
Pulse-level noisy quantum circuits with QuTiP

Downloaded from: https://research.chalmers.se, 2022-10-11 19:39 UTC

Citation for the original published paper (version of record):
Li, B., Ahmed, S., Saraogi, S. et al (2022). Pulse-level noisy quantum circuits with QuTiP. Quantum,
6. http://dx.doi.org/10.22331/Q-2022-01-24-630

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Pulse-level noisy quantum circuits with QuTiP
Boxi Li1, Shahnawaz Ahmed2, Sidhant Saraogi3, Neill Lambert4, Franco Nori4,5,6,
Alexander Pitchford7, and Nathan Shammah8

1Peter Grünberg Institute - Quantum Control (PGI-8), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
2Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
3Department of Computer Science, Georgetown University, 3700 O St NW, Washington, DC 20057, United States
4Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
5RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
6Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
7Department of Mathematics, Aberystwyth University, Penglais Campus, Aberystwyth, SY23 3BZ, Wales, United Kingdom
8Unitary Fund, Walnut, California 91789, USA

The study of the impact of noise on
quantum circuits is especially relevant to
guide the progress of Noisy Intermediate-
Scale Quantum (NISQ) computing. In this
paper, we address the pulse-level simula-
tion of noisy quantum circuits with the
Quantum Toolbox in Python (QuTiP). We
introduce new tools in qutip-qip, QuTiP’s
quantum information processing package.
These tools simulate quantum circuits at
the pulse level, leveraging QuTiP’s quan-
tum dynamics solvers and control opti-
mization features. We show how quan-
tum circuits can be compiled on simu-
lated processors, with control pulses act-
ing on a target Hamiltonian that de-
scribes the unitary evolution of the phys-
ical qubits. Various types of noise can be
introduced based on the physical model,
e.g., by simulating the Lindblad density-
matrix dynamics or Monte Carlo quan-
tum trajectories. In particular, the user
can define environment-induced decoher-
ence at the processor level and include
noise simulation at the level of control
pulses. We illustrate how the Deutsch-
Jozsa algorithm is compiled and executed
on a superconducting-qubit-based proces-
sor, on a spin-chain-based processor and
using control optimization algorithms. We
also show how to easily reproduce exper-

Boxi Li: b.li@fz-juelich.de
Shahnawaz Ahmed: shahnawaz.ahmed95@gmail.com
Nathan Shammah: nathan@unitary.fund

imental results on cross-talk noise in an
ion-based processor, and how a Ramsey
experiment can be modeled with Lindblad
dynamics. Finally, we illustrate how to in-
tegrate these features with other software
frameworks.

1 Introduction
Quantum computation and quantum algorithms
are deemed to be able to complete tasks that
would be harder or impossible to achieve with
classical resources. However, noise on quantum
hardware significantly influences its performance,
limiting large-scale applications. Currently, we
are in the so-called noisy intermediate-scale quan-
tum (NISQ) computing era [1]. Before we reach
the regime of quantum error correction (QEC) [2],
quantum algorithms will suffer from quantum and
classical noise, e.g., decoherence and noise in clas-
sical control signals. Both types of noise lead to
errors in the computation and therefore deter-
mine the performance of a quantum algorithm.
Hence, a realistic simulation of a quantum algo-
rithm needs to incorporate these different types
of noise, which can depend strongly on the type
of qubit technology [3].

A modern quantum algorithm typically in-
cludes both classical and quantum parts [4]. The
former can include classical variational subrou-
tines, while the latter is usually represented by
a quantum circuit, consisting of a number of
gates applied on a quantum state. Many soft-
ware projects provide the simulation of such cir-
cuits including PyQuil [5, 6], Qiskit [7], Cirq [8],

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

10
5.

09
90

2v
2

 [
qu

an
t-

ph
]

 1
8

Ja
n

20
22

https://quantum-journal.org/?s=Pulse-level%20noisy%20quantum%20circuits%20with%20QuTiP&reason=title-click
https://orcid.org/0000-0002-2733-7186
https://orcid.org/0000-0003-1145-7279
https://orcid.org/0000-0001-7873-0773
https://orcid.org/0000-0003-3682-7432
https://orcid.org/0000-0002-4717-2921
https://orcid.org/0000-0002-8775-3667
mailto:b.li@fz-juelich.de
mailto:shahnawaz.ahmed95@gmail.com
mailto:nathan@unitary.fund

ProjectQ [9], and PennyLane [10], among oth-
ers [11, 12]. However, within these approaches,
noise is usually modelled as an additional layer on
top of ideal quantum gates, e.g., probabilistically
inserting random Pauli gates or a list of Kraus
operators to describe a noisy quantum channel.

To improve the performance of a quantum
circuit on noisy hardware, it is useful to also
perform optimization at the level of control
pulses based on the quantum dynamics of
the underlying hardware. For this purpose,
open-source software packages have been de-
veloped to map quantum circuits to control
pulses on hardware, allowing for fine-tuning
and calibration of the control pulses, such as
qiskit.pulse [13], qctrl-open-controls [14]
and Pulser [15]. Recently, Qiskit also launched
the project qiskit-dynamics to support solv-
ing time-dependent quantum systems, connected
with qiskit.pulse. The project is still in the
early stages of development.

In the realm of simulation, one of the earliest,
and most widely used Python packages to sim-
ulate quantum dynamics is the Quantum Tool-
box in Python, QuTiP [16, 17]. QuTiP provides
useful tools for handling quantum operators and
simplifies the simulation of a quantum system un-
der a noisy environment by providing a number
of solvers, such as the Lindblad master equation
solver. An ecosystem of software tools for quan-
tum technology is growing around it [13, 15, 18–
25]. Hence, it is a natural base to start connecting
the simulation of quantum circuits and the time
evolution of the quantum system representing the
circuit registers. At the cost of more computing
resources, simulation at the level of time evolu-
tion allows noise based on the physical model to
be included in the realistic study of quantum cir-
cuits.

Summary of results In this paper, we illus-
trate how the new tools in qutip-qip1 can be
used to bridge the gap between the gate-level cir-
cuit simulation and the simulation of quantum
dynamics following the master equation for var-
ious hardware models. While a quantum cir-
cuit representation and a few specific Hamilto-
nian models have been available in QuTiP for
some time, in this paper, we bridge them with

1https://github.com/qutip/qutip-qip

QuTiP solvers and build a pulse-level simulation
framework, allowing the simulation of noisy cir-
cuits.

Provided a Hamiltonian model and a map be-
tween the quantum gate and control pulses, we
show how these new tools in qutip-qip can be
used to compile the circuit into the native gates
of a given hardware, how to generate the phys-
ical model described by control pulses and how
to use QuTiP’s dynamical solvers to obtain the
full-state time evolution, as shown in Figure 1.

A number of example hardware models are
available in the software package – a spin qubit
processor, a cavity-QED device, a superconduct-
ing qubit model – while in general the users are
provided with the freedom to define their own de-
vices of choice.

In addition to a predefined map between gates
and pulses for each model, optimal control algo-
rithms in QuTiP can also be used to generate
control pulses. Moreover, we demonstrate how
various types of noise, including decoherence in-
duced by the quantum environment and classical
control noise, can be introduced at different lay-
ers of the simulation. Thanks to a modular code
design, one can quickly extend the toolkit with
customized hardware and noise models.

Article structure The article is organized as
follows: In Section 2, information about the soft-
ware installation and specifics is given. In Sec-
tion 3, we briefly present the background con-
cepts of quantum circuits at the gate level, the
continuous-time pulse-level description for cir-
cuits, open quantum systems theory and the tools
present in qutip and qutip-qip to represent and
simulate open quantum systems. Section 4 con-
tains the main novel results and new software fea-
tures: therein, we illustrate in detail the novel ar-
chitecture of the pulse-level quantum-circuit sim-
ulation framework in qutip-qip and the avail-
able modelling of quantum devices and noise. In
Section 5, we show how these features can be in-
tegrated with other software through importing
external quantum circuits using the QASM for-
mat. We conclude in Section 6.

The Appendices include self-contained code ex-
amples: Appendix A contains the full code for the
Deutsch-Jozsa algorithm simulation; Appendix B
presents the simulation of a 10-qubit quantum
Fourier transform (QFT) algorithm using the

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 2

https://github.com/qutip/qutip-qip

QASM Circuit

Qiskit

Cirq

Project Q

⋯

Spin chain

Cavity QED

Circuit QED

Optimal control

Processor

Noise

Density matrix

Evolution trajectory

Decoherence

Amplitude noise

Cross-talk

Leakage error

Result

Compile circuit to

pulse-level control

Generate noisy

pulses

Solve dynamics

Figure 1: Illustration of the workflow of the pulse-level
noisy quantum circuit simulation. It starts from a quan-
tum circuit defined in QuTiP or imported from other
libraries through the QASM format. Based on the hard-
ware of interest, the circuit is then compiled to con-
trol pulse signals for each control Hamiltonian (blue for
single-qubit gates and red for two-qubit gates in the fig-
ure). Next, a representation of the time evolution, in-
cluding various types of noise, is generated under the
description of the master equation. In the last step, the
QuTiP solver is employed to solve the dynamics. The
solver returns the final result as well as the intermediate
state information on demand. Both the final and the
intermediate quantum states can be recorded, as illus-
trated by the plot showing the population of the |00〉
state, with the third qubit traced out. This plot is the
same as Figure 6b and will be explained later in de-
tail. The control signals in the figure are for illustration
purposes only while the real compiled pulses on a few
predefined hardware models are shown in Figure 3.

spin chain model; Appendix C shows how to cus-
tomize the physical model of a processor with
noise. More examples can also be found in QuTiP
tutorials2.

2http://qutip.org/tutorials.html under the sec-

2 Software information

The tools described here are part of the QuTiP
project [16, 17]. The qutip-qip package builds
upon what was once a module of QuTiP,
qutip.qip. Usage and installation has not
significantly changed for the end user, who
can easily install the package from the Python
package index (PyPI) distribution with

pip install qutip -qip

Code Listing 1: Installing qutip-qip

The qutip-qip package has the core qutip
package as its main dependency. This means that
it also builds upon the wider Python scientific
open source software stack, including NumPy [26]
and SciPy [27], and optionally Matplotlib [28] and
Cython [29]. qutip-qip is a software developed
by many contributors [30].

The qutip-qip package is developed with the
best practices of open-source software develop-
ment and scientific software. The codebase is
hosted on Github and new code contributions
are reviewed by the project maintainers. The li-
cense is the BSD three-clause license (also known
as BSD 2.0 or New BSD). The code is thor-
oughly unit tested, with tests for most objects
also run on the cloud in continuous integration,
on multiple operating systems. The documen-
tation, whose code snippets and API documenta-
tion are also unit tested, is hosted online on Read
The Docs (https://qutip-qip.readthedocs.
io/); the documentation can also be generated
locally by contributors with Sphinx by forking the
QuTiP/qutip-qip Github repository.

3 Quantum circuits and open quantum
dynamics

In this section, we briefly review the theory of
quantum circuits and their modelling on actual
devices that are subject to noise. We introduce
the formalism for the gate-level representation
of quantum circuits, then describe the Hamilto-
nian description at the pulse level, and finally the
open-quantum dynamics of a realistic system.

tion Quantum Information Processing

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 3

http://qutip.org/tutorials.html
https://qutip-qip.readthedocs.io/
https://qutip-qip.readthedocs.io/

3.1 Quantum circuits and gate-level simulation
A quantum circuit is a model for quantum com-
putation, where the quantum dynamics is ab-
stracted and broken down into unitary matrices
(quantum gates), which can be applied to all or
only a few circuit registers. Inherited from classi-
cal computing, the circuit registers are most often
two-level systems, referred to as qubits. The ex-
ecution of a circuit on a quantum state is then
given by

|ψf 〉 = UKUK−1 · · ·U2U1 |ψi〉 , (1)

where |ψi〉 and |ψf 〉 are the initial and final state
and Uk with k ∈ {1, 2, · · · ,K} the quantum
gates.

Often, the simulation of quantum circuits is
implemented by representing the unitaries and
quantum state as complex matrices and vectors.
The execution of a circuit is then described as
matrix-vector multiplication. We refer to this as
gate-level quantum circuit simulation. The gate-
level quantum circuit description is a representa-
tion of a quantum algorithm at an abstract level
before considering any physical realization to im-
plement the algorithm [2]. More general repre-
sentations of hybrid quantum algorithms include
the integration of classical and quantum subrou-
tines, as for variational quantum algorithms [4],
their compilation and execution [6, 10, 31–33].
In qutip-qip, this gate-level simulation can be
performed with the QubitCircuit class, which is
the Python object used to represent a quantum
circuit.

In order to introduce the effects of noise, quan-
tum states can be most generally represented by a
density matrix and the idea of a quantum channel
is introduced, where noise can be characterized by
a set of non-unitary Kraus operators acting on the
quantum states. Many well-known channel rep-
resentations of noise have been implemented in
circuit simulation, such as depolarising, dephas-
ing, amplitude damping and erasure channel. Al-
though the channel description is very general,
noisy gate simulation based on it has two short-
comings.

First, in most implementations, noise is applied
after the ideal gate unitaries, while in reality they
are not separated. Second, although quantum
channels describe the most general evolution that
a quantum system can undergo, finding the repre-
sentation of realistic noise in this channel form is

not a trivial task. Usually, a noise channel imple-
mented in simulators only describes single-qubit
decoherence and cannot accurately capture the
complicated noisy evolution that the system un-
dergoes. Hence, to study the execution of circuits
on noisy hardware in more detail, one needs to
turn to the quantum dynamics of the hardware
platform.

3.2 Continuous time evolution and pulse-level
description
Down to the physical level, quantum hardware,
on which a circuit is executed, is described by
quantum theory. The dynamics of the system
that realizes a unitary gate in Eq. (1) is char-
acterized by the time evolution of the quantum
system. For isolated or open quantum systems,
we consider both unitary time evolution and open
quantum dynamics. The latter can be simulated
either by solving the master equation or sampling
Monte Carlo trajectories. Here, we briefly de-
scribe those methods as well as the corresponding
solvers available in QuTiP.

3.2.1 Unitary time evolution

For a closed quantum system, the dynamics is
determined by the Hamiltonian and the initial
state. From the perspective of controlling a quan-
tum system, the Hamiltonian is divided into the
non-controllable drift Hd (which may be time de-
pendent) and controllable terms combined as Hc
to give the full system Hamiltonian

H(t) = Hd(t)+Hc(t) = Hd(t)+
∑
j

cj(t)Hj , (2)

where the Hj describe the effects of available
physical controls on the system that can be mod-
ulated by the time-dependent control coefficients
cj(t), by which one drives the system to realize
the desired unitary gates.

The unitary U that is applied to the quantum
system driven by the Hamiltonian H(t) is a solu-
tion to the Schrödinger operator equation

ih̄
∂U(t)
∂t

= H(t)U(t). (3)

By choosing H(t) that implements the desired
unitaries (the quantum circuit) we obtain a pulse-
level description of the circuit in the form of
Eq. (2). The choice of the solver depends on

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 4

the parametrization of the control coefficients
cj(t). The parameters of cj(t) may be determined
through theoretical models or automated through
control optimisation, as described later in Sec-
tion 4.

3.2.2 Open quantum system dynamics

In reality, a quantum system is never perfectly
isolated; hence, a unitary evolution is often only
an approximation. To consider possible interac-
tion with the environment, one can introduce a
larger Hilbert space, or reduce the overhead by
effectively limiting the description to the system
Hilbert space and using super-operators induc-
ing a non-unitary dynamics (i.e., on an open sys-
tem). One way to describe the evolution of an
open quantum system is by the Lindblad mas-
ter equation. It can be solved either by solv-
ing a differential equation (qutip.mesolve) or
by Monte Carlo sampling of quantum trajecto-
ries (qutip.mcsolve). Both can be chosen as
a simulation back-end for the pulse-level circuit
simulator.

These solvers provide an efficient simulation of
open system quantum dynamics. They can de-
scribe noise models derived under the the Born-
Markov Secular (BMS) approximations [34, 35],
and more general Lindbladians, including those
with time-dependent rates. For most hardware
implementations these noise models are powerful
and flexible enough to capture the most salient
environmental noise effects.

Density-matrix master equation solver.
The function qutip.mesolve can solve general
open dynamics that can be cast in the form

∂ρ(t)
∂t

=Lρ(t), (4)

where the dynamics of the “system” density ma-
trix ρ(t) evolves under the action of a superoper-
ator L. The user can decide to provide directly
the full superoperator L, or divide the dynamics
in the Hamiltonian part [Eq. (2)] and noise terms
provided by a set of collapse operators (c_ops)
with related rates, and qutip.mesolve will effec-
tively solve Eq. (4) behind the scenes. The struc-
ture of Eq. (4) can be quite generic, including the
possibility for time-dependent rates and collapse
operators, beyond the Born–Markov and secular

(BMS) approximation, however, one of the most
straightforward approaches is to simulate a Lind-
blad master equation. A common example for
a quantum circuit consisting of N qubits expe-
riencing relaxation and dephasing would be the
following Lindblad master equation,

∂ρ(t)
∂t

=− i [H(t), ρ(t)] +
N−1∑
j=0

γjD[σ−j]ρ(t)

+
N−1∑
j=0

γDj
2 D[σzj]ρ(t), (5)

where H is the system Hamiltonian, γj is the re-
laxation rate of qubit j, γDj the pure dephasing
rate of qubit j, D[Γn]X = ΓnXΓ†n − 1

2Γ†nΓnX −
1
2XΓ†nΓn is the Lindblad dissipator for a generic
jump operator Γn acting on a density matrix X,
and σαj are Pauli operators, with α = x, y, z,+,−.

This approach allows us to model the coex-
istence of pulse-level control, in the coherent
Hamiltonian part, and the influence of noise.
However, the density matrix description of the
system introduces a quadratic overhead in mem-
ory size. If this becomes a limiting factor for
a given simulation, progress can be made by
employing the Monte-Carlo quantum trajectory
solver, qutip.mcsolve.

Monte-Carlo quantum trajectories. A
popular method that is alternative to the full
master equation simulation is the Monte Carlo
sampling with quantum trajectories. Noise is
included in an effective non-Hermitian Hamil-
tonian, and a stochastic term is added by
pseudo-random sampling. An effective Hamil-
tonian is continuously applied to the system,
integrating the part of Eq. (5) with Lindblad
dissipators,

Heff = H(t)− i

2
∑
n

Γ†nΓn, (6)

while the second part is determined stochasti-
cally, checking if a random number is greater than
the norm of the unnormalized wavefunction. If
that is the case, the quantum jump is applied,
ensuring the renormalization of the wavefunction,

|ψ(t+ δt)〉 = Γn|ψ(t+ δt)〉√
〈ψ(t)|Γ†nΓn|ψ(t)〉

. (7)

The advantage of the quantum trajectory ap-
proach over the density-matrix master equation

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 5

Processor

Model

GateCompiler

Scheduler

Noise

QubitCircuit

qutip.Qobj

qutip.Result

input

output

Figure 2: The structure of the simulation frame-
work. The main interface is implemented in the class
Processor. An instance of Processor emulates a
quantum processor that takes a circuit and an initial
quantum state as input and outputs the result as a
qutip.Result object. From the result, one can inspect
the final state of the physical qubits, as well as interme-
diate results during the time evolution. The Processor
has a modular design that allows for arbitrary specifi-
cations of the underlying hardware model, compilation,
scheduling gates and noise models.

solution is that one needs to handle a computa-
tional space of dimension N equal to the Hilbert
space, instead of its square. Additionally, the
quantum-trajectory approach allows simulating
the dynamics of single executions instead of the
averaged dynamics from a density-matrix simula-
tion using the master equation, which can provide
further insight in processes that may be washed
out when looking only at the statistical averages
[36, 37]. A trade-off is present in the number
of trajectories that need to be run to evaluate a
mean path with a small standard deviation. How-
ever, the trajectories can be computed in parallel.
QuTiP uses Python’s multiprocessing module to
benefit from multi-core computing platforms.

Other dynamical solvers. QuTiP also pro-
vides solvers for other noise models and dynam-
ics, such as the (secular and non-secular) Bloch-
Redfield equation [34], the (non-Markovian) hier-
archical equation of motion (HEOM) [21, 38], and
stochastic master equations. These are not cur-
rently supported for the pulse-level circuit simu-
lation of qutip-qip.

4 Pulse-level quantum-circuit simula-
tion framework
In this section, we describe the architecture
of the simulation framework. The framework
aims at simplifying the simulation of noisy quan-
tum circuits through the explicit time evolu-
tion of physical qubits using QuTiP solvers. As
illustrated in Figure 2, the simulation is de-
signed around a Processor class, which con-
sists of several different components. An in-
stance of Processor emulates the behaviour of
a quantum processor that takes a quantum cir-
cuit (QubitCircuit) as well as an initial quan-
tum state (qutip.Qobj) and produces the final
state as a (qutip.Result) object. As discussed
further below in this section, the key improve-
ments in the new qutip-qip package are the
Model, GateCompiler, Scheduler and the Noise
classes that allow a modular and flexible design
of realistic quantum processors for simulations.

We illustrate our new framework here with
an example simulating a 3-qubit Deutsch-Jozsa
algorithm on a chain of spin qubits. We will
work through this example and explain briefly the
workflow and all the main modules. We then de-
scribe each module in detail in the subsequent
subsections. The simulation of a more compli-
cated circuit, a 10-qubit QFT algorithm, is pre-
sented in appendix B.

In qutip-qip, a quantum circuit is repre-
sented by an instance of the QubitCircuit class.
The following code defines a circuit of a 3-qubit
Deutsch-Jozsa algorithm (see Figure 3a)3:
qc = QubitCircuit (3)
qc. add_gate ("X", targets =2)
qc. add_gate ("SNOT", targets =0)
qc. add_gate ("SNOT", targets =1)
qc. add_gate ("SNOT", targets =2)

Oracle function f(x)
qc. add_gate (

"CNOT", controls =0, targets =2)
qc. add_gate (

"CNOT", controls =1, targets =2)

qc. add_gate ("SNOT", targets =0)
qc. add_gate ("SNOT", targets =1)

The Deutsch-Jozsa algorithm consists of an or-
acle constructed using two CNOT gates. The first

3The code examples present in the main text and the
Appendices are available at github.com/boxili/qutip-qip-
paper. The code is compatible with qutip-qip==0.2.

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 6

https://www.github.com/boxili/qutip-qip-paper
https://www.github.com/boxili/qutip-qip-paper

two qubits in our circuit take a binary input and
will be measured at the end while the last qubit
is an ancillary qubit that stores the result of the
oracle. The goal is to test if the oracle function
is balanced or constant. A constant function re-
turns all 0 or 1 for any input, while a balanced
function returns 0 for half of the input combina-
tions and 1 for the other half.

Among the four different classical inputs
({00, 01, 10, 11}), for half of them, the oracle re-
turns 0 while for the other half it returns 1. Hence
it is a balanced function and, without noise, the
measurement of the first two qubits will never be
both 0. One can run the gate-level simulation in
the following way:

init_state = basis([2,2,2], [0,0,0])
final_state = qc.run(init_state)

where we first initialize the state as |000〉 using
qutip.basis and then run the circuit simulation.
By checking the final state, one will see that it has
no overlap with |000〉 or |001〉.

The above simulation is at the gate level and is
computed by matrix-vector products of the gate
operators and the input quantum state. We now
describe how to simulate the circuit at the pulse
level using Processor.

4.1 Processor

The Processor class handles the routine of a
pulse-level simulation. It first compiles the circuit
into a pulse-level description and then simulates
the time evolution of the underlying physical sys-
tem using QuTiP solvers. For different hardware
models and compiling methods the same circuit
can be compiled into different pulses, as shown
in Figures 3b to 3d. Because of different noise
models, the final state also differs from that of
the ideal gate-level simulation.

In the following, we choose the spin chain
model as an example for the underlying physical
system and give an overview of the simulation
procedure. We start from initializing a specific
type of processor, a subclass of Processor called
LinearSpinChain:

processor = LinearSpinChain (
num_qubits =3, sx=0.25)

where we provide the number of qubits and the σx
drive strength 0.25MHz. The other parameters,
such as the interaction strength, are set to be the

default value. The decoherence noise can also be
added by specifying the coherence times (T1 and
T2) which we discuss hereafter.

By initializing this processor with the hardware
parameters, a Hamiltonian model for a spin chain
system is generated, including the drift and con-
trol Hamiltonians (Hd, Hc). The Hamiltonian
model is represented by the Model class and is
saved as an attribute of the initialized proces-
sor. We provide different predefined models and
discuss them more in Section 4.2. In addition,
the Processor can also hold simulation configu-
rations such as whether to use a cubic spline inter-
polation for the pulse coefficients. Such configu-
rations are not directly part of the model but nev-
ertheless could be important for the pulse-level
simulation.

Next, we provide the circuit to the processor
through the method load_circuit:

processor . load_circuit (qc)

The processor will first decompose the gates in
the circuit into native gates that can be imple-
mented directly on the specified hardware model.
Each gate in the circuit is then mapped to the
control coefficients and driving Hamiltonians ac-
cording to the GateCompiler defined for a spe-
cific model. A Scheduler is used to explore the
possibility of executing several pulses in paral-
lel. The compiler and scheduler classes will be
explained in detail in Sections 4.3 and 4.4.

In addition to the standard compiler, optimal
control algorithms in QuTiP can also be used to
generate the pulses, which are implemented in
OptPulseProcessor (Section 4.5).

With a pulse-level description of the circuit
generated and saved in the processor, we can now
run the simulation by

t_max = processor . get_full_tlist ()[-1]
tlist = np. linspace (0, t_max , 300)
result = processor . run_state (

init_state , tlist=tlist)

The run_state method first builds a Lindblad
model including all the defined noise models
(none in this example, but options are discussed
below) and then calls a QuTiP solver to simulate
the time evolution. One can pass solver param-
eters as keyword arguments to the method, e.g.,
tlist (time sequence for intermediate results),
e_ops (measurement observables) and options
(solver options). In the example above, we record

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 7

the intermediate state at the time steps given by
tlist. The returned result is a qutip.Result
object, which, depending on the solver options,
contains the final state, intermediate states and
the expectation value. This allows one to extract
all information that the solvers in QuTiP provide.

As for the simulation of noise, simple decoher-
ence noise can be included in the Processor by
specifying T1, T2, e.g.,

LinearSpinChain (num_qubits =3, t2=30)

More advanced noise models can be represented
by the Noise class and added with the method
Processor.add_noise. The following code is an
equivalent way of defining a T2 noise:

processor . add_noise (
RelaxationNoise (t2=30))

In general, the Noise class can be used to repre-
sent both decoherence and coherent noise sources.
The former is defined by time-dependent or inde-
pendent collapse operators and the latter by ad-
ditional Hamiltonian terms in Eq. (2), with which
distortion in the control coefficients or cross-talk
can be represented. In particular, one can de-
fine noise that is correlated with the compiled
ideal control coefficients through the Pulse class.
They are explained in detail with examples in
Sections 4.6 and 4.7.

Overall, the framework is designed in a modu-
lar way so that one can add custom Hamiltonian
models, compilers and noise models. We describe
in Section 4.8 how this can be done by defining
new subclasses.

4.2 Model

The pulse-level simulation depends strongly on
the modelling of the physical qubits. In the
framework, the physical model is saved as an in-
stance of the Model class in an initialized proces-
sor. A Model object contains the information re-
garding the specific quantum hardware, including
the drift Hamiltonian that cannot be controlled,
the available control Hamiltonians and possible
noise in the system. A concrete physical model
such as SpinChainModel is defined as a subclass
of Model.

For convenience of use, a Model object is au-
tomatically generated while initializing a specific
Processor, as in the example at the beginning of
this section. To offer more flexibility, qutip-qip

provides an equivalent way for the user to define
a model and pass it to a Processor object, e.g.,
model = SpinChainModel (

num_qubits =3, setup=" circular ", g=1)
processor = Processor (model=model)

One can inquire about the properties of a control
Hamiltonian through
model. get_control (label="sx0")

which returns a tuple consisting of the Hamilto-
nian as a qutip.Qobj and the indices of the tar-
get qubits. For the predefined models, all avail-
able control Hamiltonians can be obtained by
model. get_control_labels ()

The same interface is also provided in Processor
(e.g., Processor.get_control) for convenience.

In predefined models, these control Hamilto-
nian terms are simply defined in a dictionary,
equivalent to the following code:
controls = {}
for m in range(num_qubits):

op = 2 * np.pi * sigmax ()
controls ["sx"+str(m)] = (op , m)

which will be accessed by the model object.
Notice that, in general, a model can be cor-
rectly recognized by the processor if the method
Model.get_control(label) returns the results
in the expected format, regardless of the internal
implementation. For instance, in appendix C, we
define it in a different way. This will be helpful,
for instance, in an all-to-all connected system, e.g,
using ions or neutral atoms, for which listing all
the available combinations of target qubits is te-
dious.

Models allow one to simulate the physical
qubits and their interaction in a more realistic
way, e.g., using resonator-induced coupling and
including leakage levels. This is demonstrated by
a few predefined models that are implemented as
subclasses of Model: the spin chain model, the
qubits-resonator model and the fixed-frequency
superconducting qubit model. Custom Hamilto-
nian models can be defined as subclasses as de-
tailed in Section 4.8 and appendix C. In the fol-
lowing, we illustrate the characteristics of the pre-
defined hardware models in detail.

4.2.1 Spin Chain model

The spin-exchange interaction exists in many
quantum systems and is one of the earliest types

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 8

|0〉 H • H

|0〉 H • H

|0〉 X H

(a) Quantum circuit example

Ωαj Single-qubit rotation around an axis
α = x, y, z (colour blue and orange)

gj Coupling strength (colour green)
Ωcrk
j The cross-resonance effective

interaction (colour green)

Ωx0
Ωx1
Ωx2
Ωz0
Ωz1
Ωz2
g0

t

g1

(b) Spin chain model

Ωx0
Ωx1
Ωx2
Ωy0
Ωy1
Ωy2

Ωcr1
0

Ωcr2
0

Ωcr1
1

t

Ωcr2
1

(c) Superconducting qubit model

Ωx0
Ωx1
Ωx2
Ωz0
Ωz1
Ωz2
g0

t

g1

(d) Optimal control model

Figure 3: Control pulses generated for a three-qubit Deutsch-Jozsa algorithm (Figure 3a), where two CNOT gates
implement the oracle, which is a balanced function. The pulses are compiled using the spin chain model [Eq. (8)], the
superconducting qubits [Eq. (10)] and the optimal control algorithm (using GRAPE with the same control Hamiltonian
as the spin chain model in Eq. (8)). The symbols for pulse coefficients are defined in the corresponding equations.
The blue and orange colours denote the two single-qubit control pulses, while green is used for the qubit-qubit
interaction. For the spin chain and superconducting qubits, the interaction exists only between neighbouring qubits,
hence SWAP gates are added to implement the CNOT between the first and third qubits and decomposed into the
native gates. The grey background marks the pulse duration for the two CNOT gates, where the effect of ASAP
scheduling is evident. The strength of the compiled pulses, |cj(t)|, is normalized for plotting and should not be
compared between different control Hamiltonians. Code examples generating these plots are shown in appendix A.

of interaction used in quantum information pro-
cessing, e.g., in Refs. [3, 39, 40]. Our prede-
fined SpinChainModel implements a system of
a few spin qubits with the exchange interaction
arranged in a one-dimensional chain layout with
either open ends or closed ends.

The interaction is only possible between ad-
jacent qubits. For the spin model, the single-
qubit control Hamiltonians are σxj , σzj , while the
interaction is realized by the exchange Hamilto-
nian σxj σxj+1 + σyj σ

y
j+1. The control Hamiltonian

is given by

H =
N−1∑
j=0

Ωx
j (t)σxj + Ωz

j (t)σzj

+
N−2∑
j=0

gj(t)(σxj σxj+1 + σyj σ
y
j+1), (8)

where Ωx, Ωy and g are the time-dependent con-
trol coefficients and N is the number of qubits.

4.2.2 Qubit-resonator model

In some experimental implementations, interac-
tions are realized by a quantum bus or a resonator
connecting different qubits. The qubit-resonator
model describes a system composed of a single

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 9

resonator and a few qubits connected to it. The
coupling is kept small so that the resonator is
rarely excited but acts only as a mediator for
entanglement generation. The single-qubit con-
trol Hamiltonians used are σx and σy. The dy-
namics between the resonator and the qubits is
captured by the Tavis-Cummings Hamiltonian,
∝

∑
j a
†σ−j +aσ+

j , where a, a
† are the destruction

and creation operators of the resonator, while σ−j ,
σ+
j are those of each qubit. The control of the

qubit-resonator coupling depends on the physical
implementation, but in the most general case we
have single and multi-qubit control in the form,

H =
N−1∑
j=0

Ωx
j (t)σxj + Ωy

j (t)σ
y
j + gj(t)(a†σ−j + aσ+

j) .

(9)

In the numerical simulation, the resonator Hamil-
tonian is truncated to finite levels. The user can
find a predefined CavityQEDModel implementing
Eq. (9).

4.2.3 Superconducting qubit model

Superconducting-circuit qubits have been har-
nessed to provide artificial atoms for quantum
simulation and quantum computing [3, 41–44].
In our model, defined by the SCQubitsModel
class, each qubit is simulated by a multi-level
Duffing model, in which the qubit subspace is
provided by the ground state and the first excited
state. By default, the creation and annihilation
operators are truncated at the third level, which
can be adjusted, if desired, by the user. The
multi-level representation can capture the leak-
age of the population out of the qubit subspace
during single-qubit gates. The single-qubit con-
trol is generated by two orthogonal quadratures
(a†j + aj) and i(a†j − aj). Same as the spin chain
model, the interaction is possible only between
adjacent qubits. Although this interaction is me-
diated by a resonator, for simplicity, we replace
the complicated dynamics among two supercon-
ducting qubits and the resonator with a two-qubit
effective Hamiltonian derived in [45].

As an example, we choose the cross resonance
interaction in the form of σzjσxj+1, acting only on
the two-qubit levels, which is widely used, e.g., in
fixed-frequency superconducting qubits. We can

write the Hamiltonian as

H =Hd +
N−1∑
j=0

Ωx
j (a†j + aj) + Ωy

j i(a
†
j − aj)

+
N−2∑
j=0

Ωcr1
j σzjσ

x
j+1 + Ωcr2

j σxj σ
z
j+1, (10)

where the drift Hamiltonian Hd is defined by the
anharmonicity αj of the second excited state,

Hd =
N−1∑
j=0

αj
2 a
†
ja
†
jajaj . (11)

The coefficients Ωcr1 and Ωcr2 are computed
from the qubit-resonator detuning and coupling
strength [45]. With additional single-qubit gates,
a CNOT gate can be realized using this type of
interaction [46]. Using this effective Hamiltonian
significantly reduces the size of the Hilbert space
in the simulation and allows us to include more
qubits. This flexibility in choosing different lev-
els of detail in the modelling is one of the biggest
advantages of this framework, in particular for
noise simulation (as illustrated in more detail in
Section 4.6).

4.3 Compiler

A compiler converts the quantum circuit to the
corresponding pulse-level controls cj(t)Hj on the
quantum hardware. In the framework, it is de-
fined as an instance of the GateCompiler class.
The compilation procedure is achieved through
the following steps.

First, each quantum gate is decomposed into
the native gates (e.g., rotation over x, y axes and
the CNOT gate), using the existing decomposi-
tion scheme in QuTiP. If a gate acts on two qubits
that are not physically connected, like in the
chain model and superconducting qubit model,
SWAP gates are added to match the topology
before the decomposition. Currently, only 1-
dimensional chain structures are supported.

Next, the compiler maps each quantum gate
to a pulse-level control description. It takes
the hardware parameter defined in the Hamil-
tonian model and computes the pulse du-
ration and strength to implement the gate.
For continuous pulses, the pulse shape can
also be specified using SciPy window functions
(scipy.signal.windows). A pulse scheduler is

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 10

then used to explore the possibility of executing
multiple quantum gates in parallel, which is ex-
plained in detail in Section 4.4.

In the end, the compiler returns a time-
dependent pulse coefficient cj(t) for each control
Hamiltonian Hj [see Eq. (2)]. They contain the
full information to implement the circuit and are
saved in the processor. The coefficient cj(t) is
represented by two NumPy arrays, one for the
control amplitude and the other for the time se-
quence. For a continuous pulse, a cubic spline
is used to approximate the coefficient. This al-
lows the use of compiled Cython code in QuTiP
to achieve better performance.

For the predefined physical models de-
scribed in the previous subsection, the cor-
responding compilers are also included and
they will be used when calling the method
Processor.load_circuit. As an example, we
compile the three-qubit Deutsch-Jozsa algorithm,
shown in Figure 3a, while the compiled pulses on
three different models are plotted in Figures 3b
to 3d. From the plots, it is evident that the same
circuit is compiled to completely different pulse-
level controls:

• For the spin chain model (Figure 3b), SWAP
gates are added between and after the first
CNOT gate, swapping the first two qubits
(coefficient g0). The SWAP gate is de-
composed into three iSWAP gates, while
the CNOT is decomposed into two iSWAP
gates plus additional single-qubit correc-
tions. Both the Hadamard gate and the two-
qubit gates need to be decomposed to native
gates (iSWAP and rotation on the x and z
axes). The compiled coefficients are square
pulses and the control coefficients on σz and
σx are also different, resulting in different
gate times.

• For the superconducting-qubit processor
(Figure 3c), the compiled pulses have a
Gaussian shape. This is crucial for supercon-
ducting qubits because the second excited
level is only slightly detuned from the qubit
transition energy. A smooth pulse usually
prevents leakage to the non-computational
subspace. Similar to the spin chain, SWAP
gates are added to switch the zeroth and first
qubit and one SWAP gate is compiled to
three CNOT gates. The control Ωcr2

1 [de-
fined in Eq. (10)] is not used because there

is no CNOT gate that is controlled by the
second qubit and acts on the first one.

• For the optimal control model (Figure 3d),
we use the GRAPE algorithm, where con-
trol pulses are piece-wise constant functions.
We provide the algorithm with the same con-
trol Hamiltonian model used for the spin
chain model, Eq. (8). In the compiled opti-
mal signals, all controls are active (non-zero
pulse amplitude) during most of the execu-
tion time. We note that for identical gates on
different qubits (e.g., Hadamard), each opti-
mized pulse is different, demonstrating that
the optimized solution is not unique, and
there are further constraints one could apply,
such as adaptions for the specific hardware.

As a demonstration of the capability of the sim-
ulator, we also compile a 10-qubit QFT algorithm
using LinearSpinChain, as shown in appendix B.

To end this subsection, we mention that the
gate decomposition is not fully optimized in
QuTiP. Circuit optimization at the level of quan-
tum gates, such as for an optimal number of two-
qubit gates, depends on the hardware of interest
and is still an open research topic [47–50]. The
same holds for mapping the circuit to the topol-
ogy of the qubits’ connectivity [51–53]. Because
the focus of this simulator is the simulation of
the circuit at the physics level, we leave more ad-
vanced optimization and scheduling techniques at
the gate level for future work. Instead, we offer
the possibility to import quantum circuits defined
in other libraries into QuTiP in the QASM format
(see Section 5). This allows possible optimiza-
tions elsewhere and then exporting the optimized
circuits in QuTiP for a pulse-level simulation.

4.4 Scheduler
The scheduling of a circuit consists of an im-
portant part of the compilation. Without it,
the gates will be executed one by one and many
qubits will be idling during the circuit execution,
which increases the execution time and reduces
the fidelity. In the framework, the scheduler is
used after the control coefficient of each gate is
computed. It runs a scheduling algorithm to de-
termine the starting time of each gate while keep-
ing the result correct.

The heuristic scheduling algorithm we provide
offers two different modes: ASAP (as soon as pos-

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 11

sible) and ALAP (as late as possible). In addi-
tion, one can choose whether permutation among
commuting gates is allowed to achieve a shorter
execution time. The scheduler implemented here
does not take the hardware architecture into con-
sideration and assumes that the connectivity in
the provided circuit matches with the hardware
at this step.

In predefined processors, the scheduler runs
automatically when loading a circuit and hence
there is no action necessary from the side of the
user. To help explain the scheduling algorithm,
we provide here two examples of directly using
the Scheduler class.

For gate scheduling, one can use

Scheduler ("ASAP"). schedule (qc)

which, for the 3-qubit Deutsch-Jozsa example
(Figure 3a), returns a list

[0, 0, 0, 1, 2, 3, 3, 4]

This list denotes the gate cycle of each gate in
the circuit. Here, all gates are assumed to have
the same duration. One can see that that, e.g.,
the second CNOT and the last Hadamard on the
first qubit are grouped together in cycle 3.

For pulse scheduling, one needs to use the
Instruction class, which includes information
about a specific implementation of a gate on the
hardware, e.g., the duration of a gate. If we as-
sume that all single-qubit gates take a time du-
ration of 1 unit while the CNOT takes a time
duration of 2 units, we can rewrite it as

inst_list = []
for gate in qc. gates:

if gate.name in ("SNOT", "X"):
inst_list . append (

Instruction (gate , duration =1
)

)
else:

inst_list . append (
Instruction (gate , duration =2
)

)
Scheduler ("ALAP"). schedule (inst_list)

Notice that now we used the ALAP scheduling.
This returns a different list

[0, 3, 1, 1, 4, 2, 6, 6]

with the starting time of each gate. In this re-
sult, the two CNOT gates (starting time 4 and 2)

are exchanged, so that the first Hadamard on the
zeroth qubit only needs to start at time step 3.

In the following, we describe our implemen-
tation of the pulse scheduler. The implementa-
tion is similar to Ref. [51, 54]. However, we omit
the hardware-dependent part but allow gates to
have different duration, generalizing it to a pulse
scheduler. We focus on the ASAP scheduling
while for the ALAP mode the circuit is reversed
before it is passed to the algorithm and then re-
versed back after the scheduling.

We first represent the dependency among
quantum gates in a quantum circuit as a directed
acyclic graph. Each gate is represented by a node
and the dependency by arrows. Gate A is con-
sidered dependent on gate B if A has to be exe-
cuted after B. This also means that A needs to
be executed after all the gates that B depends
on. Hence, there is no loop in the graph. Next,
all gates are divided into different cycles (ignor-
ing the gate duration) according to the depen-
dency graph. A priority is then assigned to each
quantum gate, determined by the time required
to execute all the gates that depend on it. The
more time it takes to execute the gates after it,
the higher priority is assigned to this gate. In the
end, from the dependency graph and the priority,
a list-scheduling algorithm is used to determine
the order of the execution and the starting time
of each operation.

Unlike scheduling classical gates, a scheduler
of quantum gates needs to take the commuta-
tion relation into account. For instance, if two
CNOT gates are controlled by the same qubit,
but act on two different target qubits, they can
be exchanged. Exploring this flexibility may re-
duce the total execution time, as shown in the
example above. This is included in the process of
building the dependency graph. All commuting
gates are added to the same cycle when comput-
ing the priority and the one with the highest pri-
ority will be executed first. In general, more ad-
vanced techniques need to be applied to optimize
the commuting gates, for instance as discussed in
Ref. [54]. However, this becomes more compli-
cated when gates have different execution times.
For simplicity, we omit these advanced techniques
in this implementation.

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 12

4.5 Optimal control

Apart from using compilers with predefined gate-
to-pulse maps, one can also use the optimal con-
trol algorithm in QuTiP to find optimized control
pulses. The algorithm can take arbitrary control
Hamiltonians as input and uses quantum control
function optimisation, based on open-loop quan-
tum control theory [55] to find the best pulses.
For a set of given control Hamiltonians Hj , the
optimal control module uses classical algorithms
to optimize the control function cj(t) in Eq. (2).
Parameters of control pulses for realizing indi-
vidual gates, sequences and hence complete cir-
cuits, are generated automatically through multi-
variable optimization targeting maximum fidelity
with the evolution described by the circuit.

The optimal control module in QuTiP supports
both the GRAPE [23, 56] and the CRAB algo-
rithms [57, 58]. The interface to use these al-
gorithms in qutip-qip is implemented via the
OptPulseProcessor class. One first provides the
available control Hamiltonians that characterize
the physical controls on the system, which, e.g.,
can be provided as an instance of the Model class,
such as the SpinChainModel. Upon loading the
quantum circuit, each quantum gate is expanded
to a unitary acting on the full Hilbert space and
passed to the optimal control algorithm as the
desired target. The returned pulses that drive
this are concatenated to complete a full circuit
simulation of the physical control sequences. An
example of optimized pulses is shown in Figure 3d
and the code can be found in appendix A.

4.6 Noise

The noise module allows one to add control and
decoherence noise following the Lindblad descrip-
tion of open quantum systems [Eq. (5)]. Com-
pared to the gate-based simulator (Section 3.1),
this provides a more practical and straightfor-
ward way to describe the noise. In the current
framework, noise can be added at different layers
of the simulation, allowing one to focus on the
dynamics of the dominant noise, while represent-
ing other noise, such as single-qubit relaxation,
as collapse operators for efficiency. Depending on
the problem studied, one can devote the comput-
ing resources to the most relevant type of noise.

Apart from imperfections in the Hamiltonian
model and circuit compilation, the Noise class in

the current framework defines deviations of the
real physical dynamics from the compiled one. It
takes the compiled pulse-level description of the
circuit (see also Section 4.7) and adds noise el-
ements to it, which allows defining noise that is
correlated to the compiled pulses. In the follow-
ing, we detail the three different noise models al-
ready available in the current framework.

Noise in the hardware model. The Hamil-
tonian model defined in the Model class may con-
tain intrinsic imperfections of the system and
hence the compiled ideal pulse does not imple-
ment the ideal unitary gate. Therefore, build-
ing a realistic Hamiltonian model usually already
introduces noise to the simulation. An exam-
ple is the superconducting-qubit processor model
(Section 4.2.3), where the physical qubit is repre-
sented by a multi-level system. Since the second
excitation level is only weakly detuned from the
qubit transition frequency, the population may
leak out of the qubit subspace. Another exam-
ple is an always-on ZZ type cross-talk induced
by interaction with higher levels of the physical
qubits [59], which is also implemented for the su-
perconducting qubit model.

Control noise. The control noise, as the name
suggests, arises from imperfect control of the
quantum system, such as distortion in the pulse
amplitude or frequency drift. The simplest exam-
ple is the random amplitude noise on the control
coefficient cj(t) in Eq. (2).

As a demonstration of control noise, we sim-
ulate classical cross-talk-induced decoherence be-
tween two neighbouring ion trap qubits described
in [60]. We build a two-qubit Processor, where
the second qubit is detuned from the first one by
δ = 1.852 MHz. A sequence of π-pulses with Rabi
frequency of Ω = 20 KHz and random phases are
applied to the first qubit. We define noise such
that the same pulse also applies to the second
qubit. Because of the detuning, this pulse does
not flip the second qubit but subjects it to a dif-
fusive behaviour, so that the average fidelity of
the second qubit with respect to the initial state
decreases. This decreasing fidelity is shown ex-
perimentally in Figure 3a of Ref. [60].

Here, we reproduce these results with our two-
qubit Processor in Figure 4. We start with
an initial state of fidelity 0.975 and simulate the

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 13

0 500 1000 1500

Number of π rotations

0.875

0.900

0.925

0.950

0.975
A

ve
ra

ge
fi

d
el

it
y

Figure 4: An example of simulated classical cross-talk-
induced decoherence between neighbouring qubits in an
ion trap system. The randomized benchmarking proto-
col is adopted from Piltz et al. [60] and the figure re-
produces the measured fidelity decay in figure 3a of that
work. We build a custom Processor and Noise object
to define classical cross-talk noise and perform our simu-
lations. It shows the average fidelity of the qubit when a
sequence of single-qubit π rotations with random phase
is applied to its direct neighbour. The cross-talk is simu-
lated by adding control pulses to the neighbouring qubits
with a strength proportional to that of the target qubit
and detuned by the difference of the qubit transition
frequency. Each point is sampled from 1600 repetitions.
We set the detuning δ = 1.852 MHz, the Rabi frequency
Ω = 20 KHz and the cross-talk ratio λ = 1.

Hamiltonian

H = Ω(t)(σx0 + λσx1) + δσz1 , (12)

where λ is the ratio between the cross-talk pulse’s
amplitudes. The plot in Figure 4 shows a simi-
lar fidelity decay curve as the experimental re-
sult, but includes only the contribution of cross-
talk, while in the experimental result other noise
sources may exist. This kind of simulation pro-
vides a way to identify noise contributions from
different sources. The code is described in detail
in appendix C, as an example of a custom noise
model.

Lindblad noise. The Lindblad noise originates
from the coupling of the quantum system with
the environment (e.g., a thermal bath) and leads
to loss of information. It is simulated by col-
lapse operators and results in non-unitary dy-
namics [34, 35].

The most commonly used type of Lindblad
noise is decoherence, characterized by the coher-
ence time T1 and T2 (dephasing). For the sake
of convenience, one only needs to provide the pa-

rameter t1, t2 to the processor and the corre-
sponding operators will be generated automati-
cally. Both can be either a number that specifies
one coherence time for all qubits or a list of num-
bers, each corresponding to one qubit.

For T1, the operator is defined as a/
√
T1 with

a as the destruction operator. For T2, the opera-
tor is defined as a†a

√
2/T ∗2 , where T ∗2 is the pure

dephasing time given by 1/T ∗2 = 1/T2 − 1/(2T1).
In the case of qubits, i.e., a two-level system, the
destruction operator a is truncated to a two-level
operator and is consistent with Eq. (5). Constant
T1 and T2 can be provided directly when initial-
izing the Processor. Custom collapse operators,
including time-dependent ones, can be defined
through DecoherenceNoise. For instance, the
following code defines a collapse operator using
qutip.sigmam() and increases linearly as time:

tlist = np. linspace (0, 30., 100)
coeff = tlist * 0.01
noise = DecoherenceNoise (

sigmam (), targets =0,
coeff=coeff , tlist=tlist)

proc. add_noise (noise)

Similar to the control noise, the Lindblad noise
can also depend on the control coefficient.

In order to demonstrate the simulation of deco-
herence noise, we build an example that simulates
a Ramsey experiment as a quantum circuit run
on a noisy Processor. The Ramsey experiment
consists of a qubit that is initialized in the ex-
cited state, undergoes a π/2 rotation around the
x axis, idles for a time t, and is finally measured
after another π/2 rotation:

amp = 0.1
f = 0.5
t2 = 10 / f

Define a processor .
proc = LinearSpinChain (

num_qubits =1, sx=amp/2, t2=t2)
ham_idle = 2*pi * sigmaz ()/2 * f
resonant_sx = 2*pi * sigmax () - \

ham_idle / (amp/2)
proc. add_drift (ham_idle , targets =0)
proc. add_control (

resonant_sx , targets =0, label="sx0")

Define a Ramsey experiment .
def ramsey (t, proc):

qc = QubitCircuit (1)
qc. add_gate ("RX", 0, arg_value =pi/2)
qc. add_gate ("IDLE", 0, arg_value =t)
qc. add_gate ("RX", 0, arg_value =pi/2)
proc. load_circuit (qc)

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 14

Ramsey pulse
sx0

t

tπ/2 tπ/2

0 10 20 30

Idling time t [µs]

−0.5

0.0

0.5

R
am

se
y

si
gn

al

Figure 5: The Ramsey pulse and the simulated mea-
surement results. The quantum system is subjected to
a rotation around the z axis and a T2 decoherence. The
Ramsey pulse consists of two π/2 rotations separated by
an idling time t. The expectation value of the measure-
ment for different idling time is recorded. The solid line
represents the measured expectation value. The dashed
line is the fitted exponential decay. Due to the imperfect
preparation of the superposed state, the envelope does
not start from one.

result = proc. run_state (
init_state =basis(2, 0),
e_ops = sigmaz ()

)
return result . expect [0][-1]

In the above block, we use the linear spin chain
processor just for its compiler and do not use any
of its default Hamiltonians. Instead, we define an
always-on drift Hamiltonian σz with frequency
f = 0.5 MHz, an on-resonant σx drive with an
amplitude of 0.1/2 MHz and the coherence time
T2 = 10/f . For different idling time t, we record
the expectation value with respect to the observ-
able σz, which is plotted in Figure 5 as the solid
curve. As expected, the envelope follows an expo-
nential decay characterized by T2 (dashed curve).
Notice that, because π/2-pulses are simulated as
a physical process, the fitted decay does not start
from 1. This demonstrates a way to include state
preparation error into the simulation.

4.7 Pulse

As discussed before, in this simulation frame-
work, we compile the circuit into pulse-level con-
trols cj(t)Hj [Eq. (2)] and simulate the time evo-
lution of the physical qubits. In this subsection,

we describe how the dynamics is represented in-
ternally in the workflow of qutip-qip, which is
useful for understanding the simulation process
as well as defining custom pulse-dependent noise.

A control pulse, together with the noise asso-
ciated with it, is represented by a class instance
of Pulse. When an ideal control is compiled and
returned to the processor, it is saved as an ini-
tialized Pulse object, equivalent to the following
code:

coeff = np.array([1.])
tlist = np.array([0., np.pi])
pulse = Pulse(

sigmax ()/2, targets =0, tlist=tlist ,
coeff=coeff , label="pi -pulse")

This code defines a π-pulse implemented using
the term σx in the Hamiltonian that flips the ze-
roth qubit specified by the argument targets.
The pulse needs to be applied for the duration π
specified by the variable tlist. The parameters
coeff and tlist together describe the control co-
efficient c(t). Together with the provided Hamil-
tonian and target qubits, an instance of Pulse
determines the dynamics of one control term.

With a Pulse initialized with the ideal con-
trol, one can define several types of noise, includ-
ing the Lindblad or control noise as described
in Section 4.6. An example of adding a noisy
Hamiltonian as control noise through the method
add_control_noise is given below:

pulse. add_control_noise (
sigmaz (), targets =[0], tlist=tlist ,
coeff=coeff * 0.05)

The above code snippet adds a Hamiltonian term
σz, which can, for instance, be interpreted as a
frequency drift. Similarly, collapse operators de-
pending on a specific control pulse can be added
by the method Pulse.add_lindblad_noise.

In addition to a constant pulse, the control
pulse and noise can also be provided as continu-
ous functions. In this case, both tlist and coeff
are given as NumPy arrays and a cubic spline is
used to interpolate the continuous pulse coeffi-
cient. This allows using the compiled Cython ver-
sion of the QuTiP solvers that have a much better
performance than using a Python function for the
coefficient. The option is provided as a keyword
argument spline_kind="cubic" when initializ-
ing Pulse. Similarly, the interpolation method
can also be defined for Processor using the same
signature.

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 15

4.8 Adding custom hardware models

As it is impractical to include every physical plat-
form, we provide an interface that allows one to
customize the simulators. In particular, the mod-
ular architecture allows one to conveniently over-
write existing modules for customization.

To define a customized hardware model, the
minimal requirements are a set of available con-
trol Hamiltonians Hj , and a compiler, i.e., the
mapping between native gates and control coef-
ficients cj . One can either modify an existing
subclass or write one from scratch by creating
a subclass of the two parent classes Model and
GateCompiler. Since different subclasses share
the same interface, different models and compil-
ers can also be combined to build new processors.

Moreover, this customization is not limited
to Hamiltonian models and compiler routines.
In principle, measurement can be defined as a
customized quantum gate and the measurement
statistics can be extracted from the obtained den-
sity matrix. A new type of noise can also be
implemented by defining a new Noise subclass,
which takes the compiled ideal Pulse and adds
noisy dynamics on top of it.

An example of building a customized Model
and GateCompiler, with custom types of noise,
is provided in appendix C.

5 Importing and exporting circuits in
QASM format

As pointed out in Section 4.3, it is impractical
to include all the advanced techniques for cir-
cuit optimization and scheduling. To allow inte-
gration with other packages, we support import
and export of circuits in the intermediate Quan-
tum Assembly Language (QASM) format [31].
While there are different intermediate represen-
tations for quantum programs, and more specif-
ically quantum circuits, including cQASM [61],
qutip-qip provides support for OpenQASM.
OpenQASM is an imperative programming lan-
guage that can be used to describe quantum cir-
cuits in a back-end agnostic manner.

QuTiP includes a module to import and ex-
port quantum circuits compatible with the Open-
QASM 2.0 standard [31]. OpenQASM 2.0 al-
lows concise quantum circuit definitions including
useful features like custom unitaries and defining

groups of qubits over which a common gate can
be applied simultaneously. Due to compatibility
with multiple libraries such as Qiskit and Cirq, it
is an easy way to transfer quantum circuits be-
tween these libraries and qutip-qip.

As an example, we use again the 3-qubit
Deutsch-Jozsa circuit (Figure 3a). The follow-
ing block defines the same circuit in the QASM
format:

OPENQASM 2.0;
include " qelib1 .inc";

qreg q[3];
x q[2];
h q;
cx q[0], q[2];
cx q[1], q[2];
h q[0];
h q[1];

It can be saved as a .qasm file (such as
“deutsch-jozsa.qasm” in our example below).

Every QASM file imported to qutip-qip re-
quires the two header statements at the beginning
of the file. The line OPENQASM 2.0 declares that
the file adheres to the OpenQASM 2.0 standard.
The keyword include processes a file that con-
tains definitions of some QASM gates. It is avail-
able in the OpenQASM repository (as a standard
file) and is included with the QASM file exported
by qutip-qip (and also by Qiskit/Cirq). This
circuit can be easily imported into qutip-qip us-
ing the read_qasm method in the following man-
ner:

from qutip_qip .qasm import read_qasm
qc = read_qasm ("deutsch -jozsa.qasm")

Furthermore, using the strmode option for
read_qasm function, we can import the circuit
described in a string object. Once a quantum cir-
cuit is defined, we can also export it to the QASM
format and save it as a file using the save_qasm
method:

from qutip_qip .qasm import save_qasm
save_qasm (qc ,"deutsch -jozsa -qutip.qasm")

The circuit can then be simulated with other
packages. It is also possible to output the cir-
cuit as a string using circuit_to_qasm_str or
print it out using print_qasm.

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 16

6 Conclusion
In this work, we presented a framework for pulse-
level quantum circuit simulation that can be used
to study noisy quantum devices simulated on
classical computers. This framework builds on
existing solvers and the quantum circuit model
offered by QuTiP. We expanded the noise model-
ing capabilities with ad-hoc features for the simu-
lation of controls in noisy quantum circuits, such
as providing the option to inject coherent noise
in pulses.

We provided a few predefined quantum hard-
ware models, compiling and scheduling routines,
as well as noise models, which can be adjusted to
devote limited computing resources to the most
relevant physical dynamics during the study of
noise. We showed the simulation capabilities
by illustrating how results obtained on cross-talk
noise characterization for an ion-trap-based quan-
tum processor can be easily replicated with this
toolbox. Moreover, we provided an example of
the simulation of Lindblad noise for a Ramsey
experiment.

Due to the modular design, the framework in-
troduced here can be integrated with more hard-
ware models, gate decomposition and optimiza-
tion schemes. In particular, the simulation of
processors supporting bosonic models for quan-
tum information processing, including quantum
error correction schemes, is especially suitable
within the current framework. Represented as
customized gates, state preparation and measure-
ment can also be simulated as a noisy physical
process.

Pulse-level simulation could be helpful in quick
verification of experimental results, developing
quantum algorithms, such as variational quan-
tum algorithms [4, 62–64], and testing compiling
and scheduling schemes [53] with realistic noise
models [65]. Through hardware simulation and
noise simulation, quantum error correction code
and quantum mitigation protocols can also be
studied, for example, simulating pulse-level and
digital zero-noise extrapolation [66–68].

Moreover, the noise characterization in model
devices [69] and the impact of non-Markovian
types of noise could be further evaluated [21, 70].
Future development in QuTiP aims at providing
a unified interface to the open system solvers,
which would enable a simpler integration with
qutip-qip. This approach also has a potential

to be integrated with other quantum control soft-
ware such as qupulse [71] and C3 [72]. In par-
ticular, the features here introduced may be a
useful tool to investigate from a novel perspec-
tive many-body dynamical properties of quantum
circuits, such as for measurement-induced phase
transitions [73], chaotic dynamics and informa-
tion scrambling [74].

Planned developments in qutip and
qutip-qip will enable the use of alterna-
tive quantum control optimization algorithms,
that is options other than the GRAPE and
CRAB algorithms that are currently supported.
Most immediately Krotov-type algorithm sup-
port could be added through integration with
qucontrol-krotov [19], which is already closely
aligned with QuTiP. Further opportunities for
development and integration with the main
QuTiP package include the development of an
implementation of the GOAT algorithm [75], in
which qutip’s solvers of various kinds can be
used effectively. This could then also be available
for optimization of circuit controls to simulate
universal gate operations [76, 77].

Another direction of development is the in-
tegration with other software frameworks, in
the ecosystem of quantum open source software,
where considerable duplication exists. Even with
respect to the quantum intermediate represen-
tation of quantum circuits, standards are not
yet solidified. For example, we have connected
qutip-qip with OpenQASM 2.0, thus providing
an access point to any major framework. More
sophisticated features are expected in the upcom-
ing OpenQASM 3.0 standard [32], including clas-
sical computation specifications and the option
for pulse-level definitions for gates. Extending
QuTiP support to OpenQASM 3.0 will be an im-
portant step in cross-package compatibility with
respect to pulse-level quantum circuit simulation
and their integration with real hardware.

The use of qutip-qip for open quantum hard-
ware is an especially intriguing direction of re-
search and development. One could envision
this framework as the backbone for API inter-
connectivity between simulation and hardware
control in research labs with different technolo-
gies [71].

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 17

Acknowledgements
We would like to thank the whole community of
contributors and users of the QuTiP project and
in particular those who developed the quantum
circuit representation in the qutip.qip module
[30] – in particular Anubhav Vardhan, Robert Jo-
hansson, and Paul Nation. We also thank Jake
Lishman, Èric Giguère, Purva Thakre and Si-
mon Cross for work on the QuTiP project. We
thank Andrea Mari, Anton Frisk Kockum, Daniel
Burgarth, Sebastian Grijalva for useful discus-
sions and comments on the manuscript. Part
of this code development has been supported
by NumFOCUS and Google Summer of Code.
F. N. is supported in part by Nippon Telegraph
and Telephone Corporation (NTT) Research, the
Japan Science and Technology Agency (JST)
[via the Quantum Leap Flagship Program (Q-
LEAP), the Moonshot R&D Grant Number JP-
MJMS2061, and the Centers of Research Excel-
lence in Science and Technology (CREST) Grant
No. JPMJCR1676], the Japan Society for the
Promotion of Science (JSPS) [via the Grants-in-
Aid for Scientific Research (KAKENHI) Grant
No. JP20H00134 and the JSPS–RFBR Grant
No. JPJSBP120194828], the Army Research Of-
fice (ARO) (Grant No. W911NF-18-1-0358), the
Asian Office of Aerospace Research and Devel-
opment (AOARD) (via Grant No. FA2386-20-
1-4069), and the Foundational Questions Insti-
tute Fund (FQXi) via Grant No. FQXi-IAF19-06.
N. S. acknowledges partial support from the U.S.
Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, Ac-
celerated Research in Quantum Computing un-
der Award Number de-sc0020266. S. A. acknowl-
edges support from the Knut and Alice Wallen-
berg Foundation through the Wallenberg Centre
for Quantum Technology (WACQT).

Data availability
The code examples present in the main
text and the Appendices are available
at github.com/boxili/qutip-qip-paper. A
version compatible with the latest dis-
tribution of qutip-qip can be found at
github.com/qutip/qutip-qip.

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 18

https://www.github.com/boxili/qutip-qip-paper
https://www.github.com/qutip/qutip-qip

A Simulating the Deutsch-Jozsa algorithm

In this section, we show the code example of simulating the 3-qubit Deutsch-Jozsa algorithm on three
different hardware models: the spin chain model, the superconducting qubits, and the optimal control
model:

from qutip_qip . device import (
OptPulseProcessor , LinearSpinChain , SCQubits , SpinChainModel)

from qutip_qip . circuit import QubitCircuit
from qutip import sigmaz , sigmax , identity , tensor , basis

Deutsch -Josza algorithm
dj_circuit = QubitCircuit (num_qubits)
dj_circuit . add_gate ("X", targets =2)
dj_circuit . add_gate ("SNOT", targets =0)
dj_circuit . add_gate ("SNOT", targets =1)
dj_circuit . add_gate ("SNOT", targets =2)

Oracle function f(x)
dj_circuit . add_gate ("CNOT", controls =0, targets =2)
dj_circuit . add_gate ("CNOT", controls =1, targets =2)

dj_circuit . add_gate ("SNOT", targets =0)
dj_circuit . add_gate ("SNOT", targets =1)

Spin chain model
spinchain_processor = LinearSpinChain (num_qubits =num_qubits , t2=30) # T2 = 30
spinchain_processor . load_circuit (dj_circuit)
initial_state = basis([2, 2, 2], [0, 0, 0]) # 3 qubits in the 000 state
t_record = np. linspace (0, 20 , 300)
result1 = spinchain_processor . run_state (initial_state , tlist= t_record)

Superconducting qubits
scqubits_processor = SCQubits (num_qubits = num_qubits)
scqubits_processor . load_circuit (dj_circuit)
initial_state = basis([3, 3, 3], [0, 0, 0]) # 3-level
result2 = scqubits_processor . run_state (initial_state)

Optimal control model
setting_args = {"SNOT": {" num_tslots ": 6, " evo_time ": 2},

"X": {" num_tslots ": 1, " evo_time ": 0.5},
"CNOT": {" num_tslots ": 12 , " evo_time ": 5}}

opt_processor = OptPulseProcessor (
num_qubits =num_qubits , model= SpinChainModel (3, setup=" linear "))

opt_processor . load_circuit (# Provide parameters for the algorithm
dj_circuit , setting_args = setting_args , merge_gates =False ,
verbose =True , amp_ubound =5, amp_lbound =0)

initial_state = basis([2, 2, 2], [0, 0, 0])
result3 = opt_processor . run_state (initial_state)

In the above code block, we first define the Deutsch-Jozsa algorithm, same as the circuit shown in
Figure 3. We then run the circuit on various hardware models. For the spin model and superconducting
qubits, a Hamiltonian model and a compiler are already predefined and one only needs to load the
circuit and run the simulation. Hardware parameters, such as the T1 and T2 times, qubit frequencies
and coupling strength, can be given as parameters to initialize the processor. For optimal control, we
use the control Hamiltonians of the spin chain model and provide a few parameters for the optimization
routine in QuTiP, such as the maximal pulse amplitude and the number of time slots for each gate. For
details, please refer to the QuTiP documentation (http://qutip.org/docs/latest/index.html).

The generated control pulses are shown in Figure 3 and can be obtained by the method:

processor . plot_pulses ()

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 19

http://qutip.org/docs/latest/index.html

|00 |01 |10 |11

|11

|10

|01

|00

0.50

0.25

0.00

0.25

0.50

(a)

0 5 10 15 20
Time [s]

0.00

0.25

0.50

0.75

1.00

Po
pu

la
tio

n
of

 |0
0

(b)

Figure 6: The Hinton diagram of the final density matrix (Figure 6a) and the population of the |00〉 state during the
circuit execution (Figure 6b) for the first two qubits in the circuit shown in Figure 3. The Hinton diagram is a visual
representation of the complex-valued density matrix. The shade and size of the blocks are determined by the absolute
value of the density matrix element and the color blue (red) denotes whether the real part of the density matrix is
positive (negative). For an ideal Deutsch-Jozsa algorithm with a balanced oracle. The first two qubits should end up
having no overlap with the ground state. This is not exactly the case in the plot because we define a finite T2 time.

Because we are doing a simulation, we have access both to the final states as a density matrix and
the information of the states during the evolution. We demonstrate this in Figure 6. By construction,
the measured result of the first two qubits of a perfect Deutsch-Jozsa algorithm with a balanced oracle
should not overlap with the state |00〉. This agrees with the small population of the state |00〉 in the
Hinton diagram (Figure 6a). The population is not exactly zero because we define a T2 decoherence
noise. In addition, we can also extract information during the circuit execution, e.g., the population
as a function of time (Figure 6b).

B Compiling and simulating a 10-qubit Quantum Fourier Transform (QFT)

In this section, we simulate a 10-qubit Quantum Fourier Transform (QFT) algorithm. The QFT
algorithm is one of the most important quantum algorithms in quantum computing [2]. It is, for
instance, part of the Shor algorithm for integer factorization. The following code defines a 10-qubit
QFT algorithm using CNOT and single qubit rotations and runs the simulation both at the gate level
and at the pulse level.

import numpy as np
from qutip import basis , fidelity
from qutip_qip . device import LinearSpinChain
from qutip_qip . algorithms import qft_gate_sequence

num_qubits = 10
The QFT circuit
qc = qft_gate_sequence (num_qubits , swapping =False , to_cnot =True)
Gate -level simulation
state1 = qc.run(basis([2]*num_qubits , [0]* num_qubits))
Pulse -level simulation
processor = LinearSpinChain (num_qubits)
processor . load_circuit (qc)
state2 = processor . run_state (basis([2]*num_qubits , [0]* num_qubits)). states [-1]

assert (abs(1 - fidelity (state1 , state2)) < 1.e-4)

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 20

σ0
x

σ1
x

σ2
x

σ3
x

σ4
x

σ5
x

σ6
x

σ7
x

σ8
x

σ9
x

σ0
z

σ1
z

σ2
z

σ3
z

σ4
z

σ5
z

σ6
z

σ7
z

σ8
z

σ9
z

g0

g1

g2

g3

g4

g5

g6

g7

t

g8

2 4 6 8 10

Number of qubits

10−2

100

102

S
im

u
la

ti
on

ti
m

e
[s

] Compiler (Processor.load circuit)

Solver (Processor.run state)

Figure 7: Top: Compiled pulses for a 10-qubit QFT circuit using the linear spin chain model (see Figure 3b and
Section 4.2). The colors and notation used are the same as in Figure 3. The blue and orange colours denote
the single-qubit control while the green colour the exchange interactions. Bottom: Simulation time of the QFT
algorithm using the spin chain model as a function of the number of qubits, N = 1, 2, ..., 10, on a commercial CPU
with a single thread. We plot both the compilation time (Processor.load_circuit) and the time used to solve
the dynamics (Processor.run_state).

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 21

We plot the compiled pulses and perform a study of the simulation time in the top and bottom panels
of Figure 7, respectively. The top panel of Figure 7 shows the control pulses σix (blue curves), σiy (orange
curves) and gi (green curves) for the spin chain model processor (Section 4.2), where i = 0, ..., 9 counts
the qubits. The pulses plotted implement the QFT algorithm represented in the native gates of the spin
chain model, with single-qubit gates marked by rotations over the x- and z-axes and the iSWAP gate
implemented through the spin-spin exchange interaction, marked by gi. While the sign for single-qubit
drive denotes the phase of the control pulse, the negative sign in the coupling strengths gi is only a
result of the convention used in the definition of the interaction, defined in Eq. (8).

In the bottom panel of Figure 7, we study the time it takes to simulate the dynamics for the
QFT algorithm on the spin chain processor, from 1 to 10 qubits. We divide the simulation between
compilation and solution of the dynamical equation. The compilation of the algorithm (blue squares
in the bottom panel of Figure 7) includes native-gate gate decomposition, scheduling, and mapping
to control pulses (as shown in the top panel). For 10 qubits, the compilation takes about one second,
whereas the overall simulation time takes about half a minute on a commercial CPU (Intel i7 8700
with Max Turbo Frequency 4.60 GHz) with a single thread. Indeed, the overall simulation time is
dominated by the task of solving the Schrödinger equation: this increases linearly with the circuit
depth and exponentially with the size of the Hilbert space (orange diamonds in the bottom panel
of Figure 7). The proportion of time used for the compilation with respect to the total simulation
time decreases as the number of qubits in the QFT algorithm grows. As expected, we find that the
bottleneck for the simulation of larger processors lies in the solution of the dynamics.

Note that, because of the pulse-level nature of the simulation, the overall simulation time also
depends on the typical frequency characterizing the dynamics. In the above simulation, the maximum
frequency in the Hamiltonian is about 1 MHz while the time scale of the quantum circuit is about 2
ms. No collapse operators are included. The simulation time may increase if decay or high-frequency
coherent noise are included.

C Customizing the physical model and noise
In the following, we show a minimal example of constructing Hamiltonian models and compilers:

import numpy as np
from qutip import sigmax , sigmay , sigmaz , basis , qeye , tensor , Qobj , fock_dm
from qutip_qip . circuit import QubitCircuit , Gate
from qutip_qip . device import ModelProcessor , Model
from qutip_qip . compiler import GateCompiler , Instruction
from qutip import Options
from qutip_qip .noise import Noise

class MyModel (Model):
"""A custom Hamiltonian model with sigmax and sigmay control ."""
def get_control (self , label):

"""
Get an available control Hamiltonian .
For instance , sigmax control on the zeroth qubits is labeled "sx0 ".

Args:
label (str): The label of the Hamiltonian

Returns :
The Hamiltonian and target qubits as a tuple (qutip.Qobj , list).

"""
targets = int(label[2:])
if label[:2] == "sx":

return 2 * np.pi * sigmax () / 2, [targets]
elif label[:2] == "sy":

return 2 * np.pi * sigmay () / 2, [targets]

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 22

else:
raise NotImplementError (" Unknown control .")

class MyCompiler (GateCompiler):
""" Custom compiler for generating pulses from gates using the base class
GateCompiler .

Args:
num_qubits (int): The number of qubits in the processor
params (dict): A dictionary of parameters for gate pulses such as

the pulse amplitude .
"""

def __init__ (self , num_qubits , params):
super (). __init__ (num_qubits , params = params)
self. params = params
self. gate_compiler = {

"ROT": self. rotation_with_phase_compiler ,
"RX": self. single_qubit_gate_compiler ,
"RY": self. single_qubit_gate_compiler ,

}

def generate_pulse (self , gate , tlist , coeff , phase=0.0):
""" Generates the pulses .

Args:
gate (qutip_qip . circuit .Gate): A qutip Gate object .
tlist (array): A list of times for the evolution .
coeff (array): An array of coefficients for the gate pulses
phase (float): The value of the phase for the gate.

Returns :
Instruction (qutip_qip . compiler . instruction . Instruction): An instruction
to implement a gate containing the control pulses .

"""
pulse_info = [

(control label , coeff)
("sx" + str(gate. targets [0]), np.cos(phase) * coeff),
("sy" + str(gate. targets [0]), np.sin(phase) * coeff),

]
return [Instruction (gate , tlist=tlist , pulse_info = pulse_info)]

def single_qubit_gate_compiler (self , gate , args):
""" Compiles single -qubit gates to pulses .

Args:
gate (qutip_qip . circuit .Gate): A qutip Gate object .

Returns :
Instruction (qutip_qip . compiler . instruction . Instruction): An instruction
to implement a gate containing the control pulses .

"""
gate. arg_value is the rotation angle
tlist = np.abs(gate. arg_value) / self. params [" pulse_amplitude "]
coeff = self. params [" pulse_amplitude "] * np.sign(gate. arg_value)
if gate.name == "RX":

return self. generate_pulse (gate , tlist , coeff , phase=0.0)
elif gate.name == "RY":

return self. generate_pulse (gate , tlist , coeff , phase=np.pi / 2)

def rotation_with_phase_compiler (self , gate , args):
""" Compiles gates with a phase term.

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 23

Args:
gate (qutip_qip . circuit .Gate): A qutip Gate object .

Returns :
Instruction (qutip_qip . compiler . instruction . Instruction): An instruction
to implement a gate containing the control pulses .

"""
gate. arg_value is the pulse phase
tlist = self. params [" duration "]
coeff = self. params [" pulse_amplitude "]
return self. generate_pulse (gate , tlist , coeff , phase=gate. arg_value)

Define a circuit and run the simulation
num_qubits = 1

circuit = QubitCircuit (1)
circuit . add_gate ("RX", targets =0, arg_value =np.pi / 2)
circuit . add_gate ("Z", targets =0)

myprocessor = ModelProcessor (model= MyModel (num_qubits))
myprocessor . native_gates = ["RX", "RY"]

mycompiler = MyCompiler (num_qubits , {" pulse_amplitude ": 0.02})

myprocessor . load_circuit (circuit , compiler = mycompiler)
result = myprocessor . run_state (basis(2, 0))

In this example, we first build a Hamiltonian model called MyModel. For simplicity, we only include
two single-qubit control Hamiltonians: σx and σy. We then define the compiling routines for the two
types of rotation gates RX and RY. In addition, we also define a rotation gate with mixed X and Y
quadrature, parameterized by a phase φ, cos(φ)σx + sin(φ)σy. This will be used later in the example
of custom noise.

We then initialize a ModelProcessor with this model. In the ModelProcessor, the default simula-
tion workflow is already defined, such as the load_circuit method. Since rotations around the x and
y axes are the native gates of our hardware, we define them in the attribute native_gates. Providing
this native gates set, rotation around z axis will be automatically decomposed into rotations around x
and y axes. We define a circuit consisting of π/2 rotation followed by a Z gate. The compiled pulses
are shown in Figure 8, where the Z gate is decomposed into rotations around x and y axes.

sx0

t

sy0

Figure 8: The compiled pulse of a π/2 pulse followed by a Z gate for the customized processor defined in appendix C.
The Z gate is decomposed into rotations over the x and y axes.

Next, we show an example of defining customized noise and simulating classical cross-talk:

class ClassicalCrossTalk (Noise):
def __init__ (self , ratio):

self.ratio = ratio

def get_noisy_dynamics (self , dims=None , pulses =None , systematic_noise =None):
""" Adds noise to the control pulses .

Args:

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 24

dims: Dimension of the system , e.g., [2,2,2 ,...] for qubits .
pulses : A list of Pulse objects , representing the compiled pulses .
systematic_noise : A Pulse object with no ideal control , used to represent
pulse - independent noise such as decoherence (not used in this example).

Returns :
pulses : The list of modified pulses according to the noise model.
systematic_noise : A Pulse object (not used in this example).

"""
for i, pulse in enumerate (pulses):

if "sx" not in pulse.label and "sy" not in pulse.label:
continue # filter out other pulses , e.g. drift

target = pulse. targets [0]
if target != 0: # add pulse to the left neighbour

pulses [i]. add_control_noise (
self.ratio * pulse.qobj ,
targets =[target - 1],
coeff=pulse.coeff ,
tlist=pulse.tlist ,

)
if target != len(dims) - 1: # add pulse to the right neighbour

pulses [i]. add_control_noise (
self.ratio * pulse.qobj ,
targets =[target + 1],
coeff=pulse.coeff ,
tlist=pulse.tlist ,

)
return pulses , systematic_noise

def single_crosstalk_simulation (num_gates):
""" A single simulation , with num_gates representing the number of rotations .

Args:
num_gates (int): The number of random gates to add in the simulation .

Returns :
result (qutip. solver . Result): A qutip Result object obtained from any of the

solver methods such as mesolve .
"""
num_qubits = 2 # Qubit -0 is the target qubit. Qubit -1 suffers from crosstalk .
myprocessor = ModelProcessor (model= MyModel (num_qubits))
Add qubit frequency detuning 1. 852MHz for the second qubit.
myprocessor . add_drift (2 * np.pi * (sigmaz () + 1) / 2 * 1.852 , targets =1)
myprocessor . native_gates = None # Remove the native gates
mycompiler = MyCompiler (num_qubits , {" pulse_amplitude ": 0.02 , " duration ": 25})
myprocessor . add_noise (ClassicalCrossTalk (1.0))
Define a randome circuit .
gates_set = [

Gate("ROT", 0, arg_value =0),
Gate("ROT", 0, arg_value =np.pi / 2),
Gate("ROT", 0, arg_value =np.pi),
Gate("ROT", 0, arg_value =np.pi / 2 * 3),

]
circuit = QubitCircuit (num_qubits)
for ind in np. random . randint (0, 4, num_gates):

circuit . add_gate (gates_set [ind])
Simulate the circuit .
myprocessor . load_circuit (circuit , compiler = mycompiler)
init_state = tensor (

[Qobj([[init_fid , 0], [0, 0.025]]), Qobj([[init_fid , 0], [0, 0.025]])]
)
options = Options (nsteps =10000) # increase the maximal allowed steps
e_ops = [tensor ([qeye(2), fock_dm (2)])] # observable

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 25

compute results of the run using a solver of choice with custom options
result = myprocessor . run_state (init_state , solver =" mesolve ",

options =options , e_ops=e_ops)
result = result . expect [0][-1] # measured expectation value at the end
return result

In the code block above, we first define a custom ClassicalCrossTalk noise object that uses the
Noise class as the base. The get_noisy_dynamics method will be called during the simulation to
generate the noisy Hamiltonian model. Here, we define a noise model that adds the same driving Hamil-
tonian to its neighbouring qubits, with a strength proportional to the control pulses strength applied
on it. The detuning of the qubit transition frequency is simulated by adding a σz drift Hamiltonian to
the processor, with a frequency of 1.852 MHz.

Second, we define a random circuit consisting of a sequence of π rotation pulses with random phases.
The driving pulse is a π pulse with a duration of 25µs and Rabi frequency 20 KHz. As described in [60],
this randomized benchmarking protocol allows one to study the classical cross-talk induced decoherence
on the neighbouring qubits. The two qubits are initialized in the |00〉 state with a fidelity of 0.975.
After the circuit, we measure the population of the second qubit. If there is no cross-talk, it will remain
perfectly in the ground state. However, cross-talk induces a diffusive behaviour of the second qubit
and the fidelity decreases. This simulation is repeated 1600 times to obtain the average fidelity, as
shown in Figure 4 in the main text.

References

[1] J. Preskill, Quantum computing in the NISQ
era and beyond, Quantum 2, 79 (2018).

[2] M. A. Nielsen and I. L. Chuang, Quan-
tum Computation and Quantum Informa-
tion (Cambridge University Press, 2000).

[3] I. Buluta, S. Ashhab, and F. Nori, Natural
and artificial atoms for quantum computa-
tion, Rep. Prog. Phys. 74, 104401 (2011).

[4] K. Bharti, A. Cervera-Lierta, T. H. Kyaw,
T. Haug, S. Alperin-Lea, A. Anand, M. De-
groote, H. Heimonen, J. S. Kottmann,
T. Menke, W.-K. Mok, S. Sim, L.-C. Kwek,
and A. Aspuru-Guzik, Noisy intermediate-
scale quantum (NISQ) algorithms, arXiv
preprint (2021), arXiv:2101.08448.

[5] R. S. Smith, M. J. Curtis, and W. J.
Zeng, A Practical Quantum Instruction
Set Architecture, arXiv preprint (2016),
arXiv:1608.03355.

[6] P. J. Karalekas, N. A. Tezak, E. C. Peter-
son, C. A. Ryan, M. P. da Silva, and R. S.
Smith, A quantum-classical cloud platform
optimized for variational hybrid algorithms,
Quantum Sci. Technol. 5, 024003 (2020).

[7] G. Aleksandrowicz, T. Alexander, P. Bark-
outsos, L. Bello, Y. Ben-Haim, D. Bucher,
F. J. Cabrera-Hernández, J. Carballo-
Franquis, A. Chen, C.-F. Chen, J. M. Chow,

et al., Qiskit: An Open-source Framework
for Quantum Computing (2019).

[8] C. Developers, Cirq (2021), See full list of
authors on Github: https://github.com/
quantumlib/Cirq/graphs/contributors.

[9] D. S. Steiger, T. Häner, and M. Troyer, Pro-
jectQ: an open source software framework for
quantum computing, Quantum 2, 49 (2018).

[10] V. Bergholm, J. Izaac, M. Schuld,
C. Gogolin, M. S. Alam, S. Ahmed,
J. M. Arrazola, C. Blank, A. Delgado,
S. Jahangiri, et al., PennyLane: Automatic
differentiation of hybrid quantum-classical
computations, arXiv preprint (2018),
arXiv:1811.04968.

[11] M. Fingerhuth, T. Babej, and P. Wittek,
Open source software in quantum comput-
ing, PLOS ONE 13, e0208561 (2018).

[12] B. Heim, M. Soeken, S. Marshall,
C. Granade, M. Roetteler, A. Geller,
M. Troyer, and K. Svore, Quantum pro-
gramming languages, Nat. Rev. Phys. 2, 709
(2020).

[13] T. Alexander, N. Kanazawa, D. J. Eg-
ger, L. Capelluto, C. J. Wood, A. Javadi-
Abhari, and D. C McKay, Qiskit pulse: Pro-
gramming quantum computers through the
cloud with pulses, Quantum Sci. Technol. 5,
044006 (2020).

[14] H. Ball, M. J. Biercuk, A. R. R. Carvalho,
J. Chen, M. Hush, L. A. D. Castro, L. Li,

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 26

https://doi.org/http://dx.doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1088/0034-4885/74/10/104401
https://arxiv.org/abs/2101.08448
https://arxiv.org/abs/2101.08448
https://arxiv.org/abs/2101.08448
http://arxiv.org/abs/1608.03355
https://arxiv.org/abs/1608.03355
https://doi.org/10.1088/2058-9565/ab7559
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.5182845
https://github.com/quantumlib/Cirq/graphs/contributors
https://github.com/quantumlib/Cirq/graphs/contributors
https://doi.org/https://doi.org/10.22331/q-2018-01-31-49
https://arxiv.org/abs/1811.04968
https://arxiv.org/abs/1811.04968
https://doi.org/10.1371/journal.pone.0208561
https://doi.org/https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.1088/2058-9565/aba404
https://doi.org/10.1088/2058-9565/aba404

P. J. Liebermann, H. J. Slatyer, C. Ed-
munds, V. Frey, C. Hempel, and A. Milne,
Software tools for quantum control: improv-
ing quantum computer performance through
noise and error suppression, Quantum Sci.
Technol. 6, 044011 (2021).

[15] H. Silvério, S. Grijalva, C. Dalyac,
L. Leclerc, P. J. Karalekas, N. Shammah,
M. Beji, L.-P. Henry, and L. Henriet,
Pulser: An open-source package for the
design of pulse sequences in programmable
neutral-atom arrays, arXiv preprint (2021),
arXiv:2104.15044.

[16] J. R. Johansson, P. D. Nation, and F. Nori,
QuTiP: An open-source python framework
for the dynamics of open quantum systems,
Comput. Phys. Commun. 183, 1760 (2012).

[17] J. R. Johansson, P. D. Nation, and F. Nori,
QuTiP 2: A Python framework for the dy-
namics of open quantum systems, Comput.
Phys. Commun. 184, 1234 (2013).

[18] N. Shammah, S. Ahmed, N. Lambert,
S. De Liberato, and F. Nori, Open quan-
tum systems with local and collective inco-
herent processes: Efficient numerical simula-
tions using permutational invariance, Phys.
Rev. A 98, 063815 (2018).

[19] M. H. Goerz, D. Basilewitsch, F. Gago-
Encinas, M. G. Krauss, K. P. Horn, D. M.
Reich, and C. P. Koch, Krotov: A Python
implementation of Krotov’s method for
quantum optimal control, SciPost Phys. 7,
80 (2019).

[20] N. Lambert, S. Ahmed, M. Cirio, and
F. Nori, Modelling the ultra-strongly cou-
pled spin-boson model with unphysical
modes, Nat. Commun. 10, 3721 (2019).

[21] N. Lambert, T. Raheja, S. Ahmed, A. Pitch-
ford, and F. Nori, BoFiN-HEOM: A bosonic
and fermionic numerical hierarchical-
equations-of-motion library with applica-
tions in light-harvesting, quantum control,
and single-molecule electronics, arXiv
preprint (2020), arXiv:2010.10806.

[22] J. D. Teske and H. Bluhm, qopt: An
experiment-oriented qubit simulation and
quantum optimal control package, in IEEE
Int. Conf. Quantum Comput. Eng. (QCE)
(2021) p. 441.

[23] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-
Herbrüggen, and S. J. Glaser, Optimal con-

trol of coupled spin dynamics: Design of
NMR pulse sequences by gradient ascent al-
gorithms, J. Magn. Reson. 172, 296 (2005).

[24] L. B.-V. Horn, sequencing-dev/sequencing:
v1.1.3 (2021).

[25] P. Groszkowski and J. Koch, Scqubits: a
Python package for superconducting qubits,
Quantum 5, 583 (2021).

[26] C. R. Harris, K. J. Millman, S. J. van der
Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg,
N. J. Smith, et al., Array programming with
NumPy, Nature 585, 357 (2020).

[27] P. Virtanen, R. Gommers, T. E. Oliphant,
M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser,
J. Bright, et al., SciPy 1.0: fundamental al-
gorithms for scientific computing in Python,
Nat. Methods 17, 261 (2020).

[28] J. D. Hunter, Matplotlib: A 2D graphics en-
vironment, Comput. Sci. Eng. 9, 90 (2007).

[29] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin,
D. S. Seljebotn, and K. Smith, Cython: The
best of both worlds, Computing in Science
& Engineering 13, 31 (2011).

[30] The full list of qutip-qip contribu-
tors, https://github.com/qutip/qutip-
qip/graphs/contributors.

[31] A. W. Cross, L. S. Bishop, J. A. Smolin,
and J. M. Gambetta, Open Quantum As-
sembly Language, arXiv preprint (2017),
arXiv:1707.03429.

[32] A. W. Cross, A. Javadi-Abhari, T. Alexan-
der, N. de Beaudrap, L. S. Bishop, S. Heidel,
C. A. Ryan, J. Smolin, J. M. Gambetta, and
B. R. Johnson, OpenQASM 3: A broader
and deeper quantum assembly language,
arXiv preprint (2021), arXiv:2104.14722.

[33] T. Nguyen, A. Santana, T. Kharazi,
D. Claudino, H. Finkel, and A. Mc-
Caskey, Extending C++ for Heteroge-
neous Quantum-Classical Computing, arXiv
preprint (2020), arXiv:2010.03935.

[34] H.-P. Breuer and F. Petruccione, The theory
of open quantum systems (Oxford University
Press, 2002).

[35] D. A. Lidar, Lecture Notes on the Theory
of Open Quantum Systems, arXiv preprint
(2019), arXiv:1902.00967.

[36] H. J. Carmichael, Statistical methods in

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 27

https://doi.org/10.1088/2058-9565/abdca6
https://doi.org/10.1088/2058-9565/abdca6
http://arxiv.org/abs/2104.15044
https://arxiv.org/abs/2104.15044
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
http://doi.org/10.1103/PhysRevA.98.063815
http://doi.org/10.1103/PhysRevA.98.063815
https://doi.org/10.21468/SciPostPhys.7.6.080
https://doi.org/10.21468/SciPostPhys.7.6.080
https://doi.org/10.1038/s41467-019-11656-1
http://arxiv.org/abs/2010.10806
http://arxiv.org/abs/2010.10806
https://arxiv.org/abs/2010.10806
https://doi.org/10.1109/QCE52317.2021.00069
https://doi.org/10.1109/QCE52317.2021.00069
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.5281/zenodo.4515635
https://doi.org/10.5281/zenodo.4515635
https://doi.org/10.22331/q-2021-11-17-583
https://doi.org/http://dx.doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/https://doi.org/10.1109/mcse.2010.118
https://doi.org/https://doi.org/10.1109/mcse.2010.118
https://github.com/qutip/qutip-qip/graphs/contributors
https://github.com/qutip/qutip-qip/graphs/contributors
http://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1707.03429
http://arxiv.org/abs/2104.14722
https://arxiv.org/abs/2104.14722
https://arxiv.org/abs/2010.03935
https://arxiv.org/abs/2010.03935
https://arxiv.org/abs/2010.03935
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
http://arxiv.org/abs/1902.00967
http://arxiv.org/abs/1902.00967
https://arxiv.org/abs/1902.00967
https://doi.org/10.1007/978-3-540-71320-3
https://doi.org/10.1007/978-3-540-71320-3

quantum optics 2: Non-classical fields
(Springer Science & Business Media, 2009).

[37] F. Minganti, N. Bartolo, J. Lolli, W. Cas-
teels, and C. Ciuti, Exact results for
Schrödinger cats in driven-dissipative sys-
tems and their feedback control, Sci. Rep.
6, 26987 (2016).

[38] Y. Tanimura and R. Kubo, Time evolu-
tion of a quantum system in contact with
a nearly Gaussian-Markoffian noise bath, J.
Phys. Soc. Jpn. 58, 101 (1989).

[39] D. Loss and D. P. DiVincenzo, Quantum
computation with quantum dots, Phys. Rev.
A 57, 120 (1998).

[40] B. E. Kane, A silicon-based nuclear spin
quantum computer, Nature 393, 133 (1998).

[41] M. H. Devoret and R. J. Schoelkopf, Su-
perconducting circuits for quantum informa-
tion: An outlook, Science 339, 1169 (2013).

[42] P. Krantz, M. Kjaergaard, F. Yan, T. P.
Orlando, S. Gustavsson, and W. D. Oliver,
A quantum engineer’s guide to supercon-
ducting qubits, Appl. Phys. Rev. 6, 021318
(2019).

[43] X. Gu, A. F. Kockum, A. Miranowicz, Y.-
X. Liu, and F. Nori, Microwave photon-
ics with superconducting quantum circuits,
Phys. Rep. 718-719, 1 (2017).

[44] A. F. Kockum and F. Nori, Quantum bits
with Josephson junctions, in Fundamentals
and Frontiers of the Josephson Effect , edited
by F. Tafuri (Springer, 2019) p. 703.

[45] E. Magesan and J. M. Gambetta, Effective
Hamiltonian models of the cross-resonance
gate, Phys. Rev. A 101, 052308 (2020).

[46] C. Rigetti and M. Devoret, Fully microwave-
tunable universal gates in superconducting
qubits with linear couplings and fixed tran-
sition frequencies, Phys. Rev. B 81, 134507
(2010).

[47] D. Maslov, G. Dueck, D. Miller, and C. Ne-
grevergne, Quantum circuit simplification
and level compaction, IEEE Trans. Comput.
Des. Integr. Circuits Syst. 27, 436 (2008).

[48] A. Javadi-Abhari, S. Patil, D. Kudrow,
J. Heckey, A. Lvov, F. T. Chong, and
M. Martonosi, ScaffCC: Scalable compila-
tion and analysis of quantum programs, Par-
allel Comput. 45, 2 (2015).

[49] T. Häner, D. S. Steiger, K. Svore, and
M. Troyer, A software methodology for com-

piling quantum programs, Quantum Sci.
Technol. 3, 020501 (2018).

[50] T. Fösel, M. Y. Niu, F. Marquardt, and
L. Li, Quantum circuit optimization with
deep reinforcement learning, arXiv preprint
(2021), arXiv:2103.07585.

[51] T. S. Metodi, D. D. Thaker, A. W. Cross,
F. T. Chong, and I. L. Chuang, Scheduling
physical operations in a quantum informa-
tion processor, in Quantum Information and
Computation IV , edited by E. J. Donkor,
A. R. Pirich, and H. E. Brandt (2006) p.
62440T.

[52] S. Sargaran and N. Mohammadzadeh,
SAQIP: A Scalable Architecture for Quan-
tum Information Processors, ACM Trans.
Archit. Code Optim. 16 (2019).

[53] P. Murali, J. M. Baker, A. Javadi-
Abhari, F. T. Chong, and M. Martonosi,
Noise-adaptive compiler mappings for noisy
intermediate-scale quantum computers, in
Proc. 24th Int. Conf. Archit. Support Pro-
gram. Lang. Oper. Syst. (ACM, 2019) p.
1015.

[54] G. G. Guerreschi and J. Park, Two-step
approach to scheduling quantum circuits,
Quantum Sci. Technol. 3, 045003 (2018).

[55] D. D’Alessandro, Introduction to Quantum
Control and Dynamics (Chapman & Hal-
l/CRC, 2007).

[56] S. Machnes, U. Sander, S. J. Glaser,
P. de Fouquières, A. Gruslys, S. Schirmer,
and T. Schulte-Herbrüggen, Comparing,
optimizing, and benchmarking quantum-
control algorithms in a unifying program-
ming framework, Phys. Rev. A 84, 022305
(2011).

[57] T. Caneva, T. Calarco, and S. Montangero,
Chopped random-basis quantum optimiza-
tion, Phys. Rev. A 84, 022326 (2011).

[58] P. Doria, T. Calarco, and S. Montangero,
Optimal control technique for many-body
quantum dynamics, Phys. Rev. Lett. 106,
190501 (2011).

[59] P. Mundada, G. Zhang, T. Hazard, and
A. Houck, Suppression of qubit crosstalk in
a tunable coupling superconducting circuit,
Phys. Rev. Appl. 12, 054023 (2019).

[60] C. Piltz, T. Sriarunothai, A. Varón, and
C. Wunderlich, A trapped-ion-based quan-

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 28

https://doi.org/10.1007/978-3-540-71320-3
https://doi.org/10.1038/srep26987
https://doi.org/10.1038/srep26987
https://doi.org/10.1143/jpsj.58.101
https://doi.org/10.1143/jpsj.58.101
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1038/30156
https://doi.org/10.1126/science.1231930
https://doi.org/10.1063/1.5089550
https://doi.org/10.1063/1.5089550
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1007/978-3-030-20726-7_17
https://doi.org/10.1007/978-3-030-20726-7_17
https://link.aps.org/doi/10.1103/PhysRevA.101.052308
https://doi.org/10.1103/PhysRevB.81.134507
https://doi.org/10.1103/PhysRevB.81.134507
https://doi.org/10.1109/tcad.2007.911334
https://doi.org/10.1109/tcad.2007.911334
https://doi.org/10.1016/j.parco.2014.12.001
https://doi.org/10.1016/j.parco.2014.12.001
https://doi.org/10.1088/2058-9565/aaa5cc
https://doi.org/10.1088/2058-9565/aaa5cc
http://arxiv.org/abs/2103.07585
http://arxiv.org/abs/2103.07585
https://arxiv.org/abs/2103.07585
https://doi.org/10.1117/12.666419
https://doi.org/10.1117/12.666419
https://doi.org/10.1145/3311879
https://doi.org/10.1145/3311879
https://doi.org/https://doi.org/10.1145/3297858.3304075
https://doi.org/https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1088/2058-9565/aacf0b
https://doi.org/10.1201/9781584888833
https://doi.org/10.1201/9781584888833
https://doi.org/10.1103/PhysRevA.84.022305
https://doi.org/10.1103/PhysRevA.84.022305
https://doi.org/10.1103/PhysRevA.84.022326
http://doi.org/10.1103/PhysRevLett.106.190501
http://doi.org/10.1103/PhysRevLett.106.190501
https://doi.org/10.1103/physrevapplied.12.054023

tum byte with 10−5 next-neighbour cross-
talk, Nat. Commun. 5, 4679 (2014).

[61] N. Khammassi, G. G. Guerreschi, I. Ashraf,
J. W. Hogaboam, C. G. Almudever, and
K. Bertels, cqasm v1. 0: Towards a common
quantum assembly language, arXiv preprint
(2018), arXiv:1805.09607.

[62] M. Alam, A. Ash-Saki, and S. Ghosh, Accel-
erating quantum approximate optimization
algorithm using machine learning, in 2020
Des. Autom. Test Eur. Conf. Exhib. (DATE)
(2020) p. 686.

[63] T. Haug and M. S. Kim, Optimal train-
ing of variational quantum algorithms with-
out barren plateaus, arXiv preprint (2021),
arXiv:2104.14543.

[64] A. B. Magann, C. Arenz, M. D. Grace, T.-
S. Ho, R. L. Kosut, J. R. McClean, H. A.
Rabitz, and M. Sarovar, From pulses to cir-
cuits and back again: A quantum optimal
control perspective on variational quantum
algorithms, PRX Quantum 2, 010101 (2021).

[65] Erik, L. Saldyt, Rob, tjproct, J. Gross,
sserita, kmrudin, T. L. Scholten, colibri-
coruscans, kevincyoung, msarovar,
coreyostrove, jordanh6, D. Nadlinger,
L. N. Maurer, pyIonControl, and R. Blume-
Kohout, pyGSTio/pyGSTi: Version 0.9.10
(2021).

[66] A. Kandala, K. Temme, A. D. Córcoles,
A. Mezzacapo, J. M. Chow, and J. M. Gam-
betta, Error mitigation extends the compu-
tational reach of a noisy quantum processor,
Nature 567, 491 (2019).

[67] T. Giurgica-Tiron, Y. Hindy, R. LaRose,
A. Mari, and W. J. Zeng, Digital zero noise
extrapolation for quantum error mitigation,
in IEEE Int. Conf. Quantum Comput. Eng.
(QCE) (2020) p. 306.

[68] R. LaRose, A. Mari, S. Kaiser, P. J. Kar-
alekas, A. A. Alves, P. Czarnik, M. E. Man-
douh, M. H. Gordon, Y. Hindy, A. Robert-
son, P. Thakre, N. Shammah, and W. J.
Zeng, Mitiq: A software package for er-
ror mitigation on noisy quantum computers,
arXiv preprint (2021), arXiv:2009.04417.

[69] M. L. Dahlhauser and T. S. Humble, Mod-
eling noisy quantum circuits using experi-
mental characterization, Phys. Rev. A 103,
042603 (2021).

[70] K. Schultz, G. Quiroz, P. Titum, and B. D.

Clader, SchWARMA: A model-based ap-
proach for time-correlated noise in quan-
tum circuits, Phys. Rev. Research 3, 033229
(2021).

[71] S. Humpohl, L. Prediger, pcerf, P. Bethke,
A. Willmes, J. Bergmann, M. Meyer, P. Een-
debak, E. Kammerloher, T. Hangleiter,
qutech-lab, L. Lankes, m-kreutz, bpapa-
jewski, and P. Eendebak, qutech/qupulse:
qupulse 0.6 (2021).

[72] N. Wittler, F. Roy, K. Pack, M. Werning-
haus, A. S. Roy, D. J. Egger, S. Filipp, F. K.
Wilhelm, and S. Machnes, Integrated Tool
Set for Control, Calibration, and Character-
ization of Quantum Devices Applied to Su-
perconducting Qubits, Phys. Rev. Appl. 15,
034080 (2021).

[73] B. Skinner, J. Ruhman, and A. Nahum,
Measurement-induced phase transitions in
the dynamics of entanglement, Phys. Rev.
X 9, 031009 (2019).

[74] M. S. Blok, V. V. Ramasesh, T. Schuster,
K. O’Brien, J. M. Kreikebaum, D. Dahlen,
A. Morvan, B. Yoshida, N. Y. Yao, and
I. Siddiqi, Quantum information scrambling
on a superconducting qutrit processor, Phys.
Rev. X 11, 021010 (2021).

[75] S. Machnes, E. Assémat, D. Tannor, and
F. K. Wilhelm, Tunable, Flexible, and Ef-
ficient Optimization of Control Pulses for
Practical Qubits, Phys. Rev. Lett. 120,
150401 (2018).

[76] D. Dong, C. Chen, B. Qi, I. R. Petersen,
and F. Nori, Robust manipulation of super-
conducting qubits in the presence of fluctu-
ations, Sci. Rep. 5, 7873 (2015).

[77] D. Dong, C. Wu, C. Chen, B. Qi, I. R. Pe-
tersen, and F. Nori, Learning robust pulses
for generating universal quantum gates, Sci.
Rep. 6, 36090 (2016).

Accepted in Quantum 2022-01-11, click title to verify. Published under CC-BY 4.0. 29

https://doi.org/10.1038/ncomms5679
https://arxiv.org/pdf/1805.09607
https://arxiv.org/pdf/1805.09607
https://arxiv.org/abs/1805.09607
https://doi.org/https://doi.org/10.23919/DATE48585.2020.9116348
https://doi.org/https://doi.org/10.23919/DATE48585.2020.9116348
http://arxiv.org/abs/2104.14543
https://arxiv.org/abs/2104.14543
https://doi.org/10.1103/PRXQuantum.2.010101
https://doi.org/10.5281/zenodo.5546759
https://doi.org/10.1038/s41586-019-1040-7
https://doi.org/10.1109/QCE49297.2020.00045
https://doi.org/10.1109/QCE49297.2020.00045
https://arxiv.org/abs/2009.04417
https://arxiv.org/abs/2009.04417
https://doi.org/10.1103/PhysRevA.103.042603
https://doi.org/10.1103/PhysRevA.103.042603
https://doi.org/10.1103/PhysRevResearch.3.033229
https://doi.org/10.1103/PhysRevResearch.3.033229
https://doi.org/10.5281/zenodo.5082282
https://doi.org/10.5281/zenodo.5082282
http://doi.org/10.1103/PhysRevApplied.15.034080
http://doi.org/10.1103/PhysRevApplied.15.034080
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevX.11.021010
https://doi.org/10.1103/PhysRevX.11.021010
https://doi.org/10.1103/PhysRevLett.120.150401
https://doi.org/10.1103/PhysRevLett.120.150401
https://doi.org/10.1038/srep07873
https://doi.org/10.1038/srep36090
https://doi.org/10.1038/srep36090

	1 Introduction
	2 Software information
	3 Quantum circuits and open quantum dynamics
	3.1 Quantum circuits and gate-level simulation
	3.2 Continuous time evolution and pulse-level description
	3.2.1 Unitary time evolution
	3.2.2 Open quantum system dynamics

	4 Pulse-level quantum-circuit simulation framework
	4.1 Processor
	4.2 Model
	4.2.1 Spin Chain model
	4.2.2 Qubit-resonator model
	4.2.3 Superconducting qubit model

	4.3 Compiler
	4.4 Scheduler
	4.5 Optimal control
	4.6 Noise
	4.7 Pulse
	4.8 Adding custom hardware models

	5 Importing and exporting circuits in QASM format
	6 Conclusion
	 Acknowledgements
	 Data availability
	A Simulating the Deutsch-Jozsa algorithm
	B Compiling and simulating a 10-qubit Quantum Fourier Transform (QFT)
	C Customizing the physical model and noise
	 References

