
Thesis for The Degree of Licentiate of Engineering

Deep learning based simulation for automotive
software development

Dhasarathy Parthasarathy

Division of Computing Science
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2022

Deep learning based simulation for automotive software develop-
ment

Dhasarathy Parthasarathy

Copyright ©2022 Dhasarathy Parthasarathy
except where otherwise stated.
All rights reserved.

Department of Computer Science & Engineering
Division of Computing Science
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.

Printed by Chalmers Reproservice,
Gothenburg, Sweden 2022.

ii

,,

iv

,,,,

Abstract

Context – The automotive industry is in the midst of a new reality where soft-
ware is increasingly becoming the primary tool for delivering value to customers.
While this has vastly improved their product offerings, vehicle manufacturers are
increasingly facing the need to continuously develop, test, and deliver function-
ality, while maintaining high levels of quality. One important tool for achieving
this is simulation-based testing where the external operating environment of a
software system is simulated, enabling incremental development with rapid test
feedback. However, the traditional practice of manually specifying simulation
models for complex external environments involves immense engineering ef-
fort, while remaining vulnerable to inevitable assumptions and simplifications.
Exploiting the increased availability of data that captures operational environ-
ments and scenarios from the field, this work takes a deep learning approach
to train models that realistically simulate external environments, significantly
increasing the credibility of simulation-driven software development.

Contributions – First, focusing on simulating the input dependencies of auto-
motive software functions, this work uses techniques of deep generative modeling
to develop a framework for realistic test stimulus generation. Such models are
trained self-supervised using recorded time-series field data and simulate the
input environment much more credibly than manually specified models. With
the credibility of stimulus generation being an important concern, an important
concept of similarity as plausibility is introduced to evaluate the quality of
generation during model training. Second, this work develops new techniques
for sampling generative models that enable the controlled generation of test
stimulus. Allowing testers to limit the range of scenarios considered for testing,
the Metric-based Linear Interpolation (MLERP) sampling algorithm automati-
cally chooses test stimuli that are verifiably similar to a user-supplied reference,
and therefore measurably credible. While controllability eases the design of
tests, credibility increases trust in the testing process. Third, recognizing that
sampling may be an inefficient process for stimulus generation, this work devel-
ops a technique that extracts properties from actual code under test in order to
automatically search for appropriate test stimuli within the specified range of
test scenarios. Fourth, further addressing the question of credible stimulus gen-
eration, this work introduces techniques that examine training data for biases
in sample representation. Overall, by taking a data-driven deep learning ap-
proach, techniques and tools developed in this work vastly expands the credibil-
ity of incremental automotive software development under simulated conditions.

Future work – Work in the future plans to (1) expand the scope from open-
loop stimulus generation to include output dependencies including elements of
feedback in closed-loop software systems, and (2) use trained models, instead of
hand-coded rules, to understand and extract properties from code under test.

Keywords – automotive software testing, generative adversarial networks,
latent space arithmetic, explainable AI, sample selection bias

Acknowledgment

I first thank Carl-Johan Seger, my thesis adviser at Chalmers, without whom
I would not have been able to initiate my doctoral research. Your advice,
perspectives, and support have been valuable for this journey. My next thanks
would be to the wonderful Wallenberg AI, Autonomous Systems and Software
Program (WASP) which, apart from funding my work, is exquisitely going
about its ambitious mission of nurturing talent in critical technologies. I
then thank my WASP collaborators Karl Bäckström and, the closest of all,
Anton Johansson. What I’ve learned from our interactions, Anton, cannot be
measured, even by a sharp mathematician like you.

At the Volvo Group, my professional universe for the last decade, there are too
many people to thank, so any list of names will fall woefully short. Nevertheless,
I make a feeble attempt. In addition to Henrik Lönn, my industrial thesis
adviser and terminology engine, and Cecilia Ekelin, my go-to for any discussion,
I thank the ever-dependable Abhineet Tomar and the latest gang of fellow-
explorers Rasmus, Binay, Robin & co. I then thank my department manager
Dan Walhström and, most importantly, my group manager, and my rock, Daniel
Karlsson. The way you unleash me, Daniel, with all the support and encourage-
ment I could ever need, is an education in management. I reserve special thanks
for my erstwhile manager Ted Kruse for giving true meaning to this quest.
After all, it’s your visionary, yet practical, ‘school’ of research that I hail from.

The greatest amount of gratitude is reserved for my family, the center of my
existence. Thanks Amma, Appa, and Sumaka for making me what I am. Quite
simply, I cannot express how much I owe you guys. Then of course comes
Mamta, my juggernaut. The combined subject of my love and admiration, and
my primary source of inspiration, this work is mainly for you.

vii

List of Publications

Appended publications

This thesis is based on the following publications:

[A] D. Parthasarathy, K. Bäckström, J. Henriksson, S. Einarsdóttir
“Controlled time series generation for automotive software-in-the-loop
testing using GANs”
IEEE International Conference On Artificial Intelligence Testing 2020.

Contributions – Conceived the overall idea, developed the algorithms,
gathered datasets, designed, trained and evaluated the model, conducted
most of the experiments and analysis, and wrote most of the paper.

[B] D. Parthasarathy, A. Johansson
“SilGAN: Generating driving maneuvers for scenario-based software-in-
the-loop testing”
IEEE International Conference On Artificial Intelligence Testing 2021.

Contributions – Conceived the overall idea, developed the algorithms,
gathered datasets, designed, trained and evaluated most of the model,
conducted the experiments and analysis, and wrote most of the paper.

[C] D. Parthasarathy, A. Johansson
“Does the dataset meet your expectations? Explaining sample representa-
tion in image data”
32nd Benelux Conference, BNAIC/Benelearn 2020.

Contributions – Conceived the overall idea, collaborated on developing
the overlap index, gathered datasets, trained and evaluated models,
conducted the experiments and analysis, and wrote most of the paper.

ix

x

Contents

Abstract v

Acknowledgement vii

List of Publications ix

1 Introduction 1

1.1 The vehicle electronics and software system 2

1.2 Signals and functions . 3

1.3 Simulation for continuous engineering 6

1.4 Practical limits for specifying behavior 8

1.5 Learning behavior from signal traces 9

2 Summary of findings 11

2.1 Deep learning – a typical approach 12

2.2 Simulating vehicle behavior - scope and objectives 13

2.3 Simulating vehicle behavior – approach 15

2.3.1 The learning task . 16

2.3.2 Training data . 17

2.3.3 Network definition . 17

2.3.4 Training objectives . 19

2.3.5 Training process . 20

xi

xii CONTENTS

2.3.6 Sampling . 21

2.3.7 Explanation . 22

2.4 Contributions – summary and synthesis 23

2.5 Conclusions . 25

2.6 Future work . 26

3 Paper A 29

3.1 Introduction . 30

3.1.1 Challenges in current practice 30

3.1.2 Contributions . 31

3.1.3 Scope . 31

3.1.4 Structure . 31

3.2 Related work . 32

3.3 Model setup . 32

3.3.1 Choosing the VAE/GAN architecture 33

3.3.2 The data set . 34

3.3.3 Designing the model . 34

3.4 Metric guided training and evaluation 35

3.4.1 Choosing metrics for evaluation 35

3.4.2 Calibrating metrics during training 36

3.4.3 Using metrics to evaluate generator models 38

3.5 Metric guided stimulus generation 38

3.5.1 Metric guided interpolation 39

3.5.2 Metric guided neighborhood search 43

3.6 Similarity as plausibility of synthetic stimuli 44

3.7 Conclusion . 45

3.8 Acknowledgements . 45

CONTENTS xiii

4 Paper B 47

4.1 Introduction . 48

4.2 Test scenarios for control software 49

4.2.1 Maneuver - a multi-dimensional time series of signals . . 50

4.2.2 Template - a 1-D signal-level scenario description 50

4.3 SilGAN - Translating templates to maneuvers 51

4.3.1 Training data . 52

4.3.2 Model design . 52

4.4 Using SilGAN for test stimulus generation 56

4.5 Using SilGAN for test automation 57

4.6 Related work . 61

4.7 Conclusions . 62

4.8 Acknowledgements . 62

5 Paper C 63

5.1 Introduction . 64

5.1.1 Interpretable assessment of sample representation 64

5.1.2 Contributions . 65

5.2 Explaining sample representation using annotations 65

5.2.1 Visualizing sample representation 65

5.2.2 Quantifying sample representation 67

5.3 Explaining sample representation using simulation 68

5.3.1 Step 1 - Detecting outlier annotations 68

5.3.2 Step 2 - Estimating marginal sample representation . . 70

5.3.3 Assessing the explanation 72

5.4 Discussion . 72

5.4.1 Under-representation and outlier detection 72

xiv CONTENTS

5.4.2 The importance of effective simulation 73

5.4.3 Improving estimation of representation 74

5.4.4 Balancing detail in specifying expectations 75

5.4.5 Extension to other domains 75

5.5 Related work . 75

5.5.1 Sample selection bias . 75

5.5.2 Understanding sample representation 76

5.5.3 Bias estimation using simulation 76

5.5.4 Shapley-based outlier detection 76

5.6 Conclusions . 77

Bibliography 79

Chapter 1

Introduction

What drives the commercial vehicle? Over two centuries of its existence, ad-
vances in the vehicle have arguably been driven mainly by improvements in
its structural composition and its fundamental dynamics. In just the last few
decades, however, the automotive engineering landscape has changed dramati-
cally. Not only is the internal combustion engine, long considered the soul of the
vehicle, beginning to lose its primacy among propulsion technologies, the grow-
ing use of automatic control has vastly expanded the capabilities of a vehicle.
The modern truck, bus, and construction equipment is safer, multi-functional,
digitalized, connected, (relatively more) energy efficient, and is a critical part
of complex industrial systems. At a time when even the technology for au-
tomating the driver/operator lies within grasp, it is safe to say that the modern
commercial vehicle is being increasingly driven by electronics and software [1].

An increase in the use of software no doubt improves the efficiency of delivering
solutions as well as the adaptability of vehicles during field operation. Nonethe-
less, vehicle manufacturers remain in a constant race to meet rapidly evolving
market demands, especially when they field a large product portfolio, targeting a
wide range of applications. Under these circumstances, automotive software en-
gineering proves to be especially challenging. Not only does the software system
need to balance a wide set of applications, but it must also reliably operate under
a variety of scenarios. For instance, the climate management system of a truck
needs to be equally reliable no matter if it operates in a pit-mine in northern
Europe or on a highway in north Africa. The same applies to a battery manage-
ment system deployed either in a wheel loader in South America or on a bus in
South Asia. The effort that vehicle manufacturers undertake to anticipate possi-
ble usage scenarios and consequently design, develop, and test software-intensive
solutions, all under the shadow of constant market pressure, is immense.

One recent development, which is rapidly improving operational awareness
is, of course, data. Information, in considerable detail and volume, about
the environment and the scenarios under which a vehicle and its constituent
systems actually operate, is becoming readily available. This, combined with

1

2 CHAPTER 1. INTRODUCTION

parallel advances in machine learning techniques means that it is now possible
to learn complex phenomena represented in the data. Such unprecedented
operational insights in turn have the potential to significantly improve the
process of automotive software engineering, and particularly software testing.
Taking first steps in investigating this potential is the fundamental contribution
of this work and, in elucidating its findings, we begin with an overview of the
automotive electronic system and how it models vehicle state and behavior.

1.1 The vehicle electronics and software system

Most functions in modern vehicles are electronically controlled and the overall
control system that governs this process is referred to as the automotive Elec-
trical/Electronics (E/E) system [2]. The E/E system is normally realized as
a distributed control system where a set of Electronic Control Units (ECUs)
administer, monitor, and control different domains of vehicle functionality.
Typical functionality domains include [3] (1) chassis, which controls aspects
such as brake and steering, (2) powertrain, which controls the engine or electric
propulsion motors, (3) body electronics, which controls functions like door locks,
windows, ventilation, etc. and (4) driver assistance, which controls assistance
functions like lane keeping and safety functions like emergency braking. These
control-centric domains are normally complemented by the information-centric
domains of (1) connectivity, which handles telematics functions and (2) info-
tainment that handles information display and entertainment functions. ECUs,
controlling various aspects of different domains, are linked together using dif-
ferent networking technologies, the most significant of which are Controller
Area Network (CAN) and Ethernet. The overall layout or topology of ECUs
can take different forms depending upon the chosen E/E architecture [4]. For
instance, the topology of a domain centralized E/E system could look like
Figure 1.1 with one main ECU per domain.

While the E/E system may have traditionally been dominated by its electric
and electronic components, the focus is rapidly shifting towards software. With
a majority of new functionality being introduced through software [5], the
automotive industry has been parallelly evolving a software-centric view of the
E/E system. The software perspective considers ECUs mainly as execution
platforms on which Software Components (SWCs) are deployed. A SWC
implements one part of a larger control process and collaborates with other
SWCs by exchanging signals. The example in Figure 1.2 illustrates a possible
control process. A BrakePedalSensor SWC samples the brake pedal to signal
brake pedal position to the BrakeBlending SWC. Using an algorithm to dis-
tribute the driver’s brake request among different retarders, the BrakeBlending
SWC calculates right front pressure and left front pressure, and sig-
nals them to a FrontAxleBrakeActuator SWC. Physically, SWCs involved in
a functional flow may be allocated to different ECUs, in which case, signals are
transported through the links which network them. Such a pattern of imple-
mentation reflects the basic principles of the AUTOSAR [6] industry standard.

1.2. SIGNALS AND FUNCTIONS 3

Figure 1.1: Example of an automotive E/E system from a hardware perspective

1.2 Signals and functions

As units that channel all transactions between SWCs, signals form the con-
nective tissue of automotive software systems. Since a signal is an element of
significance, both in this work and in general automotive software engineering,
it helps to state the following definition.

Definition 1 A signal (s, x),x ∈ R is the observed, instantaneous snapshot
of one aspect of vehicle state s ∈ S, with a set of possible states S. The term
refers to both the unit of information and the means of its transaction between
software components.

A signal is therefore a key-value pair of a state label and value, observed at
a given time. For example, brake pedal position : 20% at 07 : 42 : 17 UTC

Figure 1.2: Example of an automotive function from a software perspective

4 CHAPTER 1. INTRODUCTION

could be a signal. It captures the instantaneous state of the brake pedal, pre-
sumably by observing the output port of the BrakePedalSensor SWC. Often,
especially if the name of a signal is understood or unnecessary, a signal is simply
represented by its value x. Upon observing Figure 1.2, one can readily note
that a SWC is simply a unit that transforms one set of signals into another,
and useful vehicle functionality is realized by simply chaining a set of them
together. Such is the predominance of this functional paradigm in automotive
system design, that it helps to define the vehicle function.

Definition 2 A vehicle function ȳ = v(x̄) maps a vector of input signals x̄
into a vector of output signals ȳ, consequently manipulating vehicle state. It
can also be a process that is realized as a composition of a set of individual
vehicle functions.

In fact, SWC is simply AUTOSAR terminology for a function that is pro-
grammed as code, usually in C. Thus, while signals embody vehicle state in the
E/E system, functions actively manipulate state. A high-end commercial vehi-
cle has hundreds of functions, which tend to fall under a handful of categories.
Based upon the nature of operation, vehicle functions can be categorized into
(1) Control functions, which regulate some entity or phenomenon, and (2) Mon-
itoring functions, which observe an entity or phenomenon and report. Based
upon their means of operation, control functions can be further categorized into
(1) Closed loop, if there is active regulation with feedback, and (2) Open loop,
if there is only passive regulation without feedback. At times, vehicle functions
may be aided by support functions like diagnostics or logging, both of which
take signals as input but produce diagnostic codes and trace logs respectively.

Figure 1.3: A vehicle function and its dependencies. Functions v−n and vn
refer to upstream and downstream dependencies respectively

Let us now consider a typical vehicle function and its input and output de-
pendencies (Figure 1.3). One part of its input consists of signals routed from

1.2. SIGNALS AND FUNCTIONS 5

Figure 1.4: A trace of 3 signals capturing brake blending behavior

necessary upstream functions, while another part consists of sensors used to
monitor some local phenomenon. Note that analog sensors are sampled (per-
haps by a helper function) before they are included to the set of input signals.
Upon assembling its input signals x̄, the function manipulates it to produce
a set of output signals ȳ, some of which may be information intended for
downstream functions, while others may control an actuator. As noted earlier,
closed loop control functions include an element of feedback, where additional
sensors are used to measure the consequences of a control action. Such feedback
can of course be included spatially into a set of input signals, but they expose
the need for the temporal dimension in describing a function.

A vehicle function may map one signal vector into another, but this mapping
is not instantaneous. Apart from finite delays introduced by transients in
mechatronic elements, along with sampling and scheduled execution of software
elements, a function may simply be designed to act only at some future time.
For instance, it may adopt a control or monitoring strategy that involves
assessing a relatively long-term history of its input stream. To better describe
the interaction between signals and functions, it is helpful to define the notion
of a signal trace.

Definition 3 A signal trace XN
T ∈ RN×T represents the transition of N signals

over a duration of T time steps, where N,T ∈ Z+.

A signal trace that includes the input and output signals of a function represents
one instance of its observable behavior, including elements of feedback, during
a certain time window. For instance, the trace in Figure 1.4 captures one
observation of brake blending behavior. It shows how, upon pressing the brake
pedal, a brake blending algorithm distributes the braking torque between the
engine retarder and pneumatic service brakes.

6 CHAPTER 1. INTRODUCTION

1.3 Simulation for continuous engineering

Prior to being deployed in the vehicle, the function v in Figure 1.3 goes through
an elaborate engineering process. Text-book vehicle function engineering follows
a sequential process involving the following broad phases (1) Requirements,
where the intended behavior of the function is specified, (2) Design, where the
key elements of a solution that achieves the intended behavior are envisioned,
(3) Implementation, where the design is realized as software and hardware,
(4) Verification, which checks whether implemented behavior meets intended
behavior, and (5) Integration, where the function is deployed in its intended
environment. Such a sequential process is seldom followed strictly since it is
often impractical, for instance, either to implement only after the complete
design is available, or to begin verifying only after the complete implementation
is available. Especially, with vehicle manufacturers facing increasing pressure
to rapidly deliver quality functionality, it has become even more important to
loop through the phases quickly.

Automotive software development is increasingly trending towards incremental
development, combined with continuous verification and integration [7]. Under
such a continuous development model, one key requirement is to be able to iso-
late the function and its dependencies, so that it can be developed and tested in
a fairly controllable manner to ensure repeatability and ease debugging. Such a
sandbox or rig can be setup in multiple ways, mainly by manipulating the inte-
gration levels of its constituent components. A component can be considered to
be highly integrated if it is in a form that is closest to its final rendering. Setting
up a rig involves choosing integration levels along two dimensions (Figure 1.5) -
(1) vertical, which pertains to functions and their execution environment, and (2)
horizontal, which pertains to their input and output dependencies. This means
that achieving the highest level of integration along both dimensions is only pos-
sible by using a real vehicle, with real software and hardware, and by operating
it on a live mission. While this may be the ultimate ‘rig’ for software develop-
ment, its time and cost-intensive nature means that incremental development
and continuous integration is only possible at a very low cadence. Faster loops
through the engineering process requires rig options where every driven mile is
not a real mile and every millisecond of software execution is far less than a real
millisecond. It also needs capabilities for systematically applying test scenarios,
including rare or dangerous conditions. To achieve this, we turn to simulation.

When it comes to integrating a function into a rig, there are three recognized
levels [8], arranged lowest to highest (i) Model-in-the-loop (MIL), where a
behavioral model of the function is used, (ii) Software-in-the-loop (SIL), where
the programmed version (i.e. AUTOSAR SWCs) of the function is used, and
(iii) Hardware-in-the-loop, which uses the compiled version of the program
deployed on the target ECU. During incremental development, feature content
or maturity can be arbitrary in all these levels, and it is the form alone that
decides the integration level. Integrating at lower levels, i.e. MIL and SIL, is
also referred to as virtual integration [9], since in these cases the behavior and
the execution environment are respectively simulated. A SIL rig, for instance,
can provide an environment for running control software directly on a developer

1.3. SIMULATION FOR CONTINUOUS ENGINEERING 7

Figure 1.5: Function development rigs and their levels of integration

machine. It can do this by replacing the embedded microcontroller with a server-
grade processor, and by porting necessary elements of the AUTOSAR Operating
System (OS) to, say, Windows. By thus simulating embedded OS and hardware,
it is possible to integrate the SWCs of a function with all dependent SWCs
purely at a software level. An immediate benefit of such virtual integration is
that software development is relatively independent of hardware development,
which usually proceeds at a slower cadence. A bigger advantage is that SWCs
in the simulated environment can be executed at a faster rate than the real
execution, enabling quicker verification of a wide range of scenarios.

Horizontal integration refers to the scope of dependencies included in the rig.
In elucidating horizontal scope, it is necessary to map the range of physical phe-
nomena with which a vehicle function interacts. The software implementation
of the vehicle function (the SWCs) resides and executes in an embedded envi-
ronment. Such an electronic realm can be thought as extending up to silicon or
circuit-board levels. Residing in this electronic bubble, the function reaches out
through the electrical realm of wire harnesses to connect, in one part, with other
SWCs residing in their own bubbles. In another part, they reach out to sensors
and actuators, in which case the electrical realm extends up to the sensing or
actuating element. Beyond this boundary lies the physical realm, comprising
the phenomena that the function seeks to interact with. Part of this physical
realm, like the pistons of the engine or the air bellows of the suspension, lies
within the purview of the vehicle system. The other part, like the road surface
and maybe even the driver, lie outside. While scoping is often fluid in practice,
there are four broad levels of horizontal integration, (1) devices, where the
scope extends only to the electrical realm, (2) plant, where the scope extends to
include in-vehicle physics, and (3) environment where scope extends to include
physical dependencies external to the vehicle system, and (4) driver/operator
where the scope also includes human interactions with the vehicle system.

For function development at high cadence, there is a clear necessity for sim-
ulating dependencies even in the horizontal dimension. Horizontally, the direst

8 CHAPTER 1. INTRODUCTION

needs for virtual integration comes from the need to simulate environments in
the physical realm. For instance, the development of brake blending depends not
just upon the state of the brake ECU, but also (among others) upon that of the
pneumatic circuit. Unlike simulating the embedded execution environment, the
multi-physics character of dependencies like brake pneumatics or the road sur-
face presents unique challenges for simulation. The traditional approach to sim-
ulating such multi-physics dependencies is to model their behavior using a suit-
ably capable formalism or framework, with Simulink [10] or Modelica [11] being
common examples. When the horizontal scope is wide, manually specifying sim-
ulation models for a wide range of phenomena becomes a formidable challenge.

1.4 Practical limits for specifying behavior

The scope of horizontal integration, especially the level to which it extends
beyond the electrical realm, is only one factor that decides the complexity of
simulation. An equally important factor would be fidelity, which is the level
of detail with which the model faithfully represents the simulated phenomena.
Consider a rig for the brake blending function, where the mass of a truck is
simulated. When the model includes ego vehicle mass and that of the goods
that it hauls (which can range from liquid nitrogen to timber), it is of wide
scope. However, if it models all inertia as a point mass, it is of low fidelity, and
is only a naive representation of reality. Such a model does allow the brake
blending function to be developed at high cadence, but may not be able to cred-
ibly evaluate properties like braking distance. On the other hand, if the model
accurately captures the spatial mass distribution of important constituent parts,
it is of higher fidelity and much more realistic. Such realistic simulation in-
creases the credibility of evaluating properties, meaning that the brake blending
function can be matured to relatively high levels at high cadence using this
setup. Highly credible virtual rigs in turn helps vehicle manufacturers increase
the amount of rig-based development and reduce the amount of field-testing,
helping them meet evolving market demands without compromising quality.

The price to pay in setting up a credible virtual rig is, of course, the engineering
effort spent in developing credible simulation models. Manual high-fidelity
modeling requires expertise in multiple domains of physics and requires sig-
nificant time and effort to develop and verify, all of which amounts to high
engineering costs. More importantly, no matter how high the fidelity, manual
modeling will inevitably make assumptions. Factors like wear in the suspension,
lubrication in the engine, and braking patterns of drivers on country roads, are
challenging to realistically model as equations. Put otherwise (Figure 1.6), as
one seeks to increase scope and fidelity to lend more credibility to simulation,
there is a limit beyond which it becomes practically difficult to manually specify
a simulation model. Beyond this limit, it may be cheaper and more effective to
use a data-driven approach and train a simulation model.

This work focuses solely on simulating the behavior elements in the horizontal
dimension namely, devices, plant and the environment. It does not consider

1.5. LEARNING BEHAVIOR FROM SIGNAL TRACES 9

Figure 1.6: When high scope and fidelity are required, learning a simulation
model may be easier than manually specifying it

simulating vertical dependencies like the execution environment. We make this
explicit using the following definition.

Definition 4 A simulation model (in this work) refers to a manually defined
executable specification, describing the behavior of input and/or output depen-
dencies of a vehicle function. Such a model virtually integrates with the function
by aligning with corresponding signals in its I/O interface.

1.5 Learning behavior from signal traces

Let us consider, once again, a vehicle function and its dependencies, but in
a slightly different form. Figure 1.7 now represents a system of M vehicle
functions, collectively processing a superset vector of input signals x̄, producing
a superset vector of outputs ȳ. Such a setup is typical for functions belonging
to one functionality domain. The collective input and output dependencies
of the system are represented by the functions g and h respectively with the
overall I/O interface of the system represented by w̄ and z̄. Feedback, if any,
is routed back from the output dependencies and included in x̄.

Owing primarily to the time-critical nature of several vehicle functions, most
of them are executed periodically at a fixed rate of, say, 10Hz. This, in turn,
means that the flow of signals between various parts of the system is also
periodic. Under such conditions, it is possible to tap into the signal traffic
to capture N signals in this system as a trace over a duration of T steps.
Moreover, a modern vehicle has a rich array of sensors which can be consciously

10 CHAPTER 1. INTRODUCTION

Figure 1.7: A system of vehicle functions

routed into the signal traffic. Expanding the trace to include such sensor data
ensures that signals are recorded with sufficiently detailed context. Such a trace
provides remarkably detailed information about the operational behavior of
this system, and has become the de facto structure for vehicle operation data.

Ignoring feedback for the moment, let us then denote W and X as traces of
signal vectors w̄ and x̄ recorded over T time steps. These respectively represent
the inputs that g receives from sensors or upstream vehicle functions, and the
output it produces, which is applied as stimuli for functions vn. One mapping
from W to X can then be seen as one sample from the conditional probability
distribution X ∼ G(X|W), where G is the distribution of all possible mappings,
i.e., the behavior. In cases where the scope and fidelity are manageable, we
noted earlier that it may be possible to specify this behavior with reasonable
accuracy. On the other hand, given a sufficiently large variety of detailed traces
W and X, a machine learning approach can be used to train a model which
approximates the true behavior G, even when scope and fidelity are high. The
following chapter summarizes our work in using recorded signal traces to train
deep generative models which approximate the behavior of complex vehicular
systems and thereby provide realistic test stimulus for the vehicle functions in
the system. Generative models, so trained, effectively simulate complex depen-
dencies of vehicle functions without any need for manual specification of be-
havior. Techniques developed in this work significantly improves the credibility
of simulating vehicle function dependencies, which, in turn, allows automotive
software development at increased cadence, without compromising quality.

Chapter 2

Summary of findings

The artificial intelligence renaissance in the 2010s is attributable to three main
factors – our increasingly digitalized and networked existence which produces
enormous amounts of data, the reducing cost and increasing power of computing
platforms like the Graphical Processing Unit (GPU), and the development of a
class of learning algorithms, termed deep learning. Deep learning is a machine
learning technique which, at its foundation, composes an elaborate hierarchy of
simple concepts to learn a complex concept [12]. Like any other machine learn-
ing technique, such learning takes place by understanding patterns that manifest
in data, with the active guidance of a set of training objectives. Computation-
ally, this hierarchy of concepts is usually realized using Deep Neural Networks
(DNNs), which is a stacked composition of simple non-linear functions, each of
which transforms its inputs into a form that is more refined to help solve the task
at hand. A famous early application of this seemingly simple formula was the
AlexNet [13] image classification model, which dramatically outperformed com-
peting approaches to win the 2012 edition of the ImageNet [14] challenge. In pre-
dicting the labels of images with unprecedented (at the time) accuracy, it accom-
plished a feat that no other hand-coded symbolic algorithm, or even any other
machine learning approach, had managed. AlexNet proved to be an early demon-
stration of the many hallmarks of deep learning – a large training set, the use of
efficient yet powerful computations like convolution coupled with rectifying non-
linearities, parallel training on multiple GPUs, and – perhaps more importantly
– an uncanny tendency to improve benchmarks with little regard to the nature
of the problem. Through the decade that followed, the increasing availability
of data along with improvements in DNN architectures, training methods, com-
putational platforms, and several other factors, has resulted in deep learning
techniques achieving successes across applications as varied as natural language
processing and drug design. In yet another extension to a new domain, this work
takes a deep learning approach to simulate vehicle behavior. Before describing
techniques used to train such behavior, we begin with a few preliminaries.

11

12 CHAPTER 2. SUMMARY OF FINDINGS

2.1 Deep learning – a typical approach

Primary elements of a deep learning approach include - (1) a learning task, (2) a
dataset that provides enough examples, and (3) a training objective that guides
and evaluates the learning process. If we consider the archetypal classification
problem, then the learning task would be to predict the label or the category
y to which an input vector x belongs. For instance, the input x could be an
image of a cat or a dog and y ∈ {0, 1} would be a tag that identifies it as one or
the other. Examples are provided as a dataset of K images D = {(xi, yi)}Ki=1.
Next comes another critical element of the recipe – a DNN f , which is the
object of training. A DNN is an L-layer stack of differentiable1 non-linear
operations, the most traditional form of which is found below.

f l(x) = σ(Wlf
l−1(x) + bl), l > 1, f1(x) = x

ŷ =
ez∑2
c=1 e

zc
, z = f(x), f = ◦Ll=1f

l (2.1)

Here, the fundamental operation of f is an affine map followed by some non-
linearity σ. The set of weights Wl and biases bl collectively form the model’s
parameters Θ = {(Wl, bl)}Ll=1. With a 2-class classification objective, the final
layer fL is designed to output a 2-dimensional vector z. The final layer output
is then squashed into a probability distribution using the softmax function to
give the vector ŷ, which is the model’s prediction of the input x belonging to
cat and dog categories. The DNN f is thus able to model the classification
task end-to-end. At the start of the training process, model parameters Θ are
randomly initialized, with the model giving random predictions. The objective
of training is to find parameters Θ∗ with which the model performs the clas-
sification task at an acceptable level of accuracy on a held-out validation set.
Holding out a validation set from the larger dataset D, and using it to test the
model is a technique which ensures that model performance generalizes beyond
simply the training set. A key element, the next one in the deep learning recipe,
is the training objective or loss function, that guides the training process. This
differentiable function L captures the discrepancy between the prediction ŷ and
the ground truth y and evaluates to 0 when they are identical. For classification,
it is common to use the categorical cross entropy loss shown below.

Θ∗ = min
Θ

∑
{(xi,yi)}⊂D

L(ŷi, yi; Θ), L = −
2∑
c=1

yci log(ŷi
c) (2.2)

With differentiable f and L, it becomes possible to use a gradient-descent
search for Θ∗ (where L → 0), the essence of which is shown below.

θ = θ − α∂L
∂θ
| ∀ θ ∈ Θ (2.3)

Using a learning rate α and the technique of back propagation for distributing
the loss gradient to parameters across all layers of f , the stochastic gradient

1In the context of a DNN, we mean differentiable almost everywhere

2.2. SIMULATING VEHICLE BEHAVIOR - SCOPE AND OBJECTIVES 13

descent process traverses the Θ-space, moving closer to the target by progres-
sively minimizing L on batches of training data. Throughout the process, the
classification performance is parallelly assessed on the validation set. When
this reaches an acceptable level, training terminates, whereupon the network f
has learned to accomplish the task of labeling. While this example illustrates
a recipe for deep learning using a simple example, learning the behavior of
vehicle systems differs in several aspects. Forthcoming sections identify these
distinctions and detail how the recipe is customized for the new task.

2.2 Simulating vehicle behavior - scope and ob-
jectives

Section 1.5 introduced the overall idea of a system of vehicle functions and
the idea of simulating its dependencies by learning their behavior using signal
traces. In this work, however, we consider a slightly narrower scope. First, we
prioritize the simulation of input dependencies alone and set aside those at the
output. Further, we prioritize simulating the open-loop input signals of the
functions and set aside elements of feedback. With this scope, the system of
vehicle functions takes the form shown below.

Figure 2.1: System of vehicle functions considered in this work

The new scope is still quite broad and includes all monitoring and open-loop
control functions. The scope can also include close-loop control functions, if the
rig includes alternative means for simulating output dependencies and feedback.
Having scoped the problem, we define the first objective of this work.

Objective 1 Generate open-loop stimuli as traces that plausibly approximate
real input signal traffic, which a given set of functions is likely to encounter
during actual field operation.

14 CHAPTER 2. SUMMARY OF FINDINGS

Thus, the primary objective is not simply to train a model that learns the
behavior of the input dependency. It is also put to use for generating plausible
instances of input behavior to credibly test the system of functions. Considering
the fact that a vast proportion of stimuli is manually specified in practical
rig-based testing, this objective addresses an urgent gap in state-of-practice
virtual integration.

Manual specification at the input takes two main forms. One form, as noted
earlier, are behavioral specifications of the input dependency. An example would
be a simulation model that specifies the fluid dynamics of exhaust gases, which
is virtually integrated and executed to create test stimulus for after-treatment
control. Another form, commonly seen in rig-testing, would be using hand-
crafted traces test stimuli. For instance, in order to test a function that evaluates
fuel-efficient driving, one can specify traces of acceleration, brake pedal, and
other related signals to simulate the driver. Under high scope and fidelity
needs, either form of specification is less likely to be credible. However, such
specification does have an important advantage – manually designed or specified
test stimuli makes it easier to specify a test oracle. The systematic coverage of
a known set of scenarios makes it easy to understand test feedback and eases
debugging. Thus, while we turn to trained models that credibly approximate
real behavior with high fidelity and scope for test stimulus generation, we still
require means to be able to manually control the generation process so that
it takes place systematically. This leads to our next objective, stated below.

Objective 2 The generation of open-loop stimuli must be controllable so that a
given set of functions can be systematically subjected to realistic input scenarios.

To meet this objective, we add condition c in the setup to help control the
generation. When developing functions in a rig, the two most important needs
are credibility and controllability. It is clear that the stated objectives assign
primacy to exactly these needs.

A slight modification in the setup is that, as seen in Figure 2.1, the I/O interface
of the input dependency g is combined into a single trace. Modeling g simply
as a generator instead of a map usually affects neither behavior modeling nor
test stimulus generation. Consider the trace in Figure 2.2 which depicts one
behavioral instance of the driveline in terms of three signals – selected gear,
engine speed, and vehicle speed. One way to model the driveline would be to
consider the engine speed and the gear as input signals, and the vehicle speed
as the output signal. Combining them into a single trace, however, keeps this
causality and, more importantly, the overall driveline behavior they represent
intact and learnable. Also, when such a trace is produced as a test stimulus,
the presence of redundant signals clearly does no harm. On the other hand, if
there is a specific need to be able to map from one set of signals to another
one can, as we show later, treat input signals as a condition c.

Yet another important aspect of system scope would be the influence of ob-
servability in learning behavior. The trace XN

T in Figure 2.2, combining N = 3
signals represents one instance of driveline behavior captured over T = 512

2.3. SIMULATING VEHICLE BEHAVIOR – APPROACH 15

Figure 2.2: A trace of 3 signals capturing driveline behavior

time steps, with factors N and T representing important elements of spatial
and temporal observability. While it is clear that there are many more aspects
of state, like engine torque, retardation, or road inclination, that combine to
represent driveline behavior, there are always practical limits in observing them.
Perhaps the hardest limit comes from the fact that signals are observable only
at the I/O interface of SWCs, and revealing a signal incurs a finite cost. Even
if some state is exposed as a signal, including it into a recording campaign and
sampling it at a certain rate incurs additional cost. Moreover, some exposed
signals may even be too sensitive to record. For instance, raw GPS data is
often considered personal data which can lead to the identification of a driver,
and its recording may therefore be limited. Thus, the richness of information
included in a set of traces is inevitably traded-off with the costs involved in
capturing them. Inevitably, this places commensurate limits on learning the
‘true’ behavior of the underlying phenomenon. Traces used as training data
in this work are limited to the configuration shown in Figure 2.2

2.3 Simulating vehicle behavior – approach

Section 2.1 identified several key elements of a deep learning recipe. Having
defined the scope and objectives of simulating vehicle behavior, we now discuss
how the basic learning recipe is customized to learning it. Objectives 1 and
2, concisely represented in (2.4), make it clear that the main task is to train a
model which, given a condition, generates realistic test stimuli for a set of vehicle
functions. Meaning, with a distribution of input traces X ∼ G, the task is to
train a model g that controllably generates a trace X̂, which is a plausible sample
from the distribution G that could have been, but was not (necessarily) recorded.

X̂ = g(c) (2.4)

Experiments towards achieving these objectives are distributed among the
appended papers in the following manner. Objective 1 is the primary concern
of both Paper A and Paper B. In approaching Objective 2, Paper A mainly
considers the case where the condition c := X ∼ G is yet another trace. Paper
B, on the other hand, considers the case where conditions c ∼ C are simplified

16 CHAPTER 2. SUMMARY OF FINDINGS

specifications of traces. Paper C, however, does not address the objectives
from a training perspective, but does so from the perspective of explainability.

2.3.1 The learning task

Unlike the model ŷ = f(x) in the basic recipe which models a discriminative
task, g models a generative task. That is, while the main objective of f is to
model the image → label conditional distribution P (y | x), that of model g
is to approximate the condition → trace distribution P (X | c)2. Generative
modeling has a long history involving a variety of techniques [15]. More recently,
the Generative Adversarial Networks (GAN) [16] and Variational Autoencoder
(VAE) [17] frameworks, and their derivatives, have yielded impressive results
in generative tasks on a wide range of modalities like images and text. With
its focus on generating signal traces, this work falls under the general area of
time series generation, which has also begun to see the application of these
frameworks [18]. Thus, in achieving Objective 1, learning tasks in both Paper
A and Paper B largely follow those of GAN and VAE frameworks, with some
crucial extensions. In meeting Objective 2, however, each paper defines the
learning task differently depending upon the nature of the condition ci.

[A] In Paper A, the generative model gA is tasked to generate a trace X̂B

that is different, but still resembles a user-applied trace XA in some
user specified manner. This is a particularly useful form of controlled
generation, where a user enriches the test by asking the model to improvise
within the specified ‘neighborhood’ of an interesting trace. In this case,
since the target and condition come from the same distribution, the
generative model is tasked to approximate only this distribution G. While,
the generative model gA is tasked to learn unconditionally, the model is
still sampled conditionally by plugging in a trace XA as the condition.

[B] In the previous case, the simplest way to apply a condition is to replay a
recorded trace XA. Otherwise, one would have to resort to hand-crafting
traces which, in cases of high scope and fidelity, could be prohibitively dif-
ficult. To ease stimulus design without compromising credibility, Paper
B considers cases where conditions follow a distribution that is distinct
from G. Therefore, gB is tasked to explicitly model the conditional
distribution P (X | c). In this case, it is also important to note that one
condition c can map to different traces X̂. Such one-to-many mapping,
also referred to as multimodal generation, is also an important component
of the learning task.

The nature of conditions C decides the level of complexity in test stimulus
design. One way to simplify stimulus design would be to define the conditions
in an upstream domain. For instance, C could be a distribution of driving tra-
jectories, i.e., traces capturing lateral, longitudinal, and vertical displacement

2Though both conditional distributions resemble discriminative tasks, the latter is con-
ventionally termed generative since it models the observable X given a target c

2.3. SIMULATING VEHICLE BEHAVIOR – APPROACH 17

of the vehicle over T time steps. Then the generative model g can be tasked
to map a trajectory into a set of downstream driveline behaviors of the form in
Figure 2.2. This allows stimulus generation in what is perhaps a more useful
end-to-end fashion. Another way to simplify stimulus design is to present an
abridged form of a trace as the condition. To help achieve this, Paper B,
defines the idea of a template, which is a piece-wise linear, univariate, and
therefore a very loose approximation of a trace, that is easy to specify. The
model gB is then tasked to take this skeletal trace and generate its details,
showing yet another way to simplify the design and generation of test stimulus.

2.3.2 Training data

In Paper A, the generative model is trained using a dataset DA = {Xi}Ki=1

of K signal traces representing driveline behavior. Paper B, with the task
of template → trace generation, assembles a set of traces in the form DB =
{(Xi, ci,n = t(Xi, n)Nn=1)}Ki=1 where Xi is the trace and ci,n is the template of
the nth signal in the trace. Each template is extracted using a simple procedure
t that detects the edges of the corresponding signal trace. In both cases, the
original source is a set of a few hundred thousand traces of driveline behavior
recorded from 19 buses over a 3–5 year period. The construction of any training
dataset reveals one important aspect of training, which is the level of supervi-
sion. The archetypal basic recipe introduced earlier, with the presence of labels
y, clearly falls under the supervised training regime. Contrastingly, the absence
of labels in DA clearly places the unconditional generative model training in the
unsupervised regime. The dataset DB used for training the conditional model
does have label information in the form of templates. But, with templates
being rather trivial, yet not easily recoverable, transforms of the original data,
it resembles the self-supervised learning regime which can involve the use
of such pseudo-labels [19]. However, most reported self-supervised training
approaches (for example [20]) include a classification task that is auxiliary to
the main generation task. While we do not include a classification task, Paper
B includes an auxiliary task involving the reconstruction of templates.

2.3.3 Network definition

The next element of the training process, the DNN g that actually accomplishes
the mapping defined in (2.4). In setting up the generative process, appended
papers use the following building blocks.

Encoder-decoder architecture – In the basic training approach, the DNN f
maps an input x to a label vector y. The label is one alternative, albeit concise,
form of representing the input, with the network f realizing this encoding
process. Additionally, in mapping a high dimensional input into a lower dimen-
sional label, f reduces the dimensionality of representation. In concert with the
training objective, this forced minimization in dimensionality induces the model
to discard unnecessary information and forward only information through its

18 CHAPTER 2. SUMMARY OF FINDINGS

layers that is relevant to the task. This principle – called the information
bottleneck – is of profound importance to many deep learning approaches [21].
While the bottleneck appears naturally in a classification task, it may not occur
in a generative task. For instance, the generative process gB maps a lower
dimensional template to a higher-dimensional trace. In such cases, it is common
practice to enforce a bottleneck using an Encoder-decoder architecture. That is,
the mapping process (2.4) is achieved using a two-stage process shown in (2.5),
where fE and fG are encoder and decoder (or generator) neural networks.

z = fE(c), X̂ = fG(z) (2.5)

The special case, where c := X leads, of course, to the autoencoder which is the
primary structure used in Paper A. One critical benefit of the Encoder-decoder
structure is the availability of a d-dimensional latent representation (or code)
zi ∈ Z := Rd, which can be independently manipulated to influence generation.
In learning to encode information under a bottleneck, fE tends to place seman-
tically similar inputs close together in Z [22]. Paper A, for instance, exploits
this fact to achieve controlled conditional sampling by first mapping XA to a
code zA, and sampling in some ε-neighborhood as shown below. This ensures
that generated traces X̂ε

A are of controllable similarity to the condition XA.

zεA = {z ∈ Z : ‖zA − z‖2 ≤ ε}, zA = fE(XA)

X̂ε
A = {fG(z) : z ∼ U [zεA]}

(2.6)

An issue with the structure defined in (2.5) is that one condition maps to one
code and hence one trace. This is clearly a limitation for gB where one template
can map into many possible traces. Therefore, in Paper B, using an idea
originally introduced in [23], such a limitation is overcome by adding one (or
more) randomly sampled codes to the decoder, as shown in (2.7), which follows
a given distribution and controls an additional mode of generative freedom.
All networks in Paper A and Paper B use the Encoder-decoder architecture,
but also extend them into other structures to meet different training objectives.

z0 = fE(c), X̂ = fG(z0, z1), z1 ∼ N (0, I), k > 1 (2.7)

Convolutional neural networks – The basic DNN f , which uses an affine
map followed by some non-linearity as its fundamental operation, is also called
a fully-connected network. This is because in each layer, the weight matrix
Wl is defined in such a way that every output feature depends upon every
input feature. One problem with this configuration is that with high feature
dimensionality, or with a complex learning task, the number of parameters in
f can become prohibitively high. More importantly, many data modalities like
images, text, and even signal traces exhibit spatial and temporal dependencies,
which a fully-connected network clearly ignores. An alternative technique that
exploits these dependencies, while bringing many other benefits, are learnable
convolution filters. The essence of a 1D convolution operation using a learnable
filter W s×N

l of size s in the lth layer of a DNN that processes an N -variate
input sequence x of length T is captured below.

f l(x) = σ(

N∑
n=1

W s,n
l · xnt−s̄:t+s̄ + bl), s̄ = bs

2
c, t = 1...T (2.8)

2.3. SIMULATING VEHICLE BEHAVIOR – APPROACH 19

Exploiting spatio-temporal dependencies by using one filter to stride across
the entire input sequence, the convolutional network significantly reduces the
number of parameters in f . The convolution operation is extendable to both
higher input feature dimensions and a higher number of filters. Unlike a fully-
connected layer which compresses information globally, a convolutional layer
with multiple filters naturally extracts a variety of local features. When used
with a pooling operation, which is an information bottleneck, the resulting
network is naturally encouraged to learn a hierarchical composition of concepts
to represent the input. Introduced initially for processing images, convolutional
layers have quickly become general DNN building blocks across data modalities,
including time series (several examples in [24] and [25]). Both Paper A and
Paper B primarily use convolutional layers in encoder and decoder networks
to process traces and conditions. While specialist architectures for time-series
like recurrent networks [26] and causal convolutional networks [27] exist, we
find that vanilla 1D convolution is well-suited for generating instances of vehicle
behavior. This is primarily because we task the model g to generate the entire
trace at once, allowing us to treat the trace in an image-like fashion. Thus,
instead of imposing a memory or causality model, within the remit of 1D
convolution, g is free to model any relationship that suits the task.

2.3.4 Training objectives

The generative process defined in (2.5) is realized using a (mainly convolutional)
Encoder-decoder structure, as shown below.

Figure 2.3: Model architecture for the generative process

Paper A uses only the forward generative process, while Paper B also adds
a process to reverse it. The composite forward process is trained using the
powerful adversarial learning framework, first introduced in [16]. The additional
network fD, which is tasked with evaluating the ‘realness’ of generated traces
Xi, is called the discriminator. The classic adversarial training objective is a
minimax game that simultaneously minimizes two competing objectives (2.9).
This objective seeks an equilibrium where an optimal fG produces traces that
are realistic enough to fool fD, and an optimal fD that clearly distinguishes
between real and generated traces. Papers A and B uses customized versions

20 CHAPTER 2. SUMMARY OF FINDINGS

of this objective to guide the learning process.

Lgan = min
fG

max
fD

EXi log(fD(Xi)) + Ezi log(1− fD(fG(zi))) (2.9)

As previously discussed, latent space sampling plays an important role in
controlled generation. Additional training objectives are therefore included
to ensure that latent spaces that are jointly encoded and sampled follow a
predictable distribution. Treating conditions as traces, in Paper A, the compo-
sition fE ◦ fG ostensibly resembles an autoencoder. But, since there is a need
to selectively sample the latent space, it is trained as a variational autoencoder
using the Evidence Lower Bound (ELBO) loss (2.10) introduced in [17]. Note
that in Paper A, ELBO is used in addition to Lgan in the VAEGAN [28]
configuration to improve the quality of generation.

Lrec = min
fG

EX,z0∼N (µ,σI)‖fG(z0)−X‖2

LKL = min
fE

Ec DKL(N (µ, σI),N (0, I))

Lvae = Lrec + LKL, µ, σ = fE(c)

(2.10)

The semi-supervised nature of the learning task with the presence of pseudo-
labels allows Paper B to use an auxiliary cycle-translation [29] objective to
help the mapping process. The entire generation process is reversed to recover
the template ĉ and the composite Encoder-decoder structure is optimized end-
to-end using a reconstruction loss LID(c, fE ◦ fG ◦ rE ◦ rG) (see (2.11)). For
multimodal generation, in addition to code z0 that is obtained by encoding a
template c, a sampled code z1 is necessary. The presence of the reverse channel
allows the choice of a simpler reconstruction loss LID(z1, fG ◦rE), z1 ∼ N (0, I)
to ensure that the encoded space ẑ1 follows a predictable distribution, avoid-
ing the complex ELBO objective. Further details about how these training
objectives are customized and combined can be found in the appended papers.

LID(x, f) = min
f

Ex‖f(x)− x‖2 (2.11)

2.3.5 Training process

Using the appropriate combination of training objectives, the forward process,
and the complete process are respectively trained in Papers A and B in a
joint, end-to-end fashion. The gradient descent process that seeks optimal
parameters of the composite generative model follows the general principle
described in (2.3), albeit with much more sophistication. Both Papers A and
B use the Adam optimizer, details of which can be found in [30]. Training
generative models, especially GANs, is widely acknowledged to be difficult. As
pointed out in [31], GAN training needs to address three major concerns

Vanishing gradients – In training with the classic adversarial objective (2.9),
one recognized problem is that when fD is strong, it fails to provide useful feed-
back to fG. This problem is usually mitigated by choosing a modified version
of the adversarial objective. For instance, Paper B addresses this problem by

2.3. SIMULATING VEHICLE BEHAVIOR – APPROACH 21

using the Least Squares GAN (LSGAN) [32] objective, which does two things -
(1) fD outputs a score instead of a probability, (2) the training of both fG and
fD are defined as regression tasks instead of classification tasks. This provides
a stronger feedback even when fD is strong, stabilizing the training process.

Quality and diversity of generation – One important aspect to address
during training is the evaluation of generated samples. Defining measures for
evaluating samples is an active area of research, with several new techniques
being routinely proposed. However, as pointed out in [18], many of them are
specific to the image domain. The evaluation of generated time series therefore
follows a domain independent two-sample test approach, which compares the
statistics of real and generated samples. Using a similar approach Papers A
and B introduce the evaluation principle of Similarity as plausibility (SAP).
This principle actively exploits the presence of Encoder-decoder pairs (refer
Figure 2.3) in the generation process. In Paper A, fE ◦ fG is a (variational)
autoencoder. We therefore evaluate the quality of generation by measuring the
reconstruction similarity on a held-out validation set. Different measures, some
defined and some learned, are used for scoring the fitness of reconstruction.
Even Paper B, where fE ◦ fG is not an autoencoder, we extend the SAP
principle to measure translation fitness. This is possible because the training
set DB is aligned, with ci being a template that is extracted from the trace Xi.
This means that the similarity between the translated trace X̂i and Xi can be
used as a measure to evaluate generation. An issue, of course, is that with gB

allowing multimodal translation, these traces need not be similar. Prioritizing
measurable evaluation, we impose an additional objective to encourage the
model to produce translations that are close to the ground truth. In using
this approach, we pay the price of reduced diversity in sample generation. The
resulting translation is still multimodal, but less diverse.

2.3.6 Sampling

Having trained the generative model g, the final – and perhaps most important
– step is to sample the model. Instances of realistic driveline behavior produced
by sampling can then be applied as test stimulus for necessary vehicle functions.
As noted earlier, while g may be trained unconditionally or conditionally, the
sampling process is always conditioned, ensuring that stimulus generation is
controlled and systematic. The measures introduced by Papers A and B to
achieve this fall under two broad categories.

Latent space sampling – This technique is mainly used in Paper A which
trains g unconditionally to realize the trace → trace mapping. The infor-
mation bottleneck in the generation process exposes a latent space Z, where
similar traces are highly likely to cluster together. In this space, as shown in
(2.6), it is possible to sample the neighborhood of a reference trace. Paper
A introduces a Metric-driven Linear interpolation (MLERP) technique to
make this sampling selective. With the help of a user-defined metric, MLERP
helps select latent codes with guaranteed similarity with the reference trace, as
measured by the chosen metric. One can note that this is simply an extension

22 CHAPTER 2. SUMMARY OF FINDINGS

of the SAP principle to sampling. This principle can be applied to sampling in
other geometries in the latent space. Two reference traces XA and XB give a
straight line between points zA and zB . As shown first in [22], traversing this
line smoothly interpolates between the reference traces. MLERP refines this
technique by selectively sampling only those codes on this straight line with
guaranteed similarity with either or both reference traces. Using a combination
of reference traces, either hand-crafted or recorded, and appropriately defined
similarity metrics, the generative model becomes a powerful and credible, yet
finely controllable, stimulus generator.

Latent space search – While selective sampling is an effective technique for
controlled exploration of the stimulus space, it has a few limitations. The first
is, of course, the requirement of reference traces, which Paper B simplifies
by using templates. The second is that the continuous latent space, or any of
its subspaces, provides infinite possible stimuli. If there is a need to produce
targeted stimuli, sampling is a clearly inefficient way to achieve it. Paper B
addresses selectivity further by introducing a scenario-based stimulus searching
technique. Upon bounding a polygonal subset of the latent space using an
arbitrary number of templates, the technique searches for appropriate stimuli
using an objective extracted from the source code of the vehicle function under
test. By ensuring that the search objective is differentiable, the technique uses
a gradient-descent process to find a stimulus that directly satisfies a test condi-
tion. Avoiding extensive sampling of latent subspaces, this targeted technique
provides yet another powerful mechanism for controlled stimulus generation.

2.3.7 Explanation

The deep learning process for training the generative model g, which began
with the definition of the training task, thus goes through an elaborate sequence
of steps. In most cases, the learning process ends with an evaluation of whether
the model generalizes beyond the training set. For the basic DNN f , this is
usually done by evaluating prediction performance on a held-out validation
set. The evaluation of generative models, as described earlier, is much less
straightforward. This work, for instance, achieves this using the SAP principle
to reconstruct a held-out validation set. However, the learning process – a
data-driven search through a parameter space of thousands, if not millions or
even billions of parameters – is essentially a black box. Therefore, even if a
trained model is observed to generalize well, the large number of parameters
and the black-box nature of the learning process tends to impact the confidence
in practically deploying and using the model. Recent years have seen an
increasing use of techniques that explain what the model has learned [33] which,
by providing an insight into how the model undertakes its task, is one way of
unveiling the learning process. For predictive models like the basic DNN f , an
explanation process is typically a function of the form Φ : x, ŷ → φ, where the
explanation φ details why the model f chose to assign the label ŷ to the input
x. Assessing such explanations for a sufficient number of predictions is one way
of increasing the confidence in using the model.

2.4. CONTRIBUTIONS – SUMMARY AND SYNTHESIS 23

In the case of the stimulus generator g, explaining what the model has learned
is much less straightforward. One main reason for this is that, to generate
samples effectively, the core objective of the model is learning to the underlying
data distribution. While the learning process, no doubt, plays an important
role in sufficiently estimating this distribution, the role of the training dataset
is arguably more critical. If the training data is a biased representation of
the true data distribution then, even with a perfect training process, it is
impossible for the generative model to effectively estimate the true distribution.
With Objective 1 clearly stating the need for credibly approximating the input
signal traffic for vehicle functions under test, it is especially important that
the dataset used to train the model is not unreasonably biased. Going be-
yond the traditional format of explaining what the model has learned, Paper
C addresses principles for evaluating and explaining the training data. The
primary objective of Paper C is to evaluate whether a potential training
dataset D captures a sufficient variety of samples. The evaluation process
begins with a specification of required levels of diversity, which is embodied
by a simulated dataset D̂. Techniques of explainability are then used to reveal
any deficiency between the expected sample representation D̂ and the actual
sample representation D. Such a process of explaining sample representation
allows the assessment of training data at an early stage and correcting its
biases, before training the model. Such an informed process indirectly, but
critically, addresses the need for credible generation defined in Objective 1.

2.4 Contributions – summary and synthesis

The previous section, which described our approach to simulating vehicle
behavior, briefly introduced the research contributions of appended papers.
Reiterating the focus of each paper in Figure 2.4, this section further details
their contributions and derives additional observations.

Figure 2.4: Focus of each appended paper

Paper A – The first contribution of this paper is the extension of deep
learning, and specifically deep generative models, to the domain of simulation

24 CHAPTER 2. SUMMARY OF FINDINGS

and virtual integration for automotive software development. It does so by
presenting a solution for learning vehicle behavior unsupervised from recorded
operational data. Unlike most comparable literature involving GANs, the
paper has a sharper focus on sampling than on training. This stems directly
from of the need to achieve Objective 1 and provide credible test stimulus in
virtually integrated rigs. To address credibility, the paper makes its second
contribution by introducing the principle of similarity as plausibility, which
uses reconstruction and translation fitness as a measure of the quality of sample
generation. The principle is first applied to evaluate the GAN during training.
As part of this evaluation exercise, the paper makes its third contribution in
checking reconstruction fitness using both objective measures like the Structural
Similarity Index (SSIM) and subjective measures like the VAEGAN similarity
metric learned by fD. A technique to calibrate learned metrics with objective
metrics is also described so that the use of learned similarity metrics is better
referenced. The paper then addresses Objective 2 by extending the SAP
principle to GAN sampling. This is achieved using its fourth contribution – the
MLERP algorithm for selectively sampling the latent space using any similarity
metric of choice, objective or learned. In summary, this paper introduces a
deep generative method for test stimulus generation that is both credible and
controllable, addressing two of the most critical needs of virtual integration.

Paper B – While the previous paper introduces a credible and controllable
technique for stimulus generation, it has a few limitations. Among them is the
need to specify test conditions or scenarios using reference traces. The first
contribution of Paper B is to simplify test scenario specification for vehicle
functions by introducing templates. Its second contribution is to recast the
generative process into one of translation, mapping templates to traces for
subsequent use as test stimuli. The resulting model, trained with the assistance
of SAP evaluation, is also much more versatile. Not only does it translate mul-
timodally but also expands the timeline of the translated trace by generating
forecast and backcast components. This is achieved by training the model with
an additional random-cropping adversarial loss, the third contribution of the
paper. The paper therefore vastly expands the toolkit for meeting Objective 1.
Another limitation of the previous paper is its reliance on sampling, which can
be very inefficient in the continuous latent space. This paper addresses it using
its fourth contribution – a technique that extracts differentiable search condi-
tions from code under test and uses it for a gradient-based search for test stimuli
that satisfy the search condition. This process is controlled by the specification
of templates that limit the search space. The result is a powerful method for tar-
geted stimulus generation that directly meets Objective 2. Combining all these
elements, this paper makes a fifth – and perhaps most significant – contribution.
This is the connection of software in-the-loop with a GAN, for automatic test
stimulus search (hence its name SilGAN), demonstrating the possibility of
end-to-end scenario specification and test automation. While Paper B demon-
strates a technique to automate a test objective like code coverage, the overall
framework can be extended to other test objectives as long as testable properties
are extractable in a form that aids latent space search. This reveals a path to-
wards using stimulus generators for automating property-based software testing.

2.5. CONCLUSIONS 25

Paper C – Previous papers meet Objectives 1 and 2 in a direct manner. This
paper, however, meets them in an indirect, but equally important, manner. In
addition to the soundness of the training processes, the ability of the generative
model to credibly represent behavior depends upon a critically important
element – the training data. More specifically, the capability of a model to
emulate behavior depends upon the diversity of samples represented in the
training data. If there is a significant bias in the representation of samples,
the model is likely to assimilate only a limited subset of the true behavior.
This paper, therefore, addresses the less-explored area of explaining sample
representation in a given dataset. The first, and overall, contribution of
this paper is to explain sample representation by utilizing annotations, when
available, and using parametric simulation otherwise. A primary ingredient of
this explanation process is parametric specification, which partitions the data
space in an interpretable form. The paper acknowledges that such specification
may not be feasible for many practical high-dimensional datasets. This is one
reason why it conducts experiments on images of simple geometric shapes, and
not signal traces. The second contribution of the paper is the proposal of an
overlap index as a measure of sample representation bias. Given distributions of
expected and actual sample representation in terms of input space parameters,
this index quantifies the discrepancy between them. When annotations are
available, the quantification process is direct. For cases where they are not
available, the paper uses an indirect method – its third contribution – to
measure bias. The first step of this indirect process is to train a DNN on
the non-annotated dataset whose sample representation is to be explained.
The second step is to test this trained DNN with simulated data that follow
the expected sample representation. The third step, the fourth contribution
of the paper, is to estimate actual sample representation by assessing the
trained DNN’s familiarity with simulated samples. This estimated sample
representation, when compared with the expected sample representation using
the overlap index, exposes representation bias. Even if this paper does not work
with signal traces, in providing a technique to explain training data, it addresses
the plausibility perspective of Objective 1. Considering the practical limits of
recording traces noted in Section 2.1, examining the data prior to training a
generative model may be a helpful step. The important question is whether
the technique tested on geometric shapes can be used to examine a dataset of
signal traces. As noted earlier, an important ingredient of this process is able
to simplify and parameterize the space of signal traces. One important step is
the introduction (in Paper B) of templates as a technique for simplifying the
space of traces. One interesting possibility can then be to use parameterized
templates and a re-designed translation process to assess sample representation
in a dataset of signal traces. Such parameterized templates can also simplify
the specification of test conditions, additionally addressing Objective 2.

2.5 Conclusions

The automotive industry is already software driven, with the importance of
software as the primary means of delivering customer value only set to grow.

26 CHAPTER 2. SUMMARY OF FINDINGS

Under such conditions, it is essential that vehicle manufacturers strengthen
their ability to rapidly iterate through the software development process.
While the use of simulation-driven development and testing has begun to help
achieve this, the complex nature of a vehicle’s operating environment mean
that the state of practice of manually specifying simulation models only offers
limited credibility. Exploiting the increased availability of operational data,
this work shows that it is possible to use techniques of deep learning to train
models that credibly imitate real operating conditions. Such a data-driven
approach to simulation allows us to develop simulation models with high
scope and fidelity, virtually eliminating the need for time-consuming manual
specification. Techniques developed in this work adapt the deep generative
modeling framework to train models that credibly generate open-loop test
stimuli for software vehicle functions. In learning to approximate the real
behavior of software input dependencies, test stimuli generated by these models
are vastly more credible than manual specifications. Additionally, this work
introduces several mechanisms to enable controlled-generation of stimuli, easing
test design and increasing the confidence in the testing process. Considering the
importance of credible generation, this work introduces several techniques at
the data selection, model training, and sampling stages to improve the quality
of stimulus generation. Overall, the tools and techniques developed in this work
have immense potential to improve the credibility, and therefore confidence,
in simulation-driven automotive software development, helping achieve the
pressing need in the automotive industry for rapid delivery of quality software.

2.6 Future work

Simulating output dependencies – This work focuses only on simulating
input dependencies. The immediate focus of future work would therefore
be to expand the scope and additionally simulate output dependencies as
trained DNNs. There are two major aspects in addressing output dependencies.
The first is that the DNN simulator should react to outputs from upstream
functions. For instance, a DNN that simulates the driveline must take inputs
from acceleration, brake pedal sensor, or cruise control SWCs and realistically
map it into the resultant distance and speed of the vehicle. The second aspect is
that such outputs are often fed back, meaning that there is an additional need
to maintain temporal consistency. In order to address these aspects, This track
would combine several techniques including deep-learning based time series
prediction or forecasting [25] and data-driven control system identification [34].

Machine learning based extraction of testable properties – While this
work, specifically Paper B, automatically extracts test properties from code,
it does so using simple hand-coded rules. A parallel track of future work
would therefore focus on taking a machine learning approach to test property
extraction. The first step, training a model that understands AUTOSAR
SWCs, will be approached using neural language modeling techniques for
source code [35]. Once such a model is trained, one potential downstream task
would be the automatic extraction of test properties.

2.6. FUTURE WORK 27

Generative model evaluation – This work addresses credible stimulus gen-
eration using several ways. The SAP principle and explaining sample rep-
resentation in training data are prime examples. However, as noted earlier,
evaluating the quality of a generative model is difficult. Therefore, one possible
area of future work would be to expand processes of evaluation and explanation
to further increase the level of confidence in stimulus generation. This work
would expand ideas like [36] which propose evaluation techniques and measures
for evaluating deep generative models.

28 CHAPTER 2. SUMMARY OF FINDINGS

