once the transition is processed, the ModuleBuilder waits for the
Explorer to send the next transition. The algorithm terminates when all modules are waiting
and the exploration queue is empty. Each ModuleBuilder can now construct and return an
automaton based on Qm and Tm.

Example 2. Consider again the example with the two robots. Assume that the robots’ states are
stored in the variables R1var and R2var, respectively, represented as a state vector 〈R1var, R2var〉.
The initial state is then 〈i, i〉. A PSH for this example is defined as follows:

• D = {R1, R2}
• E(R1) = {l1, u1}
• E(R2) = {l2, u2}
• S(R1) = {R1var}
• S(R2) = {R2var}

At the start, the Explorer knows only about the initial state. Two ModuleBuilders are
initialized, one for each robot. The ModuleBuilders use the known initial state and knowledge
regarding the PSH to initialize themselves as seen in Figure 7. The state marked blue in the Explorer
denotes the state that is to be explored next.
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Figure 7. MPL—Initialization. (a) Explorer; (b) R1; (c) R2.

Once initialized, the Explorer attempts to execute all the events in the alphabet from the initial
state. Accepted states are reached only for the events l1 and l2; events u1 and u2 cannot be executed.
Identified transitions are sent to the ModuleBuilders, where they are processed according to the
PSH. Figure 8a shows the knowledge gained by the Explorer. The transitions in red show the current
execution of the Explorer, and the blue states represent the states reached, but not yet explored.
Figure 8b,c show the internal representation of the knowledge for each of the ModuleBuilders. The
states reached in each of the modules are new. Hence, the corresponding global states are added to
the exploration queue.
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Figure 8. MPL—First Iteration. (a) Explorer; (b) R1; (c) R2.
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For each of the states present in the queue, the Explorer tries to execute all the events,
and the obtained transitions, colored red in Figure 9a, are sent to the ModuleBuilders. The
ModuleBuilders take only transitions relating to u1 and u2 to update their knowledge. As seen in
Figure 9b,c the states reached by these (newly added) transitions are not new and have already been
explored. Hence, no more states need to be explored, and the algorithm terminates. At termination
the Explorer has explored only three states to learn a modular model describing the behavior of the
two robots. In the worst-case scenario, though, the MPL must explore the entire state-space. This
depends on the user-defined PSH and the possibility to decouple the system. Further details about
the MPL are found in [30].
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5. Method: The Learning Setup

To actively learn a DFA model of the SUL, an interface is necessary to execute (strings
of) events, which represent the executable actions of the SUL. It should be possible to
observe and set the state of the SUL. If an event is requested that is not executable by the
SUL in its current state, the SUL should reply with an error message. Figure 10 presents
an overview of the active automata learning setup used in this article. The learner refers
to the learning tool MIDES [35] that implements the two learning algorithms described in
Section 4. Furthermore, the learner can be replaced with other tools that follow a similar
setup for automata learning, such as LearnLib [32]. The learning setup allows learning of
automata models by (actively) interacting with the SUL. The following subsections describe
the components and the learning outcome.

System Under
Learning (SUL)

Lateral State
Manager (LSM)

Interface

Learner

Learning Algorithms

Formal Model Analyzer

Finite-state Simulator
Formal Verification
Formal Synthesis

LEARNING SETUP

Figure 10. Overview of the learning setup.

5.1. Abstracting the Code

As described in Section 2, the LSM is a part of the lane change module, which is
updated cyclically with the necessary signals. In order to decide whether the system
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transits to a new state or not, the LSM is dependent on external function calls. These
interactions with external modules need to be abstracted away to learn a model of the LSM.
Thus, the first step in the learning process is to abstract the MATLAB code such that all
external dependencies are removed, which is described using Example 3.

Example 3. Consider the small MATLAB code snippet shown in Listing 1. The function dur-
ingStateA decides whether the system transits to a new state or not depending on var1 and
var2. The values of these two variables are dependent on external function calls, function1 and
function2, respectively.

Listing 1. A small illustrative example.

function duringStateA(self , laneChangeRequest)
var1 = function1 ();
var2 = function2(laneChangeRequest );
if var1 && var2

self.state = stateB;
end

end

Listing 2 shows how the external function calls are replaced by the additional input argument
decisionVar. The two variables, decisionVar.var1 and decisionVar.var2, have the domain
{True, False}. While this abstraction is not universally valid and increases the number of input
parameters of the function, it is possible in this particular context due to the way the different
modules interact; the decision logic remains unchanged.

Listing 2. Abstracted version of Listing 1.

function duringStateA(self ,
laneChangeRequest ,
decisionVar)

if decisionVar.var1 && decisionVar.var2
self.state = stateB;

end
end

Similarly, all such external function calls are abstracted and the final abstracted func-
tion contains one additional input parameter, decisionVar, to the updateState function.
The output of the updateState function is a set of internal variables, which includes the
current state and the direction for the lane change among others. This set of variables is
used by the learner to observe the behavior of the LSM during their interaction, as described
in the following section.

5.2. Interaction with the SUL

The interaction between the learning tool MIDES and the LSM, implemented in
MATLAB, is crucial, for which there is a need to:

1. Enable communication between MIDES and MATLAB,
2. Provide information to MIDES on how to execute the LSM and observe the output.

MIDES must be able to call MATLAB functions, evaluate MATLAB statements, and
pass data to and get data from MATLAB. In this learning setup, the learner is compiled to
Java bytecode, and the resulting executable code is run on a Java virtual machine. Therefore,
the interface integrates Java with MATLAB using the MATLAB Engine API for Java [54],
providing a suitable API for MIDES to interact with MATLAB.

With this interface established, the learner can now call the updateState function by
providing an input assignment to the corresponding variables. However, to learn a model,
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the learner additionally requires, among other things, predicates over state valuations that
define the marked states, the set of events, and event predicates that define when an event
is enabled or disabled.

Since the interaction between the learner and the LSM is done via the updateState
function, the input parameters define the alphabet of the model. Each unique valuation
of the input parameters corresponds to one event in the alphabet. Since the abstracted
LSM module is provided to the learner, each function that is abstracted into a decision
variable potentially results in one additional input parameter. Following the abstraction
described in Section 5.1, ten external function calls in the LSM resulted in ten Boolean valued
decisionVar, in addition to one three-valued laneChangeRequest, as input parametersand
a total of 3072 events. However, as state transitions in the LSM are defined only for a subset
of these events, some of them would potentially not have any effect on the model behavior,
and therefore their event predicates would be unsatisfiable.

The event predicates are defined over the state variables. The granularity of these
predicates contribute to the performance of the learning algorithm. A very detailed pred-
icate will potentially reduce the total number of strings to test in the SUL. A general
rule of thumb for constructing these is to create one predicate for each abstracted vari-
able. Taking the example in Listing 2, all events corresponding to decisionVar.var1 and
decisionVar.var2 are enabled when the predicate, self.state == stateA evaluates to
True. For an event to be enabled in a given state, all individual predicates corresponding
to the different variables must evaluate to True. Events with unsatisfiable predicates can
be discarded. Doing so for the LSM results in a total of 1536 events. Finally, to observe
the behavior of the LSM, the learner requires a set of variables given by the output of the
updateState function. Furthermore, initial valuation of the variables, which is then the
initial state of the LSM, is known to the learner.

6. Results

This section discusses the learning outcome. The learning algorithms were run on an
Intel i7 machine, with 8 GB ram, running Linux.

6.1. Learning with L∗

The L∗ algorithm implemented in MIDES ran out of memory during the experiments
and could not learn a full model. In our longest learning experiment, after 13 h of learning,
it was observed that 6 iterations of the hypothesis involving about 500k membership queries
resulted in a hypothesis model with 8 states and 231 transitions. On visual inspection, the
automaton structure resembles parts of Figure 2. Each of the states in the partially learned
model correspond to one or more states in the automaton of Figure 2. However, since L∗

did not terminate successfully, further analysis is needed.
Two main obstacles were faced while learning using the L∗. Firstly, as the observation

table grows in size, it takes longer to make the table closed and consistent. Furthermore,
the memory used to store the table grows rapidly by a factor dependent on the size of the
alphabet. Secondly, an exhaustive search for a counterexample using the W-method in the
given setup is time consuming. The number of test strings grows rapidly due to the large
alphabet size, which slow down the equivalence queries. A detailed analysis on learning
using the L∗ algorithm is discussed in Section 7.

6.2. Learning with MPL

Apart from the interface with the SUL the MPL requires information about the modules
to learn from the SUL. The LSM is a monolithic system and cannot, in its current form, be
divided into modules. Hence, the MPL, though specifically developed to learn a modular
system consisting of several interacting automata, learns a monolithic model.

The resulting automaton consists of 37 states and 687 transitions. The learning took a
total of 68 seconds. Furthermore, applying language minimization [33] to the learned model
results in a model with 6 states and 114 transitions. The language minimized automation is
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shown in Figure 11, and its similarity to Figure 2 is obvious. Multiple transitions between
two states are indicated by a single transition in Figure 11. The two states SG and SF of
Figure 2 have the same future behavior and hence are bisimilar [33], so they both correspond
to the single state q6 of Figure 11.
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Figure 11. Learned model of the LSM.

The self-loops in the states of Figure 11 correspond to those events that are enabled in
that particular state, but do not change the internal state of the LSM. For example, consider
the code snippet in Listing 2. When decisionVar.var1 is True and decisionVar.var2 is
False, the corresponding event is enabled in stateA, but when fired does not cause a change
in the value of self.state, and thereby results in a self-loop. Similarly, all such enabled
events that do not change the internal state become self-loops in the learned model. The
state q6 does not have a self-loop, as it is a transient state in the LSM. That is, irrespective of
input parameters, when q6 is reached, LSM transits to state q0 for every enabled event.

7. Evaluation

As described in Section 6.1, the L∗ algorithm implemented in MIDES did not learn
a complete model. Prior to performing a detailed analysis, it is essential to eliminate any
potential implementation specific causes for this negative outcome. Typical causes in this
regard could be related to the use of inefficient data structures or non-optimized search
strategies. LearnLib is an open-source library for active automata learning that has been
shown to outperform other existing open-source libraries [32]. LearnLib features a variety
of automata learning algorithms including the L∗ algorithm. As LearnLib is implemented
in Java, it is possible to use an interface similar to the one in Section 5.2 to actively learn a
model of the LSM.

The L∗ algorithm implemented in LearnLib was run on a standard computer with
2.7 GHz Intel i5 processor and 8 GB of ram storage to learn a model of the LSM. However,
even in this case, the L∗ algorithm from LearnLib failed to learn a complete model of the
LSM before it ran out of memory. With these two experimental results, there is adequate
evidence to rule out any implementation specific causes for the negative outcome and to
warrant further analysis as described in the next section.

7.1. Learning Complexity

The complexity of L∗ depends on the number of membership and equivalence queries
as they require interaction with the system and storage of information in the observation
table. In [25], the theoretical worst case size of the observation table is calculated to be
(k + 1)(n + m(n− 1))n, where k = |Σ| is the size of the alphabet, n = |Q| is the number of
states, and m is the maximum length of any counterexample presented by the oracle. This
is also the upper bound for the number of membership queries and thus the complexity
is O(m|Σ||Q|2). Assuming that m = |Q| in the worst case, the number of membership
queries (and the size of the observation table) is O(|Σ||Q|3). Note from Section 6.2 that
the minimal automaton had 6 states. Since L∗ learns a minimal model, it is safe to assume
that it would learn a model with 6 states. Taking these values as an example would mean
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that learning the LSM would involve 1536× 63 ≈ 3.3× 105 membership queries. This
corresponds with the observations in Section 6.1.

The efficiency of L∗ for learning finite automata in practice has been investigated
by empirical studies on some real-word examples and some randomly generated exam-
ples. For instance, [55] observes that the required number of membership queries grows
quadratically in the number of transitions when learning prefix-closed languages. This is a
challenge, as learning from autonomous driving (or automotive) software in general would
typically involve models of reactive systems and therefore learning prefix-closed languages
like the case with the LSM. Further empirical studies in [56] show that in general, more
queries are required (i.e., harder) to learn a DFA with more marked states (≈|Q|) and the
number of membership queries per equivalence query grows linearly as a function of |Σ|
and |Q|. These results show the need for optimizations of the L∗ algorithm for practical
applicability, as is further shown by this study.

7.2. Alphabet Reduction

Based on the discussions so far, it is evident that optimizations are necessary to
successfully learn a model of the LSM. The size of the alphabet directly affects the number of
membership and equivalence queries. As also pointed out by [55], finding a counterexample
to refute a hypothesis in an equivalence query becomes increasingly hard with large
alphabets and prefix-closed languages. Therefore, any optimization that reduces the
number of such queries is potentially beneficial. In this regard, it is valuable to investigate
whether knowledge about the LSM could be exploited to reduce the size of the alphabet
without loss of information during the learning process.

Through the abstraction method in Section 5, the alphabet size can be decreased by a
reduction in the set of decision variables during the abstraction. For example, in Listing 2
the two variables decisionVar.var1 and decisionVar.var2 can potentially be combined
into a single variable decisionVar.var12. Such a simplification is only possible if it is the
case that decisionVar.var1 and decisionVar.var2 are exclusively used in StateA and
do not affect other state changes in the LSM. This information could be obtained from
knowledge about the design requirements of the LSM used to create the abstraction shown
in Figure 2.

The above approach was implemented through a wrapper function before a call to the
initially abstracted LSM from Section 5.2 is made. This ensures that the decision logic in
the LSM remains unchanged. Thus, the number of Boolean decision variables was reduced
from 10 to 6; bringing down the number of possible events to 192. However, even in this
case, L∗ failed to learn a complete model before running out of memory.

As further optimization was necessary, more knowledge about the LSM was used to
reduce the alphabet size. The decision logic of the LSM was studied to find a correlation be-
tween the (now abstracted) 6 Boolean decision variables, showing that only 4 combinations
were actually used, which could be encoded using only 2 Boolean variables. This resulted in
12 events in total, and L∗ successfully learned a model similar to the one shown in Figure 11.
The wrapper function described here to reduce the alphabet is similar to the approach of
using event predicates described in Section 5.2 to remove unnecessary events from the
alphabet. However, to reduce the alphabet in the proposed manner requires considerable
knowledge about the LSM and is potentially prone to errors due to the manual abstraction
involved. Though it is a limitation that the complete set of events is not queried in this way,
it was adopted to explore the limits of L∗.

8. Model Validation

A formal model of the LSM was learned using the MPL and the optimized L∗ as
described in Section 6 and Section 7.2, respectively. To validate the learned model, similar
to [45], it was compared to a model [57] manually constructed from the MATLAB code.
This was done using the tool SUPREMICA [58], which includes an automata simulator. It is
possible to view the current state, choose which event to execute, observe the resulting state
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changes, and step forwards and backwards through the simulation. Thus, a comparison
of the simulations of the learned formal model and the simulation of the actual LSM code
using MATLAB/Simulink is made.

Recall from Section 5.2 that the alphabet of the learned DFA model is constructed
using the input parameters of the LSM code. Therefore, executing the LSM code with
a set of input parameters can analogously be simulated by executing the corresponding
string of events in the DFA model. Since this comparison is made between the results from
simulating the actual LSM implementation and the automata simulation of the learned
model, it also validates the abstraction choices described in Section 5.1. Furthermore, a
known existing bug in the LSM development code manifested itself also in the learned
model. This was validated by manually simulating the learned model with a sequence of
input parameter changes known to provoke the bug.

Though no discrepancy was found between the code and the learned model, such
manual inspection is not exhaustive and cannot guarantee completeness of the validation
process. Alternatively, formal verification could be used to verify correctness. However, as
only limited informal (natural language) specifications were available, this was not (easily)
done. Still, the minimized model, together with the simulations in SUPREMICA strengthens
the confidence in the results of the learning process.

Threats to Validity

This article investigated only one problem instance and so cannot give any concrete
conclusions on the generalization or the scalability of the approach. Accidentally, a piece
of MATLAB code could have been chosen that lent itself particularly well to automatic
learning. Indeed, a piece of code was chosen that the authors were already familiar with.
Furthermore, the validation of the learned model was admittedly rather superficial, visual
inspection and comparison of simulation results between the learned model and the actual
MATLAB code. Ideally, the learned model should have been used to assert functional
properties of the MATLAB code. The closest in this respect was the known bug in the code,
that could be shown to also be present in the learned model.

However, a general automata learning framework that was not tailored specifically
to the SUL in this article was used; the only thing that was specifically implemented
was the interface between the learning framework and MATLAB. Even so, that interface
was intentionally kept general so that similar case studies of other pieces of code can be
performed in the future to truly assess the validity of the presented approach.

9. Insights and Discussion

A formal model of the LSM was successfully learned, and validated in multiple ways.
This section presents a discussion on the insights gained.

9.1. Towards Formal Software Development

The primary motivation for this work is to overcome the limitations in manual model
construction so that techniques like formal verification and formal synthesis can be used
to guarantee the correctness of software, without disrupting current industrial practices.
The presented approach is independent of the semantics of the implementation languages
One technical requirement to seamlessly integrate this approach with the daily engineering
workflow is the possibility to establish an interface between the production code and the
learning algorithms. Such a seamless integration makes it easier to use formal methods not
only for safety-critical software, but also for other automotive software (e.g., infotainment).
Though this article does not consider any kind of formal analysis on the learned model,
formal analysis using different verification and synthesis tools can directly be done on
the learned models with tools like SUPREMICA, similar to [20,57]. Of course, the learned
models must be translated into an input format suitable for the particular tool.
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Continuous Formal Development

With increasing complexity, software development in the automotive industry is
adopting new model-based development approaches in the software development life
cycle (SDLC) [59–62]. Quality assurance in such approaches relies on continuous integration
methods where continuous testing is vital. However, safety critical software requires strict
measures and testing, and unlike formal methods cannot guarantee the absence of errors.
Continuous formal verification [63] is a viable solution in this regard. Though there is a
need for a significant amount of research to adopt a continuous formal verification process
for automotive SDLC, insights from this article can be used to scale active learning to obtain
formal models for safety-critical software development.

9.2. Practical Challenges

This section discusses practical challenges encountered in the course of the study.

9.2.1. Interaction with the SUL

The interaction with real-life systems and the construction of application-specific
learning setups remain as challenges for the automata learning community despite the
application of automata learning in different scenarios over the years [29,48,49]. A major
aspect of the active learning process is to establish a proper interface between the learner
and the SUL. In this article, the interface is achieved through MATLAB-Java integration
using the MATLAB Engine API for Java [54] as described in Section 5.2. A challenge is to
establish an appropriate abstraction such that the learner can obtain necessary information
about the alphabet to actively interact with the LSM. In this study, all external dependencies
were abstracted such that the learner can easily interact with the SUL. However, data
dependencies between different methods and user defined classes could present additional
challenges to scale this approach, for example to learn a model of the Planner and the LSM
together. The effort needed to design and implement application specific learning setups
can be reduced by creating test-drivers [48] in the form of standalone libraries, and/or
automatically constructing abstractions [27] for seamless integration between the SUL and
the learner.

9.2.2. Efficiency of the Learning Algorithms

The L∗ algorithm in both the tools (MIDES and LearnLib) failed to learn a complete
model of the LSM. From Section 7, it is evident that the number of membership and
equivalence queries affect the efficiency of the L∗ algorithm. Optimization by exploiting
knowledge about the decision logic of the LSM was necessary to successfully learn a model
of the LSM. While this corresponds to similar observations in other applications [29,55],
it highlights the limitations in the practical applicability of language-based learning to
autonomous driving software.

Though the MPL successfully learned a model of the LSM, more empirical case
studies are needed to explore the limits of state-based learning in this context. The MPL is
specifically developed to learn a modular system with several interacting automata. The
main benefit here is the reduction in search space achieved by exploiting the structure of the
SUL. Unfortunately, due to the structure of the LSM, a monolithic model had to be learned.
However, the modular approach could potentially be helpful in tackling the complexity
that arises in learning larger systems.

9.2.3. States vs. Events

Both L∗ and the MPL require a definition of the events that are relevant to the SUL.
Interestingly, there is a trade-off between the size of the alphabet and the size of the state-
space; a small alphabet leads to a large state-space, and vice versa. This trade-off is thus
important, as the well known state-space explosion is a real practical problem.

The current learning setup resulted in 3072 events, one for each unique valuation of
the input parameter. However, it is possible to use each of the input parameters as an event.
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This would result in a considerably smaller alphabet of only 23 events. Using the 23 events
to learn leads to a huge state-space, however, and both algorithms failed to learn a model.
Multiple interlaced lattice structures are seen in the partial models that were obtained and
these relate to the various combinations of input parameters. The efficiency of the learning
algorithms can be improved by leveraging this trade-off when abstracting the code as seen
in Section 7.2.

9.3. Software Reengineering and Reverse Engineering

Reverse engineering, which involves extracting high level specifications from the
original system can help to understand (ill-documented) legacy systems and black-box
systems, and to reason about theircorrectness. In addition, the development of intelligent
autonomous driving features typically undergoes several design iterations before public
deployment. In such a case, the formal approaches used to guarantee correctness need
to adapt to the software reengineering lifecycle. Reengineering embedded automotive
software is different from software reengineering in other domains due to unique chal-
lenges [64,65]. The active learning approach in this article can help identify unintended
changes between different software implementations and also help to obtain high-level
models from legacy systems, thereby aiding in the reengineering and the reverse engineer-
ing phase, respectively.

10. Conclusions

This article describes an application to interact with and learn formal models of
MATLAB code. MATLAB/Simulink is currently a main engineering tool in the automotive
industry, by automatically learning models of MATLAB code a significant step is taken
towards the industrial adoption of formal methods. This is especially important for the
development of safety-critical systems, like autonomous vehicles.

Using an active automata learning tool MIDES, which interacts with MATLAB, two
different learning algorithms were applied to the code of a lane change module, the LSM,
being developed for autonomous vehicles. One of these, an adaption of L∗, was unable to
learn a model due to memory issues. The other, MPL, being a state-based method designed
for learning a modular model, had more information about the target system, and learned a
model in roughly one minute. To rule out possible implementation issues, another version
of L∗ from the open-source LearnLib toolbox was used to learn a model of the LSM. Even in
this case, L∗ failed to learn a model. Investigation of this negative outcome lead to alphabet
reduction to improve the performance of L∗.

The learned models were validated in four ways:

• The language minimization of the model learned by MPL is very similar to the original
model of the LSM.

• Manual comparison of the learned models to a manually developed model of the LSM
indicated close similarity.

• Simulating the learned automata in SUPREMICA and comparing to the simulation of
the actual code in MATLAB/Simulink showed no obvious discrepancies.

• A known bug in the development code was found also in the learned models.

Though the validation of the learned models were performed informally, taken to-
gether, they make a strong argument for the benefits of active automata learning in an
industrial setting within the automotive domain. Model validation is a well known prob-
lem within the active automata learning community [29,31] and in the future, we would
like to investigate different formal/semi-formal methods to validate the learned models.

Learning a monolithic model is a bottleneck, as it scales badly. Learning modular
models potentially allows us to learn models of larger systems, which is important for
industrial acceptance, so this is clearly future research. Currently, the main obstacle is how
to define the modules and partition the variables among the modules; if not done properly,
the benefits of modular learning are lost.
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Existing learning frameworks, like Tomte [27], could potentially help in the learning
process by providing more efficient ways to abstract and reduce the alphabet. Furthermore,
learning richer structures (but with the same expressive power), like extended finite state
machines [66], is an interesting topic for further research. In addition, to further corroborate
our findings, we plan to study several other software components of an autonomous
vehicle, using the generic interface discussed in this article.

All in all, the goal is to make active automata learning a tool to aid widespread
adoption of formal methods in day to day development within the automotive industry, in
much the same way as MATLAB currently is.
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61. Kubíček, K.; Čech, M.; Škach, J. Continuous enhancement in model-based software development and recent trends. In
Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 10–13
September Zaragoza, Spain, 2019; pp. 71–78.

62. Cie, K.M. Agile in Automotive—State of Practice 2015; Study; Kugler Maag Cie: Kornwestheim , Germany, 2015; p. 58.
63. Monteiro, F.R.; Gadelha, M.Y.R.; Cordeiro, L.C. Boost the Impact of Continuous Formal Verification in Industry. arXiv 2019,

arXiv:1904.06152.
64. Thums, A.; Quante, J. Reengineering embedded automotive software. In Proceedings of the 2012 28th IEEE International

Conference on Software Maintenance (ICSM), Trento, Italy, 23–28 September 2012; pp. 493–502.
65. Schulte-Coerne, V.; Thums, A.; Quante, J. Challenges in reengineering automotive software. In Proceedings of the 2009 13th

European Conference on Software Maintenance and Reengineering, Kaiserslautern, Germany, 24–27 March 2009; pp. 315–316.
66. Malik, R.; Fabian, M.; Åkesson, K. Modelling Large-Scale Discrete-Event Systems Using Modules, Aliases, and Extended

Finite-State Automata. IFAC Proc. Vol. 2011, 44, 7000–7005. [CrossRef]

http://dx.doi.org/10.1007/978-3-642-21455-4_10
http://dx.doi.org/10.1109/TAC.2018.2793662
http://dx.doi.org/10.1109/TSE.1978.231496
https://se.mathworks.com/help/matlab/matlab_external/get-started-with-matlab-engine-api-for-java.html
https://se.mathworks.com/help/matlab/matlab_external/get-started-with-matlab-engine-api-for-java.html
http://dx.doi.org/10.1016/j.ifacol.2017.08.427
https://www.ltts.com/sites/default/files/whitepapers/2017-07/wp-model-based-sys-engg.pdf
https://www.ltts.com/sites/default/files/whitepapers/2017-07/wp-model-based-sys-engg.pdf
http://dx.doi.org/10.3182/20110828-6-IT-1002.00593

	Introduction
	Related Work

	System under Learning: The LSM
	Preliminaries
	The Learning Algorithms
	The L* Algorithm
	The Modular Plant Learner

	Method: The Learning Setup
	Abstracting the Code
	Interaction with the SUL

	Results
	Learning with L*
	Learning with MPL

	Evaluation
	Learning Complexity
	Alphabet Reduction

	Model Validation
	Insights and Discussion
	Towards Formal Software Development
	Practical Challenges
	Interaction with the SUL
	Efficiency of the Learning Algorithms
	States vs. Events

	Software Reengineering and Reverse Engineering

	Conclusions
	References

