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Abstract 
In this paper, we evaluate and compare the multiple model Poisson multi-Bernoulli mixture (MM-PMBM) and the 

multiple model probability hypothesis density (MM-PHD) filters for mapping a propagation environment, specified by 
multiple types objects, using 5G millimeter-wave signals. To develop the MM-PMBM applicable to 5G scenarios, we 
design the density representation, data structure, and implementation strategy. From the simulation results, it is 
demonstrated that the MM-PMBM captures the objects and is robust to both missed detections and false alarm compared 
to the MM-PHD.

Ⅰ. Introduction 
5G mapping has several specific challenges, due to imperfect 

detection process at the mobile receiver, limited and time-varying 
detection range with the variable field-of-view (FoV), false 
detections (due to clutter and channel estimation errors), different 
object types, and uncertainty of data association. To handle these 
challenges, random-finite-set (RFS) based methods provide a 
powerful framework and include the probability hypothesis 
density (PHD) [1] and Poisson multi Bernoulli mixture (PMBM) 
filters [2]. The authors in [3] developed a multiple model PHD 
(MM-PHD) filter, which can map the environment, but suffers 
from performance degradation when the objects are closer. 

In this paper, we introduce the multiple model PMBM (MM-
PMBM) and its implementation to deal with closely located 
objects. We demonstrate that the MM-PMBM has a mapping gain 
over MM-PHD and is more robust to both missed detections and 
false alarm. 

Ⅱ. Models 
We consider a moving user equipment (UE) with known state. 

The UE state at time 𝑘 is denoted by 𝐬!  and includes the 3D 
position, heading, and turn rate [4]. We adopt the propagation 
environment model from [4], characterized by the base station 
(BS), virtual anchors (VAs) that model large reflecting surfaces, 
and scattering points (SPs) that model small objects. We denote 
object location by 𝐱 = [𝑥, 𝑦, 𝑧]" with the spatial density 𝑓(𝐱), 
and object type by 𝑚 ∈ {BS, VA, SP}, and an RFS of the objects 
with tuples (𝐱,𝑚) by 𝒳 with the set density 𝑓(𝒳). At time 𝑘, 
the vehicle receives multipath signals, and signal detections follow 
a detection probability, modeled as  𝑝#,!(𝐬! , 𝐱,𝑚) ∈ [0,1] with 
the FoV as depicted in Fig. 1. By the channel estimation routine at 
the receiver, the vehicle observes measurements, denoted by an 
RFS 𝒵! = {𝑧!%, … , 𝑧!

&!} , where 𝐽!  is the number of detected 
signal paths. We model each measurement element as 𝑧!

' =
ℎ(𝐬! , 𝐱( , 𝑚() + 𝐫!

' , where ℎ(𝐬! , 𝐱( , 𝑚() = [𝜏!
' , (𝜽!

' )", (𝝓!
' )"]" , 

and 𝐫!
' 	~	𝒩(𝟎, 𝐑) denotes the measurement noise. Here, 𝜏!

' , 𝜽!
' ,  

𝝓!
' , and 𝐑  respectively denote a time-of-arrival (TOA), 

direction-of-arrival (DOA) in azimuth and elevation, direction-of-
departure (DOD) in azimuth and elevation, and known covariance 
matrix. We also consider clutter, generated by either false alarm 
(e.g., channel estimation error) or transient object (e.g., passing car 
or people) as measurement elements. Note that the association 
between the measurement 𝐳!,)  and the object identifier 𝑖 , 
location 𝐱( and type 𝑚( are unknown. 

III. MM-PMBM for 5G Mapping 
Density Representation: We introduce the PMBM density [3]. 

𝑓*+,+(𝒳) = K 𝑓*-.(𝒳/)𝑓*+,+(𝒳#),
𝒳"⊎𝒳#2𝒳

 (1) 

where 𝑓*-.(𝒳/) denotes a Poisson density for the objects which 
have never been detected, 𝑓*+,+(𝒳#) denotes an MBM density 
for the previously and newly detected objects, and ⊎ denotes the 
 

 
Fig. 1. Propagation environment, characterized by the BS, VA, 
and two SPs. 

disjoint union. Here, 𝒳/ denotes a set of undetected objects, and 
𝒳#	denotes a set of previously or newly detected objects. The 
Poisson density is defined as 

𝑓*-.(𝒳) = 𝑒34N𝜇𝑓(𝐱)
𝐱∈𝒳

, (2) 

where 𝜇  is the mean of the Poisson distribution for the set 
cardinality, and intensity function is defined as 𝜆(𝐱) = 𝜇𝑓(𝐱). 
The MBM density is defined as 

𝑓+,+(𝒳) =K𝑤7𝑓+,7 (𝒳),
8

 (3) 

where ℎ  denotes an index of global hypotheses, 𝑤7  is the 
weight of 𝑓+,7 (𝒳) , and ∑ 𝑤7 = 17 . Here, the MB density 
𝑓+,(𝒳) is represented as 

𝑓+,(𝒳) = K N𝑓,(𝒳()
(2%𝒳$⊎…⊎𝒳%2𝒳

. (4) 

The Bernoulli density 𝑓,(𝒳) is defined for |𝒳| as 

𝑓,(𝒳) = U 1 − 𝑟,					𝒳 = ∅,
𝑟𝑓(𝐱),			𝒳 = {𝐱}, (5) 

Data Structure: We explicitly need to consider data association, 
and thus we update both global hypotheses and hypotheses tree. 
The previous global hypotheses is represented by 𝐇!3% ∈
ℝ:!&$×<!&$, where 𝐻!3% indicates the number of previous global 
hypotheses, and 𝐼!3% indicates the number of detected potential 
objects at previous time, with 𝐻!3%(ℎ, 𝑗) (row ℎ, column 𝑖 of 
𝐻!3%) denoting the data association of the ℎ-th global hypothesis 
and the 𝑗-th track at time 𝑘 − 1. The weight of global hypotheses 
is represented by 𝐰!3% = [𝑤!3%% , … ,𝑤!3%

:!&$]" , and its ℎ -th 
element 𝑤!3%7  is the weight of ℎ-th global hypothesis. We adopt 
the track-oriented implementation [3]. Then, there are 𝐼!3% single 
tracks, and track 𝑖  consists of 𝐻!3%  local hypotheses. Data 
structure at the end of time 𝑘 − 1 consists of undetected object 
density, and detected object, and global hypotheses: 𝜆=,!3%(𝐱,𝑚); 

_U`𝑓=,!3%
(,7' (𝐱,𝑚)a

>2{@A,B*}
		 , 𝑟=,!3%

(,7' b
7'2%

:!&$
'

c
(2%

<!&$

, d𝑤!3%7 e72%
:!&$; 𝐇!3% 

(global hypotheses matrix). 
Prediction: For the undetected objects, the intensity is predicted  

as 𝜆D,!3%(𝐱,𝑚) = 𝑝B(𝑚)𝜆=,!3%(𝐱,𝑚) + 𝜆,(𝐱,𝑚), where 𝑝B  is 
the survival probability, and 𝜆,(𝐱,𝑚) is a birth intensity, which 
is also represented as a scaled uniform distribution [5]. For the                  
detected objects, the Bernoulli components for local hypothesis ℎ 
of track 𝑖 is predicted as 



 
(a) 

 
(b) 

Fig. 2. Average GOSPA of the (a) VA and (B) SP for the 5G 
MM-PMBM compared to the 5G MM-PHD. 

𝑓D,!3%
(,7' (𝐱,𝑚) = 	

𝑝B(𝑚)𝑓=,!3%
(,7' (𝐱,𝑚)

∑ ∫ 𝑝B(𝑚E)𝑓=,!3%
(,7' (𝐱′,𝑚′)d𝐱′>E

 (6) 

𝑟D,!3%
(,7' = 𝑟=,!3%

(,7' K∫𝑝B(𝑚)𝑓=,!3%
(,7' (𝐱,𝑚)d𝐱.

>

 (7) 

Correction: The correction step consists of the four parts as 
follows: part i) misdetections of the undetected objects; part ii) 
detections of the undetected objects, which are potentially detected 
for the first time or clutter; part iii) misdetections of the previously 
detected objects; and part iv) detections of the previously detected 
objects. In part i), the intensity function is computed as 
𝜆=,!3%(𝐱,𝑚) = (1 − 𝑝#,!(𝐱,𝑚))𝜆D,!3%(𝐱,𝑚), where 𝑝#,!(𝐱,𝑚) 
is an adaptive detection probability. In part ii), each MBM 
component for the measurement 𝐳!

' ∈ 𝒵!are calculated as 

𝑓=,!
' (𝐱,𝑚) = 	

𝑝#,!(𝐱,𝑚)𝜆D,!(𝐱,𝑚)𝑔(𝐳!
' |𝐱,𝑚)

∑ 𝑒!
'(𝑚E)>E

, (8) 

𝑟=,!
' =

∑ 𝑒!
'(𝑚)>

𝜈!
'({𝐳!

'})
, 𝑤!

' = 𝜈!
'ld𝐳!

'em, (9) 

where 𝑒!
'(𝑚) = ∫ 𝑝#,!(𝐱,𝑚)𝜆D,!(𝐱,𝑚)𝑔(𝐳!

' |𝐱,𝑚)d𝐱 , and 
𝜈!
'ld𝐳!

'em = ∑ 𝑒!
'(𝑚) + 𝑐(𝐳!)> . Here, 𝑐(𝐳!)  is the clutter 

intensity. In part iii), the Bernoulli components for local 
hypothesis ℎ( of the track 𝑖 is components as 

𝑓=,!
F,(,7'(𝐱,𝑚) = 	

(1 − 𝑝#,!(𝐱,𝑚))𝑓D,!
(,7'(𝐱,𝑚)

∑ 𝑒!
F,(,7'(𝑚E)>E

, (10) 

𝑟=,!
F,(,7' =

𝑟D,!
(,7' ∑ 𝑒!

F,(,7'(𝑚)>

𝜈!
F,(,7'(∅)

, 𝑤!
F,(,7' = 𝑤!3%

(,7' 𝜈!
F,(,7'(∅), (11) 

where 𝑒!
F,(,7'(𝑚) = ∫ (1 − 𝑝#,!(𝐱,𝑚))𝑓D,!

(,7'(𝐱,𝑚)d𝐱 , and 

𝜈!
F,(,7'(∅) = 1 − 𝑟D,!

(,7' + 𝑟D,!
(,7' ∑ 𝑒!

F,(,7'(𝑚)> . In part iv), each 
Bernoulli component of local hypothesis ℎ(  of the track 𝑖 
associated with the measurement 𝐳!

' ∈ 𝒵! will have 𝑟=,!
',(,7' = 1, 

𝑤=,!
',(,7' = 𝑤D,!

(,7'𝜈!
',(,7'ld𝐳!

'em, and 

𝑓=,!
',(,7'(𝐱,𝑚) = 	

𝑝#,!(𝐱,𝑚)𝑓D,!
(,7'(𝐱,𝑚)𝑔(𝐳!

' |𝐱,𝑚)

∑ 𝑒!
',(,7'(𝑚E)>E

 (12) 

where 𝑒!
',(,7'(𝑚E) = ∫ 𝑝#,!(𝐱,𝑚)𝑓D,!

(,7'(𝐱,𝑚)𝑔(𝐳!
' |𝐱,𝑚)d𝐱 . We 

also introduce 𝜈!
',(,7'ld𝐳!

'em = 𝑟D,!
(,7' ∑ 𝑒!

',(,7'(𝑚)>  for later use. 

IV. Results 
Setup: During 𝐾 = 40 time steps with a measurement interval 

of 500 ms, a vehicle UE is moving, with the initial position at 
[70.7285, 0, 0]" m, driving in a circle around the BS (located at 
[0, 0, 40]" m) with radius about 70.7285 m. We set the 
measurement noise covariance to 𝑅 = diag	(1,4 ⋅ 103G, 4 ⋅ 103G,
4 ⋅ 103G, 4 ⋅ 103G) . There are four VAs and four SPs in the 
environment. The survival probability is assumed to be constant 
𝑝B(𝑚) = 𝑝B = 0.99  and the detection probability 𝑝# = 0.9 
within the FoV, where the SP FoV is 𝑟H-@ = 50 m the VAs are 
always visible. The clutter intensity is uniform with 
c(z)=	𝜆(RIJK𝜋G), the clutter intensity 𝜆 = 1, RIJK = 200 m. 
We set the birth weight 𝜂,,!(𝑚) = 2	 ⋅ 103Lfor 𝑚 = {VA, SP}. 
Discussions: Fig. 2 shows the average GOSPA of the VA and SP 
for the MM-PMBM compared to the MM-PHD [4]. In Fig. 2a, the 
average GOSPA of the VA is shown, and both VA GOSPAs for 
the MM-PMBM and MM-PHD go down over time. The number 
of detected VAs for the MM-PHD is larger than the true cardinality 
of VAs since the closely located SPs generate false alarm in the 
VA map. In the other hand, the MM-PMBM is robust to false 
alarm compared to the MM-PHD. In Fig. 2b, the average GOSPA 
of the SP is shown, and both SP GOSPAs also decrease over time. 
We confirm that the MM-PMBM can distinguish the two objects 
that are closely located, and thus the MM-PMBM significantly 
improve the SP mapping accuracy. Finally, it is confirmed that the 
MM-PMBM is also robust to missed detections as well as false 
alarm. 

V. Conclusions 
We present and evaluate the efficient framework of the MM-

PMBM for 5G mapping, representing propagation of 5G mmWave 
signals. From the results, it is confirmed that the MM-PMBM 
address the challenges of the 5G mapping. We demonstrated that 
the MM-PMBM enhances the mapping performance compared to 
the MM-PHD. 
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