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the Hamiltonian Monte Carlo method
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The number of low-energy constants (LECs) in chiral effective field theory (χEFT) grows rapidly with
increasing chiral order, necessitating the use of Markov chain Monte Carlo techniques for sampling their
posterior probability density function. For this we introduce a Hamiltonian Monte Carlo (HMC) algorithm and
sample the LEC posterior up to next-to-next-to-leading order (NNLO) in the two-nucleon sector of χEFT.
We find that the sampling efficiency of HMC is three to six times higher compared to an affine-invariant
sampling algorithm. We analyze the empirical coverage probability and validate that the NNLO model yields
predictions for two-nucleon scattering data with largely reliable credible intervals, provided that one ignores the
leading-order EFT expansion parameter when inferring the variance of the truncation error. We also find that the
NNLO truncation error dominates the error budget.
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I. INTRODUCTION

Chiral effective field theory (χEFT) descriptions [1–4] of
the strong nuclear interaction depend on low-energy constants
(LECs) that govern the strength of the various interaction
terms. Their numerical values must be inferred from data and
are best described by a posterior probability density func-
tion (PDF). Clearly, this parametric uncertainty will combine
with the inherent discrepancy of χEFT, i.e., the epistemic
gap between model predictions and real world observations.
Thus, their joint uncertainty must be estimated and propagated
forward before the credibility of the underlying theory and its
predictions for nuclear observables can be assessed. Drawing
samples from this posterior predictive distribution (PPD) is
key to analyze the implications of physical and probabilis-
tic modeling choices in the ab initio description of nuclear
systems. Fortunately, operating with a χEFT endowed with
a power counting offers a principal handle to estimate the
relevant model discrepancy in terms of Bayesian credible in-
tervals for the EFT truncation error [5]. Still, drawing samples
from relevant posterior PDFs presents a formidable challenge,
particularly for high-dimensional parameter volumes.

Here, we introduce the Hamiltonian Monte Carlo (HMC)
method [6] to sample LEC posteriors and PPDs in χEFT.
HMC is a Markov chain Monte Carlo (MCMC) [7,8] method
that exploits the equations of Hamiltonian dynamics for
drawing uncorrelated PDF samples with a high acceptance
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probability. Crucially, HMC performs well also in cases of
high-dimensional probability distributions where most other
MCMC algorithms fail to converge within a reasonable time
frame. In this paper we demonstrate how to use HMC to
efficiently sample the LEC posteriors at leading order (LO),
next-to-leading order (NLO), and next-to-next-to-leading or-
der (NNLO) in deltaless χEFT. We also perform model
checking and model validation by drawing samples from
the PPD for elastic nucleon-nucleon (NN) scattering in the
neutron-proton (np) and proton-proton (pp) channels. All
PDFs are conditioned on data from the recent Granada
database [9,10] of measured NN scattering cross sections.
We employ a statistical model for the EFT truncation error,
proposed by Wesolowski et al. [11], to account for the model
discrepancy due to excluded contributions from higher chiral
orders.

In a Bayesian data analysis it is straightforward to con-
dition on existing results. We make use of a previous
Roy-Steiner analysis [12,13] to incorporate prior knowledge
about the LECs that govern the strengths of subleading
pion-nucleon (πN) interactions. We also place a prior in
accordance with naturalness expectations on the LECs that
govern contact interaction strengths. Throughout this paper,
we define the necessary one- and two-pion exchanges and
contact interactions according to Ref. [3] and follow the same
conventions for the potential, scattering amplitudes, and NN
scattering observables as in Ref. [14]. We use a nonlocal
super-Gaussian momentum-space regulator with a fixed cutoff
� = 450 MeV.

II. BAYESIAN PARAMETER ESTIMATION IN χEFT

Bayes’s theorem

pr(�α|D, I ) = pr(D|�α, I ) · pr(�α|I )

pr(D|I )
(1)
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provides a straightforward way to express the posterior PDF
pr(�α|D, I ) for the LECs �α in terms of a likelihood pr(D|�α, I ),
prior pr(�α|I ), and marginal likelihood (or evidence) pr(D|I ).
In this paper, the LEC posterior is conditioned on NN scatter-
ing data D and additional prior information I . The marginal
likelihood, which does not depend on �α, plays no role in
parameter estimation and we therefore have

pr(�α|D, I ) ∝ pr(D|�α, I ) · pr(�α|I ). (2)

A hallmark of the Bayesian approach is the transparent and
straightforward inclusion of prior information I . A main goal
of this paper is to incorporate the probabilistic model for the
EFT truncation error from Ref. [11] and introduce an HMC
algorithm to efficiently sample the posterior PDF for all LECs
up to NNLO.

In the following subsections we present the NN data we
use, our prior, and our likelihood, and specify the hyperparam-
eters and details of the model for relating experimental NN
scattering data to a χEFT prediction at a given chiral order.

A. Prior

Our full prior for the LECs is written as a product of
two independent priors: pr(�αNN |I ) for the contact LECs and
pr(�απN |I ) for the πN LECs. This form,

pr(�α|I ) = pr(�αNN |I ) · pr(�απN |I ), (3)

implies no prior assumption of correlation between LECs
from these sectors. Furthermore, we adopt independent and
identical Gaussian PDFs for all contact LECs with zero mean
and standard deviation ᾱ = 5. This is a rather weak prior
which again makes no assumption of correlations. However,
it mildly encodes the naturalness expectation of the LECs
by penalizing LEC values � 1, thus safeguarding somewhat
against overfitting [15]. The exact value of ᾱ does not have a
major impact on the outcome, as the large NN data set used in
the likelihood strongly dominates over the prior. The prior at
LO and NLO in χEFT—where no πN LECs appear—is thus
given by

pr(�α|I ) = N (�0, �prior ) (4)

with

(�prior )i j = ᾱ2δi j . (5)

Here, N (�μ,�) denotes a multivariate normal (Gaussian) PDF
with mean vector �μ and covariance matrix �.

For the πN LECs c1, c3, and c4, entering at NNLO, we
have chosen a much more restrictive prior based on mean
values and covariance matrices extracted from the maximum-
likelihood fit of a Roy-Steiner analysis of the πN scattering
amplitudes by Siemens et al. [13]. That analysis proceeds in a
kinematical region of chiral perturbation theory that exhibits
a stronger curvature with respect to the subthreshold param-
eters of the πN scattering amplitudes. Once matched to the
πN LECs in χEFT, we obtain a rather informative prior for
the corresponding part of the potential. We will return to a
more detailed discussion of the πN LECs when analyzing the
MCMC posteriors in Sec. IV B.

To be specific, the LECs that we consider at each order are

�αLO = (C̃1S0, C̃3S1), (6)

�αNLO = (
C̃np

1S0, C̃ pp
1S0, C̃3S1,C1S0,C3P0,

C1P1,C3P1,C3S1,C3S1−3D1,C3P2
)
, (7)

�αNNLO = (
c1, c3, c4, C̃np

1S0, C̃ pp
1S0, C̃3S1,C1S0,

C3P0,C1P1,C3P1,C3S1,C3S1−3D1,C3P2
)
. (8)

We employ a conventional notation linked to the momentum
partial-wave basis (see, e.g., Ref. [3]). Note also that isospin-
breaking effects enter at NLO and only in the 1S0 partial wave.

B. Elastic nucleon-nucleon scattering observables

We condition our LEC posterior on experimental data. We
use roughly two thirds of the Granada 2013 database [9,10] to
define the training data set D. We hold out all scattering data
in the range 80 � Tlab � 100 MeV of laboratory scattering
energies and assign it to a validation data set D̃. We further as-
sign to D̃ all data in the energy range 290 < Tlab � 350 MeV,
i.e., just above the pion-production threshold, plus the set of
integrated np scattering cross sections from Ref. [16]. Over-
all, this choice of data split enables detailed model checking
while leaving ample information for estimating the LECs at
each chiral order up to NNLO. In all, D consists of 4366
experimental data points to be used as input in the parameter
estimation process, while D̃ contains 2018 validation data
points. The details of the NN scattering data used for param-
eter estimation and validation are presented in Table I.

Given a set of numerical values for the LECs, we compute
scattering amplitudes by solving the Lippmann-Schwinger
equation for all partial waves with maximum total angular-
momentum quantum number Jmax � 30. This is more than
enough to converge the physical model predictions for the
resulting scattering observables. Thus, we neglect all sources
of numerical or computational method uncertainties going
forward.

In pp scattering we include all relevant electromagnetic
effects, as outlined in Ref. [14]: the static Coulomb interaction
and its relativistic correction, the first-order approximation to
the vacuum polarization, and relevant magnetic moment inter-
actions. This set of long-ranged electromagnetic interactions
has been demonstrated by the Nijmegen group to be sufficient
for explaining the observed low-energy pp scattering data
[18,19]. For this reason, we also neglect any theoretical model
discrepancy due to neglected higher-order contributions to the
electromagnetic interaction.

C. Likelihood and EFT truncation error

In this paper we relate an experimental measurement yexp

of some observable y to the true value ytrue via a statistical
model

yexp = ytrue + δyexp. (9)

This also introduces the experimental uncertainty, δyexp, as a
random variable for which we employ the standard deviations
provided in the Granada database. We also relate the true value
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TABLE I. The distribution of observables in the training and
validation data sets denoted D and D̃, respectively. D̃ is composed of
all available data in the 80 � Tlab � 100 and 290 < Tlab � 350 MeV
ranges, plus one set of np SGT data [16] covering the 33 � Tlab �
350 MeV range. All other available data constitute D. We denote
scattering observables using the SAID nomenclature [17], e.g., in-
tegrated cross section (SGT), unpolarized differential cross section
(DSG), polarization (P), polarization of the beam (PB), and polariza-
tion of the target (PT). These observables make up the bulk part of
the experimental NN database.

Training data (D) Validation data (D̃)

Obs. np pp Total (%) np pp Total (%)

SGT 315 0 315 (7.2) 84 0 84 (4.2)
SGTL 11 0 11 (0.3) 4 0 4 (0.2)
SGTT 16 0 16 (0.4) 3 0 3 (0.1)
DSG 1221 756 1977 (45.2) 457 159 616 (30.5)
A 5 47 52 (1.2) 0 24 24 (1.2)
AP 0 5 5 (0.1) 0 0 0 (0.0)
AT 30 0 30 (0.7) 35 0 35 (1.7)
AXX 0 143 143 (3.2) 0 120 120 (5.9)
AYY 64 151 215 (4.8) 46 151 197 (9.8)
AZX 0 137 137 (3.1) 0 120 120 (5.9)
AZZ 45 39 84 (1.9) 27 10 37 (1.8)
CKP 0 1 1 (0.0) 0 1 1 (0.0)
D 13 56 69 (1.6) 14 42 56 (2.8)
D0SK 8 0 8 (0.2) 14 0 14 (0.7)
DT 39 0 39 (0.9) 39 0 39 (1.9)
MSKN 0 8 8 (0.2) 0 8 8 (0.4)
MSSN 0 8 8 (0.2) 0 8 8 (0.4)
NNKK 8 0 8 (0.2) 0 0 0 (0.0)
NSKN 12 0 12 (0.3) 13 0 13 (0.6)
NSSN 4 0 4 (0.1) 14 0 14 (0.7)
P 0 489 489 (11.2) 0 260 260 (12.9)
PB 590 0 590 (13.5) 253 0 253 (12.5)
PT 38 0 38 (0.9) 19 0 19 (0.9)
R 5 50 55 (1.3) 0 50 50 (2.5)
RP 0 22 22 (0.5) 0 5 5 (0.2)
RPT 1 0 1 (0.0) 1 0 1 (0.0)
RT 29 0 29 (0.7) 37 0 37 (1.8)
All 2454 1912 4366 (100) 1060 958 2018 (100)

and our theory prediction yth via

ytrue = yth + δyth, (10)

where δyth is the model discrepancy term. We will model
δyth as coming from the truncation of the chiral expansion in
χEFT at some finite chiral order k. When doing so we tacitly
assume that the entire epistemic uncertainty of the theory can
be systematically reduced by going to higher orders in χEFT.

To model the truncation error we follow Furnstahl et al.
[5] and Wesolowski et al. [11] and formally write the χEFT
expansion for some observable prediction yth up to chiral order
k as

y(k)
th = yref

k∑
ν=0

cνQν, (11)

where yref is a reference value, cν are dimensionless EFT
expansion coefficients, and Q is a dimensionless expansion
parameter that we assign as

Q = max(mπ , p)

�b
(12)

where mπ is the pion mass, p is a soft scale associated with
the observable, and �b is a hard scale. In this paper, we
will set �b = 600 MeV and p is given by the NN scattering
momentum. All contributions to the potential at chiral order
ν = 1 vanish, i.e., c1 = 0, since we employ Weinberg power
counting. We refer to the different orders as LO (ν = 0), NLO
(ν = 2), and NNLO (ν = 3).

Truncating the χEFT expansion at order k induces a trun-
cation error given by

δy(k)
th = yref

K∑
ν=k+1

cνQν (13)

where K → ∞. Assuming that all cν coefficients, including
those for which ν � k, are independent and identically dis-
tributed, we can use known lower-order coefficients c0, . . . , ck

to learn about the single PDF from which the unknown higher-
order coefficients should also be sampled. This, combined
with a prior assumption about the form of the PDF for the cν

coefficients, provides us with a prescription for quantitatively
estimating δy(k)

th .
We assume a Gaussian prior with variance c̄2 for cν :

pr(cν |I ) = N (0, c̄2). (14)

All physical scales reside in Q and yref and it is reasonable to
assume that the cν coefficients are of order 1. This is an as-
sumption we will test explicitly in Sec. II C 2 when estimating
c̄ from order-by-order shifts in the prediction of different NN
scattering observables y.

Placing a normal prior for cν , with known c̄2, leads to a
normal PDF with variance σ 2

th for δy (k)
th in the limit K → ∞

given by [11]

pr
(
δy (k)

th

∣∣c̄2, Q, I
) = N (

0, σ 2
th

)
, (15)

where we have also conditioned on Q, and

σ 2
th = c̄2y2

ref
Q2(k+1)

1 − Q2
. (16)

In this paper we will assume that the theory errors for different
observables (yi, y j ) are completely uncorrelated. This leads to
a diagonal covariance matrix �th for the truncation error at
order k that is given by

(�th)i j = σ 2
th,iδi j . (17)

Note that the LO truncation error is proportional to Q4/(1 −
Q2) since the ν = 1 chiral order vanishes such that the first
nonzero term in Eq. (13) corresponds to ν = 2.

The likelihood function for the entire data set D
can—assuming that experimental and theoretical errors are
independent—be expressed as

pr(D|�α, I ) ∝ exp
[ − 1

2 �r T · (�exp + �th)−1 · �r
]
, (18)
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with the residual vector �r defined as

�r = �y (k)
th (�α) − �yexp, (19)

i.e., the difference between the experimental data and the
corresponding set of χEFT predictions at order k given a
vector �α of LEC values. We employ a diagonal covariance
matrix �exp also for the experimental data and use the normal-
ization factors from the Granada database [9,10] for the joint
systematic uncertainty of a group of data originating from the
same experiment [20]. Note also that the likelihood (18) is
implicitly conditional on c̄ and the breakdown scale �b.

Let us also mention two possible extensions of the sta-
tistical model used in this paper. First, instead of placing an
implicit delta prior on c̄2, one could follow standard Bayesian
practice and exploit the class of conjugate priors, assuming,
e.g., an inverse-χ2 PDF such that pr(c̄2|I ) = χ−2(ν0, τ

2
0 ).1

The conjugacy of this prior with respect to the normal PDF
leads to a Student’s t PDF for the expansion parameters cν

and the truncation error δy(k)
th (see Ref. [21]). The Student’s

t distribution [22] is essentially a heavier-tailed variant of
the normal distribution, arising here as the result of the un-
known variance c̄2. Second, one could relax the assumption
of completely uncorrelated truncation errors and model the
covariance structure of the expansion coefficients cν using,
e.g., a Gaussian process where the correlation length in Q is
one of its hyperparameters [21].

1. Choice of reference values

The reference value, yref, in Eq. (13) for each observable
can be assigned in different ways. Options include using an
experimental value, picking some suitable theoretical pre-
diction, or a value motivated from an order of magnitude
estimate. We have chosen to let LO predictions set the scale
for observables. But since LO predictions depend on the LECs
�α—which at this point in the analysis remain to be inferred—
it is necessary to extract a reasonable point estimate of LO
LEC values �α�

ν=0. We do this by maximizing the likelihood
(18) at LO (i.e., setting k = 0) using �th from Eq. (17) with
yref = yexp and c̄ = 1, as motivated by naturalness. The choice
of using experimental data as reference values when maxi-
mizing the likelihood was technically convenient but has little
practical impact on the subsequent steps of the analysis. In
this way, we let the maximum likelihood estimate (MLE) at
LO, y(0)

th (�α�
ν=0), be the reference value for integrated (SGT)

and differential cross section (DSG) observables. For spin
polarization and correlation cross sections we use yref = 0.15
as motivated by the average of the LO maximum-likelihood
prediction.

2. Estimating c̄

We proceed to estimate c̄ from the finite set of expansion
coefficients cν obtained by rearranging Eq. (11) and setting
�α = �α�

ν . In general, we obtain a vector, �cν , of expansion

1Here ν0 and τ0 are hyperparameters corresponding to the degrees
of freedom and scale for the χ−2 PDF. This PDF is equivalent to a
normal-inverse-gamma PDF.

TABLE II. Results from the c̄ analysis. c̄ν denotes the rms value
of the EFT expansion coefficients at a particular order ν, while c̄0...ν

denotes the rms value up to, and including, order k.

Order ν c̄ν c̄0...ν Outliers (order ν) Outliers (all orders)

LO 0 1.17 1.17 1/54 1/54
NLO 2 4.95 2.08 0/54 15/108
NNLO 3 2.84 2.72 1/54 8/162

coefficients at order ν:

cν,i = y (ν)
th,i (�α�

ν ) − y (ν−1)
th,i (�α�

ν−1)

yref,iQν
i

, i = 1, . . . , No, (20)

for a representative set of No = 54 observables at different
scattering energies and angles. Specifically, we used a com-
bination of total cross sections, differential cross sections,
and spin observables in np and pp at an energy grid Tlab =
20, 70, 120, 170, 220, and 270 MeV, and scattering angles
θ = 50◦ and 150◦, such that we cover the relevant kinematical
regions while being sufficiently well separated in the energy-
angle variables to reduce the influence of finite correlations
in the expansion coefficients. We account for the vanishing of
chiral order ν = 1 when computing the order-by-order differ-
ences.

At each order we then compute a rms value, i.e.,

c̄ν =
√√√√ 1

No

No∑
i=1

c2
ν,i. (21)

Our choice to set yref according to the LO MLE effectively
constrains the expansion coefficient c0, leading to c0 = 1.17,
accounting for the averaged spin polarizations. See the third
column in Table II for results at the other two orders. We also
define an estimate of c̄ as the total rms value of the cν,i coef-
ficients up to, and including, the order k at which we truncate
the EFT expansion (see the fourth column in Table II). The
highest-order estimate for c̄ is given by c̄0...3 and therefore
includes information from LO, NLO, and NNLO. Note that
outlier values of cν,i were removed before computing all rms
values since they would otherwise influence our estimate dis-
proportionally. We used the following procedure to determine
outliers.

(1) Compute the lower and upper quartiles C25% and C75%

of cν,i.
(2) Determine the distance C between the quartiles.
(3) Discard any cν,i that falls outside the interval [C25% −

3C,C75% + 3C].
The numbers of removed outliers at each order are pro-

vided in Table II.
Since we express the observable predictions as an EFT

expansion in Eq. (11) we expect to observe expansion coef-
ficients of natural size. On average we find relatively natural
values that characterize the truncation error. However, the
larger difference in the χEFT predictions when going from
LO to NLO is a signature of an irregular convergence pattern
and incurs an unexpectedly large value for c̄ν=2. We analyze
the consequences of this in Sec. V.
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III. HAMILTONIAN MONTE CARLO

Hamiltonian Monte Carlo shares some key features with
the canonical Metropolis-Hastings algorithm [7,8]. These
MCMC methods draw samples from a PDF pr(�α) by produc-
ing an ergodic Markov chain of states the unique stationary
distribution of which is pr(�α). Given a current state �αn of the
MCMC chain, the Metropolis-Hastings algorithm proposes a
new state �α′

n from a proposal distribution q(�α′
n|�αn). The new

state is accepted with a probability a given by

a = min(1, r) (22)

where r is the Hastings ratio:

r = pr(�α′
n)q(�α′

n|�αn)

pr(�αn)q(�αn|�α′
n)

. (23)

The next state of the chain, �αn+1, will be set to �α′
n if the update

is accepted, or to a copy of �αn if it is rejected. The proposal
distribution is typically a normal distribution but many other
options exist. The Metropolis-Hastings algorithm is a single-
particle (or single-walker) algorithm, i.e., it is only aware of a
single location in the parameter space at any given time. The
primary drawback of the random-walk Metropolis-Hastings
algorithm, and most of its derivatives, is that the elements
of the resulting MCMC chain are strongly correlated with
each other in most practical applications. Such correlations
decrease the amount of information contained in the MCMC
chain, requiring longer chains than would otherwise be nec-
essary. The problem is exacerbated when the dimensionality
of the parameter space for the sampled distribution pr(�α)
increases.

In 1987, lattice field theorists devised an ingenious MCMC
algorithm based on Hamiltonian dynamics to combat the
problem of correlated samples. They dubbed the algorithm
hybrid Monte Carlo (HMC) [6], but it has subsequently be-
come known as Hamiltonian Monte Carlo [23], retaining the
acronym. HMC is based on the Metropolis-Hastings algo-
rithm, but the method for proposing a new state is radically
modified. The PDF to be sampled is treated as a potential
energy surface and the current state of the chain is regarded as
a particle with position coordinates given by the parameters
of the PDF. By endowing the HMC “particle” at iteration n
with a randomly drawn momentum �pn we can associate the
joint state (�αn, �pn) with a total energy and, by extension, a
probability to find the system in that state. Simulating the
particle’s trajectory for a finite period of time subsequently
yields a proposed state (�α′

n, �p ′
n). The proposed state retains

the previous total energy since this is a conserved quantity
in Hamiltonian dynamics and the new state will therefore be
accepted. The momentum �p ′

n is then discarded. In practice,
the total energy will only be approximately conserved due to
numerical simulation errors, and we vet the proposed state in
a manner similar to Eq. (22).

The result is a completely uncorrelated sample of the
target PDF, assuming that the length of the trajectory is ap-
propriately chosen. Clearly, the length of the MCMC chain
produced by HMC can then be drastically reduced compared
to chains with a high degree of correlation. We will quantify
this statement by extracting an effective number of samples

in Sec. IV D. The strongest advantage of using the HMC
algorithm is its potential for producing uncorrelated samples
even when the target PDF is high-dimensional. Unfortunately,
simulating Hamiltonian dynamics for each proposed state
is computationally expensive compared to the method of
proposing new states by applying small random perturbations.
It is therefore apparent that the reduction in overall chain
length and intersample correlations must be sufficiently large
to warrant the increased cost per sample.

In the following subsections we present the HMC algo-
rithm in detail. We have opted to write a custom implemen-
tation2 using PYTHON [25] and NUMPY [26] in lieu of using a
standard package such as STAN [27]. Specific implementation
choices will be presented as appropriate. Our implementation
and the mathematical details presented here are largely based
on Ref. [23]. A conceptual introduction to HMC can be found
in Ref. [28].

A. From potential energy to posterior probability

In HMC we generate samples from the d-dimensional
posterior PDF pr(�α|D, I ) by simulating classical Hamiltonian
dynamics for a particle moving under the influence of a poten-
tial proportional to the posterior itself. To see this, we let the
phase space of states—specified by position and momentum
coordinates (�α, �p ) with total energy H—be described by a
Boltzmann distribution:

pr(�α, �p) = 1

Z
exp[−H (�α, �p)/T ]. (24)

For a classical Hamiltonian function

H (�α, �p) = K ( �p) + U (�α) (25)

with kinetic energy K and potential energy U , the Boltzmann
distribution factorizes and the marginal Boltzmann distribu-
tion for the position vector �α is independent of the distribution
for �p. For our purposes, the temperature T is some function
that makes the exponent dimensionless, and we set T = 1.
The factor Z is independent of (�α, �p ) and ensures proper
normalization of the distribution in Eq. (24). From the expo-
nential Boltzmann factor we identify the potential energy term
as the negative log posterior (NLP). Disregarding the constant
marginal likelihood we define

U (�α) = − log[pr(�α|D, I )]

= − log[pr(D|�α, I )pr(�α|I )]. (26)

In the last step we also used Bayes’s theorem (1) to link the
potential directly to the likelihood and the prior.

Following standard practice, and the classical dynamics
analogy, we employ a quadratic form for K ( �p):

K ( �p) = 1
2 �pTM−1 �p. (27)

Here M is a positive-definite, symmetric matrix, called the
mass matrix. With K ( �p) = − log[pr( �p)] we have

pr( �p ) = N (0,M). (28)

2Available as free software [24].
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The HMC algorithm thus samples the joint PDF pr(�α, �p ).
Marginalizing over the auxiliary momentum �p—by simply
discarding these coordinates in the Markov chain—leaves us
with MCMC samples of pr(�α|D, I ).

A particle governed by Hamiltonian dynamics moves
through 2d-dimensional phase space on a hypersurface of
constant energy. The time evolution of the system is described
by Hamilton’s equations

dαi

dt
= ∂H

∂ pi
, (29)

d pi

dt
= −∂H

∂αi
(30)

where i = 1 . . . d . The form of the Hamiltonian, Eq. (25),
allows us to rewrite Hamilton’s equations as

dαi

dt
= ∂K

∂ pi
= (M−1 p)i, (31)

d pi

dt
= −∂U

∂αi
. (32)

Note that ∂U/∂αi is a partial derivative of the NLP that we
must evaluate in order to simulate Hamiltonian dynamics and,
by extension, use HMC sampling. Realistically, this must be
done through automatic differentiation (AD) except in special
cases where analytic expressions for these partial derivatives
are available (our implementation readily allows for both
possibilities). AD generally incurs a factor of 2 overhead
compared to just evaluating the target PDF [29]. In this paper,
we exploit an external AD library [30] for computing the nec-
essary gradients and we measure the computational overhead
of AD to less than 50% (see Sec. IV C 2).

B. Advancing the HMC sampler

Starting from some current state (�αn, �pn), the total energy
of a particle trajectory traversing the HMC phase space is
conserved. We should thus always accept the proposed state
(�α′

n, �p ′
n) at the end of the Hamiltonian trajectory, discard the

auxiliary momentum �p ′
n, and store �α′

n as the new parameter
sample �αn+1 in the HMC chain. In practice, however, nu-
merical errors in the solution of Eqs. (31) and (32) break
energy conservation, which in turn breaks detailed balance.
If ignored, we can no longer guarantee that the Markov
chain converges to the sought stationary distribution. The
solution is to vet the proposed state, i.e., the state at the
end of the Hamiltonian trajectory, with the accept/reject step
of the Metropolis-Hastings algorithm. We can also ensure a
symmetric proposal distribution by negating the momentum
variable �p ′

n at the end of the particle trajectory. However,
such a negation is not necessary for a quadratic momentum
distribution as in Eq. (28). The new state is thus accepted with
the probability a given by Eq. (22) and a Hastings ratio for the
joint probabilities given by

r = pr(�α′
n, �p ′

n)

pr(�αn, �pn)
= exp [−H (�α′

n, �p ′
n) + H (�αn, �pn)]. (33)

The HMC chain will typically be ergodic since we draw a
new momentum before integrating Hamilton’s equations and
thereby drastically altering the total energy.

C. Leapfrogging Hamiltonian dynamics

Upon imposing the Metropolis-Hastings accept/reject
criterion we implicitly require reversibility of our chain. For-
tunately, Hamiltonian dynamics is time reversible and it is
necessary to integrate Hamilton’s equations in a way that pre-
serves this property. Standard methods like Euler integration
or explicit Runge-Kutta methods are disqualified as they do
not preserve time reversibility. From a strictly practical point
of view, integration methods that do not conserve the Hamilto-
nian also limit the length of the particle trajectory since a large
accumulated error would result in an unacceptably low mean
acceptance rate ā. To ensure time reversibility, one should use
a symplectic integrator that goes hand in hand with the volume
preservation of phase space that follows from Liouville’s the-
orem. The local discretization error of a symplectic integrator
is equally likely to be positive or negative in each step of the
integration as long as the step size ε is below some threshold
value. The result is that the total energy is approximately
conserved for an arbitrarily long trajectory. A nice property
of HMC is that ā drops precipitously if ε is greater than the
threshold value. The absence of quiet failures makes it trivial
to diagnose a too large choice for ε. The upper bound for ε is
generally imposed by the most constrained parameter in the
posterior.

The number of leapfrog iterations L can drastically influ-
ence the performance of the HMC sampler; it is imperative
that L is set neither too high nor too low. A too small number
partly defeats the purpose of using HMC in the first place,
as it would result in a random-walk-like behavior with highly
correlated samples. In contrast, a too large value of L would
waste valuable CPU cycles without improving (and possibly
even curtailing) performance. Naturally, choosing a very small
step size ε needs to be compensated for by increasing L in
order to avoid random walks.

Neither ε nor L is fixed in our implementation. Rather,
random values are drawn from predefined probability distribu-
tions prior to each invocation of the leapfrog solver according
to

ε ∼ U(
1
2ε�, 3

2ε�
)
, (34)

L ∼ U{
1
2 L�, 3

2 L�
}
, 1

2 L� � 1, (35)

where the user specifies the nominal values ε� and L�. The rea-
sons for randomizing these leapfrog parameters are threefold.
First, variations in the trajectory length εL may decrease cor-
relations between samples. Second, a fixed trajectory length
can result in oscillatory behavior if εL happens to approxi-
mately match some periodicity of the target distribution. This
type of (nearly) nonergodic behavior can severely limit the
efficiency of HMC. Third, the target PDF may have regions
where its gradient is very steep so that the nominal ε is too
large to resolve features in that section.

There are extensions of HMC the purpose of which is to
relieve the user from the burden of tuning the hyperparameters
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ε and L. For instance, the choice of ε may be automated
based on acceptance rates of small trial runs. The state-of-the-
art no-U-turn sampler (NUTS) terminates trajectories based
on heuristic rules for when continued simulation no longer
increases the performance of the sampler. Both of these im-
provements are described in Ref. [31].

D. Tuning in to the target distribution

An array of tunable HMC parameters have been introduced
in the previous subsections: the step size ε, the number of
leapfrog iterations L, and the mass matrix M. A drawback of
HMC is the need to carefully tune these hyperparameters to
each target distribution, or risk poor performance. However,
as mentioned in Sec. III C, the tuning of ε and L may be
automated. For now, we use a manual tuning procedure that
will be outlined below. It is designed to achieve efficient
sampling and also involves the important mass matrix.

The keen reader may have noticed that ε, L, and M are
interlinked and changing one may force us to change one (or
both) of the others. The tuning procedure is therefore, to an
extent, iterative. We start with ε.

1. Leapfrog step size and number of iterations

For tuning ε we exploit that the acceptance rate ā is largely
independent of L (a consequence of using a symplectic inte-
grator) and produce a very short HMC chain using a small
number of leapfrog steps (L = 3). If ā is low (in practice 0%)
we decrease ε by an order of magnitude and try again. If ā
is 100% we instead increase ε by an order of magnitude and
try again. Once the appropriate magnitude is found we make
fine-grained adjustments as necessary. Using this method we
quickly achieved HMC acceptance rates of 99% at all three
chiral orders. This value is likely too high for optimal effi-
ciency, but we find it adequate for our purposes.

The number of required leapfrog iterations L is intimately
linked to the choice of the mass matrix M. Careful tuning of
L is rather pointless until M is settled. We have found that
L ≈ 10–20 yields excellent performance for approximately
Gaussian distributions with around a dozen or so parameters,
assuming that the mass matrix (and ε) is well chosen. To
rapidly assess the choice of L—and the overall performance—
it is useful to inspect trace plots of each individual parameter.
The trace plots will reveal no apparent structures if the HMC
algorithm is performing well. Any remaining structures in the
trace plots may be quenched by increasing L, at the obvious
expense of increased computational effort, or by improving
the mass matrix. The latter alternative should always take
precedence if possible. Note that it is usually necessary to
revisit the tuning of ε after the mass matrix has been updated.

2. Mass matrix

Both ε and L are scalar values with no distinction
for each individual parameter αi and thus cannot be used
to compensate for differences in parameter scales. Like
Metropolis-Hastings, and unlike, e.g., affine-invariant ensem-
ble samplers [32] such as the EMCEE package [33], HMC is

sensitive to such differences of scale and we need a way to
account for them. This is the purpose of the mass matrix M.

Deploying a mass matrix that captures the most important
features of the target distribution is absolutely critical to the
performance of HMC. An improper choice of M can de-
grade the performance by several orders of magnitude. Letting
M = 1, i.e., an identity matrix, does not fare well with the
χEFT models analyzed in this paper. To improve, we exploit
published LEC uncertainties from a previous analysis [34]
and construct a diagonal mass matrix. We then draw ≈1000
samples, using L = 8 at LO and L = 20 at NLO and NNLO,
to estimate a parameter covariance matrix ��α and construct
a mass matrix according to M = �−1

�α . We find that this
approach to learn about M yields high HMC performance
in practice. Note that one does not have to use HMC for
this tuning, as we do; indeed, it may be preferable to use a
more expedient method for extracting an approximate param-
eter covariance matrix, e.g., the more tuning-agnostic MCMC
sampler EMCEE.

Local estimates of the target covariance based on, e.g.,
optimization and second derivatives have been used in pre-
vious studies of LEC uncertainties (see, e.g., Ref. [14]). This
method was recently used to construct a Bayesian prior for
the χEFT contact LECs at NNLO when estimating the cD and
cE LECs in the three-nucleon force sector [35]. It was found
that the prior and marginal posterior were largely the same.
This finding reinforces the observation that the inverse of a
point-estimated covariance matrix yields a performant mass
matrix.

IV. SAMPLING LEC POSTERIORS USING HAMILTONIAN
MONTE CARLO

In Sec. IV A we outline the sampling strategy and in
Sec. IV B we present our posterior PDFs pr(�α|D, I ) for the
LECs �α at LO, NLO, and NNLO in χEFT sampled using
HMC. These posteriors enable all subsequent inference in
this paper and constitute the main result of our paper. In
Sec. IV C we discuss the convergence of the MCMC chains.
In Sec. IV D we highlight some of the unique aspects of
the HMC algorithm by comparing with posterior samples
obtained using EMCEE. In Sec. IV E we comment on multi-
modality and the challenge it brings.

A. Sampling strategy

We employ the same HMC sampling strategy at all chiral
orders considered in this paper.

(1) To identify a ballpark region where we expect to find
the posterior mode we first optimize the data likelihood in
Eq. (18). At this stage we employ c̄ = 1 and yref = yexp to
parametrize the covariance matrix for the EFT truncation
error. Every subsequent HMC sampling is then randomly
initiated within an overdispersed region around the MLE.

(2) To tune the mass matrix M, we use previously pub-
lished uncertainties for the LECs [34] to define its diagonal
entries and draw ntune ∼ 1000 samples using L ≈ 10–20. The
resulting sample covariance matrix is inverted to yield the
final mass matrix.
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TABLE III. Detailed statistics of the HMC chains during the tuning and sampling phases. The number of chains at each order is M and the
total number of samples is counted across all M chains. The HMC parameters ε� and L� denote the nominal step length and total number of
steps taken with the leapfrog algorithm to integrate Hamilton’s equations for each HMC step. ā is the average acceptance rate.

Order ntune M Total number of samples ε� L� ā

LO 2000 3 50 063 0.1 8 99%
NLO 2000 10 57 134 0.09 20 99%
NNLO 591 3 10 155 0.08 20 99%

(3) We determine the optimal step size ε from a small set
of very short HMC chains consisting of 10–20 samples and
easily find a step size that yields an acceptance rate ā of 99%.

(4) Equipped with a well-tuned HMC algorithm, we collect
M � 3 independent chains at different starting values for the
LECs. It is important to have two or more chains to enable
canonical convergence tests based on within- and between-
chain variances, e.g., the Gelman-Rubin test. We also employ
a convergence criterion based on the integrated autocorrela-
tion time as recommended in Refs. [33,36] (see Sec. IV C 2).

(5) The trace plots of the HMC chains indicate that the
length of the burn-in phase is very short. This is corrobo-
rated by the autocorrelation analysis presented in Sec. IV C 2.
We discard the initial ≈10 samples from each chain, except
for three chains at NLO which require us to discard ≈100
samples. The situation is drastically different for the EMCEE

chains, where we find it necessary to discard the initial ≈1000
samples at LO and ≈ 30 000–40 000 samples at the higher
orders. These lengthy burn-ins have to be repeated for each
EMCEE chain. In contrast, tuning the HMC hyperparameters is
a one-time cost.

Detailed information about the tuning and sampling phases
at LO–NNLO is summarized in Table III. Note that the num-
ber of tuning samples ntune is larger than necessary at LO
and NLO. The step sizes ε and acceptance rates ā, which are
closely linked, are remarkably similar across the three chiral
orders. The reason is that the step size is generally limited by
the most constrained parameter(s) which in all three cases are
the LO LECs C̃.

B. LEC posteriors

The posterior PDFs for the LECs are multivariate but will
be presented using univariate and bivariate projections. These
so-called corner plots of the LO, NLO, and NNLO posteriors
are shown in Figs. 1–3, respectively.

At all orders, the locations of the maximum a posteri-
ori (MAP) probability and widths of the posterior PDFs are
similar to the corresponding measures we obtained using fre-
quentist parameter estimation in Ref. [14]. This is largely due
to the fact that we are using nearly the same database of thou-
sands of NN scattering cross sections in both analyses and that
the inference is likelihood dominated. The main modification
to the database comes from setting aside part of the data for
validation in this paper. We also employ identically regulated
χEFT interactions, and closely related diagonal covariance
matrices for estimating uncorrelated EFT truncation errors.
Despite several apparent similarities it is very important to
realize that we are comparing results from two fundamentally

different approaches. The use of Bayesian inference methods
allows us to assign a probability (density) measure to LEC
values themselves. In the frequentist approach we are estimat-
ing covariances from the gradients at the maximum likelihood
estimator of the data.

1. LO

At LO we consider the two NN contact LECs present at
this order: C̃1S0 and C̃3S1, acting in the S waves. The corner
plot in Fig. 1 reveals that they are both very well constrained
by the NN scattering data D and appear to be uncorrelated
with each other. We note that C̃1S0 is considerably more
constrained than C̃3S1. This is likely due to (i) the isovector
(isoscalar) character of C̃1S0 (C̃3S1) and (ii) the fact that pp
data are more abundant and more precise than np data at
low scattering energies where the truncation error is relatively
small.

FIG. 1. LO posterior sampled with HMC. The LECs are shown
in units of 104 GeV−2. The inner (outer) gray contour line encloses
39% (86%) of the probability mass. The dot-dashed vertical lines
indicate a 68% credibility interval in the univariate marginals. White
areas indicate zero counts of samples.
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FIG. 2. NLO posterior sampled with HMC. The LECs are shown in units of 104 GeV−2 for the LO LECs and 104 GeV−4 for the NLO
LECs. The inner (outer) gray contour line encloses 39% (86%) of the probability mass. The dot-dashed vertical lines indicate a 68% credibility
interval in the univariate marginals.

2. NLO

Several contact LECs are introduced at NLO and we find
that the LEC posterior exhibits noticeable correlations in cer-
tain directions (see Fig. 2). The presence of such correlations
indicates a level of parameter redundancy in the model. From
a statistical perspective there exist methods, e.g., singular
value decomposition, to identify and retain only the most

important parameters (or linear combinations of parameters)
of a model to explain data, so-called stiff directions in the
parameter space. However, before doing so it is worthwhile
to inspect the model structure from a physics perspective.
In the present case we identify a strong correlation between
the LECs C̃ pp

1S0 and C̃np
1S0. Following conventional counting

of the isospin-breaking effects in χEFT we encounter the
leading isospin-dependent 1S0 contacts at NLO. This is also
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FIG. 3. NNLO posterior sampled with HMC. The LECs are shown in units of 104 GeV−2 for the LO contact LECs, 104 GeV−4 for the NLO
contact LECs, and GeV−1 for the πN LECs. The inner (outer) gray contour line encloses 39% (86%) of the probability mass. The dot-dashed
vertical lines indicate a 68% credibility interval in the univariate marginals.

in line with the results from a high-precision data analysis
by the Nijmegen group [18] demonstrating that strong and
electromagnetic interactions break charge independence and
most prominently in the 1S0 channel. However, since isospin
breaking is a comparatively small effect, a non-negligible EFT
truncation error at NLO is likely to dilute isospin sensitivity
with respect to the NN data being used.

We also detect correlations between S-wave LECs acting
within the same spin channel. In general, the spin-singlet
and spin-triplet partial-wave contact LECs do not exhibit any

significant correlation with each other at any of the chiral
orders we examine. This is somewhat different from the fre-
quentist analysis in Ref. [14] where correlations (|ρ| � 0.7)
were found between all S-wave LECs and C3P2. We speculate
that this difference in correlation structure could be rooted in
the difference between the models of the truncation error used
in the frequentist and Bayesian analyses. Upon inspection, we
find that the truncation errors at NLO and NNLO employed
in this paper are more than twice as large compared to the
corresponding error magnitudes used in Ref. [14]. We have
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FIG. 4. Prior and posterior PDFs for the πN LECs c1, c3, and c4,
in units of GeV−1, indicated with black-line ellipses and colored
(purple jagged) regions, respectively. The inner (outer) black ellipses
enclose 39% (86%) of the prior probability mass, and the jagged gray
lines do the same for the posterior probability mass. The posteriors
were obtained using HMC. See text and Fig. 3 for details.

not performed a systematic analysis to compare the two er-
ror models, but a smaller truncation error can certainly shift
weights of, e.g., spin-polarization and spin-averaged data at
different energies which in turn could induce stronger corre-
lations between the LECs of the interaction model.

3. NNLO

At NNLO we also find strong correlations between certain
LECs (see Fig. 3). Similarly to the NLO posterior, there is
a very strong correlation between the charge-independence
breaking contacts. However, we do not identify any unex-
pected correlation structures, like the ones found at N3LO
in Ref. [11], to reveal a physics parameter redundancy in the
model.

At this order we encounter the subleading πN LECs
c1, c3, and c4 for the first time. As opposed to contact LECs
they act in all angular momentum channels. Certain combina-
tions of πN and NN LECs also show significant correlations;
in particular, c1 appears positively correlated with the C̃1S0

LECs, as does c3 with, e.g., C3P2.
Recall that we assign a multivariate normal prior PDF for

c1, c3, and c4 using maximum-likelihood results from a Roy-
Steiner analysis of the -less πN scattering amplitudes [13].
This prior strongly regulates the values of c1, c3, and c4 com-
pared to the NN LECs which are assigned a less informative
prior based on naturalness.

In Fig. 4 we show a corner plot where we focus on the
differences between the prior and posterior in the πN sector.
Note that we are comparing two PDFs that have very different

origin from both a statistical and methodological perspective.
We can still draw the following conclusions.

(1) The NN data induce an overall 5–10% shift, in the
positive direction, of the πN LECs, i.e., the NN data appear
to reduce the πN subleading attraction slightly. However, the
overall effect of this shift on the binding of atomic nuclei
remains to be analyzed.

(2) The difference in MAP values of the πN prior and
posterior is significant compared to the extent of the credible
intervals. For c1 we observe a slight overlap of the marginal
PDFs. It is interesting to note that the πN vertex correspond-
ing to c1 does not contain any contribution from the  isobar.

(3) The link between low-energy πN and NN scattering
processes is a hallmark of χEFT. If all uncertainties are ac-
curately modeled, and we are operating with an EFT, then we
expect to find an overlap between the prior and the posterior.
However, we do not observe this. One possible explanation
is that we estimate the truncation error in the NN sector via
the uncorrelated theory covariance matrix in Eq. (17). The
Roy-Steiner analysis is based on an MLE with uncorrelated
data and method uncertainties [12,13] and it is not clear how
to propagate an EFT error to the πN LECs matched at this
order.

C. Convergence towards a stationary distribution

How many samples do we need to reach an accurate rep-
resentation of the stationary target distribution with small
sampling error? In connection with this, one should note that
the N samples collected during some finite time period will
not be independent.

It is unfortunately not possible to determine the level of
convergence of a finite chain; we can only attempt to detect
convergence failures. As such, all convergence diagnostics
in the MCMC literature merely provide necessary but not
sufficient conditions. Multiple diagnostics have been devised,
of which we employ two of the most common ones: the
standard Gelman-Rubin statistic (R̂) [37,38], discussed in
Sec. IV C 1, and the integrated autocorrelation time (τ ) dis-
cussed in Sec. IV C 2. Both diagnostics are applied to each
LEC αi individually.

Although MCMC algorithms are ergodic and eventually
explore the entire state space, we clearly face the challenge of
pseudoconvergence due to multimodality when working with
finite chains. This problem is discussed further in Sec. IV E.

1. The Gelman-Rubin statistic R̂

With the Gelman-Rubin statistic R̂ we compare the vari-
ance of the samples within a single chain to the variance
between M � 3 chains initialized at different starting posi-
tions. Following Ref. [37], we assume that each chain contains
N samples after we have discarded initial samples to reduce
the memory of the starting position. We discussed the removal
of the burn-in samples in Sec. IV A. Based on the N × M
samples one defines a joint mean

ᾱi = 1

M

M∑
m=1

ᾱi
(m) (36)
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FIG. 5. The Gelman-Rubin convergence diagnostics R̂ for the HMC sampled chains at LO, NLO, and NNLO as a function of the number
of samples N . R̂ for each individual parameter is shown in gray, while the mean R̂ is shown in green, blue, and purple, respectively.

for each LEC αi based on all chains where ᾱi
(m) denotes the

within-chain mean for the mth chain and is given by

ᾱ
(m)
i = 1

N

N∑
n=1

α
(nm)
i . (37)

In this notation, α
(nm)
i corresponds to the nth sample of the ith

LEC in the mth MCMC chain. One can express the between-
chain and within-chain variances for the ith LEC in terms of
the corresponding means as

Bi = N

M − 1

M∑
m=1

(
ᾱ

(m)
i − ᾱi

)2
(38)

and

W = 1

M

M∑
m=1

1

N − 1

N∑
n=1

(
α

(nm)
i − α

(m)
i

)2
, (39)

respectively.
A weighted average of the above variances can be used to

estimate the variance of the marginal posterior for the LEC αi:

Var+[αi] = N − 1

N
W + 1

N
B (40)

where the + sign indicates that this quantity overestimates the
posterior variance provided that the M chains are initialized
at locations with greater variability compared to the true pos-
terior. Indeed, for finite N we have that W will underestimate
the marginal variance since the chains have not explored the
posterior while B will overestimate the marginal variance if
the initial sampling distribution is overdispersed. In the limit
of N → ∞ we will have that W approaches the variance of
the marginal posterior. Incorporating these finite-N correc-
tions leads to a Student’s t PDF for αi with variance (scale)
estimated by

V = Var+[αi] + B

MN
. (41)

The Gelman-Rubin measure expresses the potential scale re-
duction by forming the ratio

R̂ =
√

V

W
, (42)

which approaches 1 as N → ∞. A widely used threshold
for declaring convergence is R̂ < 1.01 [39]. This, somewhat
arbitrary, threshold simply states that the sample variance is
2% larger than the within-chain variance, and that one should
expect a corresponding potential scale reduction if continuing
the sampling process. In Fig. 5 we show the evolution of R̂
with the number of HMC samples at LO, NLO, and NNLO.
Clearly, our HMC chains fulfill R̂ < 1.01 as well as an even
stricter threshold R̂ < 1.001. The chains obtained with EMCEE

also pass the same R̂ thresholds after a similar amount of
MCMC samples.

There exist updated Gelman-Rubin measures. One can
employ so-called split R̂ [39] and rank-normalized R̂ [40]
to better handle nonstationary chains and chains distributed
with a heavier tail that conspire to yield a good R̂. We have
not detected the need for using such updated R̂ measures to
analyze the χEFT posteriors in this paper.

2. The integrated autocorrelation time τ

We use the MCMC chains to compute (statistical) expecta-
tion values and we should therefore also analyze the sampling
variance of such estimates. For example, one can straightfor-
wardly estimate the mean value ᾱi of the ith LEC within a
single MCMC chain3 [see Eq. (37)]. The sampling variance
of the estimated mean value for a particular LEC, based on N
uncorrelated samples, scales with 1/N according to

Var[ᾱi] ≡ E[ᾱi − E(αi )] = Var[αi]

N
, (43)

where Var[αi] is the variance of the samples with respect to
the posterior pr(αi|D, I ). This estimate only holds for uncor-
related samples, and we will demonstrate that such samples
can be obtained with the HMC algorithm. In contrast, most
random-walk based MCMC algorithms generate highly corre-
lated samples. When the samples are correlated, the variance
of the mean is modified according to

Var[ᾱi] = τi
Var[αi]

N
(44)

3In this section we discuss quantities pertaining to a single chain
and therefore omit the superscript (m).
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FIG. 6. Autocorrelation functions of the MCMC chains at LO-NNLO. The chains produced with HMC are shown in the first row and
chains produced with EMCEE are shown in the second row. The gray lines show autocorrelations in individual parameters whereas the colored
lines show the average over all parameters. The results are averaged over all walkers in the plots showing the EMCEE autocorrelations. See
Table III for details about each sampling.

where τi is referred to as the integrated autocorrelation time
for the chain of sample values of the ith LEC. It is given by

τi = lim
N→∞

(
1 + 2

N∑
h=1

ρi(h)

)
. (45)

The autocorrelation function ρi(h) measures the correlation
between (stationary) samples separated by h MCMC steps.
In the literature, h is referred to as the lag. Note that the
integrated autocorrelation time will be different for each ex-
pectation value. Here, we limit ourselves to inspect τi for
the mean values of the LECs and use this below to assess
the convergence of an MCMC chain. In Fig. 6 we present the
estimated autocorrelation functions ρ̂i(h) of all LECs at LO,
NLO, and NNLO, and their averages, as obtained by HMC
and EMCEE. As expected, a well-tuned HMC algorithm gener-
ates virtually uncorrelated samples whereas the EMCEE chains
exhibit a correlation structure that is typical for most MCMC
algorithms. The HMC algorithm generates uncorrelated sam-
ples even as the dimensionality of the parameter space is
increased. We see this advantageous dimensionality scaling
of HMC when going from LO to NNLO. The corresponding
correlation lengths of the EMCEE chains markedly increase.
This is one of the primary advantages of using HMC.

Some care is needed in the numerical computation of the
integrated autocorrelation time τi. For large values of N in
Eq. (45), the estimated autocorrelation ρ̂ suffers from a signal-
to-noise problem. Indeed, although the correlation decreases
towards zero with increasing lag, the variance of the correla-
tion does not. Following Ref. [36] we therefore truncate the
sum at the smallest integer N� such that N� � cτi(N�) for
c = 5. With this in place we can monitor the evolution and
convergence of τ as a function of the number of collected
samples N in the chain.

As mentioned, the computation of τ is not only useful for
quantifying the sampling variance but also provides a handle
on the convergence of the MCMC chain. While the Gelman-
Rubin statistic compares several identically prepared chains,
diagnosing convergence based on the evolution of τ can be
applied to a single chain. Using this method, convergence is
declared when the estimation of τ has stabilized and N � τ ,
where N is the length of the chain. In this paper we apply the
condition N � 50τ , and in Fig. 7 we show the evolution of

FIG. 7. Integrated autocorrelation time τ vs number of samples.
The gray area indicates the zone of nonconvergence, i.e., N < 50τ .
The EMCEE results are averaged over all walkers, hence the seemingly
low number of samples compared to Table IV.
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TABLE IV. Comparison between the performance of EMCEE and HMC applied to sample the LEC posteriors at LO, NLO, and NNLO.
τ is the integrated autocorrelation time. ESS is the effective sample size and N is the number of collected MCMC samples. Consequently,
the ESS/N column shows how many effective samples one nominal sample is worth. The NL/N column, where NL is the total number of
likelihood calls, shows the average number of likelihood evaluations (including tuning and burn-in) necessary to collect one nominal sample.
S is the average real-world speedup of HMC compared to EMCEE as defined in Eq. (47).

Algorithm Order τ ESS/N NL/N NL/ESS AD-cost S
EMCEE LO 34 0.029 1.01 35
HMC LO 0.58 1.7 9.07 5.3 1.10 6.0
EMCEE NLO 158 0.0063 1.07 169
HMC NLO 0.78 1.3 27.5 21 1.24 6.4
EMCEE NNLO >126 <0.007 1.16 >146
HMC NNLO 1.2 0.85 23.9 28 1.43 >3.6

τ as N increases. We have also indicated the nonconvergence
zone N < 50τ . At LO and NLO, we fulfill τ convergence us-
ing both HMC and EMCEE. At NNLO, we fulfill τ convergence
only with HMC while EMCEE falls just short of the imposed
tolerance.

D. Effective sample size and efficiency of HMC

The reduction in sample quality due to correlation is often
quantified with the effective sample size

ESS = N

τ
, (46)

where we also introduce τ defined as the average of all τi

for each LEC αi. We use the ESS value to quantitatively
compare the efficiencies of HMC and EMCEE. It is obvious
from Eqs. (44) and (46) that the correlation structure directly
impacts the ESS and hence the total computational effort re-
quired to reach a tolerable variance. Since there is a significant
computational overhead involved in integrating Hamilton’s
equations, it is key to tune the HMC algorithm to reach a very
small τ . The intrinsic benefit of using HMC also increases
with the dimensionality of the parameter space.

In Table IV we present τ values and relevant related quanti-
ties for EMCEE and HMC at LO, NLO, and NNLO. The results
presented in this table are based on a single chain for each
order and choice of algorithm. We have, however, verified that
the results are similar regardless of which one of the parallel
chains is used. We note that we have τ ≈ 1 for the HMC
sampled chains, and even τ < 1 in two cases (LO and NLO).
With EMCEE, τ is roughly two orders of magnitude greater
than the HMC equivalents. This is solely due to the correla-
tion structure of the respective MCMC chains. Also shown
in Table IV (as ESS/N) is the average number of effective
samples that one MCMC sample provides. By introducing
NL—the total number of likelihood calls during sampling,
tuning, and burn-in—we also show (as NL/N) the average
number of calls to the likelihood function required to generate
one MCMC sample. We obtain NL/N >1 also for EMCEE since
the quoted results also include burn-in. We can use the number
of likelihood calls per effective sample to compare the average
efficiency of HMC and EMCEE, as evaluating the likelihood
constitutes nearly all of the computational effort. We therefore

define an HMC speedup factor S with respect to EMCEE as

S = [NL/ESS]EMCEE

[NL/ESS]HMC × [AD-cost]
, (47)

where we also account for the computational overhead in-
duced by the use of AD which we employ to generate the
gradients necessary for HMC. In our implementation we mea-
sure the AD overheads to 10% at LO, 24% at NLO, and
43% at NNLO, and we use these figures when quantifying
the HMC speedup factors in Table IV. In summary we find
that the real-world speedup factor is more than 6 at LO and
NLO, and 3.6 at NNLO. The smaller speedup at NNLO is
primarily due to less ideal tuning, and could be improved
further. Another contributing factor is that the estimate of τ

for EMCEE at NNLO has not stabilized, and the value reported
in Table IV is therefore a lower bound (see Fig. 7).

We obtain τ < 1 at LO and NLO when using HMC, a result
which comes from drawing anticorrelated samples from the
posterior PDF, as can be seen clearly in the corresponding
autocorrelation functions in Fig. 6. This so-called antithetic
sampling [41] leads to ESS > N , i.e., an effective number of
samples greater than the number of MCMC samples with a
corresponding reduction of the variance in Eq. (44). There-
fore, drawing completely independent MCMC samples is not
necessarily the optimal strategy. In this paper we encounter
antithetic sampling for sufficiently large values of the HMC
step length L once we have constructed a mass matrix M
that we believe suits the target distribution. This is obviously
an advantageous sampling strategy and antithetic sampling is
one of several known variance reduction techniques in Monte
Carlo sampling [23]. While we do not achieve antithetic sam-
pling at NNLO in this paper, we believe that it can be reached
with further tuning.

1. Consequences of improper tuning of the HMC hyperparameters

HMC sampling is challenging in practice, primarily due
to the need for careful tuning of the mass matrix M to
achieve high performance. It is therefore instructive to show
what a failure looks like. Figure 8 demonstrates the strong
autocorrelation that results when M is not well tuned for
two chains at NLO—one where M is set up using a χEFT
naturalness argument, and the other where it is based on previ-
ously published LEC uncertainties [34]. To construct the mass
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FIG. 8. Averaged autocorrelations at NLO achieved with the
“naturalness” and “published uncertainties” mass matrices.

matrix using the naturalness argument we employed ratios of
the contact LECs at LO–NNLO according to

|C̃i| ∼ 4π

F 2
π

, |Ci| ∼ 4π

F 2
π �2

b

(48)

where Fπ � 92 MeV is the pion decay constant. In both cases,
the integrated autocorrelation time is very large, which, com-
bined with the high per-sample computational cost of HMC,
results in very poor performance. Autocorrelation structures
like those shown in Fig. 8 are unacceptable of course, but
typically seen before tuning the hyperparameters.

E. Multimodality

Although the Markov chain is ergodic, one would have to
run the MCMC algorithm for an infinitely long time to visit all
states. Clearly, multimodal distributions make the sampling
process considerably more complicated. The Markov chain
has to cross a valley of low probability to explore more than
one mode. Such a crossing is naturally a low probability
event and will generally occur infrequently. Different modes
may also have different shapes, causing poor performance
if the tuning of the MCMC algorithm is unsuitable for the
other mode even if the algorithm successfully moves between
modes. Standard HMC has no advantage over alternative
sampling algorithms in this regard due to its single-walker na-
ture combined with the necessity of careful problem-specific
tuning. Although the situation can be improved with, e.g.,
tempering methods [23] it is probably better to explore other
MCMC algorithms, such as MULTINEST [42], if multimodality
is expected.

In our analysis we encountered one clear case of multi-
modality: the LEC posterior at LO. This PDF is straightfor-
ward to explore in detail because it is only two-dimensional.
We performed a scan on a 500 × 500 grid of the LO
PDF. The result is shown in Fig. 9. The main mode is
located around (C̃1S0, C̃3S1) ≈ (−0.11,−0.07) × 104 GeV−2,
and marked with a cross in the lower panel of Fig. 9. A

FIG. 9. (a) 2H binding energy as a function of C̃3S1 with C̃1S0 =
−0.113 14 × 104 GeV−2. (b) LO posterior evaluated on a lattice. The
black cross marks the MAP point indicated on the diagonal in Fig. 1,
i.e., (C̃1S0, C̃3S1) = (−0.113 12, −0.074 16) × 104 GeV−2.

second mode is found at (C̃1S0, C̃3S1) ≈ (−0.11,−0.03) ×
104 GeV−2. We computed the marginal likelihood pr(D|I )
of both modes using the Laplace approximation, and found
that the second mode contains a negligible probability
mass. A deep valley—many orders of magnitude lower in
probability—separates the two modes and presents an effec-
tively impenetrable barrier to the HMC sampler. The valley is
caused by the breakup of the deuteron bound state, at C̃3S1 ≈
−0.05 × 104 GeV−2, that suppresses the likelihood for np
SGT data at very low energies. As far as we can tell the vast
majority of the probability mass for the LEC posteriors at
NLO and NNLO is located in a single dominant mode. In the
current paper we therefore proceed under the assumption that
all PDFs are unimodal.

V. MODEL CHECKING

A probabilistic model of a physical system can only be
upheld if it provides an acceptable representation of data.
Therefore, we should always check to what extent the model
fits the data. To that end we sample the PPDs and inspect the
empirical coverages.

A. The posterior predictive distribution

As presented in Sec. II B, we have reserved roughly one
third of the Granada database of experimentally measured
scattering cross sections for model validation and refer to this
as data set D̃ (see Table I).

Following Eq. (10) we can model the true value of an NN
scattering observable as the independent sum of the predicted
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value up to chiral order k and the truncation error, i.e.,

ytrue = y(k)
th + δy(k)

th . (49)

Neither term on the right hand side is known with certainty.
Indeed, they are stochastic variables described by PDFs. We
consider the prediction y(k)

th uncertain due to the uncertainty of
the LECs, and we consider δy(k)

th uncertain due to the unknown
EFT expansion coefficients cν for ν > k. Additional uncer-
tainties regarding, e.g., the breakdown scale �b, the expansion
parameter Q, and the correlation structure of the model pre-
dictions y(k)

th can be accounted for as well [35]. In this paper,
however, we focus on quantifying the LEC uncertainty and
combining this with the EFT truncation error.

Equipped with an HMC chain of samples from the LEC
posterior pr(�α|D, I ) at chiral order k, it is straightforward to
evaluate the PPD pr(y(k)

th |D, I ) by observing that

pr
(
y(k)

th

∣∣D, I
) =

∫
pr

(
y(k)

th , �α
∣∣D, I

)
d �α

=
∫

pr
(
y(k)

th

∣∣�α, D, I
)
pr(�α|D, I ) d �α

=
∫

pr
(
y(k)

th

∣∣�α, I
)
pr(�α|D, I ) d �α. (50)

The last step is a consequence of the conditional indepen-
dence between y(k)

th and D given �α. Drawing random samples
from this PPD amounts to evaluating y(k)

th for each of the N
samples (�a(1), �a(2), . . . , �a(N ) ) in the HMC chain. Fortunately,
the HMC chains are comparatively short and the necessary
computation of NN scattering observables does not pose any
significant challenge. Should this become an issue one could
try emulating the observable response [43–45] or use hard-
ware acceleration [46]. Opting for emulation or acceleration
will add an error term to Eq. (49) quantifying the correspond-
ing additional uncertainty.

Next, we sample the PDF for the truncation error in
Eq. (15). This is trivial for a normally distributed EFT error
where the parameters c̄2 and yref characterize this PDF en-
tirely.

Since we can evaluate the two terms in Eq. (49) we can
also draw samples from pr(ytrue|D, I ). Panels (a) and (b) in
Fig. 10 show such predictions for the true value of np SGT
for 0 < Tlab � 350 MeV, while panels (c) and (d) show pre-
dictions of the true value for the pp spin correlation parameter
(AYY) at Tlab = 294.4 MeV. These observables were not in-
cluded in the training data set D. Also shown in the figure are
experimental measurements of the same observables, gathered
from Ref. [16] for SGT and Ref. [47] for AYY. The panels in
the left column show 100 individual predictions at each order,
while the panels in the right column show 68 and 95% highest
density intervals (HDIs)4 computed from 1000 predictions.
We only find unimodal PPDs and they appear to be rather
symmetric. Indeed, as will be discussed below, the PPDs are

4For a unimodal PDF, a p% HDI will be the smallest interval
around the mode of the PDF that comprises p% of its probability
mass.

dominated by the normally distributed EFT truncation error.
The individual predictions were generated in an uncorrelated
fashion to reflect our model for the EFT truncation error. See
the Supplemental Material [48] for PPDs at LO, NLO, and
NNLO of all observables present in the Granada database, i.e.,
a model check with respect to both the training data D and the
validation data D̃.

The predictions in Fig. 10 appear to converge toward the
experimental results with increasing chiral order, and a visual
inspection of the 68 and 95% HDIs of the PPDs indicates that
they work as advertised for these observables. We note that the
employed model for the truncation error does not incorporate
the known symmetry constraints of the spin-scattering matrix
[49], e.g., that the vector analyzing power P goes to zero at
extreme scattering angles. This type of information can be
straightforwardly incorporated as a boundary condition on a
Gaussian process model for the EFT truncation error [50].

We find that the truncation error δy(k)
th is the dominating

source of uncertainty in Eq. (49). Indeed, the propagated error
due to the variability in the LECs is quite small in comparison
since the LEC posteriors are conditioned on a very large and
informative data set. In fact, we find that the truncation error
dominates at all orders up to NNLO for all energies in the
Granada database. Even at low energies (Tlab ≈ 1 MeV) the
truncation error is still five to ten times larger than the uncer-
tainty stemming from the LECs. Of course, at low energies
both errors are very small on an absolute scale. In accordance
with EFT principles we would expect the HDIs to narrow
with each order and widen with increasing scattering energy.
Instead, we find that the widths of the HDIs at all orders are
comparable, and particularly so at the larger Tlab values. This
is a consequence of underestimating c̄ at LO and NLO (see
Table II). We remind the reader that we estimate the EFT
truncation at order k by exploiting information only up to this
order since this reflects what one can do in a real situation
without any higher orders available. Of course, at LO the
available information is particularly scarce. In Sec. V B we
will explore other choices for estimating c̄.

B. Empirical coverage probability

We compute the empirical coverage probability to assess
whether our HDIs are accurate as advertised. The empirical
coverage quantifies how well we meet the expectation that if
we compute a p × 100% HDI for the PPD of a true value
for an observable, we should find that this HDI covers the
measurement of said observable with probability p on aver-
age. To that end, we perform a binary test for each datum in
our validation data set D̃ and count the number of times the
validation data fall within the specified HDI, i.e., we count
the number of “hits,” and compare this with the total number
of data in D̃. In this procedure we neglect the (generally)
very small uncertainties in the experimental data. Repeating
the binary coverage test for a range of values of p, i.e., for
different HDI intervals, yields a summary for the empiri-
cal coverage probability that is also convenient to inspect
graphically.

Figure 11 shows the resulting empirical coverage plots for
the validation data set D̃ using three different strategies for
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FIG. 10. Posterior predictive distributions for the true value of two NN scattering observables at LO (green), NLO (blue), and NNLO
(purple). (a) Uncorrelated samples of pr(ytrue|D, I ) for the np total cross section. Empirical data with error bars from Ref. [16] are shown in
orange. (b) 68% (dark shaded regions bounded by solid lines) and 95% (light shaded regions bounded by dashed lines) HDIs of the PPDs in
(a). (c) Uncorrelated samples of pr(ytrue|D, I ) for pp AYY at Tlab = 294.4 MeV. Empirical data with error bars from Ref. [47]. (d) 68 and 95%
HDIs of the PPDs in (c).

evaluating an rms value for c̄. In coverage plots of this kind,
a p × 100% HDI should yield a coverage such that it ends
up on the 45◦ positive diagonal if it is working as expected.
The diagonal line is indicated with a dash-dotted line in all
our coverage plots. A coverage probability larger than this
nominal value, i.e., a coverage probability above the diagonal,
corresponds to an overly wide HDI, implying a too conser-
vative error. The opposite situation corresponds to an overly
narrow (liberal) HDI, implying a too small assigned error.
Following a precautionary principle, a conservative error is
preferable to the underestimated one.

The observed number of hits should also follow a binomial
distribution under the assumption that the observables are
uncorrelated (see, e.g., Ref. [5]). Our validation set, like the
training set, contains hundreds of largely independent data
groups that contain data recorded at different experimental
facilities over several decades. The continuous version of the

binomial distribution is the β distribution, so we use this to
compute 95% confidence intervals, indicated as a gray filled
region along the diagonal in all coverage plots.

The truncation error is intimately linked to the inferred
value for c̄. In Fig. 11(a) we estimate c̄ by the rms value c̄k

according to Table II. This method entails that we use infor-
mation from all orders up to the one we are working at, i.e.,
c̄k = rms(�c0...k ). Clearly, this yields liberal HDIs for the PPDs
on average, in particular at LO and NNLO. Note that the LO
HDI is based on an EFT truncation error essentially governed
by the choice of reference values. At NLO and NNLO, the
HDIs represent credible intervals conditioned on information
from one and two order-by-order differences, respectively,
and the corresponding coverage probabilities perform slightly
better. However, we clearly underestimate c̄.

As a second approach to determine c̄, which we denote
rms(�c2...k ), we ignore the c̄ν=0 contribution. In this case

014004-17



SVENSSON, EKSTRÖM, AND FORSSÉN PHYSICAL REVIEW C 105, 014004 (2022)

FIG. 11. Empirical coverage probabilities for p × 100% HDI credible intervals with respect to the validation data set D̃. Each panel
corresponds to a different method of computing c̄. The gray, filled regions indicate 95% confidence intervals that an observed empirical
coverage is consistent with a true success rate p. (a) c̄k = rms(�c0...k ). (b) c̄k = rms(�c2...k ). (c) c̄k = rms(�ck+1). The computed c̄ values are
(a) c̄k=0 = 1.17, c̄k=2 = 2.08, c̄k=3 = 2.72; (b) c̄k=2 = 4.95, c̄k=3 = 4.19; and (c) c̄k=0 = 4.95, c̄k=2 = 2.84, c̄k=3 = 4.12.

the empirical coverage probability improves drastically [see
Fig. 11(b)]. Motivated by the dominance of the EFT trun-
cation error compared to the uncertainty originating from
LEC variability, we do not resample the LEC posteriors when
varying the hyperparameters of the truncation error. The LO
predictions are absent in Fig. 11(b) to emphasize that this
method for computing c̄k is not relevant at that order.

In Fig. 11(c) we compute c̄ as the rms value of the ex-
pansion coefficients extracted with respect to the first omitted
order only, which we denote rms(�ck+1). At NNLO we exploit
an MLE at N3LO. As expected, this method improves the
performance of our error model, in particular at LO and NLO.
There is not much difference between the coverage probabili-
ties for the NNLO HDI in panels (b) and (c).

In Fig. 12 we inspect the coverage probability with respect
to three different subsets of the validation data set D̃. In
panel (a), we only look at integrated np cross-section data
(np SGT). In (b), we look at all data with Tlab � 100 MeV,
and in (c) we look at all data with Tlab > 290 MeV. Here
we use c̄k = rms(�c2...k ). The coverage with respect to SGT
data is consistently too high. The data points in this set are
very correlated with each other, which makes this comparison
less meaningful. In panel (b), where we retain validation data
with Tlab � 100 MeV, the error model at NLO performs rather
well, whereas the NNLO error is too liberal. The coverage
with respect to data with Tlab > 290 MeV, panel (c), exhibits
a similar pattern. Although the HDIs improve with informa-
tion from higher orders, as expected, this is not an entirely

FIG. 12. Empirical coverage probabilities for p × 100% HDI credible intervals with respect to subsets of the validation data set D̃. We
compute c̄ as c̄k = rms(c2...k ) as in Fig. 11(b) and use �b = 600 MeV. The gray, filled regions indicate 95% confidence intervals that an
observed empirical coverage is consistent with a true success rate p. (a) Only SGT observables. (b) All validation data with Tlab � 100 MeV.
(c) All validation data with Tlab > 290 MeV.
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satisfactory situation when one is making predictions at low
orders of χEFT.

Finally, we estimate the consequences of modifying the
employed value for the χEFT breakdown scale �b. Specifi-
cally, we change �b from 600 to 500 MeV in the expression
for the EFT truncation error (15) without resampling the LEC
posteriors. We find that decreasing �b results in more natural
c̄ values while simultaneously yielding improved coverage
probabilities for the EFT error. The model also becomes
somewhat less sensitive to the method of computing c̄. Con-
versely, raising �b increases the model’s sensitivity to c̄ as
well as resulting in less naturally sized expansion coefficients.
The results presented here are in line with the findings in
Ref. [50]. Further studies of the χEFT breakdown scale, along
the lines of Ref. [35], are clearly warranted.

VI. CONCLUSIONS AND OUTLOOK

In this paper we implemented the HMC MCMC algorithm
for sampling the LEC posterior PDF pr(�α|D, I ) at LO, NLO,
and NNLO in the NN sector of χEFT. We accounted for un-
correlated EFT truncation errors [5] in the sampling. Our prior
was based on both reasonable assumptions and information
from previous studies. For example, we assume natural EFT
expansion coefficients and NN contact LECs while the πN
sector was further informed by the results from a Roy-Steiner
analysis [13] of πN scattering data.

We conditioned the LEC posteriors on thousands of scat-
tering data, leading to a likelihood-dominated posterior and
consequently a probability mass of the LEC posterior that is
concentrated to a very small region in parameter space. At all
orders, the MAP and typical widths of the posteriors are very
close to the corresponding measures found using frequentist
parameter estimation in, e.g., Refs. [14,34]. This is largely due
to the fact that we employed nearly the same database of NN
scattering cross sections in both analyses.

An analysis of the coverage probability of the HDIs for pre-
dictions indicates that the credible intervals perform largely as
advertised if one excludes the LO expansion parameter when
estimating c̄ and if one has access to predictions at NNLO
or beyond. Indeed, the large shift in predictions when going
from LO to NLO does not provide representative information
about the EFT convergence pattern. This disturbance in the
order-by-order description of the nuclear interaction was also
identified in a recent Bayesian analysis of three- and four-
nucleon states [35]. It is hence desirable and timely to develop
improved models for the EFT truncation error that explicitly
account for such irregularities in the convergence pattern. At
the same time it is equally important to address deficiencies
in the LO description of the nucleon-nucleon interaction, in
particular for making reliable low-order EFT predictions [51].

Apart from a second mode in the LO posterior, for which
the deuteron is unbound, we found no clear evidence of mul-
timodality in the LEC posteriors at NLO and NNLO. We also
found that the posterior for the πN LECs at NNLO does not
overlap with any significance with the narrow prior inferred
from the Roy-Steiner analysis in Ref. [13]. Provided that we
are operating with a low-energy EFT for the nuclear interac-
tion, it is reasonable to expect this discrepancy to vanish if all
uncertainties are accurately modeled.

We found that the HMC algorithm provides virtually un-
correlated samples of the LEC posterior at all three chiral
orders. We confirm a very low level of autocorrelation which
is a hallmark of the HMC algorithm. When analyzing the cor-
relation structure in detail we found evidence of an antithetic
sampling pattern in the HMC chains at chiral orders LO and
NLO. This yields an integrated autocorrelation time τ < 1 and
an ESS greater than the number of gathered MCMC samples.
If harnessed, antithetic sampling could serve as a valuable
method for reducing the sample variance of LEC posteriors
at higher chiral orders.

We also compared the HMC chains at the three considered
orders to corresponding chains obtained using the EMCEE al-
gorithm and found a three- to sixfold increase of the sampling
efficiency. With HMC, we achieved near-instant convergence,
as measured by τ , at LO, NLO, and NNLO. Using EMCEE, in
contrast, we just managed to cross the convergence thresh-
old at NLO and failed to reach a converged NNLO result.
Although HMC sampling relies on access to gradients of the
posterior with respect to the LECs, and requires more tuning
than other MCMC algorithms, we find that the rewards justify
the extra effort. It is certainly possible to devise algorithms for
self-tuning of the hyperparameters with NUTS-HMC [31] be-
ing one such strategy. Our results provide a promising outlook
for parameter estimation at higher chiral orders, where the
increasing number of LECs most likely presents a formidable
challenge to other MCMC algorithms.
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