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Highlights
Microbial robustness is a complex multi-
faceted concept that is important for the
predictability and efficiency of biological
production. Robustness refers to the
stability of specific phenotypic traits
despite multiple perturbations.

Three simple principles that underlie the
common features of robustness are
applied in multiple fields.

Robustness must be distinguished from
tolerance because the latter relates to
cellular survival or growth in the face of
Microbial cell factories are becoming increasingly popular for the sustainable
production of various chemicals. Metabolic engineering has led to the design
of advanced cell factories; however, their long-term yield, titer, and productivity
falter when scaled up and subjected to industrial conditions. This limitation
arises from a lack of robustness – the ability to maintain a constant phenotype
despite the perturbations of such processes. This review describes predictable
and stochastic industrial perturbations as well as state-of-the-art technologies
to counter process variability. Moreover, we distinguish robustness from toler-
ance and discuss the potential of single-cell studies for improving system
robustness. Finally, we highlight ways of achieving consistent and comparable
quantification of robustness that can guide the selection of strains for industrial
bioprocesses.
a single perturbation.

Industrially relevant perturbations range
broadly across chemical, biological, and
physical factors that are often difficult to
predict.

Single-cell analysis can elucidate the
roles of subpopulations and population
dynamics in microbial robustness.

Quantification of robustness is sug-
gested as a tool for guiding strain and
bioprocess development.
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New cell factory designs are needed for robust industrial-scale bioprocesses
Over the past century microorganisms have been exploited in industrial bioproduction [1] of
primary (e.g., ethanol and lactic acid) and secondary metabolites (e.g., terpenoids), cells
(e.g., starter cultures and probiotics), and proteins (e.g., enzymes) [2–4]. Two different
strategies have emerged to meet the increasing demand for bio-based products. In the
first, inexpensive petrochemicals are replaced by sustainable microbially produced alterna-
tives; however, abundant and complex raw materials, such as lignocellulose and side gas
streams, remain a challenge for microbial fermentation [5]. In the second, a range of new
bioproducts including agricultural probiotics, nutritional proteins, silk materials, and
plastic-degrading bacteria are being developed, but their wider exploitation remains limited
by process inefficiency and scaling-up issues [6]. Central to both strategies is microbial
robustness (see Glossary), which describes the stability of a phenotype (e.g., titer, pro-
duction rate, and yield) when challenged by different disturbances or perturbations
[7–10]. Although strain engineering has improved tremendously since the mid-1990s [11],
poor robustness limits industrial-scale microbial production. Bioindustries constantly strive
for better strains, but their development in the laboratory often fails to consider the multiple
perturbations encountered in industrial settings. This lack of strategic oversight results in
poorly performing strains under large-scale conditions, leading to increased costs of com-
mercializing new bioprocesses [12].

The present review defines and discusses microbial robustness from different perspectives,
emphasizing the contribution of many fields of biology to the industrial applications of microbial
robustness. We discuss the importance of subpopulations in strain performance and tools for
understanding single-cell performance variations. We also discuss the various industrially
relevant perturbations that demonstrate how robustness is a distinct and broader concept
than tolerance. Finally, we propose principles for routinely quantifying robustness as a
guide for engineering cell factories through mathematical models.
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Glossary
Bet-hedging: a survival strategy based
on phenotypic heterogeneity within a
bulk isogenic population in which
intrinsic cell-to-cell variation can play a
beneficial role in the face of detrimental
perturbations in the environment.
Dynamic control (DC): a robustness
principle that refers to the feedback
control that system components
exercise on processes as a result of
network interactions within the system
itself. One example is the negative
feedback regulation that glucose-1-P
exerts on hexokinase 1 expression.
Modularity (M): a robustness principle
that refers to the subdivision of a system
into modules specialized for specific
tasks with the aim of optimizing system
processes. One example is the
compartmentalization of a cell into
different organelles.
Perturbation: environmental or genetic
change that can alter the phenotype of a
system. To maintain its functionality and
performance, the system responds with
phenotypic adjustments. Perturbations
in bioprocesses can be divided into
stochastic and predictable, based on
their nature.
Phenotype: single or multiple
observable cell characteristics
(e.g., yield, specific growth rate, cell
volume, etc.). Mathematically also
referred to as functions.
Phenotypic heterogeneity: a concept
Three principles of robustness for strain and bioprocess improvement
Principles of robustness
The concept of robustness has gained increasing interest over the past 30 years across different
fields [8]. Three ubiquitous principles underlie robustness, namelymodularity (M), redundancy
(R), and dynamic control (DC) (Figure 1) [13,14]. Modularity denotes the physical and/or
functional compartmentalization of processes in modules to improve the efficiency of a system.
Redundancy refers to processes in which different components or pathways perform the same
task. Lastly, dynamic control describes the regulation of a process by its components [13]. For
example, in a single-cell system, modularity can be represented by the organization of the
genome into regulons of coregulated genes that govern specific pathways and phenotypic states
[15]. Redundancy can be exemplified in yeast by the activation of stress-related genes by the
transcription factors MSN2 and MSN4, whose functions have been shown to largely overlap
[16]. Dynamic control is illustrated by the feedback inhibition of the amino acid tryptophan (Trp)
on its biosynthetic pathway in bacteria [17]. These concepts manifest in different biological con-
texts. Genetic robustness denotes the ability of a genetic sequence to remain stable and avoid
perturbing mutations through gene duplication (R) or alternative signaling pathways (M) [18]. In
neurobiology, a neuronal activity for a learned task reconfigures (or 'drifts') over time, but its
behavior remains the same (R) [19]. Ecosystem robustness summarizes the ability of an
ecosystem to maintain a balance owing to the enrichment of different niches and complex environ-
mental networks such as the feedback-regulated food chain (DC) [20,21]. Yeast metabolism uses
themodular nature of central enzymatic pathways to achieve robustness against metabolic inhibitors.
For example, when challenged by furaldehydes and phenolics released during pretreatment of
lignocellulosic biomass, NAD(P)H is required for detoxification reactions. To maintain the redox
balance, the metabolic fluxes enhance the pentose phosphate pathway over glycolysis (DC) [22].

Interdisciplinary strategies
The three principles – modularity, redundancy, and dynamic control – offer several approaches
for improving industrial microbial robustness. A possible application of ecology and modularity
in bioprocess design could involve the coculture of microbes that cooperate in substrate
TrendsTrends inin BiotechnologyBiotechnology

Figure 1. The three key principles o
robustness. Schematic representation
of a system (e.g., a cell) and its
processes and component interactions
The components in the system are
represented by circles (Ο), each o
which is able to fulfill a different task
represented by an arrow (→). The
pathways connecting two differen
components are defined as processes
(represented by Ο→ … →Ο). With this
model it is possible to explain the three
principles of robustness: modularity (e
g., sets of coexpressed genes involved
in a process), redundancy (e.g., gene
activation by multiple transcription
factors), and dynamic control (e.g.
feedback inhibition).
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of population heterogeneity that follows
subpopulations with phenotypic and
behavioral differences within the same
bulk isogenic cell population. Such
differences can be caused by both
intrinsic factors (e.g., differential gene
expression) and/or extrinsic factors
(e.g., different physiochemical gradients
of substrate).
Redundancy (R): a robustness
principle that refers to the event in which
the same process can be executed by
different components within the system.
For example, the conversion of furfural
into furfuryl alcohol in yeast can be
performed by both ADH1 and ADH5.
Robustness: the ability of a system to
maintain unchanged performance when
one or more perturbations occur. In an
industrial environment, microbial
robustness refers to the ability of the
microbe tomaintain constant production
performance (defined as titers, yields,
and rates) regardless of the different
stochastic and unpredictable
perturbations occurring in a bioprocess.
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Tolerance: the capability of a
microorganism to survive when exposed
to a single or multiple perturbations. It is
generally described only by
growth-related parameters (such as
viability or specific growth rate) and can
also be referred to as resistance.
degradation and bioproduction, but do not compete for the same carbon source. For instance,
coculture of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum for
bioethanol production is a promising example [23]. C. thermocellum is able to metabolize cellu-
lose and hemicellulose into ethanol and sugar monomers, which it is unable to consume. On
the other hand, T. saccharolyticum is unable to degrade cellulose and hemicellulose, but can
efficiently metabolize monomeric sugars into ethanol/weak acids. Process robustness in the
face of a variety of perturbations in bioprocess streams may be achieved by cocultivation of mul-
tiple variants of the same strain, each specialized in tolerating a particular condition (R). In the
treatment of dairy wastewater through high-rate anaerobic digestion, process robustness to
physiochemical perturbations is maintained because of the functional redundancy of the micro-
bial sludge community [24]. Alternatively, metabolic robustness may be strengthened by devel-
oping a microbial strain with switchable genetic modules that are activated depending on the
type of stress encountered (DC and M). An increase of 17.5% in ethanol productivity was
achieved by implementing in S. cerevisiae strain SyBE005 stress-driven modules aimed to im-
prove of reactive oxygen species (ROS) detoxification and acetic acid degradation [25]. This
study highlighted the importance of biosensors that can sense specific intracellular parameters
(e.g., oxidative stress [26]) in the development of new strains and improvement of bioprocesses.

Cell factory design should incorporate robustness
Robustness goes beyond tolerance
In industrial microbial applications, the concepts of robustness and tolerance have sometimes
been used interchangeably even though they refer to different phenomena. Tolerance (or
resistance) represents the ability of a cell to grow (measured as viability or specific growth rate)
in the presence of a single or multiple perturbations, such as the concentration of a chemical
and/or a physical condition (e.g., temperature, acetic acid, etc.) (Figure 2A, left panel). Microbial
robustness denotes the ability of a microorganism to maintain a stable industrial performance
(quantified as titers, rates, and yields) when facing one or multiple challenges (Figure 2B) [10].
Therefore, although tolerance only considers viability and/or specific growth rate, microbial
robustness encompasses the stability of the production and growth of a microbe in different
conditions evaluated using different measures. Increased tolerance to one or multiple toxic
compounds or conditions is usually tested by analyzing growth curves or viability (Figure 2A,
right panel). Such studies are instrumental for understanding cell physiology, but are not sufficient
for the development of industrially relevant strains because they do not include studies on
production and performance stability [27,28]. New strains have often been developed under
standard laboratory parameters using model organisms (e.g., Escherichia coli MG1655, 20 g/l
glucose to fed-batch, pH = 5–7, 72 h); however, these do not accurately convey the complexity
of industrial settings where robustness is crucial [29].

Trade-off between growth/production and robustness
In natural and engineered biological systems, higher robustness and tolerance to stresses is
sometimes achieved at the expense of growth and/or production performance [30–32]. This
trade-off generally results in slow-growing and/or slow-producing subpopulations that are
often more tolerant and/or robust to perturbations (Figure 2C). Robust systems are often charac-
terized by modularity, redundancy, and dynamic control, all of which are features that may be
energy-demanding [14,33]. In parallel, during fast growth/production, microorganisms dedicate
most of their resources for that purpose. This situation may underlie how biological systems
trade-off robustness and high performance. For example, slow-growing bacteria are less sensi-
tive to antibiotics [34], whereas slow-growing subpopulations of Saccharomyces cerevisiae
exhibit higher tolerance to heat or acid stress [30]. It remains to be determined whether slow
growth confers an inherent advantage by allowing the cells to balance metabolic networks, or
Trends in Biotechnology, Month 2022, Vol. xx, No. xx 3
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Figure 2. Tolerance, robustness, and trade-offs. (A) Tolerance can be tested by growing different microorganisms (S1, S2,
and S3) under increasing intensities of perturbation and assessing their ability to grow ( + ) or not ( – ). In the example, S1andS2 are
more tolerant than S3 (left panel). Detailed analysis of growth curves can discriminate between microorganisms with the same
growth threshold and apparent tolerance level. In the example, S2 is more tolerant than S1 (right panel). (B) Microbial
robustness takes into consideration the phenotype stability of microorganisms. In the example, system 1 and system 2
represent two different microorganisms compared in terms of specific growth rate, cell dry weight (CDW), and production yield.
System 1 shows more stability across different perturbations (p1, …, p5) than system 2 and can be considered to be more
robust. (C) Trade-off denotes a situation in which a quality or property is diminished in favor of another quality or property. In
the example, a system constituted by a bulk population of cells includes multiple subpopulations, each of which might be
subjected to a trade-off with respect to specific growth rate and perturbation intensity.

Trends in Biotechnology
OPEN ACCESS
whether it reflects the metabolic burden of producing stress-protecting molecules such as the
sugar trehalose, which accumulates in slower-growing older cells [30]. Population dynamics and
single-cell studies could help to select slow-growing or slow-producing strains/subpopulations
4 Trends in Biotechnology, Month 2022, Vol. xx, No. xx
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that are capable of withstanding a broader range of perturbations and conditions, as opposed to
faster-growing and -producing but less robust microbial mutants [35].

Population dynamics at single-cell resolution provides insights into robustness
mechanisms
Phenotypic heterogeneity and bet-hedging
Growing evidence shows significant single-cell variation in bioprocesses, which influences overall
productivity [36]. This has led to the concept of phenotypic heterogeneity, which refers to phe-
notypically diverse subpopulations within an isogenic bulk population. Such non-genetic pheno-
typic cell-to-cell variation may underlie the observed response to perturbations (Figure 3).
Phenotypic heterogeneity may occur owing to intrinsic factors (e.g., individual physiological state,
stochastic gene expression/noise, and cell-cycle phases) and/or heterogeneous extrinsic factors
(e.g., chemical mixing gradients and variation in cell density) [37]. Phenotypic heterogeneity may
thus be reversible, whereas the emergence of genetic heterogeneity represents intrinsic one-way
TrendsTrends inin BiotechnologyBiotechnology

Figure 3. Population heterogeneity affects robustness in industrial processes. Schematic representation of population dynamics for an isogenic population together
with the productivity of a desired industrial process at timepoints t0 (start) to t16 (end). Even though all cells share the same genome, there are subpopulations with different
phenotypes (cells with different colors). Over time and upon the occurrence of different stresses, subpopulations with greater fitness against a specific perturbation take over
(left graphs), even though productivity might not be constant over the entire process (right graphs). In the example, perturbation #3 results in lower productivity compared to
perturbation 1 because it favors the blue subpopulation, whereas perturbation 2 leads to higher productivity with respect to perturbation 1.
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degeneration of the high-production phenotype [38]. Intrinsic causes of heterogeneous
proliferation and stress tolerance might be linked, for example, to differences in mitochondrial
membrane potential within cell populations [39], whereas extrinsic factors include physicochemical
bioreactor concentration gradients [36]. A biosensor for L-valine in bacteria highlighted how only a
proportion of the cells were actually involved in L-valine production, confirming the presence of
different growth and production patterns within the same population [40].

Phenotypic heterogeneity arising from intrinsic factors sometimes offers a natural survival strategy
to unknown future challenges, a phenomenon known as bet-hedging [41]. Accordingly, iso-
genic populations can increase their chances of survival upon sudden environmental changes
by distributing risks (i.e., different phenotypes) among the bulk population. In an isogenic yeast
bulk population, a slower-growing small subpopulation was found to overexpress TSL1, a
gene involved in the synthesis of trehalose [30]. Following temperature stress, the TSL1-
overexpressing subpopulation immediately became the predominant subpopulation. Studies
using microfluidic devices showed how, in the presence of the antibiotic cycloheximide, a sub-
population expressing higher levels of PDR5, an ATP-dependent membrane transporter, exhib-
ited a higher specific growth rate compared to a subpopulation with low PDR5 expression [42].
Another example is the diauxic shift in Lactococcus lactis and S. cerevisiae, whereupon growth
in a medium with two different carbon sources allows a subpopulation to prepare for subsequent
growth on a less preferable carbon source [43,44]. Similarly, exponentially growing S. cerevisiae
cultures respiring on glucose consist of two distinct subpopulations, of which the slowest ap-
pears to be more prepared for sudden starvation [4]. Therefore, bet-hedging subpopulations
may enjoy an advantage in an unstable environment (e.g., different rawmaterial streams), allowing
better-suited cells to quickly dominate a new condition, as a degree of robustness [45].

Single-cell analysis allows the discovery of new robustness traits
The link between robustness/tolerance and population dynamics is gaining more relevance in
bioprocesses. Over recent years several single-cell technologies have provided new insights into dif-
ferent biological events. For example, cellular barcoding represents an efficient way to monitor how
different subpopulations evolve during the desired process and for identifying the mutational order
driving this change [46–48]. Single-cell RNA-seq has been used to study the dynamics of isogenic
yeast populations growing on a shifting carbon source, highlighting the accompanying heterogeneity
and key molecular processes [49]. Flow cytometry was used to identify early stationary-phase sub-
populations with increased lignocellulosic inhibitor tolerance [50], as well as growth-phase heteroge-
neity in a bioreactor [51]. Cell-sorting techniques together with fluorescent biosensors of intracellular
fluxes (e.g., glycolytic flux [52]), products (e.g., octanoic acid [53]), or concentrations (e.g., ATP [54])
can be used for the identification ofmore active subpopulations and for their selection during adaptive
laboratory evolution experiments [55], as in the case of improved L-valine production in bacteria [56].
A toolbox of biosensors able to sense different aspects of the intracellular environment might be used
for unveiling such dynamics and features [57]. Unlike flow cytometry, mass cytometry (CyTOF) en-
ables the detection of >40 surface and intracellular markers per cell among millions of single cells
[58]. Although CyTOF has been applied mainly in immunological studies [59], it could be adapted
to microorganisms in industrial applications. Single-cell analysis and population dynamics could link
intracellular parameters with strain performance, allowing the design of more robust strains.

Predictable and stochastic perturbations challenge microbial performance
When scaling up a process from laboratory to industrial settings, not all perturbations are taken
into account, even though they may crucially affect the success of a newly developed strain
[27]. Challenges related to industrial conditions range from predictable and reproducible to
stochastic, occasionally leading to lost batches [60,61] (Figure 4).
6 Trends in Biotechnology, Month 2022, Vol. xx, No. xx
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Figure 4. Perturbations in industrial processes. Relevant perturbations in industrial processes are shown along the
process pipeline. Substrate batch variation (differences in the chemical composition of raw materials) and the initial quality
of the cell factory are the first problems an industrial process might face. Pretreatments of the raw material can release
compounds that interfere with the growth and productivity of microorganisms. Once the reaction starts, both predictable
and stochastic perturbations can arise. The former includes physical (temperature, mixing time, oxygen supply, and shear
force) as well as chemical (substrate and end-product inhibition) perturbations, whereas the latter may occur stochastically
as a result of contaminations or mutations that lead to compromised product quality.
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Predictable perturbations in bioprocesses
One of the requirements for greener bioproduction is the use of low-cost, renewable raw materials
such as lignocellulosic biomass. Different batches and pretreatments can significantly affect the
composition of the substrate used in the bioprocess and add variability [62]. Alongside substrate
inhibition (e.g., high sugar content [29]), pre-treatment of rawmaterials may release inhibitors of mi-
crobial metabolism: furans, weak acids, and phenolics [63]. Short-term lignocellulose-adapted
precultures, wherebymicroorganisms are challengedwith diluted substrate during the propagation
phase, may help to overcome this variability [64]. A recent study highlighted the importance of the
physiological state of the cells before exposure to lethal ethanol levels, and of their long-term tran-
scriptional survival strategies after contact with the stressor [65]. Nevertheless, the increasing con-
centration of end-product following substrate bioconversion will inevitably cause inhibition. During
high-gravity ethanol production, elevated ethanol concentrations can lead to a sudden drop in cell
viability and a consequent reduction in ethanol productivity [66,67]. A possible solution to this prob-
lem comes from studies on aneuploidy, which suggest that aneuploidy of chromosome III en-
hances ethanol tolerance [68]. Industrial fermenters add several physicochemical variables that
challenge microbial growth. These include low pH, as in the case of succinic acid production
[69], the nutrient and oxygen gradients formed as a result of prolonged mixing times and elevated
shear pressure [62,70], and high temperatures (above 30–37°C), which hinder competing micro-
organisms and invading bacteriophages or offer a compromise between substrate saccharification
and fermentation temperatures [71].

Stochastic perturbations in bioprocesses
Being able to predict stochastic perturbations, that often lead to cost increases, would greatly
streamline strain and fermentation development. Starter seed cultures are stored in freezers, a con-
dition that might cause cell viability and vitality to vary between batches and vials [72]. Therefore,
both the dry weight and activity of cells in the initial bioprocess inoculum should be considered
[73]. Viral, bacteriophage, and bacterial contamination can severely impact on both mammalian
and microbial bioproduction (e.g., leading to premature shutdown of bioprocesses); this can be
avoided through rigorous PCR-based testing of raw materials [74], the use of antibiotics [75], or
by engineering strains which efficiently assimilate xenobiotic media compounds and thus outcom-
pete contaminants [76]. It is possible to use specific testing regimes or bacteriophage-resistant
mutant strains to avoid phage contamination in microbial bioreactors containing Lactobacillus
ssp. [77]. The harsh conditions within industrial processes put selective pressure on microorgan-
isms, and thus promote genetic heterogeneity within the population, whereby subpopulations
with different genetic compositions arise as a result of spontaneous mutations [78]. Although
mutations are stochastic, the constantly high selective pressure and the presence of a mutation
already in a cell bank could lead to recurring enrichments of such faster-growing subpopulations,
thus limiting the volumetric scale of a fermentation process, as captured through deep DNA
sequencing [38]. Moreover, age-drivenmodifications in physiology, morphology, and gene expres-
sion lower the performance of microorganisms [79]. All the above-mentioned stochastic events
highlight the central role that robust microorganisms play in overcoming various perturbations
and ensuring stable performance.

Robustness quantification for accurate microbial performance predictions
Robustness is an abstract and relative term that can be difficult to quantify in a standardizedman-
ner. Its quantification would help industrial strain engineers to identify robust strains for more
efficient and cost-effective processes, or to elucidate complex cellular functions such as protein
production and cancer proliferation [80]. A high-throughput study on E. coliwith disrupted central
carbon metabolism showed that, despite numerous genetic and environmental perturbations,
the bacteria were able to redirect fluxes with only minor changes in transcriptome and protein
8 Trends in Biotechnology, Month 2022, Vol. xx, No. xx
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expression [81]. This example confirms the tight link between robustness quantification and the
biochemical, metabolic, and genetic aspects determining cellular functions (e.g., the manifesta-
tion and quantification of relevant phenotypes) [82]. Robustness has been quantified with
biomarkers that measure the advantage against lethal stresses conferred by exposure to mild
stresses. The index of robustness was expressed as the number of microorganisms N surviving
the stress after a time t compared to N at time zero [83] (according to our Glossary, the latter
method would quantify tolerance). Taking the quantification further, considering robustness
R as a property of a system s to maintain a function a under internal and external perturbations
P [14], robustness can be explained by Equation 1 introduced by Kitano [9]:

RS
a,P ¼

Z
P
ψ pð ÞD s

a pð Þdp ½1�

Robustness is defined here as the integration across the spaceP of the probability functionψ (p) (the
probability of occurrence of a single perturbation, p) multiplied by an evaluation function Da(p). The
latter describes to what degree a specific function a is perturbedwhen subjected to p compared to a
non-perturbed state p0 (Figure 5A). If the function (e.g., yields, specific growth rate) of a system is not
altered across several perturbations, the system is more robust than one whose function is highly
affected over the same range of perturbations (Figure 5B). Equation 1 could describe the robustness
of a specificmicroorganism (the system, e.g., S. cerevisiaeCEN.PK113-7D)with respect to the eth-
anol production titer (the function) under industrial growth conditions (the perturbation space, e.g.,
temperature, oxygenation, inhibitors) weighted by the probability to encounter the condition itself
(e.g., 30°C, very probable; 50°C, rarely probable). To attain a broader estimate of robustness, the
concept can be expanded by considering multiple desired functions a, such as other performance
and growth indicators. When multiple parameters are combined, the robustness of each function
can then be weighted differently based on the desired outcome of the process: maximum specific
growth rate and biomass yield are more important than ethanol yield when S. cerevisiae is used in
baking. Equation 1 has been used in recent years to perform conditional robustness analysis on or-
dinary differential equation (ODE) models describing pathways or biochemical interaction networks
of lung cancer [84]. The analysis identified nodes in the pathway that are crucial for cancer cell pro-
liferation and represent potential new drug targets [84].

Conditional robustness analysis, as used for lung cancer networks, could be applied in industrial
biotechnology for the identification of network nodes that can act as robustness markers [80,84].
By identifying metabolic pathways linked to the robustness of specific functions (e.g., through the
use of genome-scale metabolic models), one could simulate how enzymes levels change when
kinetic parameters are perturbed by environmental or intracellular perturbations [80,84]. In
addition to Equation 1, another commonly used measure of robustness is the coefficient of
variation (CV), which is expressed as the standard deviation σ of the mean μ of a measured
quantity (e.g., product yield, gene expression profile, etc.) divided by the mean μ. Measurements
have included the size of transcriptional mRNA bursts [85] to determine expression noise, as well
as temporal stability evaluations in ecology [86]. CV can be substituted by the Fano factor, in
which the variance of a measured quantity is divided by its mean. The Fano factor is often
preferred over the CV because it allows more reliable and standardized quantification [85–87].
In metabolic engineering, the CV has been used to calculate the robustness of metabolic pathway
fluxes [88] as described in Equation 2:

R ¼ 1−
σ
μ

½2�
Trends in Biotechnology, Month 2022, Vol. xx, No. xx 9
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Figure 5. Robustness quantification.
(A) Representation of robustness
according to Equation 1. Robustness (R)
is described as the integration across the
space P (set of multiple perturbations, pn)
of the probability function ψ(p) multiplied
by an evaluation function Da(p) (ratio
between the function a in the selected
perturbation p and the same function a in
the control condition p0). (B) Perturbations
(p1, p2, and p3) and phenotypes (a1, a2,
and a3) of two systems (s1 and s2) are
shown in the grid. In the example, system
1 comprises more non-perturbed states
than system 2 and can be considered to
be more robust. The thick line across the
graph represents a threshold above
which all phenotypes fail for all systems.

Trends in Biotechnology
OPEN ACCESS
Kitano’s formula (Equation 1), the CV (Equation 2), and the Fano factor all determine the stability of
a given function in a perturbed space (i.e., robustness). However, whereas CV describes the var-
iability of the measured quantity across various conditions with respect to the mean, Kitano mea-
sures how the quantity changes when exposed to different perturbations compared to a control
condition. Therefore, Kitano requires a control condition, and attributes to robustness the ability
to maintain all functions equal to the control condition. By contrast, CV focuses on the variability of
the functions, regardless of whether they perform differently from a control condition. Furthermore,
Kitano does not consider all the perturbations to be equally relevant, but directs the robustness
index towards the most probable perturbations.
10 Trends in Biotechnology, Month 2022, Vol. xx, No. xx
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Outstanding questions
Will the new single-cell analysis tools
be able to identify new features/
characteristics/genes related to robust-
ness to improve industrial processes?

How can robustness quantification
methods be used for industrial
purposes?

Are some perturbations more relevant
than others in predicting strain
robustness?

What role do subpopulations play in
robust processes?

To what extent do production
phenotypes trade-off with robustness?

Can robustness be engineered with a
combination of modularity, redundancy,
and dynamic control?

How can transfer to larger scales with
ensured robustness take place?
CV can also be applied for single-cell measurements to evaluate population heterogeneity.
Indeed, some subpopulations might exhibit greater robustness with respect to the averaged R,
causing an imprecise classification of the selected strain [89].

Quantification of microbial robustness will be a fundamental measurement to integrate in big-data
analytics to optimize bioprocesses [90]. Large datasets can be used as basis for emerging artificial
intelligence to predict and control bioprocesses. In cream cheese production, an artificial neuronal
network together with a mechanistic model have been developed to predict overall fermentation
time using only the initial biomass, lactose, and lactic acid concentrations as variables [73]. A hybrid
framework integrating data-driven methods with a genome-scale metabolic model demonstrated
promising accuracy when predicting E. coli performance under typical bioprocess conditions and
available pathways [91]. Big data gathered in fermentation processes (for example from in situ bio-
sensors [92], spectroscopic sensors [93], and free-floating wireless sensors [94]), potentially stored
in phenomic datasets, could be used to calculate robustness for many strains in silico, and have
subsequently been adopted in strain design and large-scale fermentations. Data-driven andmech-
anistic models, such as partial least-square regression, could predict how robustness changes as
a function of internal and external perturbations, for example by measuring possible robustness
markers. Therefore, mathematical quantification of robustness, together with machine learning
and big data, could become significant players in guiding strain design.

Concluding remarks and future perspectives
Better integration and understanding of robustness in strain and process design are central
to resolving the bottleneck faced by bio-based industries in getting their products to the mar-
ket. The broad application of robustness in biotechnology will likely inspire novel approaches
such as the utilization of microbial consortia with dynamic interactions among their members
(see Outstanding questions) [95,96]. In contrast to tolerance, microbial robustness is a mul-
tidimensional concept. Robustness covers the stability of multiple phenotypes (e.g., produc-
tion-related), whereas tolerance only covers on growth-related phenotype. Both tolerance
and robustness might concern either single or multiple perturbations. However, for a
bioprocess to be robust, the selection and design of strains should consider the collective
set of industrial perturbations. A common strategy to improve the tolerance and/or produc-
tion of microorganisms for industrial applications is through adaptive laboratory evolution,
whereby natural selection and mutations act in synergy under selective pressure [97,98]. A
computational evolution system showed that mutations acquired during fluctuating condi-
tions made a new strain more prone to adapt to previously encountered conditions and de-
vise future adaptations [99]. This highlights the importance of varying the nature and
composition of perturbations during adaptive laboratory evolution to achieve robust strains
capable of facing multiple challenges, rather than only increasing the harshness of a single
perturbation and improving tolerance.

Ongoing efforts in modeling the complex networks of interactions defining microbial robust-
ness will eventually provide a solid and reliable instrument for the characterization and
selection of industrially relevant cell factories. Recent single-cell techniques unveiling
population dynamics are offering new insights into bioprocesses, as well as key features
and indicators of cellular and/or process status. Finally, robustness quantification, used
both as a tool to find intracellular robustness markers and as a measure of phenotype
stability, could lead the choice towards a highly stable and performing industrial
microorganism. Although we are only now beginning to understand the complex
mechanisms behind robustness, a full comprehension will pave the way for successful
bioprocess and strain design.
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