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Abstract

Traditionally, applications are executed without the notion of a computational
deadline and often use all available system resources which leads to higher
energy consumption. User specification of Quality of Service (QoS) constraints,
in terms of completion time and solution quality, opens up for allocation of
just enough resources to an application to finish just in time and thereby save
energy. Modern heterogeneous multiprocessor (HMP) platforms provide a
set of configurable resources including a frequency range of dynamic voltage
frequency scaling (DVFS), one among a set processor types, and one or a
plurality of processors of each type. They can be configured at run-time to
open up new opportunities for resource management.

This thesis presents techniques to reduce energy consumption under QoS
constraints by allocating resources at run-time on heterogeneous multipro-
cessor platforms targeting sequential and parallel iterative and task-parallel
applications. The proposed techniques rely on a progress-tracking framework
that monitors and predicts how much time is left until the application finishes.
Furthermore, the proposed framework enables the prediction of computation
demand and performance requirements for future iterations or tasks.

The first contribution of this thesis is a resource management technique,
called SLOOP, targeting single-threaded applications. SLOOP allocates re-
sources, i.e., processor type and DVFS, for each iteration to meet deadlines
while using the prediction of computational demand and execution-time.

The second contribution of this thesis is a resource-management scheme,
called SaC, for multi-threaded applications executing on HMPs, where resources
also include the number of processors besides DVFS and processor type. SaC
first chooses the most energy-efficient configuration that meets the deadline.
The proposed technique collects execution-time slack over subsequent iterations
to select a configuration that can save energy.

The third contribution of this thesis is a resource manager, called Task-
RM, for task-parallel applications executing on HMPs under QoS constraints.
Task-RM exploits the variance in task execution times and imbalance between
sibling tasks to allocate just enough resources in terms of DVFS and processor
type. It uses an innovative off-line analysis to avoid redoing scheduling analysis
at run-time.

Finally, the fourth contribution is a scheme, called Approx-RM, that can ex-
ploit accuracy-energy trade-offs in approximate iterative applications. Approx-
RM allocates an appropriate amount of resources while guaranteeing timing
and solution quality specifications. Approx-RM first predicts the iteration
count required to meet the quality target and then allocates enough resources
on an HMP in terms of DVFS, processor type and processor count to save
energy while meeting a performance target.

Keywords

Energy Efficiency, Quality of Service, Resource management, Heterogeneous
multiprocessor, Dynamic Voltage Frequency Scaling (DVFS), Core migration,
Thread throttling, Soft real time systems.
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Chapter 1

Introduction

1.1 Aim of the Thesis

Energy efficiency is one of the most crucial metrics in computer systems and its
importance has been further accentuated with the end of Dennard Scaling [1,2].
Energy efficiency is not only indispensable for battery powered systems, e.g.,
Internet of Things (IoT) devices, embedded systems, and smartphones, but also
essential for server infrastructures such as data centers. Energy efficiency can
enable operational longevity in battery-powered systems, while for servers, it
can lead to lower cooling requirements and thereby lower electricity costs [3, 4].

Integrated circuits have enjoyed an exponential growth in terms of on-chip
transistor count as a consequence of Moore’s Law. However, single-threaded
performance improvements have seen a slowdown due to higher power/energy
consumption after the turn of the millennium leading to the multi-core era [5].
Moreover, the variety in application behavior such as compute/memory in-
tensiveness, data-parallelism, instruction-level parallelism and memory-level
parallelism calls for the integration of a variety of computing elements. More-
over, heat dissipation constraints rarely allow all of the chip-level computational
units to be used at full throttle at the same time [6], thus enhancing the case for
mixing energy and performance-oriented computational units (or processors).
Coupled with the aforementioned facts and the availability of huge transistor
counts, designers have decided to include general-purpose (GP) processors,
graphical processing units (GPUs), and special-purpose processing elements,
also called accelerators, in a single chip leading to heterogeneous multi-processors
(HMP). There also exists heterogeneity within general-purpose processors, and
it comes in two flavors. A first variant integrates in-order and out-of-order
processors that are governed by the same instruction set architecture (ISA)
e.g. ARM big.LITTLE [7]. A second variant employs identical processor
architectures that are fabricated using different semiconductor cells, resulting
in different performance/energy characteristics as in the Qualcomm Snap-
dragon [8]. This thesis considers heterogeneous multi-processors comprising
different processor types with the same ISA.

As the behavior of workloads is evolving continuously, future requirements
are hard to predict at design time. Thus, chip designers have left the manage-
ment of modern parallel processing chips to the programmer/user. Difficulty in
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2 CHAPTER 1. INTRODUCTION

managing complex transactions to achieve desired optimization goals concern-
ing, e.g., performance, throughput or energy, has given rise to implementation of
resource management systems as run-time systems. A resource manager(RM)
hides the complexity of the underlying architecture from programmers by
merely requiring high-level abstractions/specifications such that users may
manage chip resources automatically. In the context of HMP, configurable
resources include dynamic voltage frequency scaling (DVFS), selection of pro-
cessor type and processor count. Moreover, in case of approximate applications,
solution quality can also be used as a tuneable resource to save energy. This
thesis focuses on resource management schemes that address these resource
dimensions.

Traditional systems execute workloads without any notion of Quality of
Service (QoS), typically using all available computational resources (e.g., the
performance governor in Linux CPUFreq [9]). This QoS agnostic approach can
overprovision resources and thus waste energy as certain applications need to
produce results at a specific rate (throughput) or at fixed deadlines (completion
deadlines) only. Executing faster than these deadlines do not add any value to
the user. These deadlines are typically governed by real-world requirements,
e.g., a specific video frame rate or program completion deadlines. Specification
of quality requirements allows the resource manager (RM) to allocate just
enough computational resources to an application or a phase of application to
finish just-in-time before the deadline and thereby save energy.

In this context, this thesis aims to solve some of the challenges pertaining to
energy efficiency by obtaining QoS specifications from users/programmers and
designing resource managers that are able to allocate an appropriate amount
of resources. The central theme here is to design resource managers that can
take QoS specifications into account and predict the computational demand
and execution behavior of workloads at run-time, in order to allocate befitting
resources to save energy. The thesis targets heterogeneous multi-processors
where resource management decisions include dynamic voltage frequency scaling
(DVFS), selection of most appropriate processor type, and thread/processor
count.

This thesis is based on four articles. The central theme is to save en-
ergy under QoS constraints for various types of applications executing on a
heterogeneous multiprocessor platform. Each paper presents a resource man-
ager designed for a specific application type operating under a unique set
of constraints. Paper-I targets iterative sequential applications; Paper II
focuses on multi-threaded iterative applications. Paper-III aims to improve
energy efficiency for task-parallel applications, and finally, Paper-IV proposes
a resource manager for approximate iterative applications.
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1.2 State-of-the-Art

Conventionally, applications are executed without the notion of deadline or
completion time requirements and typically use all or nearly all of the resources.
Resource usage is only restricted by power and cooling constraints [9]. In this
scenario, energy efficiency concerns are addressed by employing power gating
[10–13]. On the other hand, race-to-idle techniques [14–17] are employed,
where the processor is powered down to a sleep or idle state after applications
finish. Here, it is essential to note that the duration of the idle period affects
energy savings [3, 4]. Some techniques elongate the idle periods by employing
methods like Computational Sprinting [6]; however, power consumption during
the active phase will be higher due to the cubic relationship of energy to higher
frequency and voltage. Moreover, race-to-idle schemes generate considerable
execution time slack or (or simply slack) that can be defined as the difference
between the deadline and execution times, and it can be used to slow down
the execution and save energy.

The behavior of applications also exhibits a varying computational demand
due to factors such as amount of instruction-level, memory-level or thread-level
parallelism during the computational phase. Some proposals leverage these
properties by using Dynamic Voltage Frequency Scaling (DVFS) [18, 19] or
by selecting among one of many processor types [20] to save energy while
keeping the same performance level. However, computational results are only
required at a rate or instance specified by the user and offering more resources
to run faster wastes energy. Thus, specification of QoS requirements allows
managing resources while conforming to user specified performance constraints.
Considering QoS and the vast configuration space offered by heterogeneous
multi-processor platforms, there is a need for a holistic approach that can save
energy by allocating computational resources at run-time depending on the
computational demand. This is one critical gap in state-of-the-art that has been
addressed in this thesis. The resource management challenges and solutions
depend on factors such as application types (e.g., sequential or parallel), QoS
specifications and programming models, therefore the following paragraphs
shall present prior art for a few of these scenarios.

Considering sequential applications, Hughes et al. [21,22] propose a domain-
specific framework that leverages variability in execution time of processing
video encoder/decoder frames and saves energy using allocation of DVFS
and micro-architectural units (e.g., issue width, instruction window size and
functional units). Suh et al. [23] present an approach that regulates performance
against a specific target, i.e., the Instructions-Per-Second (IPS) rate, calculated
offline using DVFS to save energy. Techniques in prior art show three main
shortcomings: first, the methods are not application-agnostic; second, the
computational demand is not estimated at run-time, but offline; last, only
DVFS is considered and not other resources in HMPs such as processor types.
This thesis addresses this gap by presenting application-agnostic methods that
predict the computational demand at run-time to allocate just enough resources
from the available configuration space.

Due to the availability of multi-cores, parallel applications can allow the
resource manager to adapt the processor count along with the other available
resources, such as DVFS and processor type, in the configuration space of HMPs.
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However, a fundamental challenge that arises for on-line resource management
is to predict application performance and energy behavior because of the large
number of configurations available in HMPs with low overhead. Consequently,
computational intensive machine learning (ML) models trained offline [24]
or online [25] have been used in prior art for prediction. However, off-line
training cannot fully capture the run-time behavior, while online training is
associated with considerable overheads. In contrast, Li et al. [26] propose an
online method that curtails the overheads by considering a small portion of
the configuration space, pruned during the training phase. I observed three
fundamental deficiencies in these previous works. First, the profiling-based
training employing ML algorithms has considerable overheads. Second, the
entire configuration space is not considered at run-time. Third, a simple
slowdown policy, that uses the available slack as soon as it is available, limits
the use of energy-efficient computational units, e.g., LITTLE cores, in HMPs.
This thesis strives to address the deficiencies in the above-mentioned prior art.

Expression of parallel programs in a task-parallel model enables additional
performance, but creates further challenges and opportunities in resource
management. A task-parallel application can be modeled as a Directed Acyclic
Graph (DAG) where nodes are tasks and arcs are dependencies among tasks.
In this context, identifying energy-saving scenarios in such programs requires
a scheduling analysis of a DAG using the execution time of tasks, requiring
a considerable computational effort. Thus, off-line (static) techniques offer
low run-time overheads, where off-line decisions employing DVFS [27, 28] or
a combination of DVFS and processor type [29, 30] are used to save energy
at run-time. However, off-line techniques assume off-line estimation of the
execution time of tasks, which may lead to overprovisioning of resources and,
consequently, more energy consumption. Kang et al. [31] present an online
method that curbs the overheads by analyzing a small portion of the DAG
at one instance, and only considering a single resource, i.e., DVFS. Moreover,
this work assumes a fixed number of processors for the application’s life span.
In short, online proposals in prior art lack in three aspects. First, resource
management algorithms are not suitable for use at run-time due to higher
overheads. Second, the complete configuration space is not considered. Third,
the schemes do not cater to the requirement of changing processor counts. This
thesis provides a method to address the gap in the works mentioned above.

Finally, considering approximate iterative applications some proposals have
focused on only providing quality guarantees [32,33] without considering per-
formance guarantees while using offline characterization. Several methods aim
at maximizing solution accuracy under an energy budget without considering
a performance constraint by employing offline application-specific resource
estimation models [34] and application-specific accuracy controls [35]. Farrell
et al. [36] propose a technique that employs application-specific controls to
throttle accuracy for minimizing energy under timing constraints but pro-
vides no quality guarantees. Dayapule et al. [37] offer a method that uses
offline estimations of performance and power to provide performance (i.e., tail
latency) guarantee but no quality guarantees. Finally, Kulkarni et al. [38]
employ application-specific offline characterizations to allocate resources, i.e.,
processor and memory allocation, to provide both quality and throughput
guarantees. In short, prior art has several fundamental shortcomings: first,
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the use of application-specific controls curtails the applicability beyond the
considered workloads. Second, application-specific offline characterization is
used to estimate the application’s performance and energy, which restricts the
full exploitation of potential of energy savings because the run-time behavior
differ from the offline one. Finally, these techniques do not use the entire set of
resources on offer, i.e., DVFS, processor type, and processor count, along with
approximation. Overall, the existing proposals lack an application-agnostic
method that reduces energy under accuracy and timing constraints through
resource allocation based on online estimation of application performance and
energy while using the entire configuration space offered by HMPs. This thesis
presents a resource manager that addresses the shortcomings in proposals as
mentioned above.

1.3 Problem Statement

This thesis presents a resource management framework aiming at reducing
energy consumption for applications executing on heterogeneous multiprocessors
(HMPs) under quality of service constraints. This raises the following questions
that are addressed in the four papers (Paper I-IV) appended to the thesis:

1. The first problem is how to use a set of resources, specifically DVFS and
processor type, at run-time to save energy by predicting the computation
demand and execution time so as to finish a sequential application under
the given performance constraint. This problem is addressed in Paper-I

2. The second problem is how to use execution time slack to save energy
through resource allocation, i.e., DVFS, processor type, and processor
count, based on an online prediction of the application’s performance
and energy behavior in multi-threaded applications executing on HMPs.
This problem is addressed in Paper-II

3. The third problem is how to save energy through assigning resources,
i.e., DVFS and processor type at run-time to tasks-parallel programs
executing under QoS constraints on makespan on HMPs through the
exploitation of variance and imbalance in task execution time for a range
of processor count allocations. This problem is addressed in Paper-III

4. The fourth problem is how to exploit accuracy-energy trade-offs through
allocation of resources in terms of DVFS, processor type and processor
count to save energy in an approximate iterative applications while
providing quality and timing assurances. This problem is addressed in
Paper-IV
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1.4 Thesis Contributions

This thesis makes four contributions

1. The first contribution of the thesis is a resource manager, called SLOOP,
for iterative sequential applications executing on HMP platforms. SLOOP
scheme first presents a progress-tracking framework based on monitoring
of applications’ outer loop. It uses the proposed framework to allocate
just enough resources, as they apply to DVFS and processor type, by
assessing applications progress in comparison to the deadline per iteration.
SLOOP accomplishes this by employing a novel prediction mechanism
that estimates future computational demand and application performance
on the configuration space. These contributions are made in Paper I.

2. The second contribution is a novel slack management scheme – SaC
(Slack as Currency)- that reduces energy by increasing the utilization
of energy-efficient configurations in the system. SaC relies on an online
prediction and search method that establishes application’ performance
and energy characteristics with low overhead and considerable accuracy.
These contributions are made in Paper II.

3. The third contribution of this thesis is a run-time resource manager, Task-
RM, for task-parallel applications to save energy under QoS constraints.
Task-RM leverages an innovative offline analysis scheme that defines soft
deadlines of the tasks within the program for a variety of scenarios, thus
avoiding program analysis under changing hardware scenarios. Task-RM
uses an efficient performance and energy prediction mechanism to assist
in resource allocation. These contributions are made in Paper III.

4. The fourth contribution is Approx-RM, a resource allocation scheme for
approximate iterative applications executing on HMPs that saves energy
under accuracy and timing constraints by means of controlling DVFS,
processor type, and processor count. Approx-RM offers a lightweight
mechanism based on curve fitting to predict application duration in terms
of number of iterations. Furthermore, a performance and energy predic-
tion mechanism is proposed to estimate application behavior spanning
the HMP resource allocation space. These contributions are made in
Paper IV.
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2.1 Summary of Paper I

Traditionally, race-to-idle is used to save energy, where the application executes
using the available resources and then switches to a power-down state (or
idle) [14–17]. Race-to-idle techniques over-provision the resources and result
in high energy consumption. Applications also show varying behavior in
instruction-level parallelism (ILP) and memory-level parallelism (MLP), which
affect the computational demand. Thus, some proposals employ DVFS [18, 19]
or processor type selection [20] to reduce the stall cycles while providing the
same performance as race-to-idle. Limited availability of such variations, e.g.,
ILP and MLP, result in small energy savings.

Introduction of QoS constraints can unlock further opportunities, where an
allocation of an appropriate amount of resources, that in context of HMP include
DVFS and processor type, to applications enable just-in-time completion before
the deadline and save energy. In this regard, Hughes et al. [22] propose a domain-
specific proposal that adjusts DVFS and micro-architectural configuration (i.e.,
issue width, instruction window size, and functional units) to meet a specific
video frame rate by characterizing the frame type. Kluge et al. [39] present
a similar solution while only using DVFS to regulate the execution speed in
video encoding/decoding applications. These techniques are based on specific
application insights and are not application-agnostic. Sue et al. [23] propose to
regulate instructions per second (IPS) to a predefined level based on average
or worst-case IPS measured offline to improve energy efficiency. Assigning
resources based on a constant computational demand, i.e., IPS rate, that is
computed offline, can lead to over-provisioning and consequently higher energy
consumption.

The prior art mentioned above has a few fundamental drawbacks. Firsts, the
application computational demand is estimated offline. Second, some proposals
rely on application-specific information, i.e., frame types. Lastly, the schemes
do not use the entire configuration space offered in HMPs.

Paper-I targets the problem of resource, i.e., DVFS and processor type,
allocation to save energy by predicting the computation demand and execution
time at run-time to finish close to the deadline given by QoS specification. It
proposes a framework, called SLOOP, for resource management for iterative
sequential applications executing on HMPs under QoS constraints expressed
as a deadline per iteration (or throughput). A streaming application model is
assumed, where an outer loop encapsulates the computational kernel and every
iteration operates on new input data.

SLOOP proposes to use loop iterations to monitor applications progress and
allocates resources in connection with the deadline to allocate an appropriate
amount of resources in terms of DVFS and processor type to subsequent
iterations. Since every iteration finishes before its deadline, a slight execution
time slack (or simply slack) is generated. Slack is defined as the difference
between the deadline and the execution time, and it can be used to slow down
future iterations. In this context, it is assumed that data for each iteration is
available well before its start.

Estimating computational demand and application performance on the
set of processors in an HMP are two fundamental sub-problems. As for the
first requirement, the instruction count from previous iterations is stored and
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used to predict the instruction count for future iterations using two types of
predictors: an average predictor and a gradient predictor. The application
execution time on various processor types is estimated by storing the cycle per
instruction (CPI) count of already executed iterations and using it to predict
CPI for future iterations. CPI is stored for all the processor types available in
the HMP. The predicted instruction count and CPI can be used to predict the
minimum frequency that can satisfy the deadline per iteration requirement for
each type of processor.

Different processor types, e.g., big, LITTLE [7,40] in HMPs have different
performance levels and can fulfill the given QoS requirement at different voltage-
frequency (V-F) settings and lower DVFS states, offering more energy savings.
SLOOP uses this insight to predict the minimum DVFS setting that can meet
the deadline for all processor types in the HMP and then uses the most energy-
efficient processor type and DVFS setting. Since the LITTLE cores offer lower
energy, they are preferred, provided the predicted frequency lies within the
legal limit. This process of prediction and resource allocation repeats after each
iteration. Eventually, each iteration finishes before the deadline. In a nutshell,
the resource allocation is adjusted to the dynamic computational demand.

The SLOOP framework is evaluated on an ODROID-XU3 board containing
Samsung Exynos-5422 chipset [41] that is based on ARM’s big.LITTLE tech-
nology using iterative applications from the ALPBench [42] and SPEC2006 [43]
benchmark suites. The deadline is defined using Race-to-idle that executes
the workload at the highest resource setting, i.e., a 2-GHz big core, and then
idles. The deadline is set equal to the execution time of the slowest iteration
among all the application main-loop iterations. This deadline setting ensures
that all the iterations meet the deadline while executing at the highest resource
allocation.

SLOOP is evaluated against Race-to-idle as the baseline, the scheme pro-
posed in state-of-the-art by Sue et al. [23] (henceforth referred to as DMIPS )
and an oracle scheme. Here, Oracle refers to a scheme that makes a perfect
prediction and uses SLOOP’s resource manager. DMIPS has two variants:
the average profile and worst-case profile, where the former uses the average
instruction count and the latter uses the worst-case instruction count as predic-
tion and these values are computed using the instruction count per iteration
trace of baseline. Both schemes use SLOOP’s resource manager.

SLOOP saves 25% energy compared to Race-to-idle and is only 8% worse
than Oracle, without missing any deadlines. DMIPS worst-case profile performs
the same as Race-to-idle and does not save any energy while DMIPS average
profile saves 24% energy compared to Race-to-idle but misses 97% of the
deadlines. Moreover, SLOOP only incurs 0.06% and 0.07% of timing and
energy overheads, respectively. By further relaxing the deadline by 20%, 50%
and 100%, the energy savings increase by 42%, 52%, and 63%, respectively.
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2.2 Summary of Paper II

The saturation of single-threaded performance improvements and the avail-
ability of many transistors on modern semiconductor chips have enabled the
transition into the multi-core era. Moreover, various application types require
different hardware properties forcing the designers to package various compu-
tational units, i.e., in-order and out-of-order processors, graphical processor
units, and custom accelerators in a single chip. Such a setting is beneficial in
exploiting the performance and essential for keeping power or energy in check.
This paper focuses on multi-threaded programs executing under a quality of
service specification regarding the computational deadline on single-ISA het-
erogeneous multiprocessors. The aim here is to design a resource manager that
can save energy by employing resource allocation concerning DVFS settings,
processor type selection, and processor count.

In this context, Race-to-idle [14–17] over-provisions the resources; thus,
it is not suitable. In contrast, the introduction of QoS requirements calls
for the allocation of just enough resources that are sufficient to meet the
computational deadlines. Therefore, several techniques [24–26] propose to slow
down the execution to finish just before the deadline and save energy. However,
the prediction of applications’ execution time and energy consumption across
the configuration space is not trivial, resulting in some techniques [24, 25]
employing computationally intensive machine learning models for prediction.
In this context, offline training-based approaches [24] yield low accuracy when
exposed to unknown scenarios at run-time, whereas in the case of online
training [25] the overheads become a concern. In contrast, Li et al. [26]
proposes to limit the overheads by providing a heuristic that only considers a
small portion of the configuration space.

The shortcoming in the prior art can be summarized as follows. First,
application timing and energy behavior are either estimated offline or using
computationally intensive methods at run-time. Second, the entire configuration
space is not used for resource allocation. Last, the schemes use the slack as it
is produced, limiting the use of energy-efficient configurations such as LITTLE
cores.

This paper targets the problem of saving energy in iterative parallel appli-
cations. It does so by devising a novel slack management scheme that allocates
resources so that it accumulates and consumes slack to increase the utilization
of energy-efficient configurations. Furthermore, we approach the problem of
designing an online low overhead prediction method that can estimate applica-
tions’ performance and energy behavior to enable the above-mentioned resource
allocation.

Thus, Paper II proposes a resource management policy, referred to as
SaC - Slack as Currency- that saves energy under a constraint on application’s
completion time. This paper further proposes a lightweight online prediction
method to enable resource allocation. Similar to Paper I, this paper also
uses the iterations of the application’s outer loop to monitor it’s behavior and
allocate it on a new configuration.

QoS specification is defined in terms of the deadline for the program. The
outer loop of the application is used to monitor, progress tracking, and predict
application performance and energy. Assuming that application iteration-count
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is given, the soft deadlines for each iteration are computed at the start of
execution. Comparing the execution time at the end of each iteration with
soft deadline enables SaC to calculate slack and ascertain if the application
is executing faster or slower than required. If an iteration completes early,
then it results in positive slack that can be used to save energy since it is only
necessary to complete before the application deadline; individual iteration can
execute slower or faster without violating overall QoS specification.

In this context, SaC first selects an energy-efficient configuration, called
slack generating configuration (SGC), which meets the soft deadline per iteration
target. Since the timing behavior of the configuration space is quantified, there
is always some tiny slack. Then slack is allowed to build up across multiple
iterations (or accumulated) by keeping the soft deadline for all iterations the
same. As slack builds up and reaches a threshold, the RM uses slack to relax
the soft deadline per iteration and chooses an energy-efficient configuration,
called the slack using configuration (SUC), that would typically violate the
soft deadline per iteration. Since it is desirable to execute multiple iterations
in slack using (SU) mode, the accumulated slack is distributed over several
iterations. Once the slack approaches zero, a new SGC is selected, and this
process repeats over and over again.

The method of selecting the SGC and SUC is based on the fact that the
minimum voltage frequency that meets the deadline yields minimum energy for
a specific thread count and processor type. So the minimum frequency for all
the combinations of processor types and thread counts is computed. Then, the
configuration with the minimum predicted energy is chosen. Next, the selection
of a SUC is done with the same procedure but by relaxing the deadline by the
amount of accumulated slack. However, the method of predicting the energy
is different in the case of SUC. This is because different SUCs consume the
accumulated slack in a different number of iterations. Thus, a configuration
with lower energy per instruction (EPI) but smaller iterations in SU mode will
have a lesser impact on energy efficiency than a configuration with slightly
higher EPI and more iterations in SU mode. In short, the iteration count for
all the SUCs is predicted, leading to the prediction of the average EPI. Finally,
the configuration with the smallest predicted average EPI is selected as the
SUC.

The performance and energy prediction method consist of two phases, a
profiling-based training and a steady-state. During the training phase, the
application is executed at pre-defined configurations and instructions per second
(IPS) and EPI is measured and recorded in a table. The first two iterations
are executed using maximum thread count at the maximum and minimum
frequencies. The third and fourth iterations are then executed using the
minimum thread count at maximum and minimum frequencies, respectively.
Since each processor type in the system has a specific performance and energy
characteristic, the same training procedure is repeated for each processor type.
Then, the IPS and EPI are computed using interpolation at frequencies between
the minimum and maximum frequency.

During steady-state, the resource manager measures execution statistics,
including instruction count, cycle count, and energy consumption, at the end
of every iteration and hence finds a suitable configuration to execute the
next iteration. A history of the instruction count from previous iterations is
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maintained and used for predicting the instruction count for future iterations,
referred to as workload prediction. The cycle count is used to compute the
execution time and slack. The resource manager keeps track of the accumulated
slack.

SaC is evaluated on an Odroid XU3 platform using applications from the
Rodinia [44] benchmark suite. First, two oracle schemes, SaC optimal and
Static optimal are used as references of upper bounds, where both schemes
have future knowledge and employ exhaustive search in the configuration space.
SaC optimal finds SGC and SUC pairs and the points where to switch between
SGC and SUC, while the static optimal finds the best single configuration that
meets the deadline with minimum energy. The deadline used in this evaluation
is set to the fastest configuration using LITTLE cores, i.e., 4 threads and a
1.4 GHz clock frequency. The deadline is set equal to 0.7 × slowest iteration
at this configuration. This deadline restricts the usage of LITTLE cores in
normal scenarios.

SaC optimal saves 10% more energy compared to Static optimal using
Race-to-idle as a baseline. This experiment shows the additional potential
of energy savings that can be exploited by using slack. Another way of
analyzing the behavior of both schemes is to look at the usage of energy-
efficient configurations, for example, those comprising of LITTLE cores. SaC
optimal and Static optimal use the LITTLE cores for 43% and 10% of iterations,
respectively. This shows that SaC optimal is capable of exposing the most
energy-efficient configurations that do not meet the deadline without exploiting
slack.

Next, SaC is compared with SaC optimal and Li, according to Li et al.
[26]). SaC saves 62% and 27% more energy compared to Race-to-idle and
Li, respectively. Moreover, SaC is only 8% worse off than SaC optimal. The
energy savings of SaC can be divided into two parts. First, a considerable
amount of energy savings (i.e. 48%) come from selecting a suitable SGC.
Second, further energy savings (i.e 14%) are achieved by using slack to expose
the energy-efficient configurations in SU mode.
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2.3 Summary of Paper III

Parallel applications can be generally represented as direct-acyclic graphs
(DAG), where nodes are tasks and edges are dependencies between tasks. Such
a representation enhances the possibility of harnessing performance, especially
in the case of inherently sequential algorithms by employing the methodology
of pipeline parallelism [45]. Paper III aims to reduce energy consumption under
QoS constraint on the completion time for a task-parallel application executing
on a single Instruction Set Architecture (ISA) heterogeneous multi-core platform
(HMP), e.g., ARM big.LITTLE [7].

In the context of a DAG, QoS constraints are expressed as the worst-case
schedule length (WCSL), and methods from prior art [27,29,31] are used to
establish it. An offline simulation of a DAG’s execution by assuming each
task’s upper-bound execution time (UBET) results in a worst-case schedule
length (WCSL or makespan). Setting the program’s deadline equal to or greater
than the WCSL ensures its accomplishment, even if all the tasks take a time
that amounts to UBET to finish. The UBET can be established by using
measurement-based deterministic timing analyses (MBDTA) [46], and the DAG
can be generated during compilation.

Specification of a program (DAG) deadline allows the resource manager
to allocate appropriate resources, i.e., processor type and DVFS, to finish the
application close to the deadline, thereby saving energy. In turn, this resource
allocation requires that the task soft deadlines or latest finish time (LFT) must
be estimated. Given the task LFTs, the resource manager can manage the
resource allocation at run-time to save energy.

There are three main avenues for saving energy by slowing down a task
execution while meeting the program deadline: First, tasks can finish early
compared to its UBETs. The second scenario is the imbalance between a
task’s predecessors, where one or more tasks finish earlier than others. Since a
successor task can only start after all of the predecessors have been completed,
the predecessor tasks completed earlier than required can be slowed down to
save energy. The third opportunity is enabled by the availability of additional
processors. The user decides to change the hardware platform to one with
additional processors, or the operating system momentarily allocates additional
resources are some of the scenarios where it can happen. All these situations
allow the RM to slow down tasks while adhering to the program deadline.

Prior art can be generally divided into two categories: offline (static alloca-
tion) or on-line (dynamic allocation) techniques. Offline techniques offer low
run-time overhead and typically use computationally intensive optimization
algorithms. Baskiyar et al. [27] and Alonso et al. [28] provide two techniques
that identify the critical path and slow down the tasks that do not lie on it by
using DVFS. Kumar et al. [29] use a user-specified extension of the WCSL as
the deadline to save energy by means of DVFS and processor mapping. Lee et
al. [30] propose a scheduling method that minimizes the computational energy
by V-F scaling and reduces the communication energy using processor mapping.
All these techniques use offline estimations of the UBET of each task; thus,
they neither cater to the scenario of a task finishing earlier nor do they address
the situation of additional processors, leading to over-provisioning of resources
and, consequently, more energy consumption.
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The on-line or dynamic techniques make decisions at run-time based on
the behavior of the task-parallel application. Kang et al. [31] propose an
on-line method based on progress tracking of the application to identify each
task’s early-finish time and slow down the subsequent tasks using DVFS. This
method suffers from high overheads as the computationally intensive static
scheduling algorithm is run every time a task finishes early or late – furthermore,
neither processor mapping nor additional processors are considered limiting
the energy-saving potential. To fully harness the energy-saving potential, all
the energy-saving opportunities must be evaluated at run time with negligible
overhead.

Paper III targets the problem of saving energy using run-time resource
assignment, i.e., DVFS and processor type to tasks-parallel programs under
QoS constraints on makespan by exploiting variance and imbalance in task
execution time for a variety of processor allocation scenarios. Paper III
addresses the shortcomings in the prior art by proposing a novel resource
management approach, Task-RM, that consists of two steps. The first step
is offline analysis that sets the soft deadline for each task in a DAG. Here,
the task deadlines are computed for a range of processor counts solving the
challenge of portability to new hardware platforms. The run-time resource
manager tries to allocate the resources to meet the task deadlines. Adhering
to task deadlines ensures that the program finishes close to the deadline.

We advocate that the process of task-scheduling must be separate from re-
source management decisions, such as processor type and DVFS. Consequently,
our scheme can be used with any state-of-the-art scheduling method. The offline
analysis employs the user-defined task-ordering criteria and QoS specification
to compute the latest finish times (LFT) of the tasks for a range of processor
counts using the UBETs of the tasks. The offline analysis consists of two steps:
an offline simulation of a schedule using task UBETs, scheduling method, and
processor count resulting in task execution schedule. This step is repeated for a
range of processor counts resulting in a set of schedules. As a second step, each
schedule is analyzed where, among other things, task imbalance is analyzed,
and LFTs are adjusted. Secondly, for the case of additional processors, the
LFTs of tasks are increased as much as possible while adhering to the program
deadline. Finally, this information is compiled in a so-called Latest Finish Time
table (i.e., LFT-table).

The resource manager uses the LFTs of the tasks – for the available processor
count – as the soft deadline to allocate enough resources to each task at run-
time to save energy, thus avoiding recompilation of the schedule for the new
processor count. To assign the resources, that RM must carry out two sets of
predictions. First, it needs an estimation of the task-computation demand that
is accomplished by storing the history of the instruction count of tasks and
using averaging to predict the instruction count for future tasks. Secondly, task
performance and energy estimation are required to make resource allocation
decisions. In this regard, a prediction mechanism is devised based on storing
the Cycle Per Instruction (CPI), Misses Per Kilo Instructions (MPKI), and
Effective capacitance (CEff) for the executed task to predict the future task
using averaging. The resource allocation algorithm predicts the minimum
frequency that can meet the deadline for each processor type in the system.
Then the energy consumption at the predicted frequency is estimated. Finally,
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the processor expected to have minimum energy is allocated the task.
Task-RM is evaluated on an assumed sixteen-core platform with eight big

and eight LITTLE cores arranged in four clusters. The trace-based simulation
using real execution and energy statistics measured on an ARM big.LITTLE
platform (ODROID XU-3 board with Exonys 5422 [47]) is used to compile the
results. The workloads [48] used are adopted from the BSC Application Repos-
itory (BAR) [49]. Four schemes, i.e., Race-to-idle, Dynamic Slack Allocation
(DSA) [31], Oracle and Task-RM, are used in the evaluation. The program
deadlines are set equal to WCSL assuming the baseline processor allocation i.e.
2-big cores, 2-GHz.

First, we analyzed the energy savings for a fixed processor allocation where
Oracle and Task-RM offer an average energy savings of 36.66% and 33.55%,
respectively with respect to Race-to-Idle. The energy savings for Oracle provide
the upper limit of possible energy savings. It is also important to note that
Task-RM performs close to Oracle with only 8% fewer energy savings, thus
demonstrating its effectiveness in harnessing energy savings. Furthermore,
DSA delivers an energy saving of 15.11%. In other words, Task-RM shows
approximately 22% more energy savings compared to DSA.

Next, the energy savings are analyzed when additional processors are
allocated compared to a baseline allocation. The energy savings increase as
more processors are allocated. Still, they saturate at an allocation of eight big
and four LITTLE processors with energy savings of 58.8% for Oracle and 55.6%
for Task-RM, respectively. The availability of additional cores only increases
energy savings if there are ready tasks to execute (i.e., sufficient parallelism
in the DAG). The energy and timing predictions used in resource allocation
decision-making show a considerable high accuracy with an average of 95% and
93% for timing and energy predictions, respectively. Lastly, Task-RM incurs
less than 1% of timing and energy overheads, making it highly suitable for
run-time use.
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2.4 Summary of Paper IV

Approximate iterative applications (AIA), e.g., iterative solvers, are charac-
terized by the fact that the solution quality improves with each iteration and
applications finish when the solution error reaches a user-defined target. How-
ever, improvement in the solution quality saturates as the execution proceeds.
Thus, a slight relaxation in the solution error target can reduce the iteration
count to reach the solution quality target. This enables the resource manager
to reduce the resource allocation resulting in a significant energy reduction.
Paper IV targets the energy reduction for AIA on heterogeneous multicore
platforms, e.g., ARM big.LITTLE [7] while providing the statistical guarantees
on QoS constraints for timing and accuracy through appropriate resources
allocations, i.e., processor type, processor count, and voltage-frequency (V-F)
settings.

A considerable number of early proposals [23,26,50–54] have not considered
accuracy and only used resource allocation in terms of DVFS, processor type,
and processor count for improving energy efficiency under QoS constraints on
performance. However, the trade-off between computation accuracy and energy
reduction has been increasingly studied recently. Zhang et al. [32] target
energy reduction under accuracy constraints by providing schemes for iterative
methods and artificial neural networks (ANN) [33]. However, both these works
do not consider timing requirements and use offline characterization. Vassiliadis
et al. [34], and Hoffmann et al. [35] provide methods for maximizing accuracy
under an energy budget but do not provide timing guarantees. Moreover, they
use an offline-trained application-specific model [34] or application-specific
approximation controls [35]. The technique from Farrell et al. [36] provides
timing guarantees while reducing energy. However, it does not only fail to
provide quality guarantees but uses application-specific accuracy controls.
Dayapule et al. [37] propose guaranteeing the tail latency requirements and
curtailing the accuracy degradation but do not provide the quality guarantees
and use offline power and performance estimations. The technique proposed
by Kulkarni et al. [38] provides both the quality and throughput guarantees by
using dynamic recompilation to modify the processor and memory allocation
but uses offline characterization of the approximation design space for each
application.

In short, prior art has several fundamental shortcomings. First, the use of
application-specific approximation control limits the service beyond the applica-
tions employed. Second, application-specific offline analysis or characterization
curtails the energy-saving potential as run-time scenarios differ from offline
ones. Collectively, existing proposals do not offer a method to reduce energy
under both accuracy and timing constraints in an application-agnostic manner
that do not rely on application-specific offline analysis. Moreover, no technique
uses the entire configuration space, i.e., DVFS, processor type, and processor
count, along with approximation as a means to reduce energy consumption.

Paper IV proposes an application-agnostic framework for reducing energy
consumption when running approximate iterative applications on heterogeneous
multiprocessors. The approach taken is to trade a slight yet controlled accuracy
loss for energy while meeting timing deadlines. Paper IV presents Approx-RM.
Approx-RM allocates just precise resources in terms of DVFS, processor type,
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and processor count to meet the timing and accuracy constraints.

First, Approx-RM predicts the application iteration count to reach the
relaxed solution error target (accuracy constraint) and then uses it to estimate
a soft timing deadline for each iteration. Then application performance and
energy behavior on various configurations of the HMP is predicted. Finally,
the configuration estimated to meet the timing constraint and have minimum
energy is chosen. This process continues until the application concludes.

A solution based on curve fitting is proposed for the prediction of the
duration of the applications. The old samples of the solution error are stored in
a first in first out (FIFO) buffer and at the end of every iteration, a new sample
is pushed into said buffer and the oldest sample is discarded. Curve fitting is
done once the buffer contains all the new samples, thus curtailing the overheads.
The duration prediction first employs curve fitting to find parameters to a
decaying exponential mode, i.e., slope and intercept, and then uses it to predict
the duration of the applications in terms of iteration count required to reach
the required solution quality target.

The predicted iteration count, application deadline, and executed iteration
count are used to establish the soft deadline per iteration for the remaining
iterations. Finally, the soft deadline per iteration and performance and energy
prediction are used to find a minimum energy configuration that meets the
deadline per iteration requirement.

The performance and energy prediction mechanisms are based on storing
the history of instruction count, base cycle per instructions (CPI0), misses
per kilo instructions (MPKILLC) for the last level cache (LLC) and effective
capacitance (Ceff) by reading hardware performance counters and on-board
energy sensors after each iteration. In this context, a history table is maintained,
and values are stored as per processor-thread combination. The future values
are predicted using averaging of valid samples in the history buffer.

The resource allocation algorithm first uses the prediction model to predict
the minimum frequency for all the combinations of processor type and processor
counts. It then picks the minimum energy configuration while meeting the
timing requirements. This process is repeated after each iteration and continues
until the conclusion of the application. The reason is that the prediction of the
duration and timing and energy behavior of the application evolves throughout
application execution. Therefore, Approx-RM re-evaluates the duration and
architectural behavior to re-allocate the resources. All of these mechanisms
impose low run-time overheads.

Approx-RM is evaluated on an ARM big.LITTLE platform (ODROID
XU-3 board with Exonys 5422 [47]) containing four big and four LITTLE cores
organized in two clusters. Two sets of applications (published on web [55]) are
used, first applications from BSC Application Repository (BAR) [49] modified
to OpenMP and second specifically developed microkernels for multi-variate
linear regression (implemented in C++ using OpenMP).

Approx-RM is compared against Race-to-idle and Oracle. Race-to-idle
executes the applications at the fastest configuration, i.e., big-core, four threads
and 2 GHz, and then powers down. In contrast, Oracle allocates the resources
based on timing requirements but has perfect knowledge of the duration,
performance and energy behavior on the hardware of the applications. This
scheme serves as an upper bound of the energy savings on offer.
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First, we analyze the energy savings by relaxing the solution quality target.
Oracle and Approx-RM show an average energy saving of 23% and 11%,
respectively, compared to Race-to-idle with no reduction in solution quality
target and 35% and 26% energy savings, respectively, with 1% increase in
solution quality target. The additional energy savings with relaxation in
quality target is due to a reduction in iteration count by 11%. The reduction
in iteration count allows the increase in time allocation per iteration, thus
allowing the resource manager to reduce resources and save energy. Moreover,
Approx-RM is effective in harnessing the energy savings as it performs close to
Oracle.

The Oracle and Approx-RM shows the slack, that is, the difference between
the deadline and the execution time, of 4% and 15% with respect to the deadline.
This means that Oracle finishes very close to the deadline, and Approx-RM
finishes somewhat earlier compared to Oracle. This is also an indication of
the energy difference between the two schemes, as Oracle is more effective
in utilizing the slack. The timing and energy prediction offers at least 93%
and 94% accuracy, respectively. Lastly, the timing and energy overheads of
Approx-RM scheme are approximately less than or equal to 1%.



Chapter 3

Concluding Remarks and
Future Work

This thesis investigates the problem of energy reduction through appropriate
resource management under QoS constraints for applications executing on
heterogeneous multiprocessor (HMP) platforms. Specification of QoS in terms
of computational deadlines and solution quality allows the resource manager to
allocate just enough resources to fulfill the QoS requirements and thus save en-
ergy. The fundamental aspect here is that the user-specified QoS requirements
enable the resource manager to maintain a lower performance and trade it for
energy savings. This thesis targets single- and multi-threaded applications of
various types, i.e., data-parallel, task-parallel, and iterative approximate appli-
cations. Furthermore, it takes advantage of a multi-dimensional configuration
space, i.e., dynamic voltage/frequency scalaing (DVFS), processor type, and
processor count, offered by HMPs. The focus of the thesis is to design low
overhead resource management techniques that can be employed at run-time
to save energy under QoS constraints.

The first contribution of the thesis (detailed in Paper I ) is a scheme, i.e.,
SLOOP for resource allocation, in terms of DVFS and processor type, to
monitor applications at the granularity of loop iterations and predicting future
computational demand and execution time to finish on time. Evaluation of
SLOOP has demonstrated that considerable energy can be saved by such a
resource allocation policy while conforming to QoS specifications and incurring
negligible overheads.

The second contribution of the thesis (detailed in Paper II ) is a resource
management scheme, called SaC, for multi-threaded applications, where the
resources not only include the DVFS and processor type but also processor
count. SaC first selects an energy-efficient resources allocation that meets
the deadline. Then it uses the accumulated slack to utilize energy-efficient
resources, e.g., low-power cores or low frequency on big cores, that generally
violate deadline requirements. This methodology unlocks additional energy
savings. Additionally, SaC also proposes a low-overhead technique for online
prediction of performance and energy expenditure for applications on the entire
configuration-space based on interpolation.

As the third contribution, this paper presents Task-RM, a scheme to save
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energy in task-parallel applications executing on HMPs under QoS constraint
on finish time (also known as makespan). Task-RM identifies the variance in
execution time by monitoring each task and using the appropriate resource
allocation in terms of DVFS and processor type to save energy. The performance
requirements of tasks are established through an offline analysis that computes
soft deadline of tasks for a set of processor counts enabling the Task-RM to
save energy at run-time for a range of processor allocations without the need
for re-analysis. The run-time resource manager uses the soft deadlines of tasks
and performance and energy predictions to allocate an appropriate amount of
resources to the tasks to finish close to their soft deadline, thus ensuring the
completion time of parallel programs close to their deadlines.

Finally, the fourth contribution of this thesis is Approx-RM that exploits the
accuracy-energy trade-off in approximate iterative applications. Approx-RM
saves energy employing appropriate resource allocations while providing the
solution quality and timing guarantees. Approx-RM first predict the application
duration in terms of iteration count required to reach the user-specified solution
quality target by applying curve-fitting on recorded samples of the solution
error. Approx-RM then allocates appropriate resources in terms of DVFS,
processor type, and processor count using performance and energy predictions
to finish before the deadline to save energy.

Concerning future work, there are several avenues. First, the insights from
this thesis can be used to extend the resource management framework to server-
based applications where the QoS requirements are different, and application
characteristics offer unique opportunities to save energy. Server applications
typically consist of tasks invoked repeatedly from external events (from the
user) with timing constraints on tail latency. The repeated invocation of jobs
opens up opportunities to understand application behavior at runtime; however,
non-availability of slack (in a traditional viewpoint) due to strict tail latency
provision requires a novel resource management policy.

Secondly, we would like to apply the relevant findings of this work on
graphical processing units (GPUs) that offer a different set of challenges and
opportunities where the historical focus is on performance. Most existing
proposals do not employ QoS and propose a methodology similar to race-to-
idle [56]. QoS specifications allow the resource manager to save energy through
resource allocation, e.g., compute cores, DVFS, and others. Considering
the variety of application domains, e.g., graphics, machine learning (ML),
and scientific computing (SC) benefiting from GPUs, the first problem is
identifying and reasoning about QoS metrics. In some cases, i.e., graphics, it is
well established, but resource allocation proposals fail to utilize it. In other
instances, i.e., ML and SC, the QoS specification is not explicitly available,
thus requiring a thorough analysis of use cases. In this context, the CPU-based
resource management techniques cannot be applied to GPUs, and there is a
need to develop novel solutions.

Lastly, emerging applications, e.g., data analytics, machine learning and
genome analysis, are finding their way into embedded or edge devices. These
applications have high computational demand and often operate on a large
amount of data putting pressure on both computation units and memory
systems. On the other hand, embedded devices have limited compute and
memory capabilities and stricter power/energy constraints. Hence, traditional
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architectures hamper the adoption of such applications. Therefore, identifying
and adopting QoS specifications can stimulate numerous new design oppor-
tunities that are energy efficient, while delivering the required performance.
Furthermore, since these applications are often executed on domain-specific
accelerators, such as GPUs, the problem dimension and possibilities further
expand.
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