
Thesis for The Degree of Doctor of Philosophy

Lossy and Lossless Compression Techniques
to Improve the

Utilization of Memory Bandwidth and Capacity

Albin Eldst̊al-Ahrens

Division of Computer Networks and Systems
Department of Computer Science & Engineering

Chalmers University of Technology
Gothenburg, Sweden, 2022

Lossy and Lossless Compression Techniques to Improve the Utiliza-
tion of Memory Bandwidth and Capacity

Albin Eldst̊al-Ahrens

Advisor:
Professor Ioannis Sourdis, Chalmers University of Technology

Co-Advisor:
Angelos Arelakis, Ph.D., ZeroPoint Technologies

Examiner:
Adjunct Professor Fredrik Dahlgren, Chalmers University of Technology

Thesis Opponent:
Professor Moinuddin K. Qureshi, Georgia Institute of Technology

Grading Committee:
Professor Stefanos Kaxiras, Uppsala University
Professor Andreas Moshovos, University of Toronto
Professor H. Peter Hofstee, Delft Technical University, IBM

Deputy Committee:
Risat Pathan, Chalmers University of Technology

Copyright ©2022 Albin Eldst̊al-Ahrens
except where otherwise stated.
All rights reserved.

ISBN 978-91-7905-607-0
Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie nr 5073.
ISSN 0346-718X

Technical Report No 209D
Department of Computer Science & Engineering
Division of Computer Networks and Systems
Chalmers University of Technology
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2022.

ii

iii

Abstract

Main memory is a critical resource in modern computer systems and is in
increasing demand. An increasing number of on-chip cores and specialized
accelerators improves the potential processing throughput but also calls for
higher data rates and greater memory capacity. In addition, new emerging
data-intensive applications further increase memory traffic and footprint. On
the other hand, memory bandwidth is pin limited and power constrained and is
therefore more difficult to scale. Memory capacity is limited by cost and energy
considerations. This thesis proposes a variety of memory compression techniques
as a means to reduce the memory bottleneck. These techniques target two
separate problems in the memory hierarchy: memory bandwidth and memory
capacity. In order to reduce transferred data volumes, lossy compression is
applied which is able to reach more aggressive compression ratios. A reduction
of off-chip memory traffic leads to reduced memory latency, which in turn
improves the performance and energy efficiency of the system. To improve
memory capacity, a novel approach to memory compaction is presented. The
first part of this thesis introduces Approximate Value Reconstruction (AVR),
which combines a low-complexity downsampling compressor with an LLC design
able to co-locate compressed and uncompressed data. Two separate thresholds
limit the error introduced by approximation. For applications that tolerate
aggressive approximation in large fractions of their data, in a system with 1GB
of 1600MHz DDR4 per core and 1MB of LLC space per core, AVR reduces
memory traffic by up to 70%, execution time by up to 55%, and energy costs
by up to 20% introducing at most 1.2% error in the application output. The
second part of this thesis proposes Memory Squeeze (MemSZ), introducing a
parallelized implementation of the more advanced Squeeze (SZ) compression
method. Furthermore, MemSZ improves on the error limiting capability of
AVR by keeping track of life-time accumulated error. An alternate memory
compression architecture is also proposed, which utilizes 3D-stacked DRAM
as a last-level cache. In a system with 1GB of 800MHz DDR4 per core and
1MB of LLC space per core, MemSZ improves execution time, energy and
memory traffic over AVR by up to 15%, 9%, and 64%, respectively. The
third part of the thesis describes L2C, a hybrid lossy and lossless memory
compression scheme. L2C applies lossy compression to approximable data, and
falls back to lossless if an error threshold is exceeded. In a system with 4GB
of 800MHz DDR4 per core and 1MB of LLC space per core, L2C improves
on the performance of MemSZ by 9%, and energy consumption by 3%. The
fourth and final contribution is FlatPack, a novel memory compaction scheme.
FlatPack is able to reduce the traffic overhead compared to other memory
compaction systems, thus retaining the bandwidth benefits of compression.
Furthermore, FlatPack is flexible to changes in block compressibility both over
time and between adjacent blocks. When available memory corresponds to
50% of the application footprint, in a system with 4GB of 800MHz DDR4 per
core and 1MB of LLC space per core, FlatPack increases system performance
compared to current state-of-the-art designs by 36%, while reducing system
energy consumption by 12%.

iv

Acknowledgement

The work underlying this thesis would not have been possible without the kind
support of my colleagues and friends.

I am very grateful to my advisor Yiannis, for his firm guidance and advice
during the ups as well as motivation during the downs. My co-advisor Angelos,
whose expertise and humility have been both enlightening and crucial in
reaching the finish line. My former co-advisor Pedro, thank you for offering
balance and lightening the mood. Thanks to my former co-advisor Sally A.
McKee, for your invaluable advice on writing, presentation and teaching.

I owe a great deal to my fellow Ph.D. students at CSE. Evangelos taught
me everything I know about simulation, and laid the cornerstones of the
infrastructure upon which this work is based. His dark sense of humor helps
the rest of us feel more well-adjusted. Thank you Ahsen and Alirad, for all
your help with the struggle of hardware design. Prajith and Stavros, who have
been my guides to the business of being a PhD student. My neighbor Petros,
for comedic relief and encouragement. Stefano, who reminds us all that there
is also a life outside the 4th floor. Neethu and Panagiotis, who will bravely
carry the torch onward.

Miquel Pericas and Lars Norén, for their generous help in my eternal quest
for processing power. This really wouldn’t have been possible without you.

Rolf Snedsböl, the joy of the office. If you are ever allowed to retire, we
will all miss you. The CSE administrative staff who let people like me focus on
the things we understand, especially Monica Månhammar who deserves more
credit than three regular people.

My good friends from the Lule̊a Academic Computer Society (LUDD) and
the ASCII Initiative, for their invaluable friendship, distraction and relief. Work
like this cannot be completed without an outlet to laugh about it.

Finally, Lea, my loving partner in crime. Our struggles are one and the
same, and this would have been infinitely more difficult without you. I cannot
wait to see what comes next.

Albin Eldst̊al-Ahrens
Göteborg, February 2022

This work is supported by the Swedish Research Council (contract number
2014-6221) under the ACE project.

v

vi

List of Publications

This thesis is based on the following publications:

I Albin Eldst̊al-Damlin, Pedro Trancoso and Ioannis Sourdis
“AVR: Reducing Memory Traffic with Approximate Value Reconstruction”
Proceedings of the 48th International Conference on Parallel Processing
(ICPP). 2019.

II Albin Eldst̊al-Ahrens and Ioannis Sourdis
“MemSZ: Squeezing Memory Traffic with Lossy Compression”
ACM Trans. Archit. Code Optim (TACO). 17, 4, Article 40, 2020.

III Albin Eldst̊al-Ahrens, Angelos Arelakis and Ioannis Sourdis
“L2C: Combining Lossy and Lossless Compression on Memory and I/O”
ACM Trans. Embed. Comput. Syst (TECS). 21, 1, Article 12, 2022.

IV Albin Eldst̊al-Ahrens, Angelos Arelakis and Ioannis Sourdis
“FlatPack: Flexible Compaction of Compressed Memory”
Submitted.

vii

viii

Contents

Abstract iii

Acknowledgement v

List of Publications vii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Thesis Objectives and Contributions 4

1.2.1 Improve Memory Bandwidth Utilization 4
1.2.1.1 Related Work 5
1.2.1.2 Thesis Contributions 5

1.2.2 Improve Memory Capacity Utilization 7
1.2.2.1 Related Work 7
1.2.2.2 Thesis Contributions 7

1.3 Thesis Outline . 8

2 AVR: Reducing Memory Traffic with Approximate Value Re-
construction 11
2.1 Related Work . 12
2.2 System Architecture . 14

2.2.1 Memory Blocks . 15
2.2.2 Metadata Table . 16
2.2.3 Summarizing & Reconstruction 16
2.2.4 Last Level Cache . 19
2.2.5 Memory Operations . 22

2.3 Evaluation . 24
2.3.1 Experimental Setup . 24
2.3.2 Hardware Overhead . 26
2.3.3 Experimental Results 26

2.4 Conclusion . 31

3 MemSZ: Squeezing Memory Traffic with Lossy Compression 33
3.1 Background . 34

3.1.1 SZ Compression . 34
3.2 System Architecture . 35

3.2.1 MemSZ Parallel Lossy Compressor 37
3.2.2 Error Limiter . 41

ix

x CONTENTS

3.2.2.1 Metadata Table 41
3.2.3 Last Level Cache . 42

3.2.3.1 On-Chip SRAM LLC 42
3.2.3.2 3D-stacked DRAM LLC 43

3.3 Evaluation . 44
3.3.1 Experimental Setup . 44
3.3.2 Hardware Overhead . 47
3.3.3 Experimental Results 47

3.3.3.1 MemSZ with SRAM LLC 47
3.3.3.2 Evaluation of individual MemSZ features . . . 50
3.3.3.3 MemSZ-DC evaluation 52

3.4 Conclusion . 54

4 L2C: Combining Lossy and Lossless Compression on Memory
and I/O 55
4.1 Related Work . 57

4.1.1 Memory Compression 57
4.1.2 Link Compression . 58
4.1.3 Approximate Computing 59

4.2 Background . 60
4.2.1 Statistical Cache Compression 60

4.3 System Architecture . 60
4.3.1 Compression Methods 62

4.3.1.1 Lossy Compression 62
4.3.1.2 Lossless Compression 64

4.3.2 Block Types . 65
4.3.3 Memory Layout . 66
4.3.4 Block Type Transition 67
4.3.5 Block Metadata . 68

4.3.5.1 Metadata during transitions between block types 70
4.3.6 Last-Level Cache . 70
4.3.7 I/O Compression . 72

4.4 Evaluation . 73
4.4.1 Experimental Setup . 74

4.4.1.1 Memory Compression 74
4.4.1.2 I/O Compression 77

4.4.2 Results . 77
4.4.2.1 Memory Compression 77
4.4.2.2 I/O Compression 79

4.5 Conclusion . 81

5 FlatPack: Flexible Compaction of Compressed Memory 83
5.1 Background and Related Work 85

5.1.1 Compression Algorithm 85
5.1.2 Compression Granularity 85
5.1.3 Block Compaction . 86
5.1.4 Address Translation and Page Compaction 87
5.1.5 Metadata Handling . 87
5.1.6 Last-Level Cache Support 88

CONTENTS xi

5.1.7 Overheads of Existing Systems 88
5.2 System Architecture . 90

5.2.1 Compression . 91
5.2.2 Last-Level Cache . 91
5.2.3 Lazy Evictions . 92
5.2.4 Block Compaction . 92
5.2.5 Minislots . 93
5.2.6 Slot Assignment . 94
5.2.7 Page Compaction . 94
5.2.8 Interaction with the OS 95
5.2.9 Metadata . 96
5.2.10 Block Migration . 97
5.2.11 Page Migration . 97
5.2.12 Memory Interleaving . 97

5.3 Support for Lossy Compression 98
5.3.1 MemSZ Compression . 99
5.3.2 Block Size . 99
5.3.3 Block Placement . 99
5.3.4 Block Transitions . 100

5.4 Evaluation . 100
5.4.1 Experimental Setup . 100
5.4.2 Single-Core Experimental Results 102
5.4.3 Multi-Core Experimental Results 106
5.4.4 Latency Impact . 109
5.4.5 Page Size Estimation . 110
5.4.6 Sensitivity to System Configuration 111
5.4.7 FlatPack with Lossy Compression 111

5.5 Conclusion . 113

6 Conclusion 115
6.1 Summary . 115
6.2 Contributions . 116
6.3 Future Work . 117

Bibliography 119

xii CONTENTS

Chapter 1

Introduction

Main memory is a critical resource in modern systems. Its capacity must
be sufficient to avoid frequent page faults and its bandwidth high enough
to accommodate the rates of requested data. The demand for both memory
capacity and memory bandwidth is increasing as applications become more
data-intensive and a larger number of cores is integrated on a single chip.
However, simply scaling up memory size and bandwidth increases system cost
and power consumption [1].

Memory bandwidth is a primary bottleneck in memory-intensive applica-
tions. Access latency increases as the main memory bus becomes saturated,
causing a reduction in performance. Memory bandwidth is pin limited [2,3] and
power constrained [4] and is therefore more difficult to scale than processing
elements [5]. More expensive, 3D-stacked DRAM technologies alleviate the
bandwidth problem, but due to power constraints cannot keep up with the
increasing demand on data rates either [4].

Insufficient memory capacity is detrimental to system performance, as it
leads to costly page faults. Page faults introduce a high latency [6], as well as
additional traffic on the memory bus to swap data between main memory and
persistent storage. Memory capacity is directly limited by cost and indirectly
by energy consumption.

One way to increase the efficiency of the memory system is to reduce the
volume of transferred data using compression. Data can then be transferred
between the main memory and the processor in compressed form consuming less
bandwidth and reducing energy cost. With a few exceptions, current hardware
main memory compression is limited to lossless methods. Commercial examples
of architectures that use memory compression are graphics processing units
(GPUs) [7]. GPUs use application-specific compression, applied to texture and
color data [8], and often solve the problem only for read-only data [9].

Memory capacity, on the other hand, is not improved by compression alone.
In order for the physical memory footprint of compressed data to be reduced,
compaction must be applied. Memory compaction is the reorganization of
compressed data in memory, with the aim of minimizing unused space between
compressed blocks. The benefit of compaction is a more efficient use of the
available physical memory, which reduces the incidence of page faults and costly
swapping to nonvolatile storage such as SSDs. Several approaches to memory

1

2 CHAPTER 1. INTRODUCTION

1 2 3 4
Footprint Reduction

1

2

3

4

Ba
nd

wi
dt

h
Re

du
ct

io
n

1
1

2.1
0.9

2.9
0.9

3.9
3.9

Baseline
LCP
Compresso
Ideal

Figure 1.1: Trade-off between Memory Footprint Reduction (horizontal) and
Memory Bandwidth Reduction (vertical) for state-of-the-art memory com-
paction systems. Ideal shows the achievable compression ratio of the data.

compaction have been proposed [10–17], with varying overhead on bandwidth.

Existing solutions for memory compression apply lossless low-latency com-
pression algorithms, and achieve compression ratios of between 2× and 4× on
unstructured data [18]. As illustrated in Figure 1.1, state-of-the-art memory
compaction techniques can translate this into a capacity increase of 2× to
3×, but introduce traffic overheads which cancel out the bandwidth benefits
of compression. As a result, no existing system capitalizes on the benefits of
compression for both bandwidth and capacity simultaneously.

Some classes of applications, e.g., multimedia, scientific, forecasting, may
allow for more aggressive compression as they tolerate approximations in parts
of their data [19,20] without introducing significant output error. This thesis
proposes lossy memory compression as a means to increase compression ratio
and thus reap greater benefits. Carefully selected portions of in-memory data
are marked as approximable. Approximable data are divided into blocks and
compressed before being written to off-chip memory, reducing the traffic on the
bus. This is combined with lossless compression, which offers lower compression
ratios but is safely applicable to all data. This hybrid compression is further
combined with memory compaction to improve both bandwidth and capacity.

The remaining sections are organized as follows. Section 1.1 describes the
problem statement underlying this thesis. Section 1.2 formulates its objectives,
along with related work and thesis contributions. Section 1.3 contains an
outline of the remainder of the thesis, which is divided into five chapters.

1.1 Problem Statement

Limited memory bandwidth and capacity lead to reduced system
performance and increased energy consumption.

The primary drawback of limited memory bandwidth is increased latency of
memory operations. Off-chip memory has a high latency compared to on-chip
caches, and it increases further when the bus is saturated. Our experiments
(Figure 1.2a) show that workloads with high memory intensity can increase

1.1. PROBLEM STATEMENT 3

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l0

1
To

ta
l e

xe
cu

tio
n

tim
e

heat lattice lbm06 orbit cdelta sedov windt kmeans wrf06 GM

(a) Execution time, normalized to baseline.

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l0

1

To
ta

l e
ne

rg
y

heat lattice lbm06 orbit cdelta sedov windt kmeans wrf06 GM

(b) Total system energy, normalized to baseline.

Figure 1.2: Comparison between a baseline system and an ideal system with
unlimited memory bandwidth, for a range of applications. Both systems have
8 processor cores at 3.2GHz, an 8MB LLC and 8GB of dual-channel DDR1600.

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l0

1

To
ta

l e
xe

cu
tio

n
tim

e

heat lattice lbm06 orbit cdelta sedov windt kmeans wrf06 GM

(a) Execution time, normalized to baseline.

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l

ba
se

lin
e

id
ea

l0

1

To
ta

l e
ne

rg
y

heat lattice lbm06 orbit cdelta sedov windt kmeans wrf06 GM

(b) Total system energy, normalized to baseline.

Figure 1.3: Comparison between a baseline system and an ideal system with
unlimited memory capacity, for a range of applications.

4 CHAPTER 1. INTRODUCTION

their performance by an average of 59% if the memory bandwidth bottleneck
is eliminated.

Memory capacity is critical to performance, since exhaustion of physical
memory introduces page faults [6]. Page faults incur long latencies due to
operating system overhead and access to nonvolatile storage. On the other
hand, increased memory capacity leads to greater energy consumption in the
form of leakage and DRAM refresh energy. Figure 1.3a illustrates the 57%
average performance gain possible, if page faults are eliminated.

As a direct consequence of extended execution time, energy consumption
increases. When processing elements are left idle waiting for memory oper-
ations, static power leakage leads to increased overall system consumption.
Furthermore, the main memory itself has been estimated to account for roughly
45% of energy consumption in high-end server systems [21]. A large portion
of DRAM energy consumption is leakage and refresh energy, which is also
proportional to both memory capacity and execution time. In our experiments
(Figures 1.2b and 1.3b), total system energy is reduced by an average of 22%
when the bandwidth bottleneck is removed, and 48% when page faults are
eliminated.

1.2 Thesis Objectives and Contributions

Improve memory bandwidth and capacity utilization using a
combination of lossy compression, lossless compression, and

memory compaction.

The objective of this thesis is twofold. First, to reduce traffic between
processor and main memory. Second, to increase the effective capacity of
main memory. By reducing traffic, applications can better utilize the limited
bandwidth available. For memory-intensive applications, this will lead to
reduced memory latency and improved system performance. Similarly, increased
memory capacity reduces the number of page faults and thus increases system
performance. Improved performance, by either mechanism, is expected to lead
to energy efficiency benefits. This section outlines the specific challenges met,
as well as the current state of the art.

1.2.1 Improve Memory Bandwidth Utilization

This thesis proposes a range of techniques for memory compression, i.e. com-
pressing the data transferred between the processor and main memory. The
primary technique investigated is lossy memory compression. By applying this
lossy compression to large blocks, more aggressive compression ratios can be
achieved compared to existing (lossless) memory compression systems. As a
result, memory bandwidth can be utilized more efficiently.

1.2. THESIS OBJECTIVES AND CONTRIBUTIONS 5

1.2.1.1 Related Work

Several lossless memory compression techniques have been proposed aimed at
improving memory bandwidth utilization. Various compression algorithms are
used, such as dictionary-based [22], exploiting frequent patterns or zero-value
blocks [23], similarities of words at the same bit position [18] or using a hybrid
scheme of different lossless algorithms applied to different data [24]. However,
lossless solutions have limited compression ratio between 2:1 and 4:1.

Managing the metadata needed for locating and handling the compressed
data is also challenging as it may add considerable memory bandwidth overheads
[25]. One solution to this is an on-chip cache for metadata [26]. Another way to
reduce the metadata cost is to embed metadata in the compressed block [25,27].

The memory compression schemes listed above are lossless. Lossy compres-
sion is an example of Approximate Computing. Large classes of applications are
inherently tolerant to approximations [19]. This enables a trade-off between the
quality of their results and their performance and energy efficiency. This trade-
off is exploited by various approximate computing techniques, some of them
targeting the aforementioned memory bottlenecks in a lossy manner. Until
recently, lossy compression has been limited to application specific compression,
i.e., in GPUs [8], or truncating bits of individual values [9,28–30], which offered
limited compression ratio (2:1 to 4:1).

Approximate load value prediction techniques reduce memory latency by
providing a predicted value substantially faster than fetching the actual one
from memory [31–33]. They may further improve memory bandwidth utilization
by skipping some fetches. Value prediction techniques speculate that the values
loaded by the same instruction may be identical or differ by a stride.

1.2.1.2 Thesis Contributions

Lossy Memory Compression One core objective of this thesis is to use
lossy compression as a means to improve the performance of the memory
system. Lossy compression offers greater compression ratios and thus increased
benefits, but introduces additional challenges. Approximate Value Reconstruc-
tion (AVR), presented in Chapter 2, uses a low-complexity downsampling
compression method. Individual values which are not compressed with ad-
equate precision are stored alongside the compressed block, allowing for a
variable compression ratio within acceptable precision bounds. Chapter 3
introduces MemSZ which implements an optimized variation of the more ad-
vanced Squeeze (SZ) compression algorithm [34]. An additional layer of lossless
re-encoding is applied on top of the compression in order to maximize the
achieved compression ratio.

Large Compression Blocks Compression ratio is directly related to the
granularity of compression, the block size. In order to target a compression
ratio of up to 16×, a block size larger than the typical single cache line is
required. Operating on such large blocks requires adaptations in the memory
system. AVR adapts a Decoupled Sectored Cache [35] design to create an LLC
capable of storing both compressed blocks and uncompressed cache lines. This
allows full compressed blocks of multiple cache lines to be read from memory
once and serve several subsequent cache misses. In addition, a technique is

6 CHAPTER 1. INTRODUCTION

introduced to reduce the traffic overhead of cache evictions to compressed
memory. MemSZ introduces an optimized compressed block format, which is
possible to start decompressing as soon as the first memory transfer completes.

Error Limiting Mechanism Lossy compression deliberately allows for the
introduction of inaccuracies in processed data. Different applications have
different tolerance to such inaccuracy, also depending on which data are ap-
proximated. If applied improperly, small approximations in input values can
have disproportionately large effects in application output. AVR employs two
user-defined error thresholds, one for individual values and one for complete
blocks. Any value or block which exceeds the corresponding error threshold
is kept either at half precision or uncompressed, resulting in a variable com-
pression ratio between 1× and 16×. MemSZ extends this mechanism with
an additional error threshold, which limits the total accumulated error across
a block throughout the application’s lifetime. Blocks exceeding this thresh-
old have compression permanently disabled, to reduce their impact on the
application’s output quality.

Low-latency decompression In a system with memory compression, de-
compression is on the critical path for memory reads and thus of crucial
importance to system performance. The compression algorithm chosen must
therefore offer low decompression latency. The downsampling compression
used in AVR has a decompression latency of 12 cycles. MemSZ introduces a
heavily parallelized implementation of the SZ compression algorithm, which is
able to decompress a full block in at most 18 cycles. In comparison, a single
main memory access to one cache line takes between 100 and 400 cycles and
an LLC access takes 10-20 cycles. As a result, the total latency of reading out
a compressed block and decompressing it is roughly 2× that of a regular LLC
hit, and still far lower than that of an LLC miss.

Combined Lossy/Lossless Memory Compression Lossy compression is
only applicable to a subset of application data, that which is approximation
tolerant. Furthermore, approximable data can only be compressed lossily as
long as the error limit can be respected. This limitation means that some data
may be left entirely uncompressed, even though it exhibits some redundancy
and thus can benefit from compression. Chapter 4 introduces L2C, which covers
this gap by devising a hybrid approach, where lossless compression is used as a
fallback when lossy compression is infeasible. Non-approximable application
data is compressed this way, improving the overall effect of memory compression.
In addition, approximable blocks which have exceeded their error threshold
may still exhibit some redundancy in their data. It is therefore beneficial to
compress them losslessly rather than leave them entirely uncompressed.

Due to different requirements and characteristics, lossless compression meth-
ods are typically most suited to smaller block sizes. For this reason, combining
lossless compression with large-block lossy compression introduces additional
challenges. Metadata is needed to manage blocks of both sizes simultaneously,
and the on-chip LLC needs support to store and access compressed blocks of
multiple granularities. L2C uses a block size of 256B for lossless compression,
and adds support to the on-chip LLC to co-locate these smaller blocks with the

1.2. THESIS OBJECTIVES AND CONTRIBUTIONS 7

1kB blocks of MemSZ. In addition, the page metadata is extended to support
any combination of lossy and lossless blocks as well as dynamic changes.

1.2.2 Improve Memory Capacity Utilization

In order for data compression to improve effective memory capacity, compressed
data must be compacted in physical memory. This complicates address transla-
tion, as pages in memory are no longer of a fixed size or alignment. Furthermore,
current state-of-the-art memory compaction solutions target memory capacity
at the expense of memory traffic [13, 16]. The cause of this trade-off is data
varying in compressibility over time, as well as non-uniform compressibility
within each compressed page.

1.2.2.1 Related Work

A range of different techniques have been proposed for compacted organization
of compressed data. Some designs remove the connection of pages entirely,
storing sub-page blocks freely in main memory [10, 11]. Most maintain the
relationship between blocks of the same virtual page, either packed within a
single contiguous physical region [12, 13, 17] or dynamically adding disjoint
regions on demand [14–16].

The current state of the art systems for memory compaction, LCP [13] and
Compresso [16], both compress small (64B) blocks and assign them a suitable
space within the physical allocation of the corresponding page. By packing
compressed blocks when they are first compressed, however, the designs forego
the ability to handle blocks changing size over time. A growing block exceeds
its assigned space and must be stored elsewhere. A shrinking block leaves
unused capacity within the assigned space, since it cannot be adjusted without
additional data movement.

1.2.2.2 Thesis Contributions

Improve both Capacity and Bandwidth Compression of larger blocks
opens up a novel approach to memory compaction. Since each block is com-
pressed to a size which is a multiple of the Memory Access Granularity (MAG),
compressed blocks can be fragmented and organized freely in physical mem-
ory. This allows blocks within a page to share the physical space allocated
to that page, while remaining flexible to the varying compressibility of each
block over time. Crucially, blocks can be reorganized as needed, with minimal
traffic overhead. As a result, memory compaction can be maintained over time,
responsive to varying compressibility of individual blocks as well as to uneven
compressibility between adjacent blocks. An additional benefit is a reduced
need for page migrations, when a compressed page changes size. To make use
of this potential, Chapter 5 introduces FlatPack, a memory compaction scheme
which combines with the compression system of L2C to improve both memory
capacity and memory bandwidth.

Combined Lossy/Lossless Compression As described above, lossy com-
pression and lossless compression typically have differing characterstics. As
a result, their most suitable block sizes also differ. This poses a challenge to

8 CHAPTER 1. INTRODUCTION

memory compaction, since any given page may consist of a variable number of
compressed blocks. In addition, page metadata is complicated by the need for
two separate block format and the need to support mixed block types within
any compressed page. FlatPack supports the same hybrid compression as L2C,
and allows mixtures of blocks to be placed dynamically in physical memory.
This grants the benefits of memory compaction to the hybrid compression
system, yielding simultaneous improvements in both bandwidth and capacity.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapters 2, 3, 4, and 5
describe the four compression systems which make up the bulk of the contribu-
tions. Finally, Chapter 6 draws conclusions and discusses the impact of these
findings.

Approximate Value Reconstruction: Chapter 2 introduces Approximate
Value Reconstruction (AVR), which uses downsampling and interpolation for
compression. A hardware compressor is introduced between the on-chip Last
Level Cache (LLC) and the main memory controller. The on-chip SRAM LLC
is adapted to store compressed data read from memory, facilitating reuse and
increasing the effective capacity of the cache. The error introduced by lossy
compression is limited by two discrete thresholds, allowing the user to control
precision-performance trade-off.

Memory Squeeze: Chapter 3 introduces Memory Squeeze (MemSZ), which
improves upon the preceding design in three ways. First, it includes the more
advanced, more effective SZ compressor. Second, it adds another layer of
error limiting. The accumulated error introduced by compression is monitored,
giving the system the ability to detect highly error-sensitive data blocks and
disable compression for them. Third, the LLC replacement policy is altered
to reduce redundancy between compressed and uncompressed versions of the
same data, increasing the storage efficiency.

Furthermore, MemSZ introduces an alternate memory compression architec-
ture which utilizes 3D-stacked DRAM as an LLC, storing only uncompressed
data. Approximable data is thus only compressed in main memory. The larger
line size supported by a DRAM cache counteracts several of the challenges
faced by AVR, yielding a less complex system while still providing the benefits
of reduced off-chip traffic.

L2C: Chapter 4 details the design of L2C, a hybrid lossless and lossy memory
compression system. It improves upon MemSZ by adding the capability
of lossless compression, which has two main benefits. First, it allows non-
approximable data to be compressed. Second, it allows for a low-compression
fallback when lossy compression fails due to quality constraints. As a result,
the overall compression ratio of the system is increased and fewer pages are
left uncompressed. In addition to this, L2C is applicable as a link compression
system, for devices with tight I/O constraints.

1.3. THESIS OUTLINE 9

FlatPack: Chapter 5 discusses FlatPack, a novel approach to memory com-
paction. Compaction of compressed data in main memory allows the system
to increase its effective memory capacity. This, in turn, reduces the incidence
of page faults, where data is swapped between main memory and the slower
persistent storage. A compression system with memory compaction support
can achieve this benefit without the added cost and energy consumption of
additional physical memory. FlatPack uses L2C as its basis for compression,
and adds a dynamic compaction method. Compared to existing compaction
systems, FlatPack is better able to handle varying compressibility over time
and non-uniform compressibility within each memory page.

10 CHAPTER 1. INTRODUCTION

Chapter 2

AVR: Reducing Memory
Traffic with Approximate
Value Reconstruction

The performance of computer systems is largely dominated by their memory
hierarchy as the gap between computing speed and data transfer speed keeps
increasing [36]. Besides the long memory latency, memory bandwidth severely
limits performance, energy efficiency and scalability of Chip Multiprocessors
(CMPs) [5]. On one hand, the demand for higher memory bandwidth increases.
Adding more cores on a chip and using specialized accelerators increases the
potential processing throughput and calls for higher data rates. New emerging
data-intensive applications further increase the need for large volumes of data
to be transferred fast [2, 37, 38]. On the other hand, memory bandwidth is
pin limited [2, 3] and power constrained [4] and is therefore more difficult
to scale [5]. More expensive, 3D-stacked DRAM technologies alleviate the
bandwidth problem, but due to power constraints cannot keep up with the
increasing demand on data rates either [4].

One way to alleviate the memory bandwidth pressure is to reduce the volume
of transferred data using compression. Data can then be transferred between
the main memory and the processor chip in a compressed form consuming less
bandwidth and reducing energy cost. With a few exceptions, hardware main
memory compression is limited to lossless methods. Commercial examples
of architectures that use memory compression are graphics processing units
(GPUs) [7]. GPUs use application-specific compression, applied to texture
and color data [8], and often solve the easy part of the problem, handling
read-only data [9]. Current state-of-the-art, lossless memory compression
techniques achieve on average a 2:1 to 4:1 compression ratio on unstructured
data [18]. However, some classes of applications, i.e., commercial, multimedia,
scientific, may allow for more aggressive compression as they inherently tolerate
approximations in parts of their data [19,20] without introducing significant
error.

In the past, the performance of memory subsystems has been improved for
approximation-tolerant applications. Load value prediction without fetching

11

12 CHAPTER 2. AVR: REDUCING MEMORY TRAFFIC WITH APPROXIMATE VALUE RECONSTRUCTION

the actual requested data has been used for improving memory latency and
bandwidth [31–33], but has difficulties capturing irregular data variations.
Approximate deduplication of individual cachelines increases cache capacity [39],
however, multiple values need to match at cacheline granularity. A form of lossy
compression has been applied in approximate computing, but is constrained to
reducing precision of single values truncating their least significant bits [9,28–30]
and therefore achieves limited compression ratio.

In this chapter, Approximate Value Reconstruction (AVR) is proposed for
reducing data volumes transferred between processor chip and main memory
in approximation tolerant applications, utilizing more efficiently the memory
bandwidth. AVR goes beyond reducing the precision of individual values and
compresses data in a lossy manner exploiting similarities between values while
capturing their variance. In essence, AVR stores a “summary” of approximated
data in memory, based on which values are approximately reconstructed in
the processor chip. AVR addresses a number of challenges. Summarizing
(compressing) and reconstructing (decompressing) the data needs to be generic,
introduce low error, and add minimum latency and energy overheads. Moreover,
managing (updating, re-packing, storing) compressed data needs to be efficient
and impose low traffic overheads. In effect, AVR utilizes memory bandwidth
better improving performance and energy efficiency.

AVR makes the following contributions:

• Aggressive, approximate memory compression exploiting similarities
across values and reduces memory traffic improving execution time and
energy efficiency.

• Improved effectiveness and minimized overheads of aggressive compression
using the following techniques:

– co-locating compressed memory blocks and uncompressed cachelines
in the Last Level Cache (LLC);

– handling LLC eviction in a lazy manner;

– keeping track of badly compressing memory blocks;

– selecting which data to store in LLC after decompression.

The remainder of this chapter is organized as follows. Section 2.1 discusses
related work on lossless memory and cache compression as well as on approx-
imate computing with focus on memory systems. Section 2.2 describes the
proposed AVR architecture. Section 2.3 presents our evaluation results and
Section 2.4 draws our conclusions.

2.1 Related Work

Prior work on related topics is discussed next. First, existing designs for lossless
memory and cache compression are presented and subsequently an overview is
provided on approximate computing techniques that improve the performance
of memory systems.

Lossless Memory Compression: There is a plethora of memory com-
pression techniques that improve memory capacity and bandwidth utilization.

2.1. RELATED WORK 13

Various compression algorithms are used, such as dictionary-based [22], exploit-
ing frequent patterns or zero-value blocks [23], and more recently similarities
of words at the same bit position [18]. However, applied to unstructured data,
lossless solutions have limited compression ratio between 2:1 and 4:1, which
is substantially lower than in AVR (4-8×). In general, lossless compression
is orthogonal to AVR as it can be used in our design to compress data that
are not approximated, or even on top of AVR approximately compressed data.
Another aspect is the data placement in memory. Some approaches compact
compressed data in memory to improve capacity [13]. Others, like AVR, avoid
data compaction, allocating the worst case storage required for the uncom-
pressed data and focus only on memory bandwidth [26, 27]. Finally, managing
the metadata needed for locating and handling the compressed data is also
challenging as it may add considerable memory bandwidth overheads [16,25].
AVR uses a metadata table and a cache of it, as in [13], which is updated with
the TLB and adds a few bytes of bandwidth overhead at every TLB miss; still
techniques like Attache [25] could be used to further reduce the metadata cost.

Lossless Cache Compression: Lossless compression has been applied
to caches, too. Besides the issues of encoding and compaction of variable
size blocks [40], the compression and decompression latency constraints are
tighter compared to memory compression. In the past, cache compression has
been supported in various ways, for instance using value-centric caches [41].
Compacting compressed cache blocks has been tackled using decoupled super-
blocks and sub-blocks [42], or super-blocks without decoupling tag and data
arrays [43]. In general, cache compression cannot reduce memory traffic as it
compresses single cachelines separately, rather than larger memory blocks of
consecutive cachelines as performed by AVR. Consequently, as opposed to AVR,
cache compression techniques applied to the LLC cannot reduce the number of
memory accesses and hence cannot reduce memory traffic. Furthermore, AVR
uses the LLC to store compressed memory blocks alongside the uncompressed
lines, but does not attempt to compress individual cachelines. As a consequence,
cache compression could be considered to compress the AVR LLC contents.

Approximate Computing: Large classes of applications are inherently
tolerant to approximations [19]. This enables a tradeoff between the quality
of their results and their performance and energy efficiency. This tradeoff is
exploited by various approximate computing techniques, some of them targeting
the aforementioned memory bottlenecks in a lossy manner.

Approximate load value prediction techniques reduce memory latency by
providing a predicted value substantially faster than fetching the actual one
from memory [31–33]. They may further improve memory bandwidth utilization
by not always bringing the actual values at all. Value prediction techniques
speculate that the values loaded by the same instruction may be identical
or differ by a stride. However, this does not capture any irregular variance
of data such as the variance in an image where neighboring pixels may have
similar values but may not necessarily differ by a fixed stride. Approximate
load value prediction is applied near the core (in parallel to the L1 cache) and
is therefore orthogonal to the proposed AVR compression of memory traffic.
Another fundamental difference compared to AVR and in general compared to
compression is that load value prediction techniques aim primarily at reducing
load latency rather than memory bandwidth because in the end they do fetch

14 CHAPTER 2. AVR: REDUCING MEMORY TRAFFIC WITH APPROXIMATE VALUE RECONSTRUCTION

M
e
m

. C
trl.

Shared
LLC

...

Core
Priv
$

Core
Priv
$ D

R
A

M

DBUFPFE

Compressor
&

Decompressor
CBUF

CMT

A
V

R
 La

y
e
r

Figure 2.1: Toplevel block diagram of the AVR architecture.

the precise values from memory for error checking.
Reducing the precision of floating point [9, 28, 29] and fixed point [30] num-

bers has been used to alleviate the memory bandwidth bottleneck in deep
neural networks [30], GPU workloads [9] and other approximation tolerant ap-
plications [28], thereby improving performance and energy efficiency. However,
the compression ratio is still limited between 2:1 and 4:1 despite the loss of
precision as these approaches do not exploit inter-value similarities to compress
data. Closer to AVR, software techniques for lossy compression have been
proposed, but have high complexity and latency and as a consequence cannot
be used directly in hardware [34].

Approximate, lossy compression has been applied to caches, too. Dop-
pelgänger deduplicates similar cachelines to compress data [39]. The subsequent
Bunker cache design speculates similarities between cachelines solely based on
their addresses without looking at their contents, proposing a less intrusive
cache design but achieving lower compression ratio than Doppelgänger [44].
Both designs exploit similarities between cachelines. However, similar values
need to have the same offset within their cachelines in order to match, which
restricts deduplication opportunities.

2.2 System Architecture

Approximate Value Reconstruction (AVR) reduces the volume of data trans-
ferred between main memory and processor chip improving bandwidth utiliza-
tion and in turn system performance and energy efficiency. Without loss of
generality, AVR is applied to a Chip Multiprocessor as depicted in Figure 2.1.

In a nutshell, AVR handles a processor request to approximated data as
follows. In case the requested cacheline misses in the LLC, the corresponding
memory block, which compresses multiple cachelines including the requested
one, is brought on-chip. The requested cacheline is then retrieved, stored in the
LLC, and sent to the processor. The memory block is also stored in the LLC
as is (compressed) so to avoid memory accesses at future requests to the block.

In general, AVR employs a number of optimizations to reduce its overheads.
As mentioned above, compressed memory blocks are stored in the LLC trading
LLC capacity for fewer memory accesses. In addition, every time there is an
LLC eviction it would be wasteful to update the corresponding compressed block
in memory. Instead, for as long as there is available space in the memory block,
AVR evicts such cachelines lazily, writing them back to memory uncompressed.
Then, when the space is exhausted, the block is compacted embedding all lazily
evicted cachelines. Finally, the overheads of unsuccessful compression attempts
are minimized by keeping a history of previous compression attempts per block.

2.2. SYSTEM ARCHITECTURE 15

xxx0 Block summary

xxx1 Outlier bitmap

xxx2

xxx3

xxx4

Lazy evicted uncompressed CL #n

...

Lazy evicted uncompressed CL #0xxxF

...

Outliers

... Unused space

(a) Compressed block

xxx0 Uncompressed CL #0

xxx1 Uncompressed CL #1

xxx2 Uncompressed CL #2

xxx3 Uncompressed CL #3

xxxF Uncompressed CL #15

...

...

(b) Uncompressed block

Figure 2.2: AVR Memory Block.

The AVR architecture requires the following additions: a compressor and
decompressor module to summarize data before sending them to memory and
to reconstruct data coming back from the memory; a metadata table for storing
information about the compressibility of the memory blocks; finally the LLC
design requires changes for storing compressed memory blocks in addition to
normal cachelines. Next, each one of the above modules is discussed separately,
after first presenting the format of the AVR memory blocks. At the end of the
section, the AVR LLC and memory operations are discussed.

2.2.1 Memory Blocks

Similar to most techniques that focus on data approximations [28, 39, 45],
AVR considers that the programmer annotates memory regions that can be
approximated and hence compressed in a lossy manner. This annotation also
includes the size of the region as well as the datatype of the approximable
data. An additional OS system call allows allocated pages to be marked as
approximate at the page table requiring an extra bit for every page table
and translation lookaside buffer (TLB) entry as shown in Figure 2.3. The
programmer may further indicate an upper error threshold for acceptable
approximations. In our experiments, two thresholds are used, one for the
relative error of each individual value and one for the average error of all values
in a block. Currently, error thresholds are common for all approximations in a
program, but they could be easily extended to thresholds per allocated memory
region adding a respective field to the page table.

The AVR architecture does not consider improving memory capacity and
therefore memory allocation is not affected. Compression is performed at the
granularity of memory blocks composed of multiple cachelines as shown in
Figure 2.2; a cacheline, i.e., 64B, being the granularity of accessing the main
memory. In our implementation, a block is composed of 16 cachelines, in
total a quarter of a physical 4KB page. AVR compresses the 16 cachelines
of a block to a single cacheline summary aiming at a 16:1 compression ratio
and at accessing the entire block with one memory request. The summary is
stored in the first cacheline of the memory block as shown in Figure 2.2a. In
case this compression produces approximations of some values that exceed a
particular error threshold, these values are characterized as outliers and stored
explicitly, uncompressed in the compressed block. The outliers are placed in
order after the summary cacheline, together with a bitmap that indicates their

16 CHAPTER 2. AVR: REDUCING MEMORY TRAFFIC WITH APPROXIMATE VALUE RECONSTRUCTION

CMT

B1A B0

BiasSize Method

B2 B3

1b 23b

3b 2b 8b

23b 23b 23b

Physical Addr.

TLB

4b

#Skipped#Failed#Lazy

4b 2b

Figure 2.3: Format of a metadata table entry and TLB addition.

location in the uncompressed block (one bit per 32-bit value). This bitmap
occupies half a cacheline if the block contains outliers. Summary, bitmap and
outliers occupy in total 1-8 out of the 16 cachelines (2:1 worst case compression
ratio). The remaining space of the memory block remains available for lazy
evictions; that is for writing back dirty uncompressed cachelines of the block,
when evicted from the LLC. Thereby, AVR avoids bringing a compressed block
on-chip to be updated every time a dirty cacheline is evicted. This is possible
until the block space is exhausted, then the block and the lazily evicted dirty
uncompressed cachelines are fetched from memory for recompaction. In case a
memory block fails to be compressed in 8 cachelines or is explicitly marked as
not-approximable then it is stored uncompressed as shown in Figure 2.2b.

2.2.2 Metadata Table

Each compressible block requires some metadata information in order to be
handled. Similar to previous approaches on memory compression [12, 13],
these metadata are stored in main memory and cached on-chip in a TLB-like
Compression Metadata Table (CMT) placed and accessed in parallel with the
LLC. The CMT is updated in pair with the TLB. A CMT has four 23-bit
entries per 4KB page, one per 1KB memory block as shown in Figure 2.3.
CMT stores the following information about each memory block: its size
(compressed in 1-7 lines or uncompressed), number of lazy evicted cachelines
stored, compression method (and datatype of values), and a bias of its values.
Finally, it maintains two counters to keep the history of previous compression
attempts. The first one counts the number of consecutive failed compression
attempts. Then, depending on that count, a number of recompression attempts
(in block updates) are skipped to reduce the overhead of badly compressed
blocks.

2.2.3 Summarizing & Reconstruction

Summarizing and approximately reconstructing memory blocks requires knowl-
edge of the particular value representation used in the considered dataset.
Our current implementation supports standard 32-bit floating-point and fixed
point formats, but can be easily extended to support other representations,
too. The core part of the compression is using fixed point arithmetic to reduce
complexity. Consequently, memory blocks containing floating point numbers
are converted to fixed point before compression and back to floating point after
decompression. Figure 2.4 shows the block diagram of the AVR compressor
and decompressor.

2.2. SYSTEM ARCHITECTURE 17

Uncompr.
Block

Bias

Decompr.
Fixed

to
Float

Unbias

Float
to

Fixed
Compr.

Summary

Outliers + Bitmap

Compr.
Block

Error Check

Decompr.
Block buffer

(DBUF)

Compr.
Block buffer

(CBUF)

Outliers + Bitmap

Summary

Block
Compressible?

Figure 2.4: AVR compressor/decompressor module.

Incoming uncompressed blocks are fed to the compressor cacheline by
cacheline in a pipelined fashion. Fixed point values are compressed directly.
Floating point values are converted to fixed point after first having their
exponent field biased to minimize loss of accuracy. Subsequently, a simple
downsampling compressor is employed to generate the summary of the block
replacing multiple (typically 16) uncompressed values with their average. In
order to check the error of the approximated values and identify outliers, the
compressed block summary is decompressed again, and if necessary converted
back to floating point and unbiased. Then, each approximated value can be
compared with its respective original uncompressed value stored in the input
of the compressor. The result of this comparison identifies the outliers and
produces the bitmap of their locations, which is part of the compressed block
when outliers exist as shown in Figure 2.2a. This bitmap is also used to select
and compact the outliers stored in the block. Thereby, the summary, bitmap
and outliers of a block are produced and stored in the compressed block buffer
(CBUF). Once compression completes, the metadata of the block are updated
in the CMT.

Decompression is simpler. The summary of a compressed block is sent
to the decompressor that produces its decompressed version and stores it to
the decompressed block buffer (DBUF) after converting it to floating point
and unbiasing, when needed. In addition, the outliers are placed according to
their bitmap on the buffer replacing the respective decompressed values. The
requested decompressed cachelines are then sent to the LLC. The remaining
ones are kept in the buffer and future requests for cachelines of the same
block are served from there. When the next block arrives for decompression, a
prefetcher (PFE) selects a number of decompressed cachelines, not yet stored
in the LLC, to be inserted in the LLC before being replaced by the new block
under decompression.

Biasing & unbiasing: When dealing with extremely large or small floating-
point numbers (large positive or negative exponent), the conversion to fixed-
point format can cause a greater loss of precision. To avoid this, blocks are
biased during compression. A bias value is determined, which, when added
to the exponent of the values in the block, can bring the block’s values into a

18 CHAPTER 2. AVR: REDUCING MEMORY TRAFFIC WITH APPROXIMATE VALUE RECONSTRUCTION

Average

Original Block Block Summary Reconstructed Block

Interpolate

Figure 2.5: Downsampling and Reconstruction of a 2D block.

representable range. Biasing is not performed on blocks where either a) the
selected bias would cause special values such as NaN or Inf, or b) the selected
bias would cause over- or underflow of the exponent of any value. The bias is
stored with the block’s metadata and used during decompression to restore the
original range of values. Biasing involves finding the maximum and minimum
exponent of the values in a block, determining a suitable offset, and applying it
to the exponents of the block. Biasing is pipelined and performed in 4 cycles.
The inverse process (unbiasing) requires an 8-bit addition to all decompressed
values and requires one cycle.

Float to fixed & fixed to float conversions: Converting from float to
fixed point numbers and vice-versa is implemented as described in [46] requiring
a single cycle.

Compression: Although various lossy compression algorithms can be
considered, we opted for a method that is simple to implement. In AVR,
memory blocks are compressed using downsampling [47]. This method entails
dividing the block into a suitable number of sub-blocks and computing the
average value of each sub-block. We aim for a 16:1 compression ratio and
therefore sub-blocks of 16 values are used. In our attempt to find the best
compression, a number of variations of the method are used in parallel. The
main two variants differ in the considered placement of the values in the
block before partitioning to sub-blocks; in particular, the first one considers
the block as a square 2D array and the second as a linear 1D linear array.
Figure 2.5 shows an example of 2D downsampling, where the compression is
performed by averaging the values of a sub-block (light-grey) into a single value.
For decompression, the average values are distributed evenly and bi-linear
interpolation is applied to reconstruct the approximate values in-between. In
our implementation, compression and decompression require 15 and 10 cycles,
respectively.

Error calculation & Outliers selection: Lossy compression introduces
errors in the approximated values. In order to limit this error, compression
is skipped in case the error exceeds a particular threshold value. This is
evaluated by comparing the original incoming uncompressed block with the
approximately reconstructed block produced after compression and subsequent
decompression. Two separate thresholds are used to control the approximation
error of the compression operation: the relative error of each individual value
may not exceed a percentage threshold T1 and the average relative error across
all values in the block may not be greater than a percentage threshold T2.

2.2. SYSTEM ARCHITECTURE 19

These error thresholds are exposed as a tunable knob and in our experiments
T1 = 2T2. Notice that this is an error mitigation strategy of low overhead and
local decision.

The error per individual value is calculated in floating point format as
follows1. For a value to be approximated with a relative error within T1, a
comparison between the original and approximated value should result in (i)
the exact match of their signs and exponents and (ii) the difference of their
mantissas not exceeding the Nth most significant bit (MSbit); for an error
below 1/2N . The above comparisons are performed in a cycle and produce the
bitmap of the values that are outliers. Subsequently, this bitmap is used for
selecting and compacting the outliers and in parallel computing the average
block error for the values that are not outliers. Selecting and compacting the
outliers requires 16 cycles, one cycle per uncompressed cacheline. The relative
error of each individual non-outlier value is required for computing the average
error of the block. The sign and exponent are identical for the original and
approximate values, otherwise they would be outliers. So, the average error is
calculated by subtracting the mantissa bits of each original and approximated
value. The average block error is the average of these subtractions for all the
non-outliers values and computing it also fits in 16 cycles.

Prefetching decompressed cachelines: After decompressing a block,
the requested cacheline(s) are stored in the LLC. Storing also the remaining
cachelines could lead to the pollution of the LLC with unwanted cachelines.
Consequently, they remain in DBUF until they are overwritten by another block.
In the meantime, if one of these cachelines is requested it is sent directly to the
LLC. When a new compressed block arrives for decompression, a prefetching
engine (PFE) is consulted to decide whether any of the remaining decompressed
cachelines in DBUF should be written in the LLC before they are replaced by
the new block. The PFE employs a simple threshold strategy, prefetching all
lines from a block where at least half have been explicitly requested.

Total compression and decompression latency: Based on the above
and as confirmed by our synthesis results presented in Section 2.3, the total
latency for compressing a block is 49 (processor) cycles, and for decompressing
a block is 12 cycles. Decompression is more critical for system performance
as it affects memory reads. Compression is less critical because it affects the
write backs.

2.2.4 Last Level Cache

The AVR Last Level Cache (LLC) stores uncompressed cachelines (UCL) as
well as compressed memory blocks. A compressed memory block may occupy
one to eight LLC lines (64B), depending on its compressibility, it is therefore
split in 64B compressed memory subblocks (CMS). When a memory block
enters the processor chip and gets uncompressed, only selected uncompressed
cachelines are stored in the LLC. The AVR LLC is decoupled in order to
support the management of the LLC contents at two granularities, namely, that
of a cacheline (64B) and that of a memory block (16 cachelines). Following the
design of the Decoupled Sectored Caches [35], the AVR LLC decouples its tag
array from the data array. On one hand, entries of the LLC data array have a

1For fixed point numbers a subtraction and a subsequent comparison would be required.

20 CHAPTER 2. AVR: REDUCING MEMORY TRAFFIC WITH APPROXIMATE VALUE RECONSTRUCTION

A CMS0

CMS1

UCL0

UCL2

0x4B 0x4B

0x4C

0x4D

0xB0

0xB2

0x4B

0x4C

0x4D

0xB0

0xB2

Tag Array Back-pointer Array Data Array

Valid Dirty LRU #CMS #UCL Block Tag

Tag Entry

Valid Dirty Type LRUTag-Way CL-id/Suffix

Back-pointer Entry

1 1 0x2 0x11 0x3 0x2 0xA

Byte Off.Line Off.

UCL Index (n)
Tag Suffix

Block Tag (m) Tag Index (n)

CL Tag

0xA 0x4 0xB 0x2UCL Addr.

0xA 0x4 0xB 0x0Block Addr.

CMS2

Set

Way

Figure 2.6: AVR Last Level Cache.

cacheline (64B) granularity. On the other hand, the tag array has a granularity
of a memory block (16 cachelines). The decoupling of tag and data arrays
is facilitated by a back-pointer array (BPA) which supports the indirection
between every data array entry and a tag array entry to associate the data of a
cacheline with its tag. In essence, each data array entry has a respective BPA
entry at the same set and way, which maintains its state-bits and a pointer to
its tag in the tag array. In contrast, a tag array entry can be shared among
multiple data array entries.

LLC Functionality: Figure 2.6 illustrates the AVR LLC functionality
using an example of a memory block with tag A. The memory block of this
example, when compressed, occupies three cachelines, CMS0, CMS1, and
CMS2; one for the summary of the block and two for the bitmap and the
outliers. All three cachelines of the compressed block are stored in the LLC.
In addition, two of its 16 uncompressed cachelines, UCL0 and UCL2 are also
present in the LLC. The breakdown of a memory address is shown in Figure
2.6. After the 6-bits of byte offset, there is the 4-bit cacheline offset in the
memory block. Let us consider that the LLC requires n-bits for indexing. Then,
the tag array will use as index the n bits of the address after the cacheline
offset (tag index) and store the remaining m most significant bits of the address
as the memory block tag because it follows a memory block granularity. For
example, the tag A for the memory block 0xA4B0 is placed in set 0x4B of
the tag array. The same indexing is used for the placement of the compressed

2.2. SYSTEM ARCHITECTURE 21

memory subblock. The first CMS of the compressed block, CMS0, is placed in
a way of set 0x4B, occupying the respective entry in both the data array and
the BPA. The remaining parts of the compressed block, CMS1, and CMS2,
are placed in the subsequent sets 0x4C and 0x4D. Uncompressed cachelines
use the indexing of a conventional cache (UCL index), in particular, the n bits
after the byte offset. For example, uncompressed cacheline UCL2, with address
0xA4B2, is placed in set 0xB2. This LLC design has two advantages. Firstly,
each UCL and CMS is mapped to different LLC sets, thereby, not affecting the
effective associativity of the cache. Secondly, a single tag entry is required for
all of cachelines of a block, making the management of memory blocks simpler.

LLC Structure: Structurally, the AVR LLC, depicted in Figure 2.6, is
based on the Decoupled Sectored Caches [35] and shares some common elements
with Decoupled Compressed Cache [42]. A tag array entry stores the following
fields:

• Block Tag: The memory block tag.

• CMS count: the number of subblocks/cachelines needed for storing the
compressed memory block (3 bits).

• UCL count: number of uncompressed cachelines of the block stored in
the LLC (4-bits).

• Block state bits: valid, dirty & least recently used (LRU).

The dirty bit indicates the compressed memory block is dirty. The tag LRU
is updated when a UCL of the block is accessed and used for tag-entries
replacement. A BPA entry stores the following:

• CL-type: one bit indicating a UCL or CMS.

• CL-id: for a UCL, this 4-bit field stores the cacheline tag suffix depicted
in the address breakdown; for a CMS, 3 of these 4 bits store the CMS
offset in the compressed block.

• Tag-way: the way of the tag array that stores the tag of the respective
block.

• CL state bits: valid, dirty and LRU bits.

The tag suffix of an UCL is stored in the BPA because during a lookup it
needs to match together with a block tag to complete a cacheline tag match.
Instead, for the BPA entries that store a CMS, the compressed memory subblock
number is serving the same purpose; that is when looking up the i-th subblock
(cacheline) of the compressed block the CL-id of the matching BPA entry
should be i. Finally, the CMS LRU bits are updated when any UCL of the
block is accessed.

LLC Lookup & Allocation: A request for an LLC cacheline is served by
accessing in parallel the DBUF and the LLC tag array. In case the requested
cacheline is in the DBUF it is returned. Otherwise the tag array access will
determine whether the cacheline is available in the LLC uncompressed or its
compressed memory block is present. In the first case, an UCL lookup is

22 CHAPTER 2. AVR: REDUCING MEMORY TRAFFIC WITH APPROXIMATE VALUE RECONSTRUCTION

performed. Otherwise, in the second case a CMS lookup is performed. Figure
2.7 illustrates the AVR LLC lookups. Below we discuss each case in more
detail.

A lookup for an uncompressed cacheline is performed as follows. The tag
array is accessed using the tag index and in parallel the BPA and data array
using the UCL index. The block tags in the set are matched. In parallel, the
cacheline tag suffixes (CL-id) in the BPA set are matched for the entries in the
set storing UCLs. Subsequently, the tag-way stored in each of the matching
BPA entries is compared with the way of the matching block tag. There is a
hit when a tag suffix matches and its tag-way points to a matching tag. The
tag-way stored in the BPA entry must be equal to the way of the matching tag
in order to ensure that a matching tag suffix points to its true tag, otherwise the
cacheline stored in the BPA entry may have a different tag than the matching
one.

A lookup for a compressed block in the LLC requires one or multiple accesses
to the LLC, as many as the CMSs the block is composed of (CMS count). The
tag array, BPA, and data array are accessed with the tag index. The block tags
in the set are matched. In parallel, the entries in the BPA set that store CMSs
compare their CL-id with zero. Here this field indicates the offset of the CMS
in the compressed memory block and looking up for the first subblock requires
CL-id to be zero. Subsequently, the tag-way stored in any of the matching
BPA entries is compared with the way of the matching block tag. In this first
access to the LLC, besides the first subblock (CMS), the CMS count is also
retrieved to determine the total number of LLC accesses required for accessing
the compressed block. If that number is more than one, the BPA and data
array are accessed repeatedly until all parts of the block are read. At each
access, CL-id needs to match the iteration increment, and tag-way should be
the same as the matching tag entry.

When there is no available cacheline entry in the set, allocation for an UCL
is performed choosing a victim cacheline based on the LRU bits stored in the
BPA set. All cachelines in the set, UCLs and CMSs, compete equally. In case
a CMS is evicted, then all the other CMSs of the same compressed block need
to be evicted, too, and if dirty written back to memory. The tag entry of
the block would remain if the LLC stores UCLs of the block. The absence of
the compressed version of the block is indicated by setting to zero the field
CMS count in its entry in tag array. Allocation for a tag entry is performed
by choosing a victim tag in the set based on LRU. The LRU of a block tag is
updated when one of its UCLs is accessed or when the block is recompressed.
Finally, allocation for the CMSs of a block needs to be performed together at
consecutive sets starting from the one indicated by the tag index.

2.2.5 Memory Operations

åWe explain next the AVR memory operations at the LLC and main memory
level. More precisely, we explain how a request to the LLC and an LLC eviction
are handled. The details of an LLC lookup and allocation are omitted as they
were described above.

LLC Requests: A request to the LLC has the following possible outcomes
as shown in Figure 2.7:

2.2. SYSTEM ARCHITECTURE 23

LLC
Request

Update
Prefetcher

Hit

MissDBUF
Lookup

Hit

MissUCL
Lookup

Hit

MissCMS
Lookup

Compressed

UncompressedBlock
Status?

Read out
Compr. Block

Decompress

Request block
from DRAM

Request UCL
from DRAM

Return UCL

Insert UCL
in LLC

Prefetch
from DBUF

into LLC

Replace
in DBUF

Return UCL

Return UCL

Insert in LLC
Insert Compr.
block in LLC

Figure 2.7: AVR LLC requests.

• The requested UCL may hit either in the LLC or in the decompressed
buffer (DBUF). In the latter case the UCL is also written from DBUF to
the LLC.

• There is a miss of the requested UCL, but a hit to the compressed
memory block stored in the LLC. Then, the compressed block is read
and decompressed in the AVR compressor block to retrieve the requested
cacheline.

• In case both the UCL and the compressed block miss in the LLC, the
compressed block containing the requested cacheline is requested from the
main memory and upon arrival decompressed to retrieve the requested
cacheline. Then, the compressed block is also stored in the LLC.

Note that at a new decompression, the decompressed block previously stored
in the DBUF needs to be overwritten. Before overwriting the old block, the
prefetcher is consulted to potentially save some of its UCLs, storing them in
the LLC.

LLC Evictions: When a cacheline is replaced from LLC, then if clean
no further action is required, if dirty, the cacheline is evicted and its type is
checked first as shown in Figure 2.8.

In case of a dirty UCL, it is checked whether its compressed memory block
is also stored in the LLC. If so, the compressed block is read from the LLC,
decompressed, updated with the evicted dirty UCL, compressed again and
stored back to the LLC. In case the compressed block is missing from the LLC
(or the compression attempt fails), the metadata table is consulted to check
whether there is space in the main memory to lazily store the dirty cacheline.
If so, the dirty UCL is written back to the memory and the metadata entry is
updated to reflect that. Otherwise, the compressed block is read from memory,
decompressed, updated with all the dirty cachelines, as well as any lazy evicted
lines, then compressed and written back to memory.

When bringing in a compressed block from memory, the metadata table is
consulted to determine whether lazy evicted cachelines exist in memory. If so
these lazy evicted cachelines are read from memory together with the block,
and incorporated into the block after decompression. The block is immediately
recompressed, marked dirty and stored in LLC.

24 CHAPTER 2. AVR: REDUCING MEMORY TRAFFIC WITH APPROXIMATE VALUE RECONSTRUCTION

LLC
Eviction

UCL

CMSLine
Type

Lazy DRAM
Writeback

Line
State

Clean

Dirty

C-Block
in LLC?

Yes

No

Yes

NoLazy WB
Possible?

Invalidate
UCL

Read Block
DRAM/LLC

Decompress

Overlay
Dirty UCLs

& Lazy lines

Compress

Block
State

Clean

Dirty

Invalidate
CMSs

Update Block
DRAM/LLC

Block
Status

Compr.

Skipped
Max tries

Yes

Uncompressed
 DRAM

Writeback

No

Increment
Skip Count

Uncompr.

Figure 2.8: AVR LLC evictions.

When evicting a dirty CMS, the entire compressed block needs to be evicted,
as partially storing it in the LLC is not useful. The dirty compressed block
is first read from LLC and put in the AVR compressor/decompressor to be
decompressed. Any dirty UCLs belonging to the block are read from LLC and
overlaid on the decompressed block. The memory block is compressed again
and written back to memory.

Note that before compressing a memory block that is currently uncom-
pressed, because its last attempt for compression failed, its compression history
and counter of skipped compressions is consulted. Based on these fields it is
determined whether to proceed with the current compression or not. Accord-
ingly, the above metadata fields are updated in the respective entry. If the
recompression is skipped, the dirty UCL is written back to memory directly.

2.3 Evaluation

In this section we evaluate the effectiveness of the AVR architecture. We
first describe our experimental setup, presenting the system configuration of
our experiments and the benchmarks used. Then, we discuss the hardware
overheads of the AVR architecture. Finally, we show our evaluation results
and comparison with related designs in terms of performance, energy, and
application output error.

2.3.1 Experimental Setup

We evaluated the AVR system using an in-house simulator, implemented on
top of Pin [48], that employs an interval-based processor model, as proposed
by Genbrugge et al. [49], and a cycle-accurate model of the memory hierarchy
that uses DRAMSim2 for modelling main memory [50]. McPAT [51] and
CACTI [52] were used to model power and latency of the system considering
32nm technology. The AVR compression hardware modules were implemented
in RTL, synthesized using Synopsys to determine their operating frequency,
latency and power consumption; this information was then fed to the simulation
tool. The parameters of the simulated system are listed in Table 2.1.

2.3. EVALUATION 25

Table 2.1: Simulation parameters

Parameter Configuration

CPU 8 core, out-of-order, 4-way issue/commit @ 3.2GHz
L1 cache 64kB per core, 4-way, 1 cycle latency
L2 cache 256kB per core, 8-way, 8 cycle latency
L3 cache 8MB shared, 2 banks, 16-way, 15 cycle access latency
DRAM 8GB DDR4, 2 channels, 1600MHz

In order to correctly emulate the impact of the approximations in the
overall application error, we not only emulate the memory accesses but we
actually update the values of the memory contents accordingly by applying
the construction and reconstruction methods to the data.

Besides the baseline system, AVR is further compared with (i) itself without
marking any data as approximate so as to measure AVR overheads (ZeroAVR),
(ii) a design that simply compresses approximate values to half-precision by
truncating 16 bits similarly to what has been proposed in [9,28,30] (Truncate),
and finally (ii) Doppelgänger [39], which is the closest and best performing
related work on approximate data compression [39] (Dganger). As proposed,
Doppelgänger is configured to have identical LLC data-array size and a 4×
larger tag-array versus AVR, i.e. being able to index up to 4× more cachelines.
Lossless compression techniques are considered orthogonal and so not included
in the comparison; that is because the downsampled values and outliers of an
AVR compressed block could be further compressed in a lossless way.

The benchmarks used in this evaluation are selected so each one of them
(i) is able to execute until completion and generate an output, and (ii) can

Table 2.2: Benchmark Applications

Application Approx. Output Footprint Description

heat [53] Temps Temps 8.2MB/core 2D Thermodynamics application
that iterates over a grid of values
and computes the propagation of
heat.

lattice [54] P and M Vel.+Pr. 5MB/core 2D Lattice-Boltzmann method
simulation of air flow over a solid
object.

lbm [55] Velocities Velocities 325MB/core 3D Lattice-Boltzmann method
simulation of fluid flow over a
sphere.

orbit [56] Phys. data Phys. data 376MB/core 3D simulation of the two-particle
orbit problem

kmeans [57] Topol. [58] Clusters 5.5MB/core Clustering algorithm, applied on
a geographic elevation map.

bscholes [59] Options Prices 6MB/core Financial forecasting, predicts
future stock option prices based
on historical parameters.

wrf [55] Geo data Temp. 90MB/core Weather forecasting model.

26 CHAPTER 2. AVR: REDUCING MEMORY TRAFFIC WITH APPROXIMATE VALUE RECONSTRUCTION

Table 2.3: Application output error

heat lattice lbm orbit kmeans bscholes wrf

dganger 0.4% 0.2% 22.3% >100% <0.05% <0.05% 24.9%
truncate 0.2% 0.5% 0.6% <0.05% <0.05% 1.4% 4.2%
AVR 0.7% 0.6% 0.1% <0.05% 1.2% 0.5% 8.9%

tolerate approximations in (parts of) its data. The above restricts us to using
the benchmarks listed in Table 2.2; the table further presents the application
domain, description of the approximated data-structures and output type
as well as their memory footprint. The application code was analyzed to
identify approximable data structures. In many cases, a large portion of the
application’s working set is dynamically allocated. For these cases, a wrapper
was created to the malloc library call to allocate properly aligned space and
register the address range as approximable. The input data sets used for our
experiments are the standard input data sets provided with the benchmarks
with the exception of (i) lattice for which we used a silhouette of a car as the
input data set, and (ii) k-means where the input is topological data [58]. We
use the mean of the relative errors for each output value as our quality metric.
Benchmarks for approximate computing (AxBench [59]) considers 10% relative
output error, but it is solely up to the application provider do define what is
acceptable. Similar to previous works, AVR provides the means to control the
data approximation error as a knob to constrain application output error.

2.3.2 Hardware Overhead

AVR requires some extra hardware resources. The metadata stored in the
CMT and the additional bit in the TLB add up to 93 bits per page. Compared
to the unmodified TLB, which stores a virtual and a physical page address
(52+36=88 bits), this is an overhead of roughly 2×. The AVR Tag array and
the BPA add to the baseline set-associative LLC 18 bits per entry; that is in
total 144kB and 3.2% overhead to the LLC. Moreover, the AVR compressor
module occupies about 200k cells according to our synthesis report.

2.3.3 Experimental Results

We present next our experimental results for each benchmark comparing AVR
with other related designs, namely, Doppelgänger, Truncate, and ZeroAVR
(all results normalized to the baseline). The designs are evaluated in terms of
execution time, system energy consumption, DRAM traffic, average memory
access time (AMAT), and LLC misses per kilo-instruction (MPKI), as shown
in Figures 2.9a, 2.9b, 2.9c, 2.9d and 2.9e as well as in terms of application
output error shown in Table 2.3. Table 2.4 shows the AVR compression ratio
(for Truncate compression ratio is 2:1) as well as the overall memory footprint
versus the baseline. AVR approximate LLC requests and evictions are analyzed
and shown in Figures 2.10a and 2.10b.

Before presenting the results of each application separately a few common
observations are discussed. Analyzing the execution time and energy consump-
tion of ZeroAVR, it is observed that AVR does not add significant overhead

2.3. EVALUATION 27

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R0.0

1.0
To

ta
l e

xe
cu

tio
n

tim
e

(n
or

m
. t

o
ba

se
lin

e)

heat lattice lbm orbit kmeans bscholes wrf Geom. Mean

(a) Execution time

ba
se

lin
e

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

ba
se

lin
e

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

ba
se

lin
e

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

ba
se

lin
e

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

ba
se

lin
e

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

ba
se

lin
e

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

ba
se

lin
e

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

ba
se

lin
e

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R0.0

1.0

En
er

gy
(n

or
m

. t
o

ba
se

lin
e)

heat lattice lbm orbit kmeans bscholes wrf Geom. Mean

Core L1+L2 LLC DRAM Compressor/Decompressor

(b) System energy consumption

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R0.0

1.0

Da
ta

 tr
an

sf
er

re
d

(n
or

m
. t

o
ba

se
lin

e)

heat lattice lbm orbit kmeans bscholes wrf Geom. Mean

Non-approx Approx

(c) Memory Traffic

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R0.0

1.0

Av
g.

 m
em

. a
cc

. t
im

e
(n

or
m

. t
o

ba
se

lin
e)

heat lattice lbm orbit kmeans bscholes wrf Geom. Mean

(d) Average Memory Access Time

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R

dg
an

ge
r

tru
nc

at
e

Ze
ro

AV
R

AV
R0.0

1.0

LL
C

M
PK

I
(n

or
m

. t
o

ba
se

lin
e)

heat lattice lbm orbit kmeans bscholes wrf Geom. Mean

(e) LLC misses per kilo-instruction

Figure 2.9: Evaluation of the AVR design and comparison with competing
designs.

28 CHAPTER 2. AVR: REDUCING MEMORY TRAFFIC WITH APPROXIMATE VALUE RECONSTRUCTION

0 20 40 60 80 100%
(%)

wrf
bscholes
kmeans

orbit
lbm

lattice
heat

Miss Uncompressed Hit DBUF Hit Compressed Hit

(a) LLC Requests on approx. cachelines

0 20 40 60 80 100%
(%)

wrf
bscholes
kmeans

orbit
lbm

lattice
heat

Recompress Lazy Writeback Fetch+Recompress Uncompressed Writeback

(b) LLC Eviction of approx. cachelines2

Figure 2.10: Evaluation of the AVR LLC

when it does not approximate data (Figures 2.9a and 2.9b); only in lbm, Ze-
roAVR is 2% slower than baseline, adding similar energy overheads, mainly due
to increased DRAM latency caused by changes in the memory access pattern.
Moreover, its AVR Decoupled LLC performs similarly to the baseline LLC
achieving the same MPKI as shown in Figure 2.9e. In our experiments AVR
LLC devotes 2-16% of its capacity to compressed blocks.

Heat dataset exhibits excellent compression; about 8× smaller total memory
footprint and a 10:1 compression ratio.AVR reduces execution time by 43%
compared to the baseline introducing only 0.7% error. That is almost double
the reduction compared to Truncate that has a 0.2% error. Doppelgänger
shows no speedup as the data used by heat do not have significant locality and
therefore having an “effectively” larger cache does not improve performance.
Improvements in execution time lead to AVR and Truncate reduction of
baseline energy cost by 18% and 15%, respectively. Furthermore, Doppelgänger
introduces an energy overhead of 1% due to its LLC design. AVR reduces
memory traffic by 71% compared to baseline. Truncate reaches 50% and
Doppelgänger achieves a 4% reduction. AVR reduces memory latency by 20%.
Truncate follows with a 5% reduction. This is confirmed by MPKI, where
AVR has less than half the misses compared to Truncate as over half of its
approximate LLC requests hit in compressed blocks in the LLC or in DBUF.

Lattice dataset is compressed by AVR by a factor of 9.6:1. AVR reduces
execution time by 51% introducing 0.6% output error. Doppelgänger reduces

2Recompress: the evicted cacheline belongs to a compressed block available in LLC,
which is updated and recompressed; Lazy Writebacks: the cacheline is evicted to memory
uncompressed (lazily, without recompression) although it belongs to a compressed block
(stored in memory); Fetch+Recompress: the compressed block, to which the evicted cacheline
belongs, is read from memory and updated; Uncompressed WB : the evicted cacheline’s block
has failed to compress so the line is written back uncompressed.

2.3. EVALUATION 29

Table 2.4: AVR compression ratio and footprint reduction

heat lattice lbm orbit kmeans bscholes wrf

Compr. Ratio 10.5× 9.6× 15.6× 16.0× 2.3× 4.7× 3.4×
Mem. Footprint 12.6% 20.0% 7.9% 54.1% 58.5% 78.6% 89.6%

execution time by 54% with an error of 0.2%. This is because lattice can exploit
the effectively larger Doppelgänger LLC. Furthermore, Truncate achieves a
speedup of 47% with an output error of 0.5%. Energy consumption follows
the performance trends. AVR reduces baseline energy by 23%. Doppelgänger
and Truncate energy consumption is reduced by 27% and 23% of the baseline,
respectively. AVR memory traffic is reduced by 51% compared to baseline. That
is similar to Doppelgänger’s 54%. Truncate reduces the memory traffic by 47%.
It is noteworthy that the large gap in MPKI between AVR (14% of baseline) and
competing designs (48% and 53% for Doppelgänger and Truncate, respectively)
is not reflected in the memory traffic volume. This is caused by frequent lazy
writebacks leading to an inflated amount of read traffic when memory space
is exhausted. AMAT follows the execution time trends. Doppelgänger leads
with a 60% reduction. AVR AMAT is down by 43% compared to baseline and
Truncate follows with 42%.

Lbm has about 98% of its footprint approximable, and AVR reduces it more
than 15×. AVR is better than Truncate. It reduces baseline execution time by
57% vs. 42% for truncate, has 0.1% application output error (Truncate error is
0.6%), similar energy savings, lower memory traffic (33% vs. 50% for Truncate)
and lower memory latency (30% reduction for AVR versus Truncate’s 23%) due
to very low LLC MPKI. Doppelgänger yields an excessive 22.3% output error,
with a 3% improvement in execution time and no effect on total energy. The
high output error is caused by edge-cases in Doppelgänger’s approximation,
where cache-lines at the extreme edges of their respective expected value span
are considered approximately equal even though their absolute values are very
different.

Orbit sees its total footprint reduced to 54% by AVR as half of its data
are approximate and compress almost perfectly. AVR and Truncate introduce
negligible error, while Doppelgänger causes strong artefacts leading to a runaway
error exceeding 100%. AVR reduces execution time to 79% of baseline, Truncate
trails behind at 82% followed by Doppelgänger with 86%. Truncate achieves
the largest improvement in energy totaling 89% of baseline, AVR follows
closely with a total of 92% and Doppelgänger with 93%. In spite of the high
compression ratio, AVR only reduces memory traffic to 52%, outperforming
by a narrow margin Truncate’s 54%, while traffic for Doppelgänger is 65%.
Memory latency follows a trend similar to execution time, with AVR achieving
a reduction to 84%, Truncate yielding 86% and Doppelgänger 90% of the
baseline.

K-means has a 58% reduction in memory footprint at the cost of 1.2%
error. AVR achieves the highest instructions per cycle (IPC) count among
all design points, but has the second shorter execution time after Truncate.
That is because the application requires extra iterations to converge for the
AVR, which increases the total number of executed instructions. Note, that
k-means is the only benchmark used where the workload may vary based on

30 CHAPTER 2. AVR: REDUCING MEMORY TRAFFIC WITH APPROXIMATE VALUE RECONSTRUCTION

the quality of the approximations, all other applications have a fixed number
of instructions to execute. Doppelgänger matches the baseline execution time
despite its slightly improved memory latency and reduced memory traffic and
has negligible error. AVR reduces energy cost by 2%. Truncate, which runs
an identical number of instructions to the baseline, reduces energy by 13%.
Doppelgänger energy overhead is 3% due to its LLC design. AVR reduces
memory traffic by 37% and Truncate by 50%. This difference is an artifact of
AVR’s higher number of executed instructions. Doppelgänger has a smaller
reduction of memory traffic, 26% less than the baseline, primarily because
its LLC performs better than the baseline, as confirmed by its MPKI results.
Memory latency is the shortest for AVR and Truncate, each 23% lower than
the baseline, Doppelgänger follows with 12%. It is noteworthy that 55% of
the AVR approximate LLC requests hit in the compressed blocks stored in the
LLC and another 20% in DBUF.

Blackscholes (bscholes) uses input data where some of the input fields are
identical for multiple entries [59]. This has been exploited by the Doppelgänger
design. About 30% of bscholes dataset is approximable and AVR reaches a
compression ratio of 4.7:1. However, bscholes is not memory intensive. As a
consequence, the evaluated designs have little impact. Nevertheless it is still
interesting to discuss their behaviour. Indeed, the execution time of all designs
is very close to the baseline as shown in Figure 2.9a. This holds also for the
energy consumption. Truncate and AVR reduce memory traffic by 15% and 6%,
respectively. Doppelgänger reduces traffic by 3%, does not improve memory
latency and reduces MPKI by 1%.

WRF has only 15% of its data marked as approximable, most of them
geographically ordered weather metrics. AVR compresses these data with a
3.4:1 ratio reducing total memory footprint by 10%. Still it is an interesting
application to discuss as a case where approximation does not offer a large
benefit. AVR reduces execution time by 2% introducing 8.9% error to the
application output. It reduces memory traffic only by 3% and has no effect
on memory access time. Its MPKI is 7% lower than the baseline as over 50%
of the approximable LLC requests hit in compressed blocks in the LLC or
in the DBUF. Truncate has similar performance. It reduces execution time
by 1% with 4.2% output error, reduces memory traffic by 5% and memory
latency is unaffected. Finally, Doppelgänger causes 24.9% error with negligible
performance impact.

Figures 2.10a and 2.10b show the breakdown of the LLC requests and
evictions. In general, about 40-80% of the LLC requests hit on the DBUF or
on compressed blocks. The latter case adds extra latency to the LLC hits for
reading and decompressing the compressed block before serving a request. More
precisely, the average LLC latency when hitting on a compressed block in the
LLC is 20-30 cycles for wrf and kmeans, 74 for bscholes, and 40-50 cycles for the
other benchmarks, which is still significantly faster than a DRAM access. The
analysis for the AVR LLC evictions is mixed among benchmarks. For kmeans
and bscholes about 40% of the evictions require fetching the block from memory
and recompressing introducing traffic overheads, the remaining evictions are
uncompressed written-backs because the block has failed to compress. On the
contrary, the other benchmarks exploit the AVR lazy evictions in 45% to 80%
of the cases avoiding fetching the compressed block on chip. Even including

2.4. CONCLUSION 31

the lazily evicted cachelines, the average size of a block read from memory is
similar to the one indicated by the compression ratio shown per benchmark
in Table 2.4. That is about 5.1 memory accesses to read a block for kmeans,
3.4-3.8 for bscholes and wrf, and 1.2-2 for the other benchmarks. Finally, the
reuse of blocks is indicative to the AVR performance gains; on average 7-10
unique cachelines of a block are used before eviction for bscholes and lattice
and 13-16 cachelines for the other benchmarks.

In summary, for applications with high compression ratio (heat, lattice,
lbm), AVR is better than competing designs. It achieves significant reduction
in execution time (40-55%) and considerable energy savings (10-20%) with less
than 1% output error. Memory traffic is also reduced for these applications
by 50% to 70%, although in some cases less than expected based on the
compression ratio. Orbit is an exception to this trend; although AVR achieves
excellent compression ratio, execution time is reduced only by 20%. At medium
compression ratio, i.e. in k-means, AVR has moderate performance gains
(about 15%) despite increasing the number of executed instructions. At low
compressibility, i.e. in wrf, AVR improvements are negligible as are its overheads.
Moreover, in compute bound applications, i.e. bscholes, there is minimum
impact. Note that AVR memory latency is substantially reduced and always
lower than the compared approaches. Finally, when not approximating, AVR
does not have notable overheads.

2.4 Conclusion

The AVR architecture improves the memory system using aggressive approx-
imate compression. Thereby, AVR reduces memory traffic, utilizes more
efficiently the off-chip bandwidth and achieves better performance and energy
efficiency. AVR provides a low latency decompression scheme to reduce over-
heads in memory access time. Its LLC design stores both compressed and
uncompressed data to increase its hit rate. AVR LLC evictions of compressible
cachelines are handled in a lazy manner reducing the overhead of recompres-
sion. Moreover, keeping track of badly compressed blocks reduces unsuccessful
compression attempts. Finally, the decompressed data selected to be stored in
the LLC are carefully selected to avoid polluting the LLC with unwanted data.
For applications with large part of the data being approximation-tolerant, in a
system with 1GB of 1600MHz DDR4 per core and 1MB of LLC space per core,
AVR reduces memory latency by up to 45%, memory traffic by up to 70%, and
achieves up to 55% lower execution time, up to 20% lower energy with less
than 1% error to the application output.

32 CHAPTER 2. AVR: REDUCING MEMORY TRAFFIC WITH APPROXIMATE VALUE RECONSTRUCTION

Chapter 3

MemSZ: Squeezing
Memory Traffic with Lossy
Compression

As laid out in Chapter 2, there is ample room for performance improvement by
reducing traffic on the main memory bus. The AVR memory compression system
was proposed, which uses lossy compression to achieve higher compression
ratios for data which tolerate approximation. AVR uses a low-complexity
downsampling compression algorithm to compress large (1kB) blocks of data.
This large block size allows compression ratios of up to 16× to be supported.
In order to limit the quality impact of approximation, AVR enforces two error
thresholds during compression. Any individual value which deviates too far
from the original is stored with at a fixed 2:1 compression ratio. If a full
block exceeds the set threshold, the block is left completely uncompressed.
This approach allows only local error control, i.e. deciding only based on the
data currently being compressed. It does not account for accumulating error
introduced when a block is compressed multiple times during its lifetime.

This chapter describes MemSZ, a more refined approach to lossy memory
compression. MemSZ is based on the Squeeze (SZ) compression [34], a very
effective, although sequential, algorithm introduced for compressing check-
pointed data transferred between memory and disk. A brute-force hardware SZ
implementation has a complexity of O(n) and requires two processor cycles for
compressing/decompressing a single value. Such latency would be prohibitive
for memory compression. MemSZ introduces a new parallel version of SZ that
is able to compress/decompress a block in O(

√
n) time, rather than in O(n),

in practice reducing the compression latency by 50× for the particular block
size used. This low latency design of our compressor is then applied to an
improved AVR design, which further offers better control of approximation
error and a more efficient LLC replacement policy. MemSZ introduces a third
error limiting mechanism, which tracks the accumulated error introduced when
blocks are compressed more than once. Finally, in order to avoid AVR’s LLC
modifications, we apply the MemSZ compression to a system with a 3D-stacked
DRAM cache with a line size that matches the granularity of the compressed

33

34 CHAPTER 3. MEMSZ: SQUEEZING MEMORY TRAFFIC WITH LOSSY COMPRESSION

ii-1i-2i-3

Original values

index

v
a
lu

e

Outlier value

Constant prediction

Linear prediction

Polynomial prediction

(a) The four function models of SZ

3210 4-2 -1

Se
ed

Se
ed

S 0
=
Po
ly
no
m
.

S 1
=
Li
ne
ar

S 2
=
Li
ne
ar

S 3
=
Co
ns
ta
nt

S 4
=
Ou
tli
er

-3

Ze
ro

Original
Values

index

v
a
lu
e

(b) Reconstruction of a value sequence

Figure 3.1: The SZ compression scheme

memory blocks. As a result, both MemSZ designs offer significantly better
compression ratio without increasing approximation error, in effect, reducing
memory traffic and improving system performance and energy efficiency.

Concisely, MemSZ contributes the following:

• A new low latency parallel version of the SZ lossy compression algorithm
that offers substantially higher compression ratio than previous lossy
memory compression techniques;

• An extension of the existing AVR architecture, with a better cache
replacement policy

• An additional error control mechanism, limiting accumulated error;

• A new architecture that combines memory compression with a 3D-stacked
DRAM to more efficiently handle compression blocks.

The remainder of this chapter is organized as follows. Section 3.1 provides
background information, and Section 3.2 describes the proposed MemSZ archi-
tecture. Section 3.3 presents our evaluation results and Section 3.4 draws our
conclusions.

3.1 Background

MemSZ extends AVR, primarily by adding support for the more advanced
Squeeze (SZ) lossy compression algorithm [34]. MemSZ adapts SZ for efficient
hardware implementation by heavily parallelizing it. In this section, a detailed
description of the SZ compression scheme is provided.

3.1.1 SZ Compression

SZ is an algorithm which lossily compresses a sequence of numeric values
by describing each value Xi as a function of the three preceding values
[Xi−3, Xi−2, Xi−1], according to a predefined function model [34]. Four such
function models are supported, as shown in Figure 3.1a: 1) A constant value
is approximated as equal to the nearest preceding one (Equation 3.1), 2) a
linear value is extrapolated from the preceding two values (Equation 3.2), 3)
a polynomial value fits on the cubic curve described by the preceding three

3.2. SYSTEM ARCHITECTURE 35

Shared
LLC

...

Core
Priv
$

Core
Priv
$

O
ff

-ch
ip

 D
R

A
MDBUF

Compressor
&

Decompressor

CMT

M
e
m

. C
trl.

Figure 3.2: Top level lossy memory compression architecture used by AVR and
MemSZ

values (Equation 3.3), or 4) if none of these models describes a value with an
acceptable error, the value is an outlier and stored explicitly.

XC
i = Xi−1 (3.1)

XL
i = 2Xi−1 −Xi−2 (3.2)

XP
i = 3Xi−1 − 3Xi−2 + Xi−3 (3.3)

By adopting this classification, a sequence of values can be described using
a two-bit symbol Si per value, indicating one of the four functions used to
generate the respective value, together with any outlier values, if option (4) is
selected. To provide input for decompression, an initial set of seed values are
explicitly stored. These values represent the first values in the sequence and
allow decompression to begin with the first non-seed value.

Figure 3.1b illustrates how a sequence of values can be approximately
reconstructed using only these seeds, the symbols chosen during compression,
and the explicit outlier values stored. Inevitably, each value depends on up
to three preceding values, forcing both compression and decompression to be
sequential.

This sequential dependency between consecutive values increases the process-
ing latency. Moreover, the computations needed for generating the polynomial
value fit may be too complex to be performed in a single (processor) cycle.
In the past, a hardware (FPGA) implementation of SZ, called GhostSZ has
been proposed for accelerating the I/O compression [60]. GhostSZ compresses
multiple streams of data in parallel to increase throughput, but the processing
of each stream remains sequential. In essence, compressing or decompressing
a single block of values is still O(n) and when implemented in ASIC would
require at least 2 processor cycles per value due to SZ’s complex arithmetic
computations. As a consequence, previous SZ approaches are too slow and
therefore impractical for memory compression. MemSZ introduces a new low
latency parallel version of SZ able to compress/decompress a block of 256 values
(16 cache lines) within 16 cycles.

3.2 System Architecture

Memory Squeeze (MemSZ) is a new lossy memory compression approach. It
targets the parts of application datasets that tolerate approximations and
substantially reduces their volume when transferred between main memory and
processor chip. Thereby, MemSZ utilizes the off-chip bandwidth more efficiently

36 CHAPTER 3. MEMSZ: SQUEEZING MEMORY TRAFFIC WITH LOSSY COMPRESSION

Tag Back-ptr Data

Uncompressed

Compressed

A1

B3

BC0

BC1

BC2

B

A

A0

A1

A14

A15

BC0

BC1

BC2
. . .

Lazy0

Lazy1

Lazy2

LLC

DRAM

Block A Block B

Figure 3.3: AVR’s Decoupled Sectored Cache and main memory block layout.

and in turn improves system performance and energy efficiency. Without loss
of generality, MemSZ is applied to a Chip Multiprocessor, between the main
memory controller and the last level cache (LLC). A memory access to a
location with compressed data brings on chip a compressed block of multiple
(16) cache lines. After decompression, the requested cache line is stored in the
LLC and sent to the processor, while the memory block is also stored in the
LLC, to avoid memory accesses at future requests to the block.

MemSZ builds upon some of the AVR concepts described in Chapter 2. Data
regions of applications are annotated by the programmer as approximable and
marked as such in the page table and TLB. In addition, metadata information
is maintained per memory block, stored in memory and cached on-chip in
a Compression Metadata Table (CMT). Moreover, one of MemSZ’s design
alternatives (Figure 3.2) considers the same Decoupled SRAM LLC organization,
storing both compressed and uncompressed data. Finally, like AVR, this design
employs a 1kB Decompression Buffer (DBUF) to store the most recently
decompressed block.

MemSZ extends our previous AVR design, as follows. First, it offers a new
more effective lossy compressor, which improves compression ratio. For this
purpose, we introduce the first parallel design of the Squeeze (SZ) algorithm [34].
Second, a more effective error limiting mechanism is used that is able to keep
track of the error of a memory block, accumulated across multiple compressions.
Third, it improves AVR’s LLC replacement policy. Considering AVR’s SRAM
LLC on the processor die, MemSZ prioritizes the replacement of uncompressed
lines versus compressed blocks; in doing so, LLC capacity is utilized more
efficiently. Finally, as an alternative to AVR’s modified Decoupled SRAM LLC,
MemSZ also explores the use of a DRAM cache with a cache line size that
matches the memory blocks considered for compression (1KB = 16×64B); then
the DRAM cache needs to store only uncompressed data.

In the rest of this section, we describe the MemSZ compression and error
handling as well as the two alternative LLC designs.

3.2. SYSTEM ARCHITECTURE 37

1

2

3

1 Seed values x4
2 Vertical struts x4
3 Horizontal arms x32

16

16 One horizontal arm

Adjacent value pair from struts

Figure 3.4: SZ Compression adapted to a 2D block

3.2.1 MemSZ Parallel Lossy Compressor

MemSZ introduces the first parallel hardware implementation of the SZ com-
pression algorithm [34]. SZ is inherently sequential, using the three last
produced values to compute the next value in the sequence. This linear depen-
dency is an obstacle to low-latency implementation, since it limits parallelism.
MemSZ breaks the linear sequence into a (2

√
n)-way parallel operation, reduc-

ing the complexity of the algorithm from O(n) to O(
√
n). In the following

section, we present the optimizations behind this improvement.

The MemSZ compressor processes the values stored in a (memory) block in
their native arithmetic representation, i.e. floating-point arithmetic is used for
blocks of floating-point numbers, fixed-point arithmetic for fixed-point blocks.
Our current implementation supports standard IEEE754 32-bit floating-point
formats, but can be extended to integer and fixed-point.

Incoming blocks of 16 cache lines are arranged in a square of 16× 16 values,
as shown in Figure 3.4, before being fed to the compressor. In accordance with
standard SZ, the generated compressed block consists of a two-bit symbol for
each input value. Each two-bit symbol indicates the selected function used to
reconstruct the input value, given its preceding values. The compressor also
identifies individual outlier values which are not described by the summary with
sufficient accuracy. These are explicitly stored alongside the symbol sequence.
The proper location of each outlier is encoded in the compressed block using
one designated symbol.

Decompression is performed in the opposite order. The summary is decoded,
using each two-bit symbol to reconstruct a value based on its preceding neigh-
bors. Outliers are stored explicitly in the compressed block, and re-inserted
in the decompressed output. The complete decompressed block is stored in a
decompressed block buffer (DBUF) and the requested cache line is inserted in
the LLC.

As previously outlined, SZ describes each value in a sequence as a function
of the preceding values. Four set function models are supported as described in
Section 3.1.1, allowing each value to be described using a two-bit symbol. To
start the sequence, a set of seed values are chosen and explicitly stored. Due to
the dependency between the next produced value and the preceding ones, both
SZ compression and decompression are sequential and have O(n) latency, where
n is the number of compressed/decompressed values. In fact, a direct hardware
implementation of the SZ algorithm would require 2-3 processor cycles for each
value generated. Such high latency is an obstacle for using SZ for memory

38 CHAPTER 3. MEMSZ: SQUEEZING MEMORY TRAFFIC WITH LOSSY COMPRESSION

compression. To counteract this, MemSZ applies the following four techniques:

• Values are generated in multiple parallel sequences in two (block) dimen-
sions requiring O(

√
n) steps.

• The two processing steps of (i) computing the four alternative functions
output for the next value (ii) selecting the appropriate function (the one
with the lowest error) are pipelined.

• Value generation of complex functions (i.e., polynomial) are also parti-
tioned and performed in two consecutive pipeline stages.

• Generated values are fed forward in a dataflow fashion, allowing each
computation to begin as soon as all dependencies are ready.

We use a subdivision of the 16 × 16 block into shorter sequences, which
allows values to be generated in parallel. Both compression and decompression
are divided into three phases as shown in Figure 3.4. In phase 1 , the four values
in the center of the block are used as seed values. These serve to start phase
2 , consisting of four parallel vertical sequences of seven values each, called
struts. The seeds and struts together form two complete columns of 16 values
down the middle of the block. In phase 3 , each horizontally adjacent pair of
values from these columns serves to start two horizontal arms, making a total
of 32. The arms are independent of each other and can therefore be processed
in parallel starting as soon as the values they depend on are available – this
may be well before phase 2 is complete. Using this method, the critical path to
processing an entire block of 256 values is one full strut (7 operations) followed
by one full arm (7 operations) for a total of 7+7 = 14 = 2 · (12

√
n−1) =

√
n−2

operations.
Compression: Figure 3.5a outlines a slice of our pipelined hardware

implementation of an SZ compressor for a seven-value input sequence [V0 . . . V6].
A Value Generator module implements the four function model options (outlier,
XC , XL, and XP) to approximately reconstruct a single value given the three
preceding values. In one cycle, all four options are speculatively generated for
value Vi−1 based on its preceding values. In the next cycle, each possible option
(Outlier, Constant, Linear or Polynomial) for value Vi−1 is used to speculatively
generate values describing Vi. In parallel with this, a Select module chooses
the most accurate reconstruction option Xi−1 for value Vi−1. This yields the
two-bit symbol Si−1 and resolves the speculation on Vi, resulting in its four
options. These four options can then be used to speculatively generate Xi+1

and so on.
Since compression includes trying all function models for each value, com-

pression latency is determined by the most complex function model. The polyno-
mial function shown in Equation 3.3 is expressed as XP

i = 3Xi−1−3Xi−2+Xi−3.
Considering that these are floating point computations, it would be too complex
to fit it in a single cycle. In MemSZ, we break down the polynomial equation
as XP

i = 3Xi−1 − (3Xi−2 − Xi−3); the part in the parentheses can then be
precomputed a cycle earlier, as soon as Xi−2 is ready. By implementing the
function 3A − B = 2A + A − B using a three-operand adder as described
in [61], the polynomial function can be pipelined in two stages as illustrated in
Figure 3.5c, without violating the clock period of our processor as shown in

3.2. SYSTEM ARCHITECTURE 39

Value Gen.

Outlier

Constant

Linear

Polynomial
3

1

4Value Gen.

Value Gen.

Select

Value Gen.

Value Gen.

Si

Stage i+1

4Value Gen.

Value Gen.

Select

Value Gen.

Value Gen.

Si-1

Stage i

Xi-1 Xi

4Value Gen.

Value Gen.

Select

Value Gen.

Value Gen.

Si-2

Stage i-1

Xi-2

4

Original values

4

Generated
Values

Speculative
Values for

Xi+1

(a) Pipeline for compression of a value sequence.

Symbols
Reconstructed

Values

Linear

Constant

Outlier

Polynomial

Si+1

Xi

Si-3-Si

Stage i+1

Linear

Constant

Outlier

Polynomial

Si

Xi-1

Si-4-Si-1

Stage i

Linear

Constant

Outlier

Polynomial

Si-1

Xi-2

Si-5-Si-2

Stage i-1

Xi+1

(b) Pipeline for decompression of a value sequence.

Stage i-1

A

B

A

B

Xi-2

Xi-3

Xi-2

XP
i-1Polynomial

Generated
Values

Stage i

A

B

A

B

Xi-1

Xi-2

Xi-1

XP
iPolynomial

Stage i+1

A

B

A

B

Xi

Xi-1

Xi

XP
i+1Polynomial

A

B
3A-B

(c) Pipelining of the polynomial function

Figure 3.5: Design of the MemSZ compression pipeline.

Section 3.3.1. This allows the polynomial XP
i to be ready in the same cycle as

the other generated options for Xi, and the total latency for the compression of
a full block is 2 · (12

√
n− 1) + 2 = 14 + 2 = 16 cycles, including two additional

cycles, one for precomputing the first polynomial and one more for the function
selection of the last generated value.

Decompression: Decompression is performed in a similar pipeline (Fig-
ure 3.5b), without the speculation. Since constant values require no further
computation, these are forwarded up to three steps ahead in a single cycle. For
example, if Si−1 is constant and Si is constant, then Xi = Xi−1 = Xi−2 and
all three can be ready on the same cycle as Xi−2. Thus, several consecutive
constant values can be reconstructed in a single cycle.

Because of this optimization, total decompression latency is variable. In
the best case, the compressed block contains a large number of constant
symbols and can be decompressed in 6 cycles. The longest latency is in a block
containing an unbroken sequence of 14 polynomial values, which takes 16 cycles
to decompress.

Symbol compression: The compression scheme outlined above requires a
minimum of four seeds (stored in half precision) and 252 symbols to describe a
block. The total size of this is 4·16+2·252 = 568 bits = 71 bytes, which exceeds

40 CHAPTER 3. MEMSZ: SQUEEZING MEMORY TRAFFIC WITH LOSSY COMPRESSION

xxx0 Seeds

xxx1 Remaining Symbols

xxx2

xxx3

xxx4

...

xxxF

...

... Unused space

Starting Symbols Outliers

Lazy evicted uncompressed CL #n

...

Lazy evicted uncompressed CL #0

C

(a) The MemSZ compressed memory
block format

xxx0 Uncompressed CL #0

xxx1 Uncompressed CL #1

xxx2 Uncompressed CL #2

xxx3 Uncompressed CL #3

xxxF Uncompressed CL #15

...

...

(b) Uncompressed memory block

Figure 3.6: MemSZ Memory Block.

the size of a cache line. As a result, the maximum achievable compression ratio
would be 16 : 2 or 8×. In order to increase the compression ratio to 16 : 1,
blocks with very few outliers undergo an additional pass of lossless encoding.
The occurrences of each unique symbol are counted. New symbol encodings
are assigned, such that the most common symbol requires only one 0 bit to be
represented. The second-most common symbol is represented with two bits
(10), outliers are given the three-bit code 111, and the remaining symbol is
represented by 110. The total size of the compressed block with this encoding
is the size of stored seeds and outliers plus the size of the re-encoded symbols
plus a four-bit dictionary and a single bit to indicate that the block has been
encoded this way. If this total size is less than one cache line, the block is stored
using the smaller encoding. If the total size exceeds one cache line, the block
is stored using the block format previously described. This re-encoding takes
3 cycles during compression, while it takes 2 cycles decode the first symbols
before decompression can start.

Memory Blocks: To further facilitate low-latency decompression, we
choose a format for the compressed block which allows decompression to begin
as soon as the very first compressed memory subblock is available. This format
is shown in Figure 3.6a, and packs the following into the very first 64-byte cache
line of the block (CMS) : 1) A single bit C indicating if the symbols themselves
are compressed, 2) The four seed values from the center of the block, at half
precision, 3) The 28 two-bit symbols for the vertical struts, 4) Up to the 24 first
outlier values, at half precision, 5) Any additional symbols for other positions
(at least 4). Using this information, the decompressor can start reconstructing
the center two columns of the 2D block on the very first cycle after these
first 64B become available. The summary of a block compressed with SZ
implicitly contains the required information to locate outliers, rendering AVR’s
outlier bitmap obsolete. As in the previous design, the empty space following
a compressed memory block is used for lazy eviction of dirty cache lines, a
technique designed to reduce and postpone recompression overhead, discussed
in Chapter 2.

Total compression and decompression latency: Based on the above
and as confirmed by our synthesis results presented in Section 3.3, the total
worst-case latency for compressing a block is 32 processor cycles; that is 16
cycles for the actual compression and another 16 for packing the outliers. The

3.2. SYSTEM ARCHITECTURE 41

CMT

B1A B0

BiasSize Method

B2 B3

1b

3b 2b 8b

46b

Physical Addr.

TLB

4b

#Skipped#Failed#Lazy

4b 2b

Accum. Err.

23b

Figure 3.7: Format of a metadata table entry and TLB addition.

worst case latency for decompressing a block is 18 cycles, 2 for decoding the first
symbols and 16 for decompressing the block. Decompression is more critical
for system performance as it affects memory reads. Compression is less critical
because it affects only the write backs.

3.2.2 Error Limiter

Lossy compression introduces errors in the approximated values. In order to
limit this error, compression is skipped in case the error exceeds a particular
threshold value. AVR employed the following two thresholds during compression
to control the approximation error: the relative error of each individual value
may not exceed the threshold T1 and the average relative error across all values
in the block may not exceed the threshold T2. However, AVR’s approach
accounts only for the error introduced during the current compression. Oft-
transferred blocks may accumulate error over their lifetime due to multiple
compressions and AVR offers no mechanism to control this.

To limit the impact of accumulated error over time on the output quality of
the application, MemSZ introduces an error limiter strategy. An accumulating
counter is maintained for each block, updated with the average block error
after each compression. If this accumulated error exceeds an absolute threshold
T3, compression is permanently disabled for the offending block.

MemSZ accounts for the two local thresholds T1 and T2 in two steps during
compression. First, if none of the function models can approximate a value
to within T1, the value is kept as an outlier. Second, the average error of the
compressed block is computed during compression and if it exceeds T2 the
block is left uncompressed.

The three error thresholds are exposed as knobs and in our experiments
T1 = 2T2 while T2 and T3 are selected by profiling each individual application.

3.2.2.1 Metadata Table

Similarly to AVR, MemSZ uses a single bit in the page table and Translation
Lookaside Buffer (TLB) to identify pages marked as approximable. Further
metadata for each individual page is stored alongside the page table and cached
on-chip in a dedicated Compression Metadata Table (CMT). These structures
are shown in Figure 3.7. The CMT is updated in pair with the TLB. A CMT
has four 46-bit entries per 4KB page, one per 1KB memory block as shown in
Figure 3.7. CMT stores the following information about each memory block:
its size (compressed in 1-7 lines or uncompressed), number of lazy evicted
cache lines stored, compression method (and datatype of values), and a bias

42 CHAPTER 3. MEMSZ: SQUEEZING MEMORY TRAFFIC WITH LOSSY COMPRESSION

of its values. In addition, it maintains two counters to keep the history of
previous compression attempts. The first one counts the number of consecutive
failed compression attempts. Then, depending on that count, a number of
recompression attempts (in block updates) are skipped to reduce the overhead
of badly compressed blocks. Finally, a running count of accumulated error is
kept, to enable the error limiter outlined above.

3.2.3 Last Level Cache

After a memory access, keeping the entire accessed compressed block, rather
than only the requested cache line, on-chip is important for reducing future
memory accesses. This needs to be supported by the last level cache (LLC).
MemSZ explores two alternative system designs with different last level cache
(LLC) organizations. The first one, is based on AVR’s Decoupled Sectored
SRAM Cache placed on the processor die, where MemSZ proposes a new replace-
ment policy. In an attempt to avoid AVR’s LLC modifications, MemSZ also
explores a DRAM LLC with a cache line size that matches the size of the
memory blocks considered for compression. This second alternative uses a
regular DRAM cache that stores uncompressed lines.

3.2.3.1 On-Chip SRAM LLC

A MemSZ system with an SRAM LLC on the processor die, employs AVR’s
Decoupled Sectored Cache, which is able to store uncompressed cache lines
(UCL) and the compressed memory block (fragmented in compressed memory
subblocks - CMS), as described in Chapter 2. Cache lines already accessed
by the processor are stored as UCLs, while the rest of the memory block is
compressed and stored in one or multiple CMS. Then, an LLC hit in the
compressed block has a longer access time than a regular UCL hit because it
requires decompression.

In the AVR system, there was a fair least recently used (LRU) replacement
policy between UCL and CMS. This practically meant that cache lines already
accessed by the processor could be found in LLC uncompressed and accessed
again without a decompression overhead. However, it also meant that the LLC
would often store a compressed memory block as well as (some) of its cache
lines uncompressed (UCL), a redundancy which can waste LLC capacity.

MemSZ chooses a different trade-off between LLC capacity and access
latency. It modifies the LLC replacement policy so that uncompressed ap-
proximable lines have higher priority to be replaced than compressed memory
subblocks because they are redundant. Then, the LLC capacity is better
utilized at the cost of a longer access latency to previously accessed lines.
Normally, accessing an uncompressed cache line would cause updating its LRU
bits. However, in case the LLC also contains the respective compressed block
(indicated by the common tag entry), MemSZ updates the LRU bits of the
CMSs instead. This marks the compressed block as recently used, delaying its
replacement as opposed to the UCL. As a consequence, compressed blocks may
remain on-chip longer than uncompressed lines representing the same data,
thereby using the LLC capacity more efficiently.

3.2. SYSTEM ARCHITECTURE 43

D
C

 C
trl.

Shared
L3

...

Core
Priv
$

Core
Priv
$

O
ff

-ch
ip

 D
R

A
M

Compressor
&

Decompressor

CBUFCMT

M
e
m

S
Z

3D-Stacked DRAM LLC

Tag
Cache

M
e
m

. C
trl.

Figure 3.8: The architecture of MemSZ applied with a 3D-stacked DRAM
cache (MemSZ-DC)

Request
from L3

DC Tag
not in TC

DC Tag in TC

DC Hit

DC Miss

Uncompressed
Block

Compressed Block

Decompress

Insert Block
In DC

Read UCL
from DC

Return UCL Return UCL

Read Tags
from DC

Insert Tags
in Tag Cache

Request from
Main Memory1 2

4

3

Figure 3.9: The handling of a request in a MemSZ system with a DRAM cache.

3.2.3.2 3D-stacked DRAM LLC

A system may use 3D-stacked DRAM, rather than SRAM, for implementing
the last level cache. A DRAM cache offers larger capacity than an SRAM LLC
and higher bandwidth than the off-chip main memory [62–66]. DRAM caches
often use larger cache lines than the SRAM caches [62,65]. MemSZ exploits this
characteristic and explores the use of a DRAM cache with line size equal to the
size of the compressed memory blocks (1KB). Then, the memory blocks read
from the memory can be stored uncompressed in the DRAM cache. In addition,
making the DRAM cache inclusive eliminates the need of lazy evictions.

Our MemSZ system with DRAM cache (MemSZ-DC) is depicted in Fig-
ure 3.8. The compression-decompression remains between the main memory
controller and the DRAM cache. The DRAM cache is organized as a set-
associative cache with a 1kB block size. Tags for the DRAM cache are kept
in a reserved area of the DRAM cache itself, with an SRAM tag cache on the
processor die to store recently accessed tags.

A request from the shared (L3) cache for an approximable line (illustrated
in Figure 3.9) can have the following outcomes:

1 Miss in the Tag Cache, indicating that the DRAM cache lookup can not
be performed. The relevant tags must be fetched from the DRAM cache
before handling the request.

2 Hit in last level DRAM cache, The line is read out and returned to L3

3 Miss in last level DRAM cache, compressed in main memory: The
compressed block is read from main memory and decompressed. The
requested line is returned to L3. The entire decompressed block is inserted
in the last level DRAM cache.

44 CHAPTER 3. MEMSZ: SQUEEZING MEMORY TRAFFIC WITH LOSSY COMPRESSION

4 Miss in last level DRAM cache, uncompressed in main memory: The
entire block is read from main memory and inserted in DRAM cache.
The requested line is returned to L3.

MemSZ-DC performs compression in the same manner as AVR, and main-
tains the same metadata. Compression failure (failure to meet the error
threshold) is handled by storing the block uncompressed in main memory, and
disabling compression for a set number of future attempts.

3.3 Evaluation

In this section we evaluate the effectiveness of the two proposed MemSZ ar-
chitectures. We first describe our experimental setup, detailing the system
configuration of our experiments and the benchmarks used. Then, we discuss
the hardware overheads of the MemSZ architecture. Subsequently, we show
the results of our evaluations and comparison with related designs in terms
of performance, energy, and application output error. Results are first pre-
sented for designs with an SRAM LLC and then for designs with a 3D-stacked
DRAM cache (MemSZ-DC). Finally, we evaluate the effect of the individual
MemSZ features, namely: the compressor, error limiter, and replacement policy.

3.3.1 Experimental Setup

We evaluated the MemSZ system using an in-house simulator, implemented on
top of Pin [48], that employs an interval-based processor model, as proposed
by Genbrugge et al. [49], and a cycle-accurate model of the memory hierarchy
that uses DRAMSim2 for modelling main memory and DRAM caches [50].
McPAT [51] and CACTI [52] were used to model power and latency of the
system considering 32nm technology. The MemSZ compression hardware
modules were implemented in RTL, synthesized using Synopsys to determine
their operating frequency, latency and power consumption; this information
was then fed to the simulation tool. The parameters of the simulated system
are listed in Table 3.1.

In order to correctly emulate the impact of the approximations in the
overall application error, we emulate not only the memory accesses but we
actually update the values of the memory contents accordingly by applying
the compression and reconstruction methods to the data.

Besides the baseline system, MemSZ is further compared with (i) the original
design (AVR) [67], (ii) a design that simply compresses approximate values
to half-precision by truncating 16 bits similarly to what has been proposed
in [9, 28,30] (Truncate), and (iii) Doppelgänger [39], which is the closest and
best performing related work on approximate data compression (Dganger).
As proposed, Doppelgänger is configured to have identical LLC data-array
size and a 4× larger tag-array versus the other designs, i.e. being able to
index up to 4× as many cache lines. Lossless compression techniques are
considered orthogonal and so not included in the comparison; that is because
the symbols and outliers of a MemSZ compressed block could be further
compressed in a lossless way, in addition to compressing the non-approximable
data which MemSZ leaves untouched. Finally, the individual features of

3.3. EVALUATION 45

Table 3.1: Simulation parameters

Parameter Configuration

CPU 8 core, out-of-order, 4-way issue/commit @ 3.2GHz
L1 cache 64kB per core, 4-way, 1 cycle latency
L2 cache 256kB per core, 8-way, 8 cycle latency
L3 cache 8MB shared, 2 banks, 16-way, 15 cycle access latency
L4 cache 256MB HBM2, 4 channels, 1066MHz, 8-way
Main Memory 8GB DDR4, 2 channels, 800MHz

MemSZ are evaluated by comparing it with (i) itself replacing its compressor
with AVR’s downsampling compressor (MemDS), (ii) itself with equal LRU
priority between compressed and uncompressed lines (like in AVR) (MemLRU),
(iv) itself without the error limiter (MemUnL).

MemSZ with DRAM cache (MemSZ-DC) is compared to (i) the baseline
system and (ii) an approximating design which halves precision of data trans-
ferred across the main memory bus (Trunc-DC). Each of the three has an
identical cache hierarchy and DRAM cache. AVR and Doppelgänger are not
included in this comparison as they do not support a DRAM cache.

The benchmarks used in this evaluation are selected so each one of them (i)
is able to execute until completion and generate an output, and (ii) can tolerate
approximations in (parts of) its data. The above restricts us to using the bench-
marks listed in Table 3.2; the table further presents the application domain,
description of the approximated data-structures and output type as well as their
memory footprint. In some applications, the selection of safely approximable
data is affected by the technique applied. For this reason, the approximable
footprint may differ between designs for the same application. Furthermore,
some of the applications have a footprint smaller than the evaluated DRAM
cache, and are therefore excluded from these experiments. The application
code was analyzed to identify approximable data structures. In many cases,
a large portion of the application’s working set is dynamically allocated. For
these cases, a wrapper was created around the malloc library call to allocate
properly aligned space and register the address range as approximable.

One common source of memory traffic in scientific workloads is checkpointing.
Checkpoints are occasional snapshots of the application’s state, for the purpose
of resuming execution after errors or outages. Such snapshots generate large
bursts of data transfers to non-volatile storage, and contain approximable data
from the application’s working set. To reflect the effect of compression on
these data, iterative benchmarks with checkpointing support have it enabled
as indicated in Table 3.2.

The input data sets used for our experiments are the standard input data
sets provided with the benchmarks with the exception of (i) lattice for which
we used a silhouette of a car as the input data set, and (ii) k-means where
the input is topological data [58]. Benchmarks for approximate computing
(AxBench [59]) considers 10% relative output error, but it is solely up to the
application provider do define what is acceptable. We use the mean of the
relative errors for each output value as our quality metric. The only exception
to this is k-means, whose output is discrete and strongly bounded. For this

46 CHAPTER 3. MEMSZ: SQUEEZING MEMORY TRAFFIC WITH LOSSY COMPRESSION

T
ab

le
3.2:

B
en

ch
m

a
rk

A
p

p
lica

tio
n

s

A
p
p
lic

a
tio

n
A

p
p
ro

x
.

O
u
tp

u
t

F
o
o
tp

rin
t

/
c
o
re

C
h
e
ck

p
.

D
e
sc

rip
tio

n
S
m

a
ll

L
a
rg

e

h
ea

t
[5

3
]

T
em

p
s

T
em

p
s

8
.3

M
B

1
2
8
.4

M
B

X
H

ea
t

p
ro

p
a
g
a
tio

n
th

ro
u

g
h

a
2
D

fi
eld

o
f

u
n

ifo
rm

m
a
teria

l
la

ttice
[5

4
]

P
a
n
d

M
V

el.+
P

ress.
5
M

B
1
6
0
M

B
X

2
D

L
a
ttice-B

o
ltzm

a
n
n

sim
u
la

tio
n

o
f

a
ir

fl
ow

lb
m

[5
5
]

V
elo

cities
V

elo
cities

3
2
5
M

B
3
2
5
M

B
3
D

L
a
ttice-B

o
ltzm

a
n
n

sim
u
la

tio
n

o
f

fl
u
id

fl
ow

o
rb

it
[5

6
]

P
h
y
s.

d
a
ta

P
h
y
s.

d
a
ta

1
0
M

B
X

3
D

sim
u
la

tio
n

o
f

th
e

tw
o
-p

a
rticle

o
rb

it
p
ro

b
lem

cd
elta

[5
6
]

P
h
y
s.

d
a
ta

P
h
y
s.

d
a
ta

2
2
M

B
X

D
elta

-fu
n
ctio

n
h
ea

t
co

n
d
u
ctio

n
m

o
d
el

sed
ov

[5
6
]

P
h
y
s.

d
a
ta

P
h
y
s.

d
a
ta

1
2
M

B
X

S
ed

ov
ex

p
lo

sio
n

m
o
d
el

w
in

d
t

[5
6
]

P
h
y
s.

d
a
ta

P
h
y
s.

d
a
ta

2
3
M

B
X

W
in

d
tu

n
n
el

w
ith

a
step

k
m

ea
n
s

[5
7
]

T
o
p

o
l.

[5
8
]

C
lu

sters
5
.5

M
B

8
0
2
M

B
X

C
lu

sterin
g
,

a
p
p
lied

o
n

a
g
eo

g
ra

p
h
ic

eleva
tio

n
m

a
p
.

b
sch

o
les

[5
9
]

O
p
tio

n
s

P
rices

6
M

B
1
3
6
8
M

B
F

in
a
n
cia

l
sto

ck
o
p
tio

n
p
rice

fo
reca

stin
g

m
o
d
el

w
rf

[5
5
]

G
eo

d
a
ta

T
em

p
.

9
0
M

B
9
0
M

B
W

ea
th

er
fo

reca
stin

g
m

o
d
el

3.3. EVALUATION 47

Table 3.3: Application output error

(a) SRAM LLC designs

heat lattice lbm orbit cdelta sedov windt kmeans bscholes wrf
dganger 0.4% 0.2% 0.1% <0.05% >100% <0.05% 0.4% <0.05% <0.05% 56.8%
truncate 0.2% 0.4% 0.2% <0.05% <0.05% <0.05% 0.1% <0.05% 1.4% 4.2%
AVR 0.3% 0.5% 0.1% <0.05% 4.8% <0.05% 1.8% 0.7% 0.5% 8.9%
MemUnL 0.5% 0.5% 0.5% <0.05% 3.8% <0.05% 1.9% 1.0% 1.8% crash
MemSZ 0.5% 0.5% 0.5% <0.05% 2.6% <0.05% 1.8% 0.6% 1.8% 0.6%

(b) DRAM LLC designs

heat-large lattice-large lbm kmeans-large bscholes-large wrf
Trunc-DC <0.05% 0.1% 0.1% <0.05% 0.6% <0.05%
MemSZ-DC <0.05% 0.3% 0.4% 0.2% 1.7% <0.05%

application we normalize each individual error to the maximum possible error for
that value, such that the maximum possible error is 100%. Similar to previous
works, MemSZ provides tunable knobs to control the data approximation error
and constrain application output error.

3.3.2 Hardware Overhead

MemSZ requires additional hardware resources compared to a baseline cache
hierarchy. The metadata stored in the CMT and the additional bit in the TLB
add up to 173 bits per page. Compared to an unmodified TLB, which stores
a virtual and a physical page address (52+36=88 bits), this is an increase to
roughly 3× the original size. The MemSZ Tag array and the BPA add to the
baseline set-associative LLC 18 bits per entry; that is in total 144kB and 3.2%
overhead to the LLC. Moreover, the MemSZ compressor module occupies about
860k cells according to our synthesis report.

3.3.3 Experimental Results

Next, we present our experimental results, comparing the two MemSZ designs
against related approaches. The designs are evaluated in terms of execution
time (Figures 3.10a and 3.12a), system energy consumption (Figures 3.10b
and 3.12b), main memory traffic (Figures 3.10c and 3.12c), average memory
access time (AMAT, Figures 3.10d and 3.12d), and LLC misses per kilo-
instruction (MPKI, Figure 3.10e), as well as in terms of application output
error (Tables 3.3a and 3.3b). Table 3.4 shows the compression ratios achieved
by MemSZ and AVR as well as the reduction of the memory footprint versus
the baseline. Finally, the individual features of the MemSZ architecture are
evaluated separately in Figure 3.11.

3.3.3.1 MemSZ with SRAM LLC

On average, MemSZ reduces the baseline execution time by 36% and system
energy by 12%, the highest reduction across all the competing designs. That
is mainly due to the fact that it has the lowest total memory traffic, with
an average 46% of the baseline, as well as the lowest LLC MPKI, which is
43% of the baseline due to storing compressed memory blocks in the SRAM
LLC. These two factors lead to a reduction of the baseline average memory

48 CHAPTER 3. MEMSZ: SQUEEZING MEMORY TRAFFIC WITH LOSSY COMPRESSION

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ

0.0

1.0

To
ta

l e
xe

cu
tio

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

heat lattice lbm orbit cdelta sedov windt kmeans bscholes wrf Geom. Mean

(a) Execution time.

ba
se

lin
e

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
ba

se
lin

e
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

ba
se

lin
e

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
ba

se
lin

e
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

ba
se

lin
e

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
ba

se
lin

e
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

ba
se

lin
e

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
ba

se
lin

e
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

ba
se

lin
e

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
ba

se
lin

e
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

ba
se

lin
e

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ

0.0

1.0

En
er

gy
(n

or
m

. t
o

ba
se

lin
e)

heat lattice lbm orbit cdelta sedov windt kmeans bscholes wrf Geom. Mean

Core L1+L2 LLC DRAM Compressor/Decompressor

(b) System Energy Consumption.

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ

0.0

1.0

Da
ta

 tr
an

sf
er

re
d

(n
or

m
. t

o
ba

se
lin

e)

heat lattice lbm orbit cdelta sedov windt kmeans bscholes wrf Geom. Mean

Non-approx Approx

(c) Memory Traffic.

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ

0.0

1.0

Av
g.

 m
em

. a
cc

. t
im

e
(n

or
m

. t
o

ba
se

lin
e)

heat lattice lbm orbit cdelta sedov windt kmeans bscholes wrf Geom. Mean

(d) Average Memory Access Time (AMAT).

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ
dg

an
ge

r
tru

nc
at

e
AV

R
M

em
SZ

dg
an

ge
r

tru
nc

at
e

AV
R

M
em

SZ

0.0

1.0

LL
C

M
PK

I
(n

or
m

. t
o

ba
se

lin
e)

heat lattice lbm orbit cdelta sedov windt kmeans bscholes wrf Geom. Mean

(e) LLC misses per kilo-instruction (MPKI).

Figure 3.10: Evaluation of the MemSZ design with SRAM LLC and comparison
with competing designs.

3.3. EVALUATION 49

access time (AMAT) by 26%. It is worth noting that for some benchmarks the
baseline execution time is reduced by about 60% (heat, lattice, lbm) or by 40%
(orbit, kmeans) and the energy consumption by up to 25% (heat, lattice, lbm,
orbit) primarily due to very high memory traffic reduction, 2-5× in these cases.

The AVR design comes second with an average 31% reduction in execution
time and 9% reduction in energy, which is 14% and 25% less impact than
MemSZ on execution time and energy, respectively. AVR reduces memory
traffic to 60% of the baseline as it uses a less efficient compressor, and has
slightly higher MPKI than MemSZ due to its LLC replacement policy, which
keeps redundant uncompressed lines and their compressed memory blocks.
Overall its average AMAT is up to 25% higher, with an average of 4% higher
than MemSZ.

Truncate offers an average 22% reduction in execution time and 9% in
energy despite the limited compression ratio (2:1). Memory traffic is reduced
to 64% of the baseline on average, and MPKI is at 63% of the baseline because
it offers double the capacity for approximate LLC cache lines. This yields an
AMAT of 84% on average for Truncate.

Doppelgänger has an average execution time that is only 14% lower than
the baseline and system energy reduced only by 4%. It reduces MPKI (due
to higher effective capacity) by 26%, which is lower than all other competing
designs. This has an effect on memory traffic and AMAT, which are reduced
by 26% and 14%, respectively.

Some of the benchmarks used have little approximate data or are already
significantly improved/compressed by AVR. This has an impact on the above
presented average results, however, for some other benchmarks MemSZ provides
a significant improvement over the current state of the art. Below we analyze
different groups of benchmarks separately and compare with the best previous
designs.

As shown in Table 3.4a, for some benchmarks MemSZ improves compression
ratio compared to AVR by 1.5× (heat, windt kmeans) or 2× (lattice, cdelta).
For these benchmarks memory traffic of approximable data is reduced by about
the same percentage. Note that in a couple of cases (cdelta, wind) the reduction
in total memory traffic is less pronounced because the largest part of the traffic
is non-approximable. On the other hand, MPKI for these benchmarks is less
affected. For heat, lattice, and windt, AVR had already reduced the MPKI
significantly and MemSZ maintains or slightly improves AVR’s results. In cdelta
and kmeans, MemSZ improves AVR’s MPKI by about 10-25%. Reducing traffic
and MPKI reduces AMAT compared to AVR by 5-25% for lattice, cdelta and
kmeans, but does not show further improvement in heat and windt. Overall,
for these five benchmarks MemSZ improves execution time compared to AVR
by 2-15% and system energy by 1-9%. It is worth noting that the application
error for all above benchmarks remains stable (lattice, windt) slightly changes
±0.2% (heat, kmeans), and in cdelta reduces to almost half of AVR’s.

For other benchmarks, AVR’s compression ratio is already close to the
maximum 16:1 (lbm, orbit, sedov) and therefore MemSZ does not have sig-
nificant room for improvement. Although for lbm and sedov, compared to
AVR, MemSZ memory traffic and MPKI are not reduced, for orbit it reduces
to 2

3 due to the better LLC replacement policy, which yields significantly
fewer writebacks as explained in Section 3.3.3.2. As a result, MemSZ does

50 CHAPTER 3. MEMSZ: SQUEEZING MEMORY TRAFFIC WITH LOSSY COMPRESSION

Table 3.4: Compression efficacy

(a) MemSZ and AVR compression ratios. Truncate has a fixed 2× ratio.

heat lattice lbm orbit cdelta sedov windt kmeans bscholes wrf GM
AVR 10.5× 6.8× 15.3× 16.0× 4.2× 15.6× 11.4× 2.3× 9.4× 2.3× 7.6×
MemSZ 15.8× 15.5× 16.0× 16.0× 9.2× 15.6× 15.5× 3.4× 6.3×1 1.6× 9.3×

(b) MemSZ and AVR memory footprints compared to baseline

heat lattice lbm orbit cdelta sedov windt kmeans bscholes wrf GM
AVR 17.5% 27.2% 8.0% 48.1% 71.3% 72.5% 50.7% 61.8% 78.6% 93.1% 43.0%
MemSZ 14.3% 20.1% 7.7% 48.1% 66.4% 72.5% 49.5% 51.5% 54.4%1 95.4% 38.3%

not improve AVR’s AMAT for lbm and sedov, but it does so by 21% for
orbit. Execution time and system energy follow the same trend, AVR and
MemSZ have similar performance and energy efficiency for lbm and sedov,
but for orbit MemSZ reduces execution time by 14% and energy costs by 6%.
Finally, MemSZ increases lbm’s output error by 0.4% and maintains negligible
error (< 0.05%) in the other two benchmarks.

For wrf the approximable data are only a small fraction of the dataset (12%)
and therefore there is little room for improvement. As a consequence, there
are negligible (±2%) changes in performance and energy efficiency, however
MemSZ reduces wrf’s output error by 15× compared to AVR.

Finally, for bscholes AVR can approximate a smaller fraction of the dataset
(27%) without crashing compared to MemSZ which approximates about 50%
of the data and therefore achieves higher reduction of the memory footprint
(46% vs. 21%) despite the lower compression ratio (6.3× vs. 9.4× of AVR).
As a result, MemSZ reduces memory traffic and MPKI compared to AVR, but
this has negligible effect in execution time and energy consumption because
the performance of bscholes is not limited by memory bandwidth.

In summary, for applications with high compressibility and approximation
tolerance (heat, lattice, lbm, orbit, sedov, windt), MemSZ outperforms compet-
ing designs. It achieves significant reduction in baseline execution time (up to
62%) and considerable energy savings (up to 25%) with less than 2% output
error. Memory traffic is also reduced for these applications by up to 81%. Even
when achieving medium compression ratios, i.e. in kmeans, MemSZ improves
performance by up to 37%. MemSZ improves on the previous best design, AVR,
by 23% in memory traffic, 7% in performance and 3% in energy on average.

3.3.3.2 Evaluation of individual MemSZ features

We investigate the effect of each of the three new primary MemSZ features
by disabling one of them at a time. The resulting designs (i) MemDS : using
the downsampling compressor of AVR, (ii) MemLRU : using AVR’s LLC re-
placement policy, (iii) MemUnL: using no global error limiter (only AVR’s
local error checks), are compared to the original AVR design, lacking all these
features, as well as with MemSZ, which has all features enabled.

Figure 3.11e shows this comparison for the key metrics of execution time,

1MemSZ safely approximates a larger portion of the footprint compared to the other
designs.

3.3. EVALUATION 51

0 20 40 60 80 100(%)

Arith. Mean
wrf

bscholes
kmeans

windt
sedov
cdelta

orbit
lbm

lattice
heat

Miss Uncompressed Hit DBUF Hit Compressed Hit

(a) MemSZ LLC Requests on approx. cache lines.

0 20 40 60 80 100(%)

Arith. Mean
wrf

bscholes
kmeans

windt
sedov
cdelta

orbit
lbm

lattice
heat

Miss Uncompressed Hit DBUF Hit Compressed Hit

(b) MemLRU LLC Requests on approx. cache lines.

0 20 40 60 80 100(%)

Arith. Mean
wrf

bscholes
kmeans

windt
sedov
cdelta

orbit
lbm

lattice
heat

Recompress Lazy Writeback Fetch+Recompress Uncompressed Writeback

(c) MemSZ LLC Evictions of approx. cache lines.

0 20 40 60 80 100(%)

Arith. Mean
wrf

bscholes
kmeans

windt
sedov
cdelta

orbit
lbm

lattice
heat

Recompress Lazy Writeback Fetch+Recompress Uncompressed Writeback

(d) MemLRU LLC Eviction of approx. cache lines.

AV
R

M
em

DS
M

em
LR

U
M

em
Un

L
M

em
SZ AV
R

M
em

DS
M

em
LR

U
M

em
Un

L
M

em
SZ AV
R

M
em

DS
M

em
LR

U
M

em
Un

L
M

em
SZ AV
R

M
em

DS
M

em
LR

U
M

em
Un

L
M

em
SZ AV
R

M
em

DS
M

em
LR

U
M

em
Un

L
M

em
SZ

0.0

1.0

Ge
om

ea
n

(n
or

m
. t

o
ba

se
lin

e)

Execution Time Energy AMAT Memory Traffic MPKI

(e) MemSZ with each addition disabled.

Figure 3.11: Analysis of the compressor, error limiter, and LLC replacement
policy introduced by MemSZ

52 CHAPTER 3. MEMSZ: SQUEEZING MEMORY TRAFFIC WITH LOSSY COMPRESSION

total system energy, average memory access time, main memory traffic and
LLC MPKI. Each metric is presented as a geometric mean across all the
benchmarks from Table 3.2, normalized to the baseline. We observe that
MemSZ outperforms AVR as well as all variations except MemUnL, losing
1% in execution time when enabling the error limiter and disabling some
compression attempts. Table 3.3a illustrates the additional output error caused
by disabling the error limiter. Note that when disabling the error limiter, for
cdelta and kmeans the output error increases by about 50% and wrf crashes.
Using the proposed MemSZ compressor rather than downsampling offers 10%
lower memory traffic and 12% lower MPKI. Moreover, using MemSZ’s LLC
replacement instead of AVR’s improves MPKI by 5% and reduces memory
traffic by 15%.

Taking a closer look at the impact of MemSZ LLC replacement policy in
comparison to the one of AVR (MemLRU) we analyze the LLC requests and
LLC evictions of the two designs in Figures 3.11a, 3.11b and Figures 3.11c and
3.11d, respectively.

As shown in Figures 3.11a and 3.11b, LLC requests may result in one of
the following: a miss, a hit to an uncompressed line, a hit to the DBUF of
the compressor, or a hit to a compressed memory block stored in the LLC.
Compared to the old replacement policy, MemSZ slightly reduces the misses
by 3% increasing the hits to the compressed blocks. This is more evident in
heat, lattice, orbit, and sedov. In some cases like lbm and orbit the hits to
uncompressed lines also increase.

LLC evictions, shown in Figures 3.11c and 3.11d, can be handled in one
of the following ways: update of the respective compressed memory block
stored in the LLC (recompress), perform a lazy writeback of the evicted line
uncompressed (when there is available space in the memory), the memory block
may need to be fetched from memory to be updated (fetch+recompress), or
there may be a common uncompressed writeback (if block is not compressed).
Comparing the breakdown of evictions for the two designs we can observe the
following. MemSZ increases the number of evictions served with a recompression
by 89%, avoiding memory accesses. MemSZ also reduces lazy evictions by 40%,
increasing the benefit of compression. Finally, the unwanted fetch+recompress
cases are reduced by 4%.

3.3.3.3 MemSZ-DC evaluation

As expected, adding a DRAM cache (DC) to the system significantly reduces the
traffic to main memory. This makes it more difficult to evaluate the proposed
MemSZ-DC as it would require having longer running benchmarks and larger
memory footprints making simulation times prohibitively long. As a result, our
experiments show a smaller impact in systems with DC. We use all benchmarks
with memory footprint larger than the DC size to evaluate our MemSZ approach
with DC (MemSZ-DC) and compare it with a Truncate system with DC of the
same size (Trunc-DC). Both designs are normalized to a baseline system with
no compression and a DC of the same size. The other competing designs are
not included in this comparison as they do not support DRAM caches. Figure
3.12 shows the execution time, system energy consumption, memory traffic and
average memory access time (AMAT). MemSZ-DC reduces baseline memory
traffic by 70% and Trunc-DC only by 35%. AMAT is less affected as MemSZ-

3.3. EVALUATION 53

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C0.0

1.0

To
ta

l e
xe

cu
tio

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

heat-large lattice-large lbm kmeans-large bscholes-large wrf Geom. Mean

(a) Execution time.

ba
se

-D
C

Tr
un

c-
DC

M
em

SZ
-D

C

ba
se

-D
C

Tr
un

c-
DC

M
em

SZ
-D

C

ba
se

-D
C

Tr
un

c-
DC

M
em

SZ
-D

C

ba
se

-D
C

Tr
un

c-
DC

M
em

SZ
-D

C

ba
se

-D
C

Tr
un

c-
DC

M
em

SZ
-D

C

ba
se

-D
C

Tr
un

c-
DC

M
em

SZ
-D

C

ba
se

-D
C

Tr
un

c-
DC

M
em

SZ
-D

C0.0

1.0

En
er

gy
(n

or
m

. t
o

ba
se

lin
e)

heat-large lattice-large lbm kmeans-large bscholes-large wrf Geom. Mean

Core L1+L2 LLC DRAM HBM Compressor/Decompressor

(b) System Energy Consumption.

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C0.0

1.0

Da
ta

 tr
an

sf
er

re
d

(n
or

m
. t

o
ba

se
lin

e)

heat-large lattice-large lbm kmeans-large bscholes-large wrf Geom. Mean

Non-approx Approx

(c) Memory Traffic.

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C

Tr
un

c-
DC

M
em

SZ
-D

C0.0

1.0

Av
g.

 m
em

. a
cc

. t
im

e
(n

or
m

. t
o

ba
se

lin
e)

heat-large lattice-large lbm kmeans-large bscholes-large wrf Geom. Mean

(d) Average Memory Access Time (AMAT).

Figure 3.12: Evaluation of the MemSZ design with DRAM LLC and comparison
with competing designs.

54 CHAPTER 3. MEMSZ: SQUEEZING MEMORY TRAFFIC WITH LOSSY COMPRESSION

DC reduces it to 92% of the baseline and Trunc-DC to 93%. This reduction in
traffic and AMAT allows MemSZ-DC to reduce baseline execution time to 81%
and energy consumption to 90% on average, while Trunc-DC reduces execution
time to 85% and energy to 93% of the baseline. It is worth noting that the
most pronounced improvements are achieved in heat, lattice and lbm, where
memory traffic is reduced to 10-20% of the baseline traffic and execution time
to 50-85% of the baseline.

3.4 Conclusion
MemSZ is a new more effective lossy memory compression approach. It in-
troduces a new parallel design for the SZ algorithm, lowering compression
latency by 50× and enabling for the first time its use in memory compression.
The MemSZ architecture offers aggressive compression ratio (9.3:1 on average)
reducing memory traffic and hence improving system performance and energy
efficiency. MemSZ was evaluated in a multicore system with 1GB of 800MHz
DDR4 per core and 1MB of LLC space per core. Compared to the previous
AVR lossy memory compression approach, MemSZ has a better compressor
offering up to 2× better compression ratio, up to 64% lower memory traffic, up
to 15% lower execution time, and up to 9% lower system energy; on average
the improvement is 23%, 23%, 7%, and 3%, respectively. Finally, MemSZ with
a DRAM cache (MemSZ-DC) improves execution time, energy and off-chip
memory traffic by up to 57%, 33% and 89%, and on average by 19%, 11%, and
71%, respectively.

Chapter 4

L2C: Combining Lossy and
Lossless Compression on
Memory and I/O

The rapid increase of connected devices and data produced globally [68] drive
numerous applications to become more data-intensive, overwhelming existing
computing systems in various domains [2, 37, 38]. In high performance com-
puting, server machines in data centers and supercomputers need to handle
massive volumes of data supporting Big Data, Cloud Computing, streaming
services and many other emerging applications. In the embedded domain,
edge and Internet-of-Things (IoT) devices are expected to store, process and
communicate data at high data rates under a tight power budget. In turn, the
huge sizes and overwhelming rates of data put pressure on the memory and
I/O bandwidth resources of systems and often become the bottleneck, limiting
performance and wasting energy [5].

Chapters 2 and 3 outlined systems exploiting the novel lossy memory
compression approach to reduce memory bandwidth. These systems use lossy
compression to achieve greater compression ratios. Lossy compression has two
main drawbacks: inaccuracies are introduced in the compressed data, and not
all data are tolerant to such inaccuracies. This limits the applicability of lossy
compression, and may require compression to be disabled if accumulated error
exceeds acceptable levels [19, 20]. By contrast, while lossless compression is
universally applicable, current lossless compression algorithms offer limited
compression ratios (on average, between 2x and 4x) [18,41,69–72].

In addition to the main memory bus, another viable target for data com-
pression is I/O traffic. Compression of data transferred through I/O ports has
different design objectives as it strives for high throughput rather than low
latency and handles data in larger blocks or in streams. In turn, the combi-
nation of latency tolerance and larger block sizes enables higher compression
ratios. I/O compression offers better storage utilization and more efficient data
transmission improving systems efficiency. I/O compression in embedded sys-
tems is often supported by custom hardware, hence is more expensive and with
limited applicability, i.e., targeting wireless communications [73]. In the HPC

55

56 CHAPTER 4. L2C: COMBINING LOSSY AND LOSSLESS COMPRESSION ON MEMORY AND I/O

domain, IBM Power9 and Z15 offer user-controlled lossless-only compression
acceleration [74], while software-based, hence slower, compression is used for
check-pointing traffic [34].

This chapter describes L2C, a new holistic compression scheme aiming to
more efficiently utilize the bandwidth resources of a processor chip. The main
advantage of L2C is that it combines lossless and lossy compression to best fit
the characteristics of different parts of a dataset and improve the impact of
compression. In particular, L2C offers high-ratio, lossy compression for data
that can be approximated and lower-ratio, but lossless compression for data
that cannot. Thereby, it is an improvement over previous approaches that
offer only lossy or only lossless compression. Combining lossless and lossy
compression in the memory system is challenging as they exhibit radically
different characteristics, which call for different design requirements. The
compression ratio of a lossless method is 4-8× lower than that of a lossy one,
as a consequence, using the same memory block size for both would either
introduce excessive traffic overheads for the lossless or limit the effectiveness
of the lossy method. On the other hand, supporting two different block sizes
introduces challenges in the design of the memory system. L2C addresses these
challenges to preserve the benefits of both compression alternatives. Another
property of L2C is that it handles both memory and I/O traffic improving
systems efficiency and simplifying integration in the uncore of a chip. However,
reusing the same mechanism for memory and I/O compression introduces the
challenge of supporting both low latency as well as high throughput compression,
while remaining effective in handling small blocks.

The following contributions are made with L2C:

• The first approach that combines Lossy and Lossless compression algo-
rithms in a memory system. L2C achieves this supporting:

– two granularities of memory blocks, tailored to each compression
method in order to increase its effectiveness and reduce overheads;

– a cache structure and main memory layout that can store blocks of
both granularities;

– a mechanism to dynamically select the most suitable compression
method;

– a hybrid metadata format that supports the two methods and in
addition is partially embedded with the data to reduce bandwidth
overhead.

• Reusing the same compression mechanism for I/O traffic, too, to improve
the efficiency of storage and networking functions, which is enabled by
compressor designs that offer both high throughput and low latency.

• A thorough evaluation and comparison with state of the art compres-
sion techniques showing the benefits of combining lossy and lossless
compression as well as the gains of reusing it for compressing I/O traffic.

The remainder of this chapter is organized as follows. Sections 4.1 and
4.2 discuss related work and background. Section 4.3 describes the proposed
L2C architecture. Section 4.4 presents our evaluation results and Section 4.5
draws our conclusions.

4.1. RELATED WORK 57

4.1 Related Work

Prior work on related topics is discussed next. First, existing designs for memory
compression are presented and subsequently a summary of I/O compression
techniques applied in data collection systems is given. Finally, in relation
with lossless compression methods, an overview is provided on approximate
computing techniques that improve the performance of memory systems.

4.1.1 Memory Compression

A wide variety of memory compression techniques have been proposed for
improving memory capacity and bandwidth utilization. They employ low
latency algorithms and suggest different adjustments in the memory system to
increase compression efficiency and minimize overheads.

Most existing designs use lossless compression algorithms to avoid intro-
ducing changes to the data. Some example of lossless algorithms applied
to memory systems use dictionary-based compression [22], exploit frequent
patterns and zero-value blocks [23], use similarities of words at the same bit
position [18] or offer a hybrid scheme of different lossless algorithms applied
to different data [24]. In spite of these varying approaches, lossless solutions
have limited compression ratio between 2:1 and 4:1. Leveraging the fact that
some applications can tolerate inaccuracies in parts of their data [19, 75], lossy
algorithms, such as downsampling [67] and Squeeze [76], were introduced for
memory compression to improve compression ratio up to 16:1. However, lossy
approaches can be applied only to data that tolerate approximations and limits
their applicability.

Besides the algorithm choice, another aspect is the data placement in
memory. Some approaches compact compressed data in memory to improve
capacity [13]. Others avoid the overheads of data compaction, allocating the
worst case storage required for the uncompressed data and focus only on
memory bandwidth improvements [26,27,67,76].

Another important design choice is the granularity of the memory block
size used for compression, especially when random access in the compressed
form of the data is limited or not supported at all. Then, the block size defines
a trade-off between the maximum supported compression ratio and the traffic
overheads of fetching more data than requested. To exemplify, considering that
a cache line (e.g. 64B) is the standard memory access granularity, selecting a
block size of eight cache lines defines the maximum compression ratio to be
8:1. However if the average achieved compression ratio is 2:1 then that means
that on average a memory access will bring four cache lines on-chip, at the
risk of overhead in case of lacking locality. As a consequence, previous lossless
memory compression solutions use small blocks of 2-4 cache lines and lossy
ones use blocks of about 16 cache lines [67, 76]. Another overhead of larger
block sizes is the fact that evicting a cache line from the chip requires the entire
block to be present in order to get updated; this adds traffic overheads in case
the block misses. In the past, the following two techniques have been used to
reduce these overheads: the first one stores recently compressed blocks in the
Last Level Cache of the processor and the second uses unoccupied memory
space to evict dirty cache lines in their uncompressed form, postponing the

58 CHAPTER 4. L2C: COMBINING LOSSY AND LOSSLESS COMPRESSION ON MEMORY AND I/O

recompression of the block [67,76].

Finally, managing the metadata needed for locating and handling the com-
pressed data is also challenging as it may add considerable memory bandwidth
overheads [16, 25]. One approach is to employ a metadata table and a cache of
it, as in [13, 67, 76], which is updated with the TLB and adds a few bytes of
bandwidth overhead at every TLB miss. Techniques like Attache [25] aim to
further reduce the metadata cost by embedding the metadata directly in the
compressed block.

L2C strives to improve bandwidth utilization while avoiding compaction in
main memory. Note that on the contrary, compaction in storage and networking
I/O devices is one of L2C objectives. L2C is the first memory compression
solution that addresses the challenge of combining lossy and lossless. It does
so by adapting the memory system to support two block granularities; one
for lossless and one for lossy compressed data. In addition, L2C employs a
mix between the two metadata approaches mentioned above, with essential
metadata kept in a table along-side the TLB while non-essential metadata are
embedded in the compressed block.

4.1.2 Link Compression

Compression has been a key technique for reducing I/O traffic in embedded as
well as in HPC systems. The main design objective is high throughput and in
the case of embedded systems low power is an additional requirement.

In distributed embedded data collection systems and IoT devices, com-
pression fills a critical role due to tight constraints on power, communications
and computational resources. Lossless compression has been applied to reduce
the volume of off-device traffic [77], by exploiting application specific data
properties [78], deduplication [79], prediction [80], and similarities between
concurrent data streams [81]. General-purpose compression algorithms such
as LZW have proved prohibitively expensive for such low-power devices [82]
due to their excessive energy costs. A number of compression schemes have
been proposed for embedded applications, utilizing data transformations [83],
correlating multiple data sources [84], identifying particularly interesting (i.e.
irregular) measurements [85], automatically adapting compression parameters
to data features [86]. Moreover, a hybrid lossy and lossless scheme [73], the com-
bination of which in I/O compression does not entail the challenges discussed
for the memory compression counterpart.

In HPC applications, software-implemented lossy stream compression has
been applied to high-volume I/O traffic without latency constraints [34] to
alleviate the performance, energy and storage costs of saving checkpointed
data. Moreover, IBM Power9 and z15 provide a user-controlled compressor
accelerator in their DMA engine [74] to reduce data volume of DMA transfers.

In summary, embedded I/O compression techniques are mostly custom
hardware designs, which increases the cost of the system and often limits their
applicability to the particular targeted class of I/O devices. In the HPC domain,
compression solutions are in some cases software-based, hence slower and less
energy efficient, and in all cases controlled in the user space therefore cannot
be exploited at regular memory and I/O operations.

L2C exposes its proposed memory compression technique to compress I/O

4.1. RELATED WORK 59

traffic, too, in order to alleviate I/O bandwidth pressure and improve the
efficiency of storage and networking systems functions. L2C compression is
generic, hardware accelerated and handled in a transparent way without user
explicit control. Finally, reusing the same compression mechanism for memory
and I/O saves systems energy and area.

4.1.3 Approximate Computing

The aforementioned lossy compression approaches can be considered part of the
broader topic of Approximate computing as they introduce approximations to
the data they handle. As such, they share in common some aspects such as the
mechanisms for handling errors and identifying opportunities for approximation.
Below, approximate computing techniques for improving the memory system
are discussed.

Large classes of applications are inherently tolerant to approximations
[19]. This enables a trade-off between the quality of their results and their
performance and energy efficiency. This trade-off is exploited by various
approximate computing techniques, such as computation acceleration [87],
memoization [88], limited fault recovery [89], and data storage [90,91].

Several approximate computing techniques target memory system bottle-
necks. Approximate load value prediction reduces memory latency by predicting
rather than fetching a value from memory [31–33]. Reducing the precision
of floating point [9,28,29,92] and fixed point [30,93] numbers has been used
to alleviate the memory bandwidth bottleneck in deep neural networks [30],
GPU workloads [9,29,92,94] and other approximation tolerant applications [28]
improving performance and energy efficiency. However, the compression ratio
is still limited between 2:1 and 4:1 despite the loss of precision as these ap-
proaches do not exploit inter-value similarities to compress data. Furthermore,
Doppelgänger proposed to deduplicate similar cache lines to compress data [39].

A combined approach has been proposed to increase the compression ratio
offering the option to reduce precision of individual values by truncating bits
and then apply lossless compression on top [9]. The compression ratio remains
at roughly 2:1, due to the limited impact of single-value precision reduction
and is similar to existing lossless compression schemes, offering little benefit to
outweigh quality loss of approximation. Precision reduction is distinct from
full lossy compression, in that it only trivially reduces storage size for each
individual value rather than identifying inter-value redundancy. Furthermore,
the proposed design is implemented in a GPU architecture. While GPGPU
techniques extend application support beyond graphics, it is nonetheless limited.
L2C takes a different approach, supporting lossless compression along-side
more aggressive lossy compression in a general-purpose processor, as well as
dynamically switching between the two. This is a more complex problem, due
to the differing properties of the two compression methods.

In the past, applications [19] and (parts of) datasets [75] that tolerate
approximations have been identified. Past lossy memory compression techniques
used error thresholds for maintaining the introduced approximation error in
check [67, 76] and evaluated the final error caused to the application output.
They also kept track of the accumulated average error per block to limit the
effect of repeated approximations on the same data [76]. L2C follows the same

60 CHAPTER 4. L2C: COMBINING LOSSY AND LOSSLESS COMPRESSION ON MEMORY AND I/O

approach for handling the error introduced by lossless compression.

4.2 Background

L2C takes its basis in two existing compression systems: the lossy MemSZ
presented in Chapter 3 and the lossless Statistical Cache Compression (SC2) [72].
Lossless compression is safe to apply to all application data, but generally
offers limited compression ratio. Lossy compression is only applicable to select
portions of data, but provides significantly higher compression potential. By
combining these two approaches, L2C is able to reap the benefits of both. In
this section, SC2 is described in more detail.

4.2.1 Statistical Cache Compression

Statistical Cache Compression (SC2) is a lossless cache-compression scheme,
rather than main memory, which is based on type-agnostic huffman-encoding
[72]. A global Value Frequency Table (VFT) is populated during a sampling
phase at the start of execution, forming the basis for an encoding tree. This
encoding tree is then used to compress cache lines before they are written to
LLC, increasing its capacity.

During the sampling phase, the VFT is populated by observing the last-level
cache. The VFT is a set-associative cache structure, indexed by data values.
It stores occurrence counters for the set of most frequently seen values. When
a line is updated in LLC, each individual value in the cache line is added to
VFT, i.e., its counter is incremented. When a cache line is evicted from LLC,
each value in the line is subtracted from VFT, i.e. its counter is decremented.

Since the VFT is of finite capacity, not all possible values can be present at
the same time. Newly observed values are inserted in the VFT, replacing the
least-frequent value in its set. A special counter labeled OTHER is maintained
with the sum of all replaced counts. This represents the frequency of any data
value not explicitly present in the VFT.

When the sampling phase ends, the frequencies collected in VFT are used
to build a huffman tree, assigning variable-length codes to each of the observed
data values. This process assigns shorter codes to the most frequently seen
values, based on the assumption that common values during sampling will
remain common during the rest of execution.

During execution, any line to be inserted in the LLC is compressed using
the generated encoding. Known values are replaced with their variable-length
code. Values not assigned an explicit encoding are stored as-is, prefixed by the
code assigned to OTHER. The global state (VFT) being shared between all
compressed blocks removes the need to embed the huffman dictionary in the
compressed block. This allows SC2 to be applied to blocks of arbitrary size,
with no reduction in compression efficiency.

4.3 System Architecture

L2C is a hybrid compression scheme which combines lossless compression with
more aggressive, lossy compression. Lossy compression has the potential for

4.3. SYSTEM ARCHITECTURE 61

DRAM

...

Core
Priv
$

Core
Priv
$

On-chip Interconnect

Peripherals

Shared
LLC

DBUF

Compressor
&

Decompressor

CMT

D
M

A
C

trl.

Mem. Ctrl.

I/O

Figure 4.1: Top-level view of the L2C memory compression architecture. The
compressor module is placed next to the DMA controller, with access to the
on-chip interconnect.

higher compression ratios, but is limited to data annotated by the developer as
approximable. Lossless compression offers more modest benefits, but is safe to
apply to all data, even as a fallback for approximable data. The hybrid nature
of L2C offers benefits over either approach. Lossless compression is available for
all data. For data which is marked approximable, lossy compression is employed
as a primary technique. If lossy compression fails due to quality constraints,
L2C falls back to lossless compression. This approach makes L2C applicable
and beneficial to any application able to tolerate lossy memory compression.

L2C adds a hardware compressor in the uncore of a processor chip as depicted
in Figure 4.1. It uses the MemSZ [76] and SC2 [72] compression methods for
lossy and lossless compression, respectively. The L2C compressor module
includes a buffer that stores the most recently decompressed data (DBUF) and
a cache of the metadata table (CMT) to handle the compression/decompression
process. Similar to MemSZ the LLC is designed as a decoupled sectored cache
able to store compressed blocks alongside the normal uncompressed data.
Moreover, the L2C LLC and memory support two block type of different
granularity to fit the requirements of the two compression modes.

The compressor is located next to a Direct Memory Access (DMA) controller
and connected to the on-chip interconnect allowing it to interact with data
transfers between the Last Level Cache (LLC), Memory controller and system
I/O ports. This placement allows both memory and I/O compression. In
turn, this enables L2C to use the same compressor for both memory and I/O
compression, the latter case controlled by the DMA.

Briefly, a memory access in the L2C system, is handled as follows. L2C
extends the page table to include metadata information about the allocated
pages, including the annotation of approximable pages, in other words pages
that can be compressed in a lossy manner. A memory access is marked as
approximable or not after the TLB access. Metadata is read out in parallel
with the LLC being accessed. At the LLC, an access may hit either compressed
or uncompressed data; otherwise (LLC miss), an access to the main memory
is triggered. The metadata indicates the size and compression state of the
fetched data. Moreover, LLC evictions are handled lazily by first attempting
to update the block if it resides in the LLC; if not, an uncompressed write-back
is attempted, if compression has left any unused space, otherwise, the block is
fetched from memory to be recompressed.

In general, data in memory are grouped into larger blocks of multiple

62 CHAPTER 4. L2C: COMBINING LOSSY AND LOSSLESS COMPRESSION ON MEMORY AND I/O

cache lines. These blocks are kept in memory in compressed form. When a
dirty cache line is evicted from the LLC, the compressed block it belongs to
is eventually updated to include the fresh data. At maximum compression
ratio, a block of 1kB (16 cache lines) fits in 64B (one cache line). Moreover,
L2C can automatically downgrade blocks from lossy to lossless compression in
cases where insufficient precision can be preserved. This allows the benefits of
compression to be retained, at a reduced level, rather than leaving the data
uncompressed. Finally, blocks which are not explicitly marked as approximable
are only compressed losslessly.

In the remaining of the section, we describe the system design in more
detail. First, the design of the compressor is presented. Subsequently, the
L2C memory block format and memory layout are discussed. After that, it
is explained how transition between block types are handled, and metadata
information is organized. Then, the design of the last level cache (LLC) is
described. Finally, the L2C I/O compression support is explained.

4.3.1 Compression Methods

The main feature of L2C is the application of two separate compressors, unified
in a hybrid design. In this article, we present and evaluate using the MemSZ
lossy compressor [76] and the SC2 lossless compressor [72]. MemSZ represents
the state of the art in lossy memory compression, offering compression ratios of
up to 16×. SC2 is designed for cache compression, which requires low latency
and hardware complexity. These features also make it suitable for memory
compression. Both parts of the L2C compressor are pipelined allowing high
throughput. Without loss of generality, L2C can be implemented using any
combination of block compressors. It is also trivial to extend L2C to support
multiple lossy or lossless compressors and choose the most successful method
for any given block.

4.3.1.1 Lossy Compression

The lossy part of the L2C compressor is based on the SZ lossy compression
algorithm [34], which compresses sequences of values by describing each consec-
utive value as a function of the preceding values. This is done by computing
three different fixed functions (constant, linear or polynomial), comparing their
respective error and selecting and storing the best option (two bits) in place of
the value (32 bits). MemSZ introduces several performance improvements to
SZ and applies it to 1kB blocks for memory compression [76]. Data blocks are
processed in a square arrangement, allowing for greater parallelism both during
compression and decompression as illustrated by Figure 4.2. The maximum
achievable compression ratio for a 1kB block is 16 : 1.

The process of lossy compression of a 16 cache line block, outlined in
Figure 4.2a, is designed to maximize parallelism. The 16 cache lines are
arranged as rows in a square block. Four seed values are taken from the
center of the block. The block is divided into 32 parallel sequences, starting
vertically from the seeds in both directions and then spreading out toward the
sides. Within each sequence, the compressor attempts to describe each value
V strictly as a function of the preceding three values. If one of the available
functions (constant, linear, or polynomial) successfully describes the value, a

4.3. SYSTEM ARCHITECTURE 63

1
6

 c
a
ch

e
 l
in

e
s

16 values

y+2

xx-1x-2x-3

y+1

y V

Vy,x-1

Vy,x-2

Vy,x-3

f1

f2

f3

min
error

Symbol

2
Sy,x

Outlier

16
Vy,x

Vy,x

(a) Lossy MemSZ compression. Every 32-bit input value V is replaced by a
2-bit symbol S.

V*
y,x-1

V*
y,x-2

V*
y,x-3

f1

f2

f3

Func.

Select Value
V*

y,x

Sy,x Oy,x

Data

Ready

x

y

Symbols Sy,x

Outliers Oy,x

Outliers Col x

Outliers Col 0...
...

(b) MemSZ decompressor. Outlier placement (left) is carried out in parallel
with symbol decompression (right). Dataflow signalling allows decompression
to take place out of sequence.

Figure 4.2: Lossy compression scheme employed by L2C. A data block is
processed as several parallel sequences. Each value in a sequence is encoded as
a function of the preceding values.

64 CHAPTER 4. L2C: COMBINING LOSSY AND LOSSLESS COMPRESSION ON MEMORY AND I/O

Uncompressed Block Compressed Block

1110 0000 0111 0000 010 11 11000111

Code

00
011
101
010

Value

OTHER
0001
1111
1110
0000 11

Code Table

(a) SC2 compression of 4-bit values. More common values are assigned shorter codes.

E
n
co

d
e
d

S
tr

e
a
m

Decode
Table

D
e
co

m
p
r.

B
lo

ck

S
h
if
te

r

Comparator
&

Encoding Match

1

Shift Amount
(variable)

2

16

...

16

ValueCode

(b) Decompression of 16-bit values. A comparator identifies a single valid code from
the front of the bitstream.

Figure 4.3: Lossless SC2 compression scheme employed by L2C.

two-bit symbol identifying that function is enough to represent the value. If
none of the functions is successful, the value is an outlier, and is marked by a
special symbol. The outlier value itself is stored at reduced precision (16 bits)
in the compressed block. After this process, the completed compressed block
consists of the seed values, the set of two-bit symbols and a collection of all
identified outlier values. Compression of 1kB is completed in 16 cycles.

Decompression is illustrated in Figure 4.2b. It is optimized for minimal
latency, and carried out in two parallel processes: Distribution of outlier values
and decompression of symbols. Distribution of outliers is performed by decoding
the sequence of symbols, identifying the location of outlier values, as well as
their order. The outlier values are first assigned to their proper column. Each
column is then populated, starting with the most critical center and progressing
outward. The decompression of the two-bit symbols is performed in the same
order as they were compressed; seed values are placed in the center of the
block and 32 parallel sequences spread out vertically. Outliers may be placed
throughout the block out of synchronization with these sequences, and the
three decompression functions introduce differing dependencies and latencies.
To exploit these irregularities, a dataflow-enabled pipeline design is used. Any
one value to be decompressed is processed as soon as all its dependencies are
in place. The variable decompression latency of a block, which is critical for
memory reads and thus for performance, is at most 16 cycles.

4.3.1.2 Lossless Compression

The lossless L2C compressor is based on the Statistical Cache Compressor
(SC2) [72], which employs huffman-encoding. SC2 is an inter-block compression
scheme that uses a single, global, symbol table to establish the encoding, as
described in Section 4.2.1. Hence, it does not need to add any other overhead
per block and is therefore well suited to compressing blocks of arbitrary size.
Figure 4.3 illustrates an example SC2 compression operation, where each value

4.3. SYSTEM ARCHITECTURE 65

xxx0 Seeds

Location

xxx1 Symbols

xxx2

xxx3

xxx4

xxxF

...

... Unused space

Symbols Outliers

Lazy evicted CL #n

...

Lazy evicted CL #0

EMeta

Location

(a) L-block compressed using MemSZ.

xxx0

xxx1 CL 2

xxx2

xxx3

Unused space

CL 0

Lazy evicted CL #0

Meta CL 1

CL 3

Location

CL 1

(b) s-block compressed using SC2.

Figure 4.4: L2C Memory Block formats. Large blocks (L-blocks) are lossily
compressed, Small blocks (s-blocks) are losslessly compressed.

of the uncompressed block (4 bits in Figure 4.3a) is looked up in the Code Table
and replaced by the associated code. If the value is not found, it is maintained
in uncompressed form preceded by the code for OTHER. The compression
outcome is a compressed block of variable width. L2C applies SC2 compression
using 16-bit value symbols and offers compression ratios of up to 4 : 1. SC2

compression employs canonical Huffman codes: the codes follow the numerical
sequence property, i.e., codes of the same length are numerically sequential.
This is important during decompression.

The lossless L2C decompressor is also based on the SC2 decompressor [72]
and is depicted in Figure 4.3b. Decompressing Huffman-encoded streams is
inherently sequential because coded values are of variable length, thus it is not
known where the next coded value starts in the encoded stream. Importantly,
Huffman codes follow the prefix property, i.e., a code cannot be prefix of another
code. Hence, when a bit sub-sequence matches a code, the next bit in the
encoded stream determines the beginning of the next code.

The SC2 decompressor works as follows: Part of the compressed block is
inserted to a shifter. The 16 most significant bits of the bit-sequence within
the shifter are inserted to the Comparator and Encoding Match engine. For
each code length (1b, 2b, 3b, ..., and 16b), this engine performs numerical
comparisons of the inserted bit sequence and the base value of the respective
code length (i.e., the first assigned code for this length). A code of length x is
matched within the bit sequence, when the comparison of x bits yields true
result and the comparison of x+1 bits yields false. The matched code length
determines the shift amount in the shifter and decoding can proceed with the
next coded value in the stream. In parallel, the matched code is looked up
in the Decode Table and the associated value is output and attached to the
decompressed block. This process is repeated until all values are decompressed
in the block. The decompression latency is 14 cycles per cache line at 1GHz,
parallelizable for larger blocks.

4.3.2 Block Types

The two compression schemes employed by L2C differ in their utility and
application. The lossy compressor is geared toward high compression ratios,
necessitating large blocks. This is in part due to a fixed per-block data

66 CHAPTER 4. L2C: COMBINING LOSSY AND LOSSLESS COMPRESSION ON MEMORY AND I/O

overhead, in the form of seed values which must be included uncompressed in
the compressed block. The lossless compressor, by contrast, has no such fixed
overheads. Its compressed blocks consist only of re-encoded values from the
original data. This allows it to be applied to blocks of any size.

The optimal block size for any memory compression scheme depends on two
factors: the maximum achievable compression ratio and the minimal transfer
unit of the memory bus. An undersized block may compress to a size smaller
than the minimal transfer unit, leading to transfers larger than necessary.
Conversely, an oversized block may compress below expectation, leading to
extraneous data transferred. For these reasons, the optimal block size is such
that the maximum expected compression ratio results in a compressed size
equal to the minimum compression size.

The minimum transfer unit of a typical system is one cache line. The lossy
compression employed by L2C is designed for a maximum compression ratio
of 16 : 1, and is thus applied to blocks of 16 cache lines. We refer to these
large blocks as L-blocks. The lossless compression using 16-bit values has a
theoretical maximum compression ratio of 16 : 1 (compressing each 16-bit value
to a single-bit encoding), but typically achieves compression ratios between
2 : 1 and 4 : 1 on non-constant data. For this reason, L2C applies lossless
compressed data to blocks of 4 cache lines. We label these small blocks s-blocks.
An s-block is a quarter of an L-block, which is convenient for their alignment
and management. As L2C combines these block types, a 1kB region of memory
can either be one L-block or four s-blocks. Figure 4.4 illustrates the format
of each block type. Both types contain a small amount of embedded block
metadata, which is further described in Section 4.3.5.

The L-block is specifically organized to allow decompression to begin as
soon as the first line is available. A single bit E indicates that the rest of the
line has been losslessly encoded to save space. This is followed by a set of seed
values, from which all SZ sequences begin. The first line also contains an initial
set of two-bit symbols representing compressed values, as well as a number of
outliers sufficient to start decompressing the center columns of the block. The
remaining lines of the compressed block contains the rest of the symbols and
any remaining outliers. The s-block format is simpler, consisting only of the
compressed cache lines.

Both types of blocks leave unused space at the end of their allocation in
physical memory, which is used for lazy evictions. When a compressed block is
only available off-chip, any dirty uncompressed cache line evicted from LLC will
be stored in this space. In order to reconstruct a block with lazily evicted cache
lines, the location of each dirty line must be maintained. For approximable
data, data precision is reduced by a few bits to encode the proper location of
the cache line. In non-approximable data, the evicted cache line is compressed
and the location information is appended to the end of the cache line.

4.3.3 Memory Layout

The use of multiple compression schemes with differing block sizes necessitates
a flexible memory layout for compressed data. A memory location may be in
one of three different states:

1. Compressed lossily as part of a 1kB L-block

4.3. SYSTEM ARCHITECTURE 67

Physical
Frame

L-block1kB 4 S-blocks

Unused Uncompressed Compressed

Figure 4.5: Main memory with a mixture of block types. Each 1kB space is
one L-block or four s-blocks.

2. Compressed losslessly as part of a 256B s-block

3. Uncompressed as part of an uncompressed 256B s-block

L-blocks are aligned to 1kB boundaries while s-blocks always appear in
groups of four, each aligned to 256B. Figure 4.5 illustrates L- and s-blocks
coexisting in physical memory. This alignment serves dual purposes. First, the
address of a cache line can be trivially translated into the physical address of
the corresponding compressed block. Second, it allows an L-block to transition
into four s-blocks if lossy compression fails, without affecting neighboring blocks
outside the 1kB allocation. This type of transition is central to L2C, enabling a
fallback to less aggressive compression rather than leaving data uncompressed.

4.3.4 Block Type Transition

During the execution of a program, the same memory region may be dynamically
selected to be compressed in a lossy or lossless manner as long as it is indicated
to be approximable. The transition between lossy L-blocks and lossless s-blocks
is described below.

When lossy compression of an L-block is attempted and fails, MemSZ leaves
the full block uncompressed. This leads to wasted compression potential, since
the data may still exhibit some amount of redundancy. L2C leverages this
potential by transitioning the L-block into four s-blocks and applying lossless
compression. In effect, data compressibility determines a block’s place within a
hierarchy of compression states, from lossy L-block via lossy s-block and down
to completely uncompressed s-block. Figure 4.6 illustrates the logic governing
transitions between these states.

Uncompressed data may, with updates, become compressible again. SC2

compression is applicable to blocks of any size, and L2C uses this property to
determine the compressibility of individual cache lines. A back-off counter 1

associated with uncompressed s-blocks keeps track of the number of individual
and compressible cache lines written back to the block. When the counter
reaches its maximum, the s-block is expected to be compressible and a transition
2 is attempted.

Analogously, after some number of updates to a compressed s-block, it is
possible that compressibility changes and lossy compression becomes viable.
L2C uses the lossless compressibility of the s-blocks as an indicator for this
(Figure 4.6). Every group of four s-blocks shares a transition count 3 , which
is incremented when a compressed s-block is written back to memory. If any
s-block fails compression, the transition count is cleared. Once a sufficient
number of consecutive lossless compression attempts have been successful, a
transition 4 to a single L-block is attempted.

68 CHAPTER 4. L2C: COMBINING LOSSY AND LOSSLESS COMPRESSION ON MEMORY AND I/O

Transition to a lower compression state (i.e. L-block to S-Block or s-block
to uncompressed data) is straight-forward. Such a transition occurs only when
compression fails, and thus all data is already available on-chip. Conversely,
any transition toward a higher compression state involves reading multiple
cache lines from memory, in order to compress a larger block. In the worst case,
this consists of three compressed s-blocks totalling nine cache lines. To reduce
this traffic overhead, L2C postpones the transition attempt until the next cache
miss for this block. Because miss resolution requires one uncompressed cache
line or one compressed s-block from memory, this reduces the total overhead of
the transition. In addition, any compressed blocks which are already on-chip
in the LLC do not need to be transferred.

4.3.5 Block Metadata

One hurdle faced by memory compression systems is the overhead of metadata.
Certain information about a compressed block may be necessary in order
to manipulate the block in memory or bring it on-chip for processing. This
additional information is too large to keep on-chip in its entirety, and must
therefore be stored in main memory.

To reduce the traffic overhead of such metadata, L2C divides the compression
metadata into two categories. Essential metadata are necessary even when the
corresponding block is not on-chip, in order to fetch or update it. Non-essential
metadata are only needed once the block is on-chip, and are embedded in the
compressed block as illustrated in Figure 4.4.

Non-essential metadata are only needed when the full compressed block
is also available for processing. This information consists of the size of the
compressed block excluding lazily evicted cache lines, which is necessary in
order to decompress the block. In addition, L-blocks encode the compression
method used, to be able to differentiate between data types and potentially
support other compression schemes.

L2C uses a Compression Metadata Table (CMT) as an on-chip cache for
essential compression metadata. CMT has a structure corresponding to the
existing Translation Lookaside Buffer, and is updated in tandem with it on TLB
misses. Each quarter-page is described either as one L-block or four s-blocks.
Four unused bits (labeled F) in the regular Page Table Entry (PTE) are used to
encode this state. An additional TLB bit is used to mark approximable pages.
A CMT entry comprises 64 bits for one page, and is organized as illustrated in
Figure 4.7.

s-blocks are afforded four bits of CMT space. These four bits are used to
encode three fields: a two-bit size field, a 1-bit transition counter (described
below), and a 3-bit back-off counter used to delay compression for uncompressed
blocks. Since the size and transition fields are only needed for compressed
blocks and the counter is only needed for uncompressed blocks, these two sets
are overlapped. A single bit C is used to distinguish between the two states.

L-blocks have 16 bits of essential metadata, divided into two fields: a
four-bit size field and a twelve-bit counter of accumulated error. The twelve-bit
counter is a floating-point (4-bit exponent and 8-bit mantissa) representation
of the accumulated error introduced by lossy compression.

4.3. SYSTEM ARCHITECTURE 69

LL
C

E
v
ic

ti
o
n

E
v
ic

ti
n
g

S
-B

lo
ck

E
v
ic

ti
n
g
 U

C
L

B
e
lo

n
g
s

to
 S

-B
lo

ck

In
cr

e
m

e
n
t

Tr
a
n
si

ti
o
n
 C

t.
A

tt
e
m

p
t

L-
Tr

a
n
si

ti
o
n

Tr
a
n
si

ti
o
n
 C

t.
R

e
a
ch

e
d
 M

a
x

In
cr

e
m

e
n
t

B
a
ck

-o
ff

 C
t.

B
lo

ck
U

n
co

m
p
re

ss
e
d

U
C

L
C

o
m

p
r.

 ⩾
 2

:1

B
a
ck

-o
ff

 C
t.

R
e
a
ch

e
d
 M

a
x

A
tt

e
m

p
t

S
-T

ra
n
si

ti
o
n

B
e
lo

n
g
s

to
 L

-B
lo

ck

La
zy

W
ri

te
b
a
ck

W
ri

te
b
a
ck

1

2
4

3

F
ig

u
re

4.
6:

B
ac

k
-o

ff
an

d
tr

an
si

ti
on

b
eh

av
io

r.
B

lo
ck

s
tr

an
si

ti
on

fr
om

U
n

co
m

p
re

ss
ed

to
lo

ss
le

ss
s-

B
lo

ck
to

lo
ss

y
L

-B
lo

ck
as

co
m

p
re

ss
ib

il
it

y
te

st
s

su
cc

ee
d

.

C
M

T

1
b

4
b

6
4

b

T
LB

1
2

b

4
b

S
iz

e
A

cc
u
m

.
E
rr

.

P
h
y
si

ca
l
A

d
d

r.
A

F
L

S
iz

e
Tr

a
n
s

B
a
ck

o
ff

1
b

2
b

1
b

C
=

1

C
=

0

S
S

S
S

F
ig

u
re

4.
7:

M
et

ad
at

a
ta

b
le

fo
rm

a
t.

s-
b

lo
ck

m
et

a
d

at
a

is
en

co
d

ed
d

iff
er

en
tl

y
fo

r
C

o
m

p
re

ss
ed

(C
=

1
)

a
n

d
U

n
co

m
p

re
ss

ed
(C

=
0
)

b
lo

ck
s.

70 CHAPTER 4. L2C: COMBINING LOSSY AND LOSSLESS COMPRESSION ON MEMORY AND I/O

4.3.5.1 Metadata during transitions between block types

Metadata encoding is complicated by the multiple compression states a single
block may have. One cause of transition is a failure to compress. L-blocks which
fail lossy compression transition into four s-blocks. s-blocks which fail lossless
compression transition into uncompressed data. The opposite transitions are
carried out when compression is retried successfully. These retries are controlled
using back-off counters.

Transition from uncompressed to compressed s-block is tracked using the
metadata for s-blocks, as discussed above. When an uncompressed eviction
occurs, the compressibility of the cache line is tested. The back-off counter of
the corresponding s-block is incremented if the evicted line has an individual
compressibility at or above 2 : 1.

Transition from s-block to L-block (for pages annotated as approximable,
i.e. allowing L-block lossy compression) is controlled by four transition bits
spread out across the metadata of the s-blocks. These bits encode a counter
of consecutive successful s-block compression attempts, indicating that the
data is compressible. Overlapping the metadata bits this way works, since
the transition counter is only valid if all four s-blocks have been successfully
compressed.

The Accumulated Error counter associated with an approximable L-block
must be maintained even when the block temporarily transitions to s-blocks or
is left uncompressed due to failed compression. This is done by including three
bits of the counter in the non-essential metadata embedded in each s-block,
if that block is compressed. If an s-block is uncompressed, the three bits are
instead embedded as the least significant bit of each of the first three data
words.

4.3.6 Last-Level Cache

Support for two separate memory block sizes also raises the need for similar
support in the last-level cache. Resolving LLC misses by fetching compressed
blocks from memory introduces traffic overhead because blocks may be larger
than one cache line. In order to benefit from the extra fetched data, it must be
kept on-chip for as long as possible. If the data exhibits spatial locality, the
fetched block acts as a form of prefetching, at reduced traffic cost.

L2C uses a Decoupled Sectored Last-level Cache [35] to store compressed
and uncompressed data on-chip simultaneously. Tags are decoupled from data
entries as illustrated in Figure 4.8 and associated using a special back-pointer
array. This allows multiple data entries representing the same 1kB address
space to share the same tag. For example, a 1kB region of physical memory
may be present in the LLC as one compressed L-block and three uncompressed
cache lines, simultaneously. Three separate indexing functions are used for
data placement: One for compressed L-blocks (IndexL), one for compressed
s-blocks (IndexS) and one for uncompressed data (IndexU).

L- and s-blocks all consist of one or more cache line sized CMSs. All CMSs
belonging to a single compressed block are placed in consecutive LLC sets.
Since a tag never represents both L- and s-blocks simultaneously, the two
use similar indexing functions. If the L-block indexing function IndexL(A)
indicates that the compressed data for a tag A should start in set X, then

4.3. SYSTEM ARCHITECTURE 71

Uncompressed

S-Block

L-Block

A B00 C

B10

B20

B30

C
C

C
C

B01

B11

B21

B31

B32

A

A

A

A

Data

C

A

B

Tag

0xD40

0xED4

Tag B
Valid

0xE
Block Tag

3
#UCL#CMSS-MaskLRUDirty

2 2 2 311111

0xEPhys. B20 0xD 0x4 10 IndexS = 0xD40 + 80x0 00

Line #
(2b)

S-Block #
(2b)

Tag IndexBlock
Tag

0xDPhys. A 0xE 0xD 0x4 00 IndexU = 0xD4000

0xFPhys. C 0xD 000x00x4 IndexL = 0xD4000

Back-Ptr

0xD40

0xD44

0xD48

0xD4C

Back-Ptr B21

Valid

1
CL IndexTag WayTypeLRUDirty

1(S)1

Way

S
e
t

Figure 4.8: Conceptual view of the L2C decoupled sectored cache and its three
data indexing functions. s-blocks are placed at 4-set intervals.

IndexS(A) would also place the first s-block for that same tag starting at X.
The second s-block is placed at X +4, the third at X +8 and the last at X +12.
This way, L-compressed blocks and S-compressed blocks have similar behavior
in the LLC. The indexing functions IndexL(A) and IndexS(A) are chosen to
minimize interference between compressed and uncompressed data belonging to
the same block, i.e. the uncompressed indexing function IndexU (A) is unlikely
to return the same index as IndexL(A) or IndexS(A).

Figure 4.8 illustrates a slice of the LLC with data from three 1kB memory
blocks (A, B and C) present. A is uncompressed, B is compressed as four
s-blocks and C is compressed as a single L-block. Their respective physical
addresses are such that the indexing functions IndexU (A) = IndexS(B) =
IndexL(C) = 0xD40, and they thus contend for the same 16 sets in LLC. The
uncompressed cache lines from A are placed based on their individual addresses.
The four s-blocks B0 − B3 start at four-set intervals, while the compressed
L-block is placed in five consecutive sets starting at 0xD40. Any compressed
data for A or uncompressed data for B and C are placed in other sets..

The LLC supports three types of lookups (Uncompressed, S-Block, or L-
Block). Lookups work similarly to a standard Decoupled Sectored Cache. The
tag index is computed from the sought physical address. Based on the type
of lookup (Uncompressed, S-Block, or L-Block), the corresponding indexing
function (IndexU , IndexS , IndexL, respectively) is used to identify the proper
set in the back-pointer/data arrays. Tag and BP lookups are then performed
in parallel. If a Tag entry and a BP entry are both located, a tag match is

72 CHAPTER 4. L2C: COMBINING LOSSY AND LOSSLESS COMPRESSION ON MEMORY AND I/O

1 2

43

Sensor Buffer
Filled

Wait for data Clear Stored

Storage
Full

TransmitCompress Store Data

Figure 4.9: Execution flow of a data collection application which benefits from
compressed I/O.

confirmed using the tag way stored in each BP entry as well as the block tag
from the physical address. If these comparisons all match, both tag and data
have been successfully located.

L2C uses a single tag to represent each contiguous 1kB region of physical
memory, in both compressed and uncompressed forms. The tag entry is
extended with additional fields to support the two block sizes. A four-bit mask
indicates which s-blocks are present in the LLC. An 8-bit counter field is used
to indicate the number of data entries present for each compressed block (four
2-bit counters for s-blocks or a single 3-bit counter for an L-block).

Compressed data has the potential to offer greater utility compared to
their size. To exploit this, replacements are performed with a modified Least-
Recently-Used (LRU) mechanism. When an uncompressed cache line is updated
(via write-back from the L2 cache), its LRU is normally updated to record that
it has been used recently. If the tag entry indicates that a compressed copy
of the same block is present in the cache, the LRU counter of the compressed
block is updated in stead of that of the UCL. This way, compressed blocks are
prioritized over their uncompressed (and redundant) counterparts during cache
replacements.

The decoupled sectored cache organization allows L2C to store any com-
bination of compressed and uncompressed data on-chip. The accompanying
metadata enables lookups of compressed data, increasing the effective capacity
of the cache. As an additional benefit, this enables the reuse of compressed
blocks, thus amortizing their memory traffic overhead.

4.3.7 I/O Compression

The placement of the L2C compressor, attached to the on-chip interconnect
and next to the Direct Memory Access (DMA) controller, also enables the
compression of I/O traffic. L2C can direct through the compressor any data
transfer between two memory-mapped regions. In DMA-capable systems, the
on-chip DMA controller is programmed to initiate the data movement, while in
systems without DMA, a processor core performs this task. This covers both
data input (e.g sensor devices) and bidirectional devices (e.g. local storage,
network interfaces). L2C enables transparent compression at high bandwidth.

I/O-heavy applications which can benefit from compression include data
aggregation services and remote sensor networks. These networks typically
consist of low-power devices with limited performance and communication
resources. Nodes of this type are strongly power constrained, and may rely on
a small battery and unreliable power harvesting techniques (e.g. solar cells,
RF energy harvesting). For this reason, energy efficiency is a high priority.
The device typically spends as much time as possible in a low-power state,

4.4. EVALUATION 73

periodically waking up to collect and transmit data.

Figure 4.9 illustrates the execution flow of a simple embedded application.
Data is collected and buffered in an off-chip sensor, while the processor itself is
in a low-power sleep state. An interrupt wakes the processor when the buffer is
full. The processor triggers a data transfer (via DMA or software mechanisms)
to bring the sensor data on-chip. The data is stored in persistent storage, and
the processor returns to its sleep state. When local storage is full, a batch
of data is transmitted via radio for central aggregation. The benefits of data
compression in such a system are fourfold:

1 Execution time is reduced, allowing longer sleep periods.

2 Longer periods of data can be logged in local storage, reducing the
frequency of transmission.

3 Radio transmission and relay energy is reduced, due to smaller payloads.

4 Radio bandwidth is saved.

The data transfer from sensor to processor, be it via DMA or software mecha-
nism, is uncompressed at the source, but passes through the compressor after
arriving on-chip. As a result, the data is compressed before being written to
storage, saving both time 1 and storage space 2 . In addition, this allows the
collection period to be extended before local storage space is exhausted. Once
it is, energy 3 and bandwidth 4 savings are compounded; less frequent radio
transmissions, each containing more sensor data.

In addition to these benefits, digital sensors for natural phenomena (e.g. air
pressure, temperature, pollutants, radiation) have finite precision, introducing
some amount of quantization during data acquisition. Lossy compression can
be used to exploit this approximation tolerance.

By placing the L2C compressor appropriately, compression can be applied to
memory-mapped peripherals such as built-in sensors. Attaching the compressor
to the on-chip interconnect as illustrated in Figure 4.1 also allows compression
to be applied to external peripherals.

I/O compression differs from memory compression by the property that
data is compressed exactly once. As a result, block type transitions will never
occur. For this reason, the I/O compressor does not need to prioritize L-blocks
over s-blocks. Instead, both lossy and lossless compression are attempted,
choosing whichever achieves a better compression ratio.

4.4 Evaluation

In this section we evaluate the efficiency of L2C. We first describe our experi-
mental setup, detailing the system configuration of our experiments and the
benchmarks used. Two separate evaluations are described: one applying L2C
for memory compression and one for I/O compression. Then, experimental
results from each evaluation are presented.

74 CHAPTER 4. L2C: COMBINING LOSSY AND LOSSLESS COMPRESSION ON MEMORY AND I/O

Table 4.1: Simulation parameters.

(a) System parameters.

Parameter Configuration

CPU 4 core, O-o-O, 4-way issue @ 3.2GHz
L1 cache 64kB per core, 4-way, 1 cycle latency
L2 cache 256kB per core, 8-way, 8 cycle latency
L3 cache 4MB shared, 16-way, 15 cycle latency
Main Memory 16GB DDR4, 1 channels, 800MHz
VFT 7kB, 8-way, 16-bit values

(b) Compressor properties.

Parameter Compressor Decompressor

SC2 latency 18 cycles 42 cycles
SC2 leakage power 33.6mW 0.4mW
SC2 dyn. energy 0.576nJ 0.592nJ
MemSZ latency 16 cycles 8-16 cycles
MemSZ leakage power 28.8mW 144.5mW
MemSZ dyn. energy 3.94nJ 17.5nJ

4.4.1 Experimental Setup

Our evaluation of L2C is twofold. First, we evaluate its use as a Memory
Compression scheme, using a processor and memory simulator. Separately, we
evaluate the potential of L2C as a I/O Compression scheme by applying it to a
selection of real-world datasets.

4.4.1.1 Memory Compression

We evaluated L2C for memory compression in an in-house simulator, imple-
mented on top of Pin [48]. The simulator employs an interval-based processor
model, as proposed by Genbrugge et al. [49]. The memory hierarchy was
modelled at cycle granularity, using DRAMSim2 for main memory [50]. Mc-
PAT [51] and CACTI [52] were used to model power and latency of the system
considering 32nm technology. The MemSZ compression hardware modules were
implemented in RTL, synthesized using Synopsys Design Compiler to determine
their operating frequency, latency and power consumption; the same parameters
for SC2 are taken from [72] which were measured with the same technology
node. These factors are used as configuration information for the simulations.
The general properties of the simulated system are listed in Table 4.1a. The
power and latency of each compressor are outlined in Table 4.1b.

As explained in Section 4.3, the developer is responsible for the annotation of
approximable data structures. For this evaluation, we manually add annotations
to the source code of each benchmark based on experimentation to find safe
approximations. Table 4.2a summarizes the type of approximated data for
each application.

In order to emulate the impact of the approximations on the overall appli-
cation error, we emulate not only the memory accesses but also update the

4.4. EVALUATION 75

values of the memory contents accordingly. This is done by applying a software
implementation of the compression and reconstruction methods to the data.
Lossless compression is applied to all non-code pages mapped into the process.
This includes heap, stack, and data segments of the application itself, as well
as those of shared libraries.

Besides the baseline system, L2C is further compared with (i) the lossy-only
MemSZ [76] and (ii) a variation using only lossless SC2 compression (Lossless).
As all three compressing systems use the same decoupled sectored cache design,
they are configured identically apart from the employed compression mechanism.
This similarity allows the isolation of lossy compression, to study its impact
compared to a system with only lossless compression capability.

Each simulation is executed in the following steps: i) A warmup period
of 50M instructions is carried out to warm up the cache hierarchy; ii) at
the end of this warmup period, 10% of the compressible system memory is
randomly sampled to train the SC2 and populate the VFT. This emulates
a longer sampling period. Furthermore, all compressible data in memory is
compressed at the end of the warmup period, simulating an application with
compressed input data; iii) the application is executed until it has finished
generating output data.

One common source of memory traffic in scientific workloads is checkpointing.
Checkpoints are occasional snapshots of the application’s state, for the purpose
of resuming execution after errors or outages. Such snapshots generate large
bursts of data transfers to non-volatile storage, and contain approximable data
from the application’s working set. To reflect the effect of compression on
these data, iterative benchmarks with checkpointing support have it enabled
as indicated in Table 4.2a.

The input data sets used for our experiments are the standard input data
sets provided with the benchmarks with the exception of (i) lattice for which
we used a silhouette of a car as the input data set, and (ii) k-means where the
input is topological data [58].

Compression metadata has been identified as a significant source of memory
traffic [25]. To evaluate this factor, our simulations include both the traffic of
regular page table information (via TLB misses) and the additional transfer of
essential compression metadata.

Benchmarks for approximate computing (AxBench) considers 10% relative
output error [59]. Due to its strongly application-dependent nature, it is solely
up to the application provider to define what is an acceptable error level. We
evaluate and present output error using the mean relative error across the
output dataset. The only exception to this is k-means, whose output is discrete
and strongly bounded. For this application we normalize each individual error
to the maximum possible error for that value, such that the maximum possible
error is 100%. Similar to previous works, L2C provides tunable knobs to control
the data approximation error and constrain application output error. These
knobs allow an application provider to adjust the trade-off between output error
and performance/energy improvement. Specifically, two quality thresholds are
configurable. One is local to each compression attempt, controlling which
values are outliers. The second is maintained over the entire execution time,
limiting accumulated approximation error.

76 CHAPTER 4. L2C: COMBINING LOSSY AND LOSSLESS COMPRESSION ON MEMORY AND I/O

T
ab

le
4.2:

W
ork

lo
a
d

s
u

sed
to

eva
lu

a
te

L
2C

.

(a
)

B
en

ch
m

a
rk

A
p
p
lica

tio
n
s.

A
p
p
lic

a
tio

n
A

p
p
ro

x
.

O
u
tp

u
t

F
o
o
tp

rin
t

/
c
o
re

C
h
e
ck

p
.

D
e
sc

rip
tio

n

h
ea

t
[5

3
]

T
em

p
s

T
em

p
s

8
.3

M
B

X
H

ea
t

p
ro

p
a
g
a
tio

n
th

ro
u
g
h

a
2
D

fi
eld

la
ttice

[5
4
]

P
a
n
d

M
V

el.+
P

ress.
5
M

B
X

2
D

L
a
ttice-B

o
ltzm

a
n
n

sim
u
la

tio
n

o
f

a
ir

fl
ow

lb
m

[5
5
]

V
elo

cities
V

elo
cities

3
2
5
M

B
3
D

L
a
ttice-B

o
ltzm

a
n
n

sim
u
la

tio
n

o
f

fl
u
id

fl
ow

o
rb

it
[5

6
]

P
h
y
s.

d
a
ta

P
h
y
s.

d
a
ta

1
0
M

B
X

3
D

sim
u
la

tio
n

o
f

th
e

tw
o
-p

a
rticle

o
rb

it
p
ro

b
lem

cd
elta

[5
6
]

P
h
y
s.

d
a
ta

P
h
y
s.

d
a
ta

2
2
M

B
X

D
elta

-fu
n
ctio

n
h
ea

t
co

n
d
u
ctio

n
m

o
d
el

sed
ov

[5
6
]

P
h
y
s.

d
a
ta

P
h
y
s.

d
a
ta

1
2
M

B
X

S
ed

ov
ex

p
lo

sio
n

m
o
d
el

w
in

d
t

[5
6
]

P
h
y
s.

d
a
ta

P
h
y
s.

d
a
ta

2
3
M

B
X

W
in

d
tu

n
n
el

w
ith

a
step

k
m

ea
n
s

[5
7
]

T
o
p

o
l.

[5
8
]

C
lu

sters
5
.5

M
B

X
Itera

tiv
e

clu
sterin

g
a
lg

o
rith

m
w

rf
[5

5
]

G
eo

d
a
ta

T
em

p
.

9
0
M

B
W

ea
th

er
fo

reca
stin

g
m

o
d
el

(b
)

D
a
ta

sets
u
sed

to
eva

lu
a
te

L
2C

fo
r

L
in

k
C

o
m

p
ressio

n
.

D
a
ta

se
t

D
o
m

a
in

T
y
p

e
S
iz

e
D

e
sc

rip
tio

n

h
eig

h
t

[5
8
]

G
eo

su
rv

ey
2
D

sp
a
tia

l
1
0
2
4
×

1
0
2
4

sa
m

p
les

G
eo

g
ra

p
h
ica

l
h
eig

h
t

m
a
p

a
q
u
a

[9
5
]

G
eo

su
rv

ey
2
D

sp
a
tia

l
8
×

5
1
2
×

1
0
2
4

sa
m

p
les

S
ea

su
rfa

ce
p
ro

p
erties

g
b
6

[9
6
]

A
stro

n
o
m

ica
l

su
rv

ey
2
D

sp
a
tia

l
2
0
4
8
×

2
0
4
8

sa
m

p
les

R
a
d
io

telesco
p

e
im

a
g
ery

stra
n
g

[9
7
]

G
eo

su
rv

ey
T

im
e

series
1
8
7
1
7
6

sa
m

p
les

S
o
la

r
ra

d
ia

tio
n

m
ea

su
rem

en
t

a
t

6
0
◦N

1
5
◦E

h
a
n
d

[9
8
]

H
C

I
T

im
e

series
8
0
×

4
0
0
0
0
0

sa
m

p
les

H
a
n
d

p
o
sitio

n
s

fo
r

g
estu

re
d
etectio

n
m

itb
ih

[9
9
]

M
ed

ica
l

T
im

e
S
eries

9
×

2
×

6
5
0
0
0
0

sa
m

p
les

T
w

o
-ch

a
n
n
el

E
C

G
reco

rd
in

g
s

a
m

p
d
s

[1
0
0
]

E
n
erg

y
d
istrib

u
tio

n
T

im
e

series
1
2
×

1
0
5
1
2
0
0

sa
m

p
les

E
n

erg
y

co
n

su
m

p
tio

n
d

a
ta

fro
m

a
resid

en
tia

l
b

u
ild

in
g

a
ir

[1
0
1
]

M
eteo

ro
lo

g
ica

l
T

im
e

series
1
3
×

1
2
1
6
4
1

sa
m

p
les

A
ir

q
u
a
lity

m
ea

su
rem

en
ts

g
a
s

[1
0
2
]

S
cien

tifi
c

T
im

e
series

1
9
×

7
8
6
4
3
2

sa
m

p
les

C
a
rb

o
n

m
o
n
ox

id
e

sen
so

r
in

p
h
y
sics

ex
p

erim
en

t
h
y
d
ra

[1
0
3
]

M
ech

a
n
ica

l
T

im
e

series
1
8
×

1
0
4
8
5
7
6

sa
m

p
les

C
o
n
d
itio

n
m

o
n
ito

rin
g

o
f

h
y
d
ra

u
lic

sy
stem

4.4. EVALUATION 77

4.4.1.2 I/O Compression

The benefits of I/O compression (reduced execution time, reduced communica-
tion duration, reduced communication bandwidth, improved storage efficiency)
are directly proportional to the achieved compression ratio. For this reason,
we evaluate the use of L2C as a I/O compression scheme by applying it to a
selection of real-world datasets as outlined in Table 4.2b.

The datasets can be generally divided into two categories: Spatial and Time
series. Spatial data represent a snapshot of samples from different locations,
such as a topological survey. This type of data is typically seen at centralized
collection points, such as coordinating nodes or database servers, where data
are collated from multiple distributed sources. Time series represent multiple
samples from the same sensor, such as a continuous energy consumption
measurement. This type of data is typically seen in the individual sensor node,
such as an implanted medical device.

To evaluate the efficiency of L2C for I/O compression, each dataset is
compressed using the three evaluated compression schemes: Lossless, MemSZ
and L2C. We present the achieved compression ratio of each system as well as
the resulting approximation error.

4.4.2 Results

In the following section we present the results of both evaluations. First, we
show detailed statistics acquired from simulations of memory compression.
Subsequently, we show the compressibility of the datasets used to evaluate L2C
for I/O Compression.

4.4.2.1 Memory Compression

The primary characteristic differentiating the various compression schemes is
the achieved compression ratio for any given dataset. Table 4.3a shows the
compression ratio of each application’s footprint at the end of execution. While
neither lossy nor lossless alone show a clear advantage, it is clear that a hybrid
approach is able to reap the benefits of each. L2C consistently achieves a higher
compression ratio than either of the two competing designs. Table 4.3b shows
the compression ratio for the approximable subset of the footprint. We observe
that lossy compression is up to 7 times more effective than lossless compression
for the annotated data. MemSZ does, however, leave blocks uncompressed if
they fail to meet quality requirements under lossy compression. L2C falls back
to lossless compression for these blocks, achieving a higher overall compression
ratio. This effect is most pronounced in lattice, where L2C achieves a 49%
higher compression ratio compared to lossy compression alone.

The main benefit of memory compression lies in reduced traffic on the main
memory bus. Figure 4.10c shows the total memory traffic for each design,
normalized to the traffic of the baseline system. Traffic is broken down by
data type: non-approximable data, approximable data, page table traffic, and
metadata traffic. We find that metadata traffic comprises at most 3.9% of total
traffic, twice as much as the regular page table traffic. On average, L2C reduces
the total traffic volume by 73%. This is an improvement of 18% compared to
MemSZ and 56% over Lossless.

78 CHAPTER 4. L2C: COMBINING LOSSY AND LOSSLESS COMPRESSION ON MEMORY AND I/O

Table 4.3: Compression efficacy of the three memory compression systems.

(a) Compression ratio, all data.

heat lattice lbm orbit cdelta sedov windt kmeans wrf GM
Lossless 2.5× 2.5× 2.2× 3.1× 2.9× 3.4× 2.7× 1.9× 1.5× 2.4×
MemSZ 1.5× 1.1× 4.8× 1.8× 1.1× 1.3× 1.0× 1.3× 1.2× 1.5×
L2C 3.2× 2.6× 7.2× 4.1× 3.1× 4.3× 2.8× 2.5× 1.6× 3.2×

(b) Compression ratio, approximable data.

heat lattice lbm orbit cdelta sedov windt kmeans wrf GM
Lossless 2.8× 1.9× 2.2× 3.7× 2.6× 3.7× 2.1× 2.3× 3.0× 2.6×
MemSZ 15.9× 5.1× 15.9× 14.9× 9.2× 15.8× 15.9× 3.6× 4.4× 9.6×
L2C 16.0× 7.6× 15.9× 14.9× 9.2× 15.8× 15.9× 3.9× 5.3× 10.4×

(c) Mean relative application output error.

heat lattice lbm orbit cdelta sedov windt kmeans wrf
Lossless 0% 0% 0% 0% 0% 0% 0% 0% 0%
MemSZ 0.12% 0.24% 0.05% 0% 0.01% 0% 0% 0.05% <0.01%
L2C 0.13% 0.25% 0.06% 0% <0.01% 0% <0.01% 0.05% <0.01%

(d) Fraction of memory traffic caused by L2C block transitions.

heat lattice lbm orbit cdelta sedov windt kmeans wrf

L2C 0.000% 2.207% 0.000% 0.000% 0.006% 0.000% 0.000% 0.001% 0.064%

One potential cause of traffic overhead is the transition from multiple s-
blocks to a single L-block. To attempt such a transition, multiple s-blocks must
be read from main memory. Table 4.3d shows the fraction of total memory
traffic caused by such reads. The maximum 2.2% is found in lattice, while the
remaining benchmarks see at most a fraction of a percent of overhead.

The reduced traffic on the main memory bus yields lowered latency for
memory accesses, which is particularly important for memory reads. Fig-
ure 4.10d shows the Average Memory Access Time (AMAT) for instructions
with memory input operands, normalized against the baseline AMAT. On
average, L2C reduces baseline AMAT by 36%, improving on MemSZ by 5%
and Lossless by 17%.

Another benefit of the three compressing designs is that they are able
to maintain compressed data in the LLC, increasing its apparent capacity.
Figure 4.10e shows the LLC Misses per Kilo-Instruction (MPKI) normalized
to the baseline system. L2C reduces average MPKI by 69%. This is a 16%
improvement over MemSZ and 49% over Lossless.

Execution time is affected both by the reduced memory latency and the
improved LLC miss rate. Figure 4.10a shows the execution time achieved by
each system, normalized to that of the baseline system. We observe that L2C
equals or surpasses both competing designs in all tested applications. L2C
reduces execution time by an average 50%, improving on MemSZ by 9% and
Lossless by 26%.

The reduced execution time coupled with reduced DRAM activity translate
into a reduction of total system energy. Figure 4.10b shows the total energy
consumption of each design, broken down by system component. The energy
consumption follows the same trend as memory traffic, with L2C achieving an

4.4. EVALUATION 79

average reduction of 16%. This is 3% and 5% better than MemSZ and Lossless,
respectively. Notably, Lossless is closer in energy consumption than the other
metrics, owing to the less complex compressor/decompressor.

Finally, each application’s output error is presented in Table 4.3c. We find
that for the majority of the benchmarks, approximation introduces less than
0.05% relative error compared to the baseline output. L2C differs from MemSZ
by at most 0.01%. This is due to cache interference effects causing slight
differences in eviction timing, leading to small variations in lossy compression
outcome.

Across the tested applications, we see clear indications that the improve-
ments gained by lossy and lossless compression have significant overlap. A
hybrid approach is able to achieve the benefits of both methods, where each is
most suitable. L2C surpasses MemSZ by also compressing the non-approximable
traffic, and outperforms Lossless by applying more aggressive compression to
the subset of data which tolerate it.

We observe that the traffic reduction achieved by L2C equals or surpasses
MemSZ and Lossless in all the tested benchmarks. Of note is that two of
the tested benchmarks benefit more from the modest Lossless compression
across all data than from more aggressive MemSZ compression on only the
approximable subset. This illustrates that the memory footprint of each subset
is of lesser importance than the memory activity induced by each. Compression
is most beneficial on blocks which normally bounce between main memory and
LLC, and this is highly application-dependent.

Wrf and orbit illustrate a data pattern which defeats the heuristic used by
L2C to determine compressibility of s-blocks. A subset of non-approximable
data has interspersed cache lines showing at least 2:1 compressibility, but
four-line blocks alternate between being compressible and incompressible. Each
time a compressible line is written back to an uncompressed s-block, the block’s
back-off counter is incremented, bringing the block closer to a retry. The result
is a large number of failed block writebacks which ultimately lead to new retry
fetches.

Heat, lattice and lbm make up another interesting subset of applications,
those with only or almost only approximable memory traffic. For such applica-
tions, the only room for L2C to improve upon MemSZ is in approximable blocks
which have failed lossy compression. As shown in Table 4.3b, only lattice has
any significant opportunity like this, and L2C successfully exploits it. Kmeans
and wrf also show MemSZ leaving blocks uncompressed, which are successfully
compressed by L2C.

Sedov and windt both benefit more from lossless compression than lossy,
in terms of memory traffic. This is a by-product of approximation tolerance.
While these applications both process a large data footprint of regular data,
not all of it is safe to approximate. As a result, a large portion of their memory
traffic is compressible but only using lossless compression. In these applications,
Lossless performs better than MemSZ, while L2C capitalizes on the strengths
of both.

4.4.2.2 I/O Compression

As explained in Section 4.3.7, the primary metric of interest for I/O compression
is the achieved compression ratio. Table 4.4a shows the results for the three

80 CHAPTER 4. L2C: COMBINING LOSSY AND LOSSLESS COMPRESSION ON MEMORY AND I/O

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C0.0

1.0
To

ta
l e

xe
cu

tio
n

tim
e

(n
or

m
. t

o
ba

se
lin

e)

heat lattice lbm orbit cdelta sedov windt kmeans wrf Geom. Mean

(a) Execution time.

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C0.0

1.0

En
er

gy
(n

or
m

. t
o

ba
se

lin
e)

heat lattice lbm orbit cdelta sedov windt kmeans wrf Geom. Mean

Core L1+L2 LLC Compressor/Decompressor DRAM

(b) System Energy Consumption.

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C

ba
se

lin
e

Lo
ss

le
ss

M
em

SZ L2
C0

1

2

Da
ta

 tr
an

sf
er

re
d

(n
or

m
. t

o
ba

se
lin

e)

heat lattice lbm orbit cdelta sedov windt kmeans wrf Geom. Mean

Non-approx Approx Page Table Metadata

(c) Memory Traffic.

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C0.0

1.0

Av
g.

 m
em

. a
cc

. t
im

e
(n

or
m

. t
o

ba
se

lin
e)

heat lattice lbm orbit cdelta sedov windt kmeans wrf Geom. Mean

(d) Average Memory Access Time (AMAT).

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C

Lo
ss

le
ss

M
em

SZ L2
C0.0

1.0

LL
C

M
PK

I
(n

or
m

. t
o

ba
se

lin
e)

heat lattice lbm orbit cdelta sedov windt kmeans wrf Geom. Mean

(e) LLC misses per kilo-instruction (MPKI).

Figure 4.10: Evaluation of the L2C memory compression design and comparison
with competing designs.

4.5. CONCLUSION 81

Table 4.4: I/O compression efficacy.

(a) Achieved compression ratio.

height aqua gb6 strang hand mitbih ampds air gas hydra GM
Lossless 2.34× 1.54× 1.03× 2.67× 2.25× 1.61× 1.51× 1.44× 1.05× 1.52× 1.62×
MemSZ 3.59× 6.38× 2.48× 1.95× 2.17× 2.03× 7.44× 1.03× 10.35× 8.20× 3.55×
L2C 3.93× 6.39× 2.48× 2.87× 2.36× 2.31× 7.55× 1.45× 10.35× 8.58× 3.96×

(b) Relative approximation error.

height aqua gb6 strang hand mitbih ampds air gas hydra
MemSZ 0.33% 0.44% 0.33% 0.07% 0.35% 0.32% 0.25% <0.01% 0.40% 0.36%
L2C 0.33% 0.44% 0.33% 0.04% 0.09% 0.32% 0.25% <0.01% 0.40% 0.36%

evaluated compression schemes, Lossless, L2C, and MemSZ. Due to its hybrid
nature, L2C equals or surpasses MemSZ in all cases. This is because any
block which MemSZ can compress successfully will be compressed identically in
L2C. The remaining blocks are guaranteed equal or better compression, since
MemSZ leaves them uncompressed while L2C applies additional compression.
The same holds true against Lossless. Notably, strang and hand exhibit better
compressibility with lossless than lossy in some blocks. Since L2C chooses
the most effective compressor, it yields a higher total compression ratio than
MemSZ. On average, L2C achieves a compression ratio of 3.96:1. MemSZ
manages 3.55:1 and Lossless reaches 1.62:1.

A similar trend is observed in the introduced approximation error. Ta-
ble 4.4b shows the mean relative error caused by compressing each dataset. In
spite of its higher compression ratio, L2C introduces no extra error compared to
MemSZ. This is because all lossily compressed blocks are compressed identically
between the two, introducing the exact same error. In strang and hand, a
by-product of selecting lossless compression when beneficial is that error is also
reduced. No tested dataset suffers more than 0.4% error.

4.5 Conclusion

L2C is a hybrid lossy/lossless memory and I/O compression scheme, the first of
its kind. It combines general-purpose lossless compression with state-of-the-art
lossy compression to improve the bandwidth efficiency of both the system
memory bus and processor I/O traffic. In memory compression experiments
in a system with 4GB of 800MHz DDR4 per core and 1MB of LLC space per
core, L2C achieves average memory-footprint compression of 3.2:1 across all
benchmarks (up to 7.2:1 on a single one), improving by 33% over a pure-lossless
solution. On approximable data, L2C achieves an average compression ratio of
10.4:1 (up to 16:1), which is an 8% improvement over the current state-of-the-
art lossy memory compression. Furthermore, compared to the best previous
work, L2C reduces off-chip memory traffic at least by 18%, execution time by
9% and total system energy by 3%. When applied to a set of real-life datasets
for I/O compression, L2C achieves an average of 4:1 compression, surpassing
lossy and lossless single-method compressors by 10% and 241%, respectively.

82 CHAPTER 4. L2C: COMBINING LOSSY AND LOSSLESS COMPRESSION ON MEMORY AND I/O

Chapter 5

FlatPack: Flexible
Compaction of Compressed
Memory

In addition to memory bandwidth, as tackled by AVR, MemSZ and L2C,
memory capacity is a critical resource in modern systems. Memory capacity
must be sufficient to avoid frequent page faults and its bandwidth high enough
to accommodate the rates of requested data. The demand for both memory
capacity and memory bandwidth is increasing as applications become more
data-intensive and a larger number of cores is integrated on a single chip.
However, simply scaling up memory size and bandwidth increases system cost
and power consumption [1].

Data compression has the potential to offer a better cost-performance
tradeoff in computing systems by more efficiently utilizing the capacity and
bandwidth resources of main memory. Previous techniques are able to achieve
improvements in either capacity or bandwidth but usually not in both. Some
designs (such as AVR, MemSZ and L2C) use memory compression to reduce
memory traffic without considering capacity improvement [67, 76]. Others
aim primarily at memory compaction to increase capacity [13, 16], exploit
free prefetching effects [13,104], but introduce significant traffic overheads to
manage compacted memory [16].

There are several reasons for the traffic overheads of managing a compressed
and compacted memory. First, compressed blocks require additional metadata
to be accessed. Second, compressed blocks have variable size and therefore may
cross the boundaries of a regular memory location requiring two split accesses.
Even if they do not span across the access boundaries, writing a compressed
block back to memory often requires a read-modify-write (RMW) operation in
order to preserve data of neighboring blocks. Another source of traffic overheads
and inefficiency is the change in compressibility of data and hence in their
size during execution, i.e., blocks growing (or even shrinking) during runtime.
This variation in compressibility leads to inefficiencies in existing compaction
systems, which compact blocks into sequential spaces of rigid size. A growing
block may be stored uncompressed as an exception, in space specially reserved

83

84 CHAPTER 5. FLATPACK: FLEXIBLE COMPACTION OF COMPRESSED MEMORY

1 2 3 4
Footprint Reduction

1

2

3

4

Ba
nd

wi
dt

h
Re

du
ct

io
n

1
1

1
1.6

2.1
0.9

2.9
0.9

3.9
3.9

Baseline
L2C
LCP
Compresso
Ideal

Figure 5.1: Bandwidth reduction vs. Footprint reduction for three state-
of-the-art memory compression systems with identical lossless compressors.
Ideal shows the achievable compression, LCP and Compresso are compacting
systems, L2C performs no compaction.

for this purpose [13,16]. Alternatively, the change causes a page overflow which
requires the entire page to be brought on-chip, repacked and migrated, inducing
a memory traffic overhead. In our experiments, an average of 15% of cache
line updates lead to an increase in compressed size, causing an exception at
the expense of memory capacity and traffic.

Although some of the above issues, e.g. metadata [25], have been addressed
in the past, the bandwidth benefits - if any - of current state of the art
memory compaction designs are far from the achieved raw compression ratio.
As illustrated in Figure 5.1, the required memory traffic of such designs is
comparable to the traffic of a baseline with no compression, 2×-4× higher than
the theoretical minimum indicated by the achieved compression ratio. In effect,
existing memory compaction techniques consume significant bandwidth and
hence limit system performance and energy efficiency.

This chapter introduces FlatPack, a novel technique aimed at reducing the
memory bandwidth overheads of memory compaction. The key observation
behind its design is that existing systems are unable to efficiently handle dynam-
ically varying compressibility of data, which leads to excessive page overflows
and hence excessive memory traffic. FlatPack mitigates this problem allowing
compressed blocks to be fragmented within a page and share expansion space
providing the flexibility to be reorganized independently without disturbing
other blocks. FlatPack’s flexible reorganization can be performed in response to
all size changes without introducing additional data movement. Furthermore,
by fragmenting blocks at the Memory Access Granularity (MAG), FlatPack re-
duces RMW traffic, since most compressed memory writes only affect one block.
FlatPack’s reorganization is performed in hardware by the memory controller,
without intervention by system software or the operating system. In effect,
FlatPack’s flexibility to handle variability in block size reduces data movement
and memory traffic improving system performance and energy efficiency.

Concisely, FlatPack is a novel flexible memory compaction approach that
aims to reduce the traffic overheads and makes the following contributions:

• a flexible format of compressed pages that allows compressed blocks to
be fragmented and share expansion space in the physical memory region

5.1. BACKGROUND AND RELATED WORK 85

of the page offering efficient memory compaction.

• a hardware mechanism that enables the memory controller to exploit the
above format and dynamically reorganize data within the page, without
software intervention and with minimal data movement.

• a thorough evaluation of FlatPack and comparison with current state of
the art memory compaction designs to measure the significant reduction
in memory traffic and impact of FlatPack in performance and energy
efficiency of the system.

The remainder of this chapter is organized as follows. Section 5.1 discusses
background and related work. Section 5.2 describes the proposed FlatPack
architecture. Section 5.4 presents evaluation results and Section 5.5 draws our
conclusions.

5.1 Background and Related Work

A number of systems have been proposed to compress and compact main mem-
ory, to save bandwidth or increase memory capacity. Any memory compression
or compaction design is subject to a number of design choices, which are de-
tailed below. The two designs currently at the forefront of memory compaction
are Linearly Compressed Pages (LCP) [13] and Compresso [16]. This section
outlines the design parameters of these and other related approaches, as well
as a summary of the design choices employed by FlatPack.

5.1.1 Compression Algorithm

A number of algorithms have been proposed for compression in the memory
hierarchy. The primary requirement for a suitable compression algorithm is low
decompression latency, to minimize performance impact. Lossless compression
schemes typically offer compression ratios up to 2× to 4× on real-world data
[18,41,69–72]. For applications which tolerate approximation, lossy compression
offers more aggressive compression ratios of up to 16× [67, 76, 93] or allows
for bandwidth optimizations in combination with lossless compression [94].
Deduplication has been proposed as an alternative to compression [105]. The
more complex Lempel-Ziv algorithm has also been employed, using an additional
cache to hide its decompression latency [10].

FlatPack is compatible with any block compression algorithm, without loss
of generality. The system is evaluated here with the SC2 compression scheme,
which offers a competitive compression ratio and low-latency operation [72].

5.1.2 Compression Granularity

One way to differentiate memory compression systems is based on compression
granularity, i.e. the size of the data block being compressed as one unit.
Two basic approaches are possible, each with different characteristics. 1)
Compressing individual cache lines at the granularity of the Last Level Cache
(LLC) [12–16,27,93,105,106]. The benefit of this is that there is no overhead
from fetching unused compressed data. On the other hand, general purpose

86 CHAPTER 5. FLATPACK: FLEXIBLE COMPACTION OF COMPRESSED MEMORY

DRAM is restricted to a minimum Memory Access Granularity (MAG), which
is typically tuned to be the size of one cache line. As a result, single cache line
compression has limited potential for bandwidth reduction. Similarly, the MAG
prevents individual compressed blocks from being updated in memory, forcing
the memory controller to perform a Read-Modify-Write (RMW) sequence. 2)
Compressing multiple cache lines together, making up a larger compression
block [10,11,17,26,67,76,94,107]. The benefit of this is that the compressed
block may exceed the MAG, and thus memory transfers are more efficiently
utilized. Conversely, these systems do not support random access of individual
cache lines within a compressed block. This complicates writebacks to memory
and enforces a form of prefetching of all co-compressed cache lines.

LCP and Compresso both compress single cache lines. FlatPack compresses
blocks of four cache lines, in order to be able to improve memory bandwidth
utilization and reduce the need for RMW operations. In addition, the larger
compressed blocks are key to enabling a flexible approach to block compaction.

5.1.3 Block Compaction

While memory compression may give a bandwidth benefit, capacity improve-
ment requires compressed blocks to be compacted in physical memory. Some
systems forgo compaction altogether, aiming only to improve bandwidth uti-
lization [26,27,67,76,93,94] or to make space for error correcting codes [106].
Several compaction approaches have been proposed in literature. 1) LCP pack-
ing is the simplest form of compaction, assigning an identically sized space for
each block within a page [13, 15, 17]. This simplifies address calculation, at the
expense of wasted space for blocks with higher compressibility. 2) Line Packing
is employed by Compresso and others, packing the compressed blocks of a page
together while supporting more than one block size [12,14,16,107]. This allows
for greater benefit when compressibility varies, eliminating more wasted space.
3) Block Fragmentation as employed by MXT and related designs compresses
very large blocks (1kB) and fragment compressed blocks in fixed-size sectors in
memory without limitation to their page sharing relationships [10,11]. Such
free placement yields a large number of physical memory addresses stored as
metadata, which can be a significant overhead. 4) BCD Deduplication divides
physical memory into several large arrays, each storing a different part of all
compressed blocks [105].

FlatPack allocates a contiguous space for each logical page, thus keeping
a single physical address in its metadata. Compressed blocks are fragmented
at MAG granularity and placed freely within that space. The fragmentation
and location of compressed blocks is dynamic, automatically adapting to the
changing compressibility of data. Furthermore, it allows blocks within a page
to differ in size. This automatic reorganization of blocks is performed by the
memory controller, in hardware. Since it occurs only on block writeback, blocks
are reorganized without any additional data movement. FlatPack stores the
first part of each compressed block in a fixed location within the page, which
allows memory access to begin in parallel with further address calculation for
the compressed block.

5.1. BACKGROUND AND RELATED WORK 87

Virtual
Address Space

OS Physical
Address Space

Machine Physical
Address Space

Page 0

Page 1

Page 2

Page 3

Figure 5.2: The three address spaces used for memory compaction. A regular
system uses the OSPA space for physical memory.

5.1.4 Address Translation and Page Compaction

A standard, uncompressed memory hierarchy has one level of address translation.
The Virtual Address (VA) space of each process is translated into the Operating
System Physical Address (OSPA) space, where pages are the same size and
uncompacted. Any memory compaction system must modify or supplement
the address translation by introducing an additional Machine Physical Address
(MPA) space, as illustrated in Figure 5.2. This is a necessity to support blocks
or pages of non-uniform size and gain memory capacity.

The implementation of this additional MPA space depends on the exact
organization of compacted memory. Two principal approaches are taken by
existing systems, illustrated in Figure 5.3. 1) Contiguous pages are used by LCP
and others, allocating contiguous memory space for a single compressed page,
smaller than the system’s normal page size [12, 13, 17]. This approach requires
only one MPA to locate each page, but relies on a relatively static compressibility.
Reduced compressibility can cause page overflows, requiring the full compressed
page to be migrated to a larger allocation. 2) Fragmented pages is an alternative
approach, where a compressed page is allocated as a set of smaller chunks.
The benefit of this organization is the ability to dynamically append chunks of
physical memory to a given compressed page [14–16]. Employed by Compresso
and others, this approach is better able to deal with compressibility changes,
but requires more metadata to locate multiple chunks in physical memory.

FlatPack uses fixed contiguous compressed pages for their simplicity and
reduced metadata. Compressibility changes are handled by improved flexibility
in block placement within each compressed page. By allowing blocks to grow
and shrink, FlatPack reduces the number of page overflows.

5.1.5 Metadata Handling

All compression schemes require additional metadata to manage compressed
blocks and pages. This metadata describes block sizes, compression methods,
placement in physical memory and other auxiliary compression information
which is not application data. A number of approaches exist for organization and
transfer of compression metadata. 1) Metadata in main memory, separated from
the compressed data is the most common organization [10,11,15–17,26,93,105].
An on-chip metadata cache is typically employed to reduce the traffic and
latency overhead of finding the metadata for accessed pages. To further
reduce latency, the metadata table can be accessed in parallel with the page
table [12, 67, 76, 107]. 2) Metadata embedded in the compressed block has

88 CHAPTER 5. FLATPACK: FLEXIBLE COMPACTION OF COMPRESSED MEMORY

OSPA Contiguous
MPA Pages

Page 0

Page 1

Page 2

Page 3

OSPA Fragmented
MPA Pages

Page 0

Page 1

Page 2

Page 3

Figure 5.3: The two principal approaches to page compaction. Contiguous
pages require a single MPA, fragmented pages may require multiple.

been proposed as a method to reduce the bandwidth overhead of metadata
traffic [25,27,94,106]. This is unsuitable for memory compaction, as it decouples
the page-level metadata from some of the blocks within the page. 3) Metadata
embedded in the compressed page adds this ability, and avoids fragmenting the
physical address space [13,14].

Compresso uses a separate metadata table accessed on demand, LCP embeds
metadata in its compressed pages. Both designs employ a small metadata
cache.

FlatPack uses a separate metadata table, accessed in parallel with the
page table. An on-chip metadata cache is kept updated in tandem with the
TLB. This approach guarantees that when requests reach the LLC or memory
controller, the block and page compression metadata is available on-chip.

5.1.6 Last-Level Cache Support

A number of memory compression systems also modify or use the LLC in
ways designed to optimize or support memory compression. One approach
is to unify LLC and main memory compression by storing only compressed
blocks in the cache [11,105]. This increases the effective capacity of the LLC,
without additional SRAM cost. Another approach is to allow the LLC to store
compressed blocks alongside regular uncompressed cache lines [26, 67, 76]. This
allows large-block memory compression schemes to offset the traffic overhead of
reading large blocks from memory and benefit from spatial locality. Compression
systems which compress at the granularity of single cache lines may pack
multiple of these together, in order to satisfy the memory access granularity.
Such extra cache lines can be decompressed into an otherwise unmodified
LLC [13, 16] or a small special-purpose cache [14] in order to gain some
bandwidth benefits. LCP and Compresso both work with an unmodified LLC,
and insert all valid overfetched data. IBM MXT adds an off-chip cache level in
order to hide the latency of decompression of its large blocks.

FlatPack compresses blocks consisting of multiple MAGs of data. To
mitigate the traffic overhead of LLC misses, it employs a modified Decoupled
Sectored Cache [35] to co-locate both compressed blocks and uncompressed
cache lines in the LLC similarly to AVR, MemSZ, and L2C [67,76].

5.1.7 Overheads of Existing Systems

Current state of the art memory compaction systems, Compresso and LCP,
suffer from two primary types of overhead. First, rigid and static assignment

5.1. BACKGROUND AND RELATED WORK 89

Growth Waste

Unused Space

Granularity Waste

Shrink Waste

Compressed Data

Uncompressed Data

1

2

3
5 6

4

...

Mem. Access Granularity

2

Figure 5.4: A classification of memory capacity waste for a single physical page
in a memory compaction system. The unused space at the end may be used
for future uncompressed data.

of compressed space for each block leads to deteriorating compaction as com-
pressibility changes. While Compresso allows for more than one block size per
page, it is unable to handle blocks changing size over time. Growing blocks
are left uncompressed while shrinking blocks continue occupying their initially
assigned space. Over time, this deterioration leads to a page overflow forcing
the system to recompress and recompact the page. The second major source of
overhead is the compression granularity of single cache lines. Compresso and
LCP both fetch individual compressed cache lines from memory on an LLC
miss, which is rounded up to the memory access granularity (MAG). As a result,
one full MAG is transferred from memory for each cache line, regardless of
compressibility. In some cases, this overfetching can be beneficial, if it contains
additional complete compressed cache lines. This gives a modest prefetching
effect, which can offset part of the bandwidth overhead.

Figure 5.4 shows an example of a compacted page using the Compresso
compaction scheme. Each compressed block is assigned a space of one of a
few fixed sizes and stored there. The illustration is also applicable to LCP
which uses a similar layout but maps all compressed blocks to a single size.
This rigid granularity leads to some wasted capacity (granularity waste 1),
since the actual size of the block is likely to be smaller than the assignment.
A sub-MAG block size prevents a compressed block from being updated in a
single operation, requiring a Read-Modify-Write sequence. If a compressed
block crosses a MAG boundary 2 , it requires two split memory accesses to
read or modify. If a block’s compressed size shrinks during execution, the same
assigned space is used. This leads to additional wasted capacity (shrink waste
3). If a block’s compressed size grows, it cannot be stored in the existing
space assigned to it. That space cannot be eliminated without additional data
movement, and thus remains unused (growth waste 4). Then, the data for
the block is stored uncompressed in a dedicated separate region of the page 5 .
Finally, the physical space allocated to a compressed page is also limited to a
set of fixed sizes, leading to allocated but unused space 6 . This overallocated
space is not wasted, but kept in reserve for block growth. If this space is
exhausted, the compressed page overflows and must be migrated.

FlatPack mitigates capacity waste by compressing larger blocks and frag-
menting them in physical memory. Each page is divided into slots at the
memory access granularity. Each compressed block is fragmented into MAG-
sized parts and a number of slots are assigned to it. When a block’s compressed
size changes, slots can be released and reassigned as needed, without addi-
tional data movement overhead. This eliminates growth and shrink waste, by
dynamically adapting space assignment to each block.

90 CHAPTER 5. FLATPACK: FLEXIBLE COMPACTION OF COMPRESSED MEMORY

Compressed
Physical
Memory

...

Core Priv
$

Core Priv
$

On-chip Interconnect

Shared
LLC

Compressor
&

Decompressor

Metadata $

M
e
m

. C
trl.

Figure 5.5: The FlatPack memory system that utilizes a modified LLC and
adds compressor hardware and a metadata cache.

5.2 System Architecture

Currently published state-of-the-art memory compression systems primarily
target one of two bottlenecks of main memory: memory bandwidth or memory
capacity. Systems which maintain data compacted in main memory do so at
the expense of additional memory traffic [13,16]. This is mainly due to data
movement, e.g., page migration required to reorganize a compressed page in
order to eliminate fragmentation and handle varying compressibility. Conversely,
the most straight-forward compression approach to reducing memory traffic
leaves memory capacity unimproved [26,27,67]. This eliminates the bandwidth
overhead of page reorganization, and simplifies address translation logic.

FlatPack aims to combine these approaches in order to gain the benefits of
both. Using a novel compaction scheme, FlatPack is offers memory capacity
improvements on par with current state-of-the-art systems. By being flexible to
compressibility changes, as well as allowing size skew between blocks, FlatPack
is able to dynamically reorganize physical memory on demand with fewer costly
page migrations.

The basis of this flexibility is the fragmentation of compressed blocks, at the
Memory Access Granularity (MAG) dictated by the physical memory controller.
MAG-sized slots in physical memory are assigned and reassigned on demand,
as blocks shrink and grow. By compressing blocks which are larger than the
MAG, the compressed data can be fragmented and flexibly placed. This allows
a compressed page to support a wide variety of block sizes, and allows blocks to
change size over time as long as the average compressibility across the page does
not increase. Crucially, blocks are able to change size independently of each
other. Reorganization of a block is performed on demand whenever the block
is written back to memory, and thus introduces no additional data movement.

Figure 5.5 shows a top-level overview of the FlatPack architecture. A
specialized compressor and decompressor hardware module is added, as well
as a small on-chip metadata cache. The shared Last-Level Cache (LLC) is
designed to store both uncompressed cache lines and complete compressed
blocks, using a Decoupled Sectored Cache organization [35]. The flexible
packing and organization is performed in hardware by a module situated on
the core side of the Memory Controller. This module implements a Finite
State Machine which receives FlatPack block and page operations from the
LLC and uses metadata to translate them into individual requests to the
standard memory controller. Allocation of physical memory on the page level

5.2. SYSTEM ARCHITECTURE 91

Tag Back-ptr Data

Uncompressed

Compressed

A1

B3

BC0
BC1

BC2

B

A

LLC

A0

Figure 5.6: The Decoupled Sectored Cache design employed by FlatPack. The
uncompressed cache lines Bx share a tag with the compressed version of the
block stored in BCy.

is performed by a software runtime.
Similarly to other memory compaction systems, FlatPack introduces an

additional layer of address translation. Virtual addresses are translated using a
Page Table into the OS Physical Address (OSPA) space. OSPA is used for cache
tags, but does not represent physical memory. FlatPack organizes data in the
Machine Physical Address (MPA) space, using variable-size compressed pages.
In MPA space, compressed pages are compacted to maximize the available
memory capacity.

This section describes each component of the FlatPack system design in
further detail.

5.2.1 Compression

The main feature of FlatPack is the ability to dynamically pack and repack
compressed blocks in physical memory on demand. To avoid bandwidth waste,
compaction is performed at Memory Access Granularity (MAG), which is
typically 64 bytes and equal to an LLC cache line. Lossless compression typically
offers between 2× and 4× compression ratio on real-world data [18,41,69–72].
In order to generate compressed blocks which can be fragmented into multiple
MAGs, FlatPack compresses blocks of 256B into compressed sizes between 32B
(1/2 MAG) and 256B. This gives a theoretical maximum compression ratio of
8×.

FlatPack is compatible with any block compression algorithm able to
compress 256 bytes of data. In this thesis, we evaluate using SC2 [72]. SC2 uses
a global Value Frequency Table (VFT) to assign shorter encodings to frequently
appearing bit sequences. The VFT content is created dynamically by profiling
a small random part of memory, while encoding transition is implemented using
a similar mechanism presented in the original SC2 work. Originally designed
for cache compression, SC2 exhibits high compression ratio for real-life datasets,
as well as low-latency compression and decompression. These properties make
it suitable for memory compression as well.

5.2.2 Last-Level Cache

The use of multi-MAG memory blocks introduces a potential bandwidth over-
head from overfetching. Compressing multiple neighboring cache lines as one

92 CHAPTER 5. FLATPACK: FLEXIBLE COMPACTION OF COMPRESSED MEMORY

block before writing to memory requires the block to always be transferred in
its entirety. Reading multiple MAGs worth of compressed data from memory
to serve a single LLC miss trivially leads to additional data transfer(s) com-
pared to an uncompressed system. One way to alleviate this is to store the
compressed block on-chip, exploiting spatial locality to allow the same block to
serve future LLC misses. Similarly to previous works [67,76], FlatPack employs
a Decoupled Sectored Cache (DSC) for this purpose [35]. A DSC decouples the
cache tags from the data, allowing multiple cache lines to share a tag. This is
accomplished by introducing an array of Back Pointers, each associating a data
entry with its tag as illustrated in Figure 5.6. Our implementation is extended
with the ability to store both uncompressed single cache lines and compressed
blocks, co-located in the same data array similarly to AVR and MemSZ [67,76].
The main benefit of this co-location is that LLC requests can be served either
using uncompressed data (like a regular set-associative LLC) or compressed
data, adding decompression in order to avoid a costly memory access.

5.2.3 Lazy Evictions

Another challenge introduced by large memory blocks is updates. As the MAGs
within a block are compacted completely, there is no ability to update a single
compressed cache line in memory without also updating the full block. As a
result, writebacks of dirty lines from LLC directly into compressed memory
cannot be performed. In order to recompress a block which is not available
on chip, the full compressed block must be read from memory. Lazy Evictions
mitigate this overhead by delaying the actual recompression using the empty
space left in memory by compressed blocks [67]. If there is free space in physical
memory, the dirty cache line is written back uncompressed and the block’s
metadata is updated to reflect this. The next time the block is fetched from
memory, all lazily evicted cache lines are also read, and the block is recompressed
to include the dirty data. The end result is that the dirty cache line is written
to memory once and read from memory once, which is a lesser traffic overhead
compared to reading the full compressed block for recompression and then
writing it back to memory.

5.2.4 Block Compaction

The variable size of compressed memory blocks necessitates a dynamic method
for compaction in physical memory. Assigning a fixed space to each block risks
introducing fragmentation as the block changes size. A shrinking block will
leave parts of its space unused. A growing block must be relocated, leaving
its original space unused. FlatPack breaks this fixed structure by dividing
physical space into MAG-sized slots and dynamically assigning one or more
slots to each block when needed. As blocks shrink and grow over time, their
slot allotments change as needed, while unused slots remain available for other
blocks within the same page. Crucially, a compressed block which changes size
can be moved without affecting other blocks, and thus without additional data
movement.

Figure 5.7 shows a FlatPack-compressed page of 16 compressible blocks.
The compressed page occupies a section of physical memory, of a fixed size.

5.2. SYSTEM ARCHITECTURE 93

1/4-MAG minislot

0 1 2 3

...

...Native block space:

Compacted page:

MAG-sized slot

14 15 0 1 2 3 1415...

...

...Compressed page:

Available to block 0:

...Virtual page: Block 0 Block 1 Block 2 Block 14 Block 15

Reserved for
native block

Figure 5.7: The layout of a compacted physical page, compared to an un-
compacted compressed page. Slots native to a block N are also available to
neighboring blocks N-1 and N-2.

This allocation is divided into MAG-sized slots. Each logical block is assigned
an equal number of slots where it is native. The first of these slots is reserved
for the native block itself. Any other slot native to a block N is made available
to store the block N or its neighboring blocks N − 1 and N − 2 in a circular
fashion. For example, parts of block 14 may be stored in a memory slot native
to blocks 14, 15 or 0.

By compressing blocks of four MAGs, FlatPack generates compressed blocks
which may exceed a single MAG. By dividing the compressed block into MAG-
sized pieces, placement is flexible within the block’s native space and that of
the two following blocks. When a block is written to memory, on-chip metadata
allows selection of a suitable slot set for the block. These properties allow a
page’s physical allocation to be reorganized on the fly without additional data
movement.

Another advantage of this organization is that it supports pages where
block sizes are non-uniform and variable. A FlatPack compacted page with
a fixed size is able to support a wide variety of block size combinations, as
well as handling compressibility variation over time. As long as the average
compressibility across the entire page remains stable, the memory controller
is able to manage individual blocks growing and shrinking without incurring
additional reorganization traffic and without intervention by system software.

5.2.5 Minislots

Dividing blocks along the memory access granularity introduces one important
drawback, as all compressed sizes are effectively rounded up to multiples of the
MAG. In the worst case, this means over-using and over-transferring (MAG-1)
bytes per compressed block, wasting memory capacity and bandwidth on the
order of one MAG per block. A majority of blocks will have some amount of
such granularity waste, as it is unlikely that the compressed size will be an
exact multiple of the MAG. FlatPack mitigates this problem by supporting
finer granularity in a subset of its slots in physical memory. Depending on
the allocated physical page size, each block is allotted two or four minislots.

94 CHAPTER 5. FLATPACK: FLEXIBLE COMPACTION OF COMPRESSED MEMORY

Each minislot is one quarter of the size of a regular slot, and made available
to neighboring blocks in exactly the same way as regular slots. Figure 5.7
illustrates a compressed page with four minislots native to each block. Block
0 has compressed to two full-sized slots and the remainder fit within a single
minislot. Without minislot support, the block would occupy three full-sized
slots, with ¾ slot granularity waste. By prioritizing minislots in the same MAG
as existing data, free minislots are also concentrated, reducing fragmentation.
Contrary to full-sized slots, updating a minislot may require a read-modify-write
operation.

5.2.6 Slot Assignment

When a block is evicted from the last-level cache, it must be written back to
main memory. Due to data being updated, the block may have changed its
size. As a result, physical packing of compressed blocks is updated on block
writeback.

As explained in Section 5.2.4, the space of a compressed page in physical
memory is divided into slots, with each slot being assigned to at most one block.
Any given block is able to make use of slots from three separate locations: its
own native space, as well as the respective native spaces of the following two
blocks. For example, block 5 of a page is able to use the slots native to blocks
5, 6, and 7. The very first slot native to block 5 is reserved for that block, and
thus always contains the first part of the block’s data. Successive MAG-sized
parts of the block are placed greedily in the first available slots. The fixed use
of the first slot allows memory access to begin immediately on a cache miss, in
parallel with address calculation for any remaining data.

After placing all full MAG-sized parts of the block in full-sized slots, a
remainder is likely to exist which requires less than a full slot of physical space.
To reduce granularity waste, FlatPack attempts to place this remainder data
in one or more of the minislots reserved at the end of the page. Similarly to
the full-sized slots, each minislot has one native block, and is made available to
the native block and the two preceding ones. Placement of remainder data in
minislots prioritizes data packing, to leave as many slots as possible unoccupied.
Since the block is packed and written to memory in its entirety, there is no
need for additional metadata to maintain the order of data within a block; slot
are filled in their logical order.

5.2.7 Page Compaction

In order to maximize capacity gains, a memory compaction system is designed
to minimize the allocated space for any given page. FlatPack uses fixed-size
MPA pages with a set of predefined sizes organized in accordance with Table 5.1.
A pool of allocated and free pages for each size is maintained by a software
runtime. Each OSPA page is assigned one MPA page from one of these pools,
and the assignment is stored in a separate metadata table, leaving the OSPA
assignment in the regular page table. As a result, OS address translation and
cache tagging logic remain unmodified.

The assignment of MAG-sized slots to native blocks sets the lower bound
of a page’s size to one slot per block. Because an uncompressed block fits

5.2. SYSTEM ARCHITECTURE 95

Table 5.1: FlatPack compressed page sizes and organization.

Page Size 512B 1kB 1.5kB 2kB 2.5kB 3kB 3.5kB 4kB

Full Slots 0 0 16 16 32 32 48 64
Per Block 0 0 1 1 2 2 3 4

Minislots 32 64 32 64 32 64 32 0
Per Block 2 4 2 4 2 4 2 0

in 4 MAGs, this would limit compression ratio to 4×, and would leave no
block size flexibility at that size. To counteract these problems, FlatPack
increases granularity for very small pages and introduces a 512 byte page with
a compression ratio of 8×. Compressed pages of 512B or 1kB have no full-sized
slots, and are instead entirely composed of minislots. In a 512B page, each
block is native to two minislots. This finer granularity allows small pages to
remain flexible to block size variation.

One drawback of fixed-size compressed pages is Page Migration. Page
migrations occur when a compressed page exceeds its allocated size (page
overflow) or is deemed able to fit in a smaller size (page shrink). To minimize
the number of page size changes, FlatPack employs a runtime mechanism to
estimate the page’s future size at the time of initial allocation. Page allocation
occurs in two stages. Initially, a new page is introduced into the page table by
the operating system, and mapped to a read-only zero-data page. On the first
writeback from the LLC (modifying the data in memory) a unique compressed
page is allocated in MPA space. The size of this allocation is based on the
compressibility of the written-back data. The compressed size of that data is
extrapolated to the full page’s size. If this expected page size exceeds one slot
per block, a margin is added for flexibility. Finally, the estimate is rounded up
to the nearest supported page size and used for the initial allocation.

5.2.8 Interaction with the OS

FlatPack can use memory ballooning in order to handle the variable memory size
due to compression. Memory ballooning is a common feature in virtualization
environments, and has been proposed for compressed memories by IBM [108]
and more recently in Compresso [16].

In a virtualization environment, the Hypervisor controls the amount of
available memory to the guest OS through a memory balloon software driver
implemented in every guest OS. In essence, the Hypervisor can use the balloon
driver to reclaim memory from one guest OS and provide it to others depending
on the runtime memory needs of the respective virtual machines. The reclaimed
memory from the respective guest OS is reserved by the balloon driver and
cannot be allocated by the OS itself.

In a compressed memory system, the OS starts with a memory size M = C×
P , for maximum compression ratio C and physical capacity P . In the beginning
of execution the memory is still uncompressed, thus the overcommitted memory
(C−1)×P is reserved by the memory ballooning software driver. As the system
allocates memory, the FlatPack runtime compresses the data and manages
pools of allocated and free memory pages. New free memory pages are released

96 CHAPTER 5. FLATPACK: FLEXIBLE COMPACTION OF COMPRESSED MEMORY

Page Compaction
48b

MPA Location Size

3b

1b

96b

2b

Dirty Block #

Block Compaction

Slots Minislots

2b

Block #

64b

2b

Block Compression
32b

#Failed

Blocks

00

11

N
01 N-1
10 N-2
11 None

Figure 5.8: Metadata for a compacted FlatPack page. Two bits are used to
encode which block occupies any given slot.

to the OS by deflating the balloon driver. This way, free memory pages can
be directly allocated by the OS. If memory compressibility deteriorates due to
page overflows, the balloon driver is inflated. This triggers the OS’s memory
reclamation to free up allocated memory using the paging mechanism. The
reclaimed addresses are communicated to the FlatPack runtime system, freeing
the corresponding physical memory.

FlatPack can be combined with other transparent and less transparent
implementations to interact with the OS and release to it the free space created
from compression.

5.2.9 Metadata

The described flexibility of placement requires supporting metadata to maintain
page organization. Figure 5.8 summarizes the metadata used by FlatPack,
which can be divided into three parts. The first part concerns page compaction.
The MPA page location is 48 bits wide and indicates where in physical memory
the compressed page resides. An additional 3 bits indicates the page size.

The second part of the metadata maintains block compaction. Any full-size
slot can be in one of three states: unused, used for compressed data, or used for
lazily evicted data. In addition, a slot may be occupied by one of three blocks
(the native block N or one of the nearby blocks N − 1 and N − 2). By limiting
each slot to one of three blocks, FlatPack can encode this information using
three bits per slot. A minislot, similarly, may be either unoccupied or contain
compressed data from one of three blocks. This requires two bits of metadata
per minislot. The most complex page size (3.5kB) contains 48 full-size slots
and 32 minislots. 16 full-size slots are reserved for their native blocks and
always occupied, requiring no metadata. Consequently, each page requires at
most 32× 3 + 32× 2 = 160 bits of page compaction metadata.

The third and final part contains metadata for individual blocks. Each block
has two bits associated with it, used to count failed compression attempts in
order to reduce the frequency of retries. With 16 blocks in one page, this block
metadata comprises 32 bits per page. In total, FlatPack requires a maximum
of 243 bits of metadata per compressed page.

Metadata are managed on the page level, and cached on-chip in a Metadata
Cache which has the same capacity as the system Translation Lookaside Buffer
(TLB). Metadata are fetched from memory in parallel with TLB misses, which
guarantees that block and page metadata are readily available by the time a
request reaches the LLC.

5.2. SYSTEM ARCHITECTURE 97

LLC
Eviction

Clear slots
for block

Page
overflow

Assign
slots

Write block
to slots

Migrate
dirty block

Not enough
free slots

No
dirty data

Free slots
available

Dirty data
present

Figure 5.9: Overview of block writeback logic. Repacking of a block occurs on
LLC eviction, when the block changes size.

5.2.10 Block Migration

Figure 5.9 illustrates the logic flow of block writebacks. In the common case,
sufficient slots and minislots are available in main memory, and the block can
be written back directly. However, If a block cannot be packed successfully,
slots must be freed up to accommodate it. The page metadata distinguishes
compressed data from lazily evicted cache lines (i.e. uncompressed, dirty data).
Blocks with lazily evicted cache lines consume more space in memory than
necessary, to delay costly recompression. If such data prevents packing of
a neighboring compressed block, the offending block is brought on-chip for
recompression immediately, as shown in Figure 5.10. This way, physical space
can be used for lazy evictions, and made available for actual compressed data
on demand.

5.2.11 Page Migration

If no slots can be freed to pack an evicted block, the size of the compressed
page is insufficient to contain its data. As a result, the data must be migrated
to a larger page. The process of page growth is straight-forward. The page and
block metadata are consulted to determine the smallest sufficient allocation
size. Similarly to the initial allocation, an additional margin is added to the
estimated size, to allow for flexibility to future growth. A new compressed page
is set up and all blocks are read from physical memory. Finally, the compressed
blocks are transferred to the newly allocated location.

Conversely, data updates during execution may cause blocks to shrink. In
order to maximize the capacity gain of compaction, it is beneficial to detect
and adapt to such changes. Each page’s metadata is sufficient to identify pages
whose data could fit within a smaller page allocation. When such a page is
detected, FlatPack initiates a page migration to shrink the page and increase
memory capacity.

5.2.12 Memory Interleaving

So far, the description of FlatPack has considered systems with one memory
controller. However, address interleaving across multiple memory controllers can
also be supported as follows. The minimum interleaving granularity is 4×MAG,
keeping a single block access to a single channel. In addition, interleaving
across n controllers requires FlatPack to consider groups of n pages together,
rather than a single page as described above. Then, blocks within the group
of pages with the same (block id mod n) are handled together as described in

98 CHAPTER 5. FLATPACK: FLEXIBLE COMPACTION OF COMPRESSED MEMORY

Available to block 0:

0 1 2 3 ...Native block space:

Dirty

14

...Step 4:
Block 1 recompressed and
written back to memory.

15

...Step 3:
Block 0 success-
fully allocated.

...Step 2:
Block 1 has a lazily evicted
cache line and is brought in
for recompression.

...Step 1: Allocation of 3 slots
for Block 0 fails.

Figure 5.10: Block migration to support a growing block. Block 0 (3 MAGs)
needs to be written back. In order to fit, block 1 is read from memory and
recompressed to eliminate lazily evicted data.

Available to L-block L1:

Page with only s-blocks:

Reserved for native block

L1Native L-block space: L2 9L0

Page with s- and L-blocks:

Available to s-block s3:

s4 s5 s6 s7Native s-block space: s8 ...s9 s10s3... s11

Figure 5.11: Mixture of L-blocks and s-blocks in the same FlatPack page

Section 5.2.4 as if they belonged to the same page, stored on the same channel.
This requires metadata of all pages in the same group to be brought on chip
together.

5.3 Support for Lossy Compression

As explored in previous chapters, certain classes of applications are able to
tolerate inaccuracies in their data. This tolerance for approximation can be
exploited to reach higher compression ratios using lossy compression. AVR
(Chapter 2) and MemSZ (Chapter 3) outline two different lossy compression
mechanisms and apply them to memory compression.

FlatPack supports hybrid lossy and lossless compression, using the LLC
and metadata mechanisms of L2C (Chapter 4) combined with its own memory
compaction scheme.

5.3. SUPPORT FOR LOSSY COMPRESSION 99

5.3.1 MemSZ Compression

For lossy compression, FlatPack uses the compression scheme introduced by
MemSZ , a highly parallelized implementation of SZ [34]. MemSZ arranges
numeric data in a square block and divides it into several linear value sequences.
A sequence is compressed by describing each individual data value as a function
of the three preceding values, with a small selection of supported functions.
This way, the block can be encoded as a few starting values (seeds) followed
by two bits per data value indicating which function best describes that value.
By accepting approximate matches within a configurable tolerance, MemSZ
enables lossy compression. MemSZ is designed for compression ratios of up to
16×.

5.3.2 Block Size

The two compression schemes employed by FlatPack have differing charac-
teristics. The lossy compressor is geared toward high compression ratios. In
addition, its block format contains an overhead of fixed data per block. As
a result, a large block size is necessary. The lossless compressor, by contrast,
has no such fixed overheads. Its compressed blocks consist only of re-encoded
values, in order. This allows it to be applied to blocks of any size.

The optimal block size for any memory compression scheme depends on two
factors: the maximum compression ratio and the Memory Access Granularity
(MAG). An undersized block may compress to a size smaller than the memory
access granularity, leading to transfers with overhead. Conversely, an oversized
block may compress less efficiently than expected, leading to extraneous data
transferred. For these reasons, the optimal block size is such that the maximum
expected compression ratio results in a compressed size equal to the memory
access granularity.

The MAG of a typical memory system is one cache line. The lossy com-
pression employed by L2C is designed for a maximum compression ratio of
16 : 1, and is thus applied to blocks of 16 MAGs. These large blocks are
referred to as L-blocks. SC2 lossless compression using 16-bit values has a
theoretical maximum compression ratio of 16 : 1 (compressing each 16-bit value
to a single-bit encoding), but typically achieves compression ratios between
2 : 1 and 4 : 1 on non-trivial data. For this reason, FlatPack applies lossless
compressed data to blocks of 4 MAGs. These small blocks are labeled s-blocks.
An s-block is a quarter of an L-block, which is beneficial to alignment and
management. A 1kB region of memory can be represented either as one L-block
or as four s-blocks.

The on-chip management of s- and L-blocks is identical to the system
employed by L2C, which was described in more detail in Chapter 4

5.3.3 Block Placement

This support for multiple block granularities has consequences for block place-
ment in compacted memory. Any given 1kB portion of the logical address
space is stored in physical memory as either a single compressed L-block or
four compressed s-blocks. FlatPack manages the addition of L-blocks by al-
lowing each L-block to reside in any slot allowed for its constituent s-blocks.

100 CHAPTER 5. FLATPACK: FLEXIBLE COMPACTION OF COMPRESSED MEMORY

Figure 5.11 illustrates an example of this dual placement. If the second kB of
a page is compressed losslessly, it is divided into s-blocks 4, 5, 6, and 7. These
four s-blocks, collectively, are able to occupy not only their native slots, but
also those of neighboring blocks 8 and 9. If this 1kB is instead compressed
with lossy compression, it is represented as a single L-block. The data for this
L-block is also allowed to be placed in slots native to any of the s-blocks 4-9.

Each s-block stored in physical memory has one reserved slot, which is not
made available to store other blocks. The same is true for each L-block, which
has one reserved slot at the start of its native space. The rest of the slots
native to an L-block are made available to neighboring blocks following the
same restrictions as lossless FlatPack.

5.3.4 Block Transitions

Compressed memory blocks representing approximable data may transition
between L- and s-blocks during execution. This can happen for two reasons.
First, an L-block may fail recompression due to quality constraints, and thus
transition into four s-blocks. Second, if lossless compression is successful for
several consecutive updates, lossy compression may be attempted to merge
four s-blocks into an L-block.

These transitions can be carried out with minimal traffic overhead. Transi-
tion from L- to s-blocks introduce no traffic overhead, since such transitions can
only occur when the full 1kB of data is on chip and lossy compression has failed.
Transition from s-blocks to L-block is triggered by a sequence of successful
s-block compressions, indicating that compressibility of the 1kB block is good.
In order to attempt the transition, up to three s-blocks need to be read from
memory.

Figure 5.11 illustrates a placement issue which can arise when transition
from L- to s-blocks takes place. Consider the L-block L1, which has a single
reserved slot and is native to the same space as s-blocks 4-7. If this L-block fails
lossy compression and must transition into four s-blocks, one slot per s-block
must be reserved. In the illustrated example one of these slots is occupied by
the neighboring block s3, but must be reserved for s5 as part of the transition.
FlatPack resolves this collision by reading the data from the offending slot, and
assigning space for it among the shared slots created during the transition.

5.4 Evaluation

In this section we evaluate the efficiency of FlatPack. First, the experimental
setup is described, detailing the system configuration and the benchmarks
used. Then, evaluation results from single core and multicore experiments are
presented.

5.4.1 Experimental Setup

We evaluated FlatPack in an in-house simulator, implemented on top of Pin [48].
The simulator employs an interval-based processor model [49]. The memory
hierarchy is modelled at cycle granularity, using DRAMSim2 for main mem-
ory [50]. McPAT [51] and CACTI [52] were used to model power and latency

5.4. EVALUATION 101

Table 5.2: Simulation parameters.

Parameter Configuration

Simulation Duration 1 × 109 instructions per core
CPU O-o-O, 4-way issue @ 3.2GHz

L1 cache 64kB per core, 4-way, 1 cycle latency
L2 cache 256kB per core, 8-way, 8 cycle latency
L3 cache 1MB per core shared, 16-way, 15 cycle latency

Main Memory 4GB DDR4 per core, ¼-channel per core, 800MHz
Avail. Memory 50% of application footprint, at least 8× LLC

Page Fault Latency 8.6µs [6]
Compressor SC2 lossless, 16-bit values

SC2 VFT 7kB, 8-way, 16-bit values

of the system considering 32nm technology. Operating frequency, latency and
power consumption parameters for the SC2 compressor are based on a place-
and-route implementation for the same technology node [72]. These factors are
used as configuration information for the simulations. The general properties
of the simulated system are listed in Table 5.2.

Besides the baseline system, FlatPack (F) is further compared with (i)
Compresso [16], labeled C, and (ii) LCP [13], labeled L. All three compressing
designs use the same SC2 compressor. The SC2 compressor requires training
data specific to each application to be effective. For each application, a profiling
run is performed, where a randomized 10% subset of application data is gathered.
This dataset is used to train the compressor for all designs, ensuring consistent
compressor behavior. For evaluation we use the complete set of applications of
SPECspeed 2017 [109], Graph500 [110], as well as ForestFire and PageRank
from the SNAP suite [111].

Compression is applied to all non-code pages. This includes heap, stack,
and data segments of the application itself, as well as those of shared libraries.
All benchmarks use their respective ref speed input data provided with SPEC
2017.

A large benefit of memory compaction is the ability to avoid costly page
faults, when data is swapped into memory from the slower nonvolatile storage.
To investigate the effect of each design on page faults, the uncompressed baseline
is profiled to determine its active footprint (the total number of unique pages
in memory actually read or written) during the simulated phase of execution,
as shown in Table 5.3. This baseline active footprint is used as a basis for page
fault modelling, where the available physical memory is limited to 50% of the
baseline footprint or at least 8× the LLC capacity (a minimum capacity limit
of 32MB). This capacity limit is applied to all designs, including the baseline.
Page faults are modeled as memory traffic and an additional delay of 8.6µs to
account for OS handling and nonvolatile storage latency [6].

Each simulation is executed in the following steps: i) SC2 compressor’s
Value Frequency table (VFT) is populated with data from the profiling run;
ii) The application is run through its initialization phase; iii) the application’s
main phase is executed for one billion instructions per core, and statistics are
gathered. The end of the initialization phase is manually selected such that

102 CHAPTER 5. FLATPACK: FLEXIBLE COMPACTION OF COMPRESSED MEMORY

Table 5.3: Benchmarks and their active memory footprints.

Application Footprint / core

bwav [109] 247MB
cact [109] 521MB

cam4 [109] 59MB
deep [109] 688MB
exc2 [109] 16MB

foton [109] 2320MB
gcc [109] 33MB

imag [109] 34MB
lbm [109] 292MB

leela [109] 16MB
mcf [109] 150MB
nab [109] 31MB

Application Footprint / core

omnt [109] 16MB
perl [109] 20MB

pop2 [109] 73MB
roms [109] 133MB

wrf [109] 48MB
x264 [109] 26MB

xbmk [109] 16MB
xz [109] 525MB

ffire [111] 11MB
gp500 [110] 255MB

pgrank [111] 10MB

statistics are collected during the application’s primary processing phase.
In the following sections, we present our evaluation in two separate sets, a

single-core system and a multi-core system where four instances of the same
application are run side by side on four identical processors.

5.4.2 Single-Core Experimental Results

The primary effect of memory compaction is a reduction in physical memory
footprint. Figure 5.13b shows the achieved footprint for each design, broken
down into categories. The data footprint consists only of the compressed
data, excluding any compaction-related waste. Each design also introduces
some metadata storage overhead, and a varying amount of capacity waste.
Granularity waste is a result of limited block granularity. Shrink waste is
caused by a compressed block shrinking, leaving some of its original allocation
unused. Growth waste is caused by a compressed block growing to become an
exception, leaving its old allocation entirely unutilized. Uncompressed waste
represents blocks being left uncompressed for organizational reasons, even
though their actual compressibility is better than 1:1. Finally, overallocation is
unused space due to the granularity of page allocation. While this space is not
wasted, it consumes memory capacity.

Compresso yields a final footprint 35% of the baseline, closely followed
by FlatPack at 37%. LCP brings the footprint down to 49%. The major
differences between FlatPack and Compresso are seen in foton (caused by
reduced compressibility) and xz (caused by overallocation of physical pages).
This single case of large overallocation indicates that adjacent blocks (which
compete for memory slots) are growing together, exceeding the ability for
dynamic placement. At the expense of additional metadata bits, FlatPack can
be modified to allow a wider span of slot placements per block.

The raw compression ratio (an average of 3.9× across all applications)
illustrates the average compressibility for the full memory footprint. This
compression ratio sets the upper bound of compaction, and functions as an
ideal reduction, as shown in Figure 5.14a. This ideal serves to illustrate the
capacity overhead of each design, when compared to the achieved total footprint.
The figure also illustrates a non-compacting design from literature, MemSZ [76],

5.4. EVALUATION 103

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

012345 IPC

14.2

9.7

8.2

5.7

6.5

2.1
1.4
1.3

bw
av

ca
ct

ca
m
4
de
ep

ex
c2

fo
to
n

gc
c

im
ag

lbm
lee

la
m
cf

na
b

om
nt

pe
rl

po
p2

ro
m
s

wr
f

x2
64

xb
m
k

xz
ffi
re

gp
50
0 pg

ra
nk

GM

(a
)

N
o
rm

a
li
ze

d
In

st
ru

ct
io

n
s

P
er

C
y
cl

e
(I

P
C

).

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

012 Energy

4.7
3.8

2.3

0.64
0.84
0.85

bw
av

ca
ct

ca
m
4
de
ep

ex
c2

fo
to
n

gc
c

im
ag

lbm
lee

la
m
cf

na
b

om
nt

pe
rl

po
p2

ro
m
s

wr
f

x2
64

xb
m
k

xz
ffi
re

gp
50
0 pg

ra
nk

GM

Co
re

L1
+L

2
LL
C

Co
m
pr
es
so
r/D

ec
om

pr
es
so
r

DR
AM

(b
)

N
o
rm

a
li
ze

d
sy

st
em

en
er

g
y

co
n
su

m
p
ti

o
n
.

F
ig

u
re

5.
12

:
S

in
gl

e-
co

re
re

su
lt

s
fo

r
(F

)l
a
tP

a
ck

,
(C

)o
m

p
re

ss
o

a
n

d
(L

)C
P

.

104 CHAPTER 5. FLATPACK: FLEXIBLE COMPACTION OF COMPRESSED MEMORY

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

0 1 2Total Traffic

5.7
5.2

2.9

0.52
0.78
0.98

bwav
cact

cam
4

deep
exc2

foton
gcc

im
ag

lbm
leela

m
cf

nab
om

nt
perl

pop2
rom

s
wrf

x264
xbm

k
xz

ffire
gp500pgrank

GM

Uncom
pr.

Com
pr.

Page Fault
Page Table

M
eta

RM
W

Page M
ig

Block M
ig

Lazy W
B

(a
)

N
o
rm

a
lized

m
em

o
ry

tra
ffi

c.

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

0 1Memory Footprint

0.37
0.35
0.49

bwav
cact

cam
4

deep
exc2

foton
gcc

im
ag

lbm
leela

m
cf

nab
om

nt
perl

pop2
rom

s
wrf

x264
xbm

k
xz

ffire
gp500pgrank

GM

Data
M

etadata
W

aste Gran
W

aste Shrink
W

aste Grow
W

aste Uncom
pr

Overalloc

(b
)

N
o
rm

a
lized

p
h
y
sica

l
fo

o
tp

rin
t.

F
igu

re
5.13:

S
in

gle-core
resu

lts
for

(F
)la

tP
a
ck

,
(C

)o
m

p
resso

a
n

d
(L

)C
P

.
(co

n
tin

u
ed

)

5.4. EVALUATION 105

1 2 3 4
Footprint Reduction

1

2

3

4

Ba
nd

wi
dt

h
Re

du
ct

io
n

1
1

1
1.8

2.0
1.0

2.7
1.9

2.9
1.3

3.9
3.9

Baseline
MemSZ
LCP

FlatPack
Compresso
Ideal

(a) Single-core

1 2 3 4
Footprint Reduction

1

2

3

4

Ba
nd

wi
dt

h
Re

du
ct

io
n

1
1

1
1.6

2.1
0.9

2.7
1.6

2.9
0.9

3.9
3.9

Baseline
MemSZ
LCP

FlatPack
Compresso
Ideal

(b) Multi-core

Figure 5.14: Bandwidth and Footprint improvements. MemSZ is a non-
compacting memory compression system, here configured to use the same
lossless SC2 compression.

configured to use the same compressor as described above. Compresso achieves
74% of the ideal footprint reduction, FlatPack follows with 70% and LCP
manages 53%. The largest factor in this overhead, in a majority of applications,
is granularity waste. Compared to the baseline footprint, FlatPack introduces
4.6% of granularity waste. LCP and Compresso add 5.0% and 5.3%, respectively.

Memory compression also has the potential to reduce off-chip memory
traffic, by transferring compressed blocks over the main memory bus. Like the
footprint, the extent of this reduction is also bounded by the compression ratio.
Many memory compaction schemes do not target traffic reduction, instead
using additional traffic for the data movement required to support an adaptive
compaction scheme. Figure 5.13a shows the volume of data transferred across
the bus, broken down by cause. Various overheads are introduced by the
evaluated compaction systems. Metadata traffic varies both due to the size of
the metadata itself and its access patterns. Read-Modify-Write operations are
necessary to update compressed data in memory at a finer granularity than
the MAG, and take the form of additional reads from main memory. Page
Migration is necessary to grow compressed pages upon overflow, or shrink them
if possible. Block Migration traffic is induced by single compressed blocks being
brought on-chip to update them with dirty data. Lazy Writebacks are used by
FlatPack to delay block migrations. These overheads of memory compaction
also prevent compaction systems from reaching a traffic reduction proportional
to the ideal compression ratio.

FlatPack reduces the mean memory traffic to 52% of the baseline. Com-
presso also reduces traffic, to 78% on average. LCP achieves an average 2%
reduction. Similarly to the memory capacity, the raw compression ratio also
indicates an ideal memory traffic reduction. FlatPack reduces memory traffic
by 1.9×, which is 32% of the ideal. Compresso achieves a 1.3× reduction in
traffic, 9.7% of the ideal. The modest 1.02x improvement of LCP corresponds
to 0.6% of the ideal. One significant traffic overhead from page compaction is
page migrations. Normalized to the baseline’s total memory traffic, FlatPack
spends 2.3% on page migrations. The corresponding metric for LCP is 4.9%
and for Compresso 7.1%. Xbmk exhibits a highly irregular access pattern, even
on the page level. As a result, it sees a significantly increased amount of page
table traffic in the baseline. In the compacting designs, this also carries over
into metadata traffic, with FlatPack’s metadata overhead being proportional

106 CHAPTER 5. FLATPACK: FLEXIBLE COMPACTION OF COMPRESSED MEMORY

to TLB misses.

Page faults make up a large portion of baseline memory traffic. The principal
goal of reducing these page faults is achieved by all three designs. LCP reduces
the average total number of page faults to 66%, Compresso to 68% and FlatPack
achieves a reduction to 72%. Notably, Compresso increases the number of
page faults in two benchmarks, due to page migrations. FlatPack introduces
additional page faults in cam4, imag and to a lesser extent in perl. Imag
exhibits little spatial locality which penalizes both the large compression blocks
of FlatPack and the fragmented page allocation of Compresso.

Performance benefits from memory compaction stem from the reduction of
costly page faults as well as reduced memory traffic which leads to lower memory
latency. Figure 5.12a shows the IPC across execution for each design and
benchmark. FlatPack increases system IPC by an average 107%, Compresso by
41% and LCP by 32%. The greatest performance boosts correlate to significant
reductions in total memory traffic, indicating memory-bounded applications.

Finally, reduced execution time and memory activity lead to reductions in
system energy as illustrated in Figure 5.12b. FlatPack reduces average system
energy to 64%. Compresso reaches 84% and LCP achieves an average of 85%.

In summary, the previous state-of-the-art Compresso improves system
performance and energy by 41% and 16%, respectively. FlatPack roughly
doubles these benefits, offering 107% better performance and 36% lower energy
consumption than a baseline system. FlatPack improves performance and
energy consumption by 46% and 24%, respectively, compared to the second
best design. Meanwhile, FlatPack maintains a memory capacity improvement
within 6% of Compresso.

5.4.3 Multi-Core Experimental Results

The achieved memory footprint for each design is shown in Figure 5.16b. As in
the single-core evaluation, Compresso and FlatPack achieve similar totals, of
34% and 38%, respectively. LCP achieves a normalized footprint of 48%. As
with the single-core system, the main overhead of all three designs is granularity
waste. Granularity waste introduced by FlatPack accounts for 4.7% of the
mean baseline footprint. The same metric is 5.3% waste for Compresso and
5.1% for LCP. The flexibility of block placement in FlatPack is insufficient in xz,
as in the single-core evaluation. This leads to a disproportionate overallocation,
as larger pages are required to support only a subset of large blocks which are
competing internally.

The average raw compressibility is compared to the achieved reduction in
footprint and traffic in Figure 5.14b. The ideal footprint reduction is 3.9×,
determined by the raw compression ratio. Compared to this ideal, Compresso
reaches 76%, FlatPack follows at 68% and LCP achieves 54%.

Figure 5.16a shows the total memory traffic of each design, broken down
by cause. In total, FlatPack achieves a 1.6× reduction in memory traffic. This
is 20% compared to the ideal. Compresso and LCP both add traffic overheads
of 0.08× (4.2× ideal) and 0.13× (4.5× ideal), respectively. Cam4 shows little
spatial locality in its access pattern, illustrating the drawback of FlatPack’s large
compression blocks; while full compressed blocks are read from memory, parts of
the data remain unused and become overhead. The same affects Compresso, to

5.4. EVALUATION 107

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

012345 IPC

10.9

5.0

1.8
1.3
1.2

bw
av

ca
ct

ca
m
4
de
ep

ex
c2

fo
to
n

gc
c

im
ag

lbm
lee

la
m
cf

na
b

om
nt

pe
rl

po
p2

ro
m
s

wr
f

x2
64

xb
m
k

xz
ffi
re

gp
50
0 pg

ra
nk

GM

(a
)

N
o
rm

a
li
ze

d
In

st
ru

ct
io

n
s

P
er

C
y
cl

e
(I

P
C

).

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

012 Energy

2.3

0.77
0.87
0.92

bw
av

ca
ct

ca
m
4
de
ep

ex
c2

fo
to
n

gc
c

im
ag

lbm
lee

la
m
cf

na
b

om
nt

pe
rl

po
p2

ro
m
s

wr
f

x2
64

xb
m
k

xz
ffi
re

gp
50
0 pg

ra
nk

GM

Co
re

L1
+L

2
LL
C

Co
m
pr
es
so
r/D

ec
om

pr
es
so
r

DR
AM

(b
)

N
o
rm

a
li
ze

d
sy

st
em

en
er

g
y

co
n
su

m
p
ti

o
n
.

F
ig

u
re

5.
15

:
M

u
lt

i-
co

re
re

su
lt

s
fo

r
(F

)l
a
tP

a
ck

,
(C

)o
m

p
re

ss
o

a
n

d
(L

)C
P

.

108 CHAPTER 5. FLATPACK: FLEXIBLE COMPACTION OF COMPRESSED MEMORY

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

0 1 2Total Traffic

2.1

2.1

2.7
5.3

3.0

2.0

4.1

2.1

2.1

0.63
1.08

1.18

bwav
cact

cam
4

deep
exc2

foton
gcc

im
ag

lbm
leela

m
cf

nab
om

nt
perl

pop2
rom

s
wrf

x264
xbm

k
xz

ffire
gp500pgrank

GM

Uncom
pr.

Com
pr.

Page Fault
Page Table

M
eta

RM
W

Page M
ig

Block M
ig

Lazy W
B

(a
)

N
o
rm

a
lized

m
em

o
ry

tra
ffi

c.

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

FC
L

0 1Memory Footprint

0.38
0.34
0.48

bwav
cact

cam
4

deep
exc2

foton
gcc

im
ag

lbm
leela

m
cf

nab
om

nt
perl

pop2
rom

s
wrf

x264
xbm

k
xz

ffire
gp500pgrank

GM

Data
M

etadata
W

aste Gran
W

aste Shrink
W

aste Grow
W

aste Uncom
pr

Overalloc

(b
)

N
o
rm

a
lized

p
h
y
sica

l
fo

o
tp

rin
t.

F
igu

re
5.16:

M
u

lti-core
resu

lts
for

(F
)la

tP
a
ck

,
(C

)o
m

p
resso

a
n

d
(L

)C
P

.
(co

n
tin

u
ed

)

5.4. EVALUATION 109

F C L F C L F C L F C L F C L0

1

2

3

No
rm

. I
PC 1.

91
1.

40
1.

26

1.
84

1.
36

1.
22

1.
83

1.
33

1.
21

1.
91

1.
40

1.
26

1.
83

1.
48

1.
30

50% 75% 100% 800 1600
Capacity (% of footpr.) Bus Freq (MHz)

(a) Normalized system performance

F C L F C L F C L F C L F C L0

1

No
rm

. E
ne

rg
y

0.
69

0.
84

0.
88

0.
72

0.
86

0.
91

0.
73

0.
89

0.
92

0.
69

0.
84

0.
88

0.
66

0.
80

0.
88

50% 75% 100% 800 1600
Capacity (% of footpr.) Bus Freq (MHz)

(b) Normalized system energy

Figure 5.17: Normalized means of system metrics under (F)latPack,
(C)ompresso, and (L)CP for varying memory capacity and memory band-
width.

a lesser extent, as compressed overfetching does not serve as useful prefetching.
A similar effect is seen in imag, where FlatPack’s compressed traffic is increased
by overfetching. Page migration remains a significant overhead in the multi-core
system. Normalized to the baseline’s total memory traffic, FlatPack spends
4.0% on page migrations. The corresponding metric for LCP is 8.5% and
for Compresso 16.3%. By reducing page migration overhead by 2×-4×, and
eliminating a majority of RMW traffic, FlatPack offers a significant traffic
benefit compared to the competing designs. FlatPack reduces memory traffic
by 42% compared to Compresso, the next-best design. FlatPack reduces the
mean number of page faults to 40%, while Compresso reaches 45% and LCP
achieves a reduction down to 61%.

The end goal of footprint and memory traffic reductions is performance
improvement. Figure 5.15a shows the mean IPC achieved by each design across
execution. FlatPack increases performance by 83%, with Compresso following
at 34% and LCP offering a performance benefit of 22% over the baseline.

Finally, total system energy consumption benefits from the performance
increase and reduced memory activity. Figure 5.15b summarizes energy con-
sumption for the 4-core systems. FlatPack brings the total system energy down
to 77%, while Compresso and LCP reach 87% and 92%, respectively.

In summary, Compresso improves system performance and energy by 34%
and 13%, respectively. FlatPack doubles these benefits, offering 83% better per-
formance and 23% lower energy consumption than a baseline system. FlatPack
improves performance and energy consumption by 36% and 12%, respectively,
compared to Compresso.

5.4.4 Latency Impact

The additional decompression introduced into the critical path of memory
accesses may have an impact on system performance. The decompression
latency of FlatPack is similar to the access latency of the last-level cache, and
thus the latency of a compressed cache hit is roughly double that of a regular,
uncompressed hit. In addition, when serving a cache miss, multiple MAGs of
data may be read from memory and must be decompressed before the hit can
be served. These effects have the potential to increase the Average Memory

110 CHAPTER 5. FLATPACK: FLEXIBLE COMPACTION OF COMPRESSED MEMORY

0 1 2
Effective Bandwidth

0

1

AM
AT

 (n
or

m
.) 1

1

1.6
0.8

Baseline
LCP
FlatPack
Compresso

(a) AMAT vs. Effective Bandwidth.

0 1 2 3
Effective Memory Capacity

0

1

AM
AT

 (n
or

m
.) 1

1

2.1
0.85

2.7
0.8 2.9

0.91

Baseline
LCP
FlatPack
Compresso

(b) AMAT vs. Effective Capacity.

Figure 5.18: Average Memory Access Time (AMAT) weighed against the
bandwidth and capacity effects of the investigated memory compaction systems.

F F
0

20
40
60
80

100

of

 p
ag

es
(%

)

bwav
cactcam4

deepexc2 gcc imagleela mcf nabomnt
perlpop2roms wrf x264xbmk

xz ffiregp500
pgrank

Mean

Accurately allocated Overallocated Underallocated

Figure 5.19: Physical pages broken down by the success of initial page size
estimation.

Access Time (AMAT) by introducing additional latency. On the other hand,
memory compaction systems aim to improve system performance by reducing
the incidence of slow page faults. Figure 5.18a shows the memory access latency
reduction and the effective bandwidth of each investigated system. Figure 5.18b
shows the effective memory capacity of each system. In our experiments, all
compacting systems reduce the AMAT compared to the baseline. This indicates
that the benefits of compression and compaction do not come at the expense
of an overall latency increase.

5.4.5 Page Size Estimation

One cause of page faults is the uncertainty inherent in the initial allocation
of each physical page. Typically, data need to be written back to memory
before the whole page has been populated with data. As a result, a physical
allocation is required before the actual compressibility of the page is known.
FlatPack employs an estimation mechanism based on the first written-back
cache line. The compressed size of this line is extrapolated to a full page, and
a small margin is added before rounding up to the nearest supported page size.
Figure 5.19 shows a breakdown of all physical pages in each tested application.
Accurately allocated pages are such that the initial estimation is equal to the
eventual size of the page. On average, 75% of pages are accurately allocated
using the first estimation. Overallocated pages had an initial estimation which

5.4. EVALUATION 111

Table 5.4: Approximable Benchmark Applications.

Application Domain Approx. Footprint / core

heat [53] 2D Therm. Temps 8.3MB
lattice [54] 2D CFD P and M 5MB
lbm06 [55] 3D CFD Velocities 325MB
orbit [56] 3D Phys. Phys. data 10MB
cdelta [56] Thermodynamics Phys. data 22MB
sedov [56] Hydrodynamics Phys. data 12MB
windt [56] Hydrodynamics Phys. data 23MB
kmeans [57] Clustering Topol. [58] 5.5MB
wrf06 [55] Weather Geo data 90MB

Table 5.5: Application Output Error for FP-X.

heat lattice lbm06 orbit cdelta sedov windt kmeans wrf06

0.13% 0.25% 0.06% 0% <0.01% 0% <0.01% 0.05% <0.01%

was larger than the first full size of the page, and thus required no migration.
15% of pages are of this type. The remaining 10% are underallocated, pages
whose initial estimate was smaller than their actual size once filled, and thus
required migration before being fully populated with data.

5.4.6 Sensitivity to System Configuration

To further evaluate the impact of system parameters on FlatPack, we also
present the result of two separate sensitivity analyses, shown in Figure 5.17.
The first sweeps across available memory capacity, with limits set at 50%,
75% and 100% of the baseline footprint. While the benefits of compaction are
reduced overall, the trend between the tested designs remains. The second
analysis illustrates the impact of memory bandwidth, comparing an 800MHz
memory bus to a 1600MHz one. We find that the performance and energy
benefits of all three systems remain stable.

5.4.7 FlatPack with Lossy Compression

To evaluate the effectiveness of FlatPack with lossy compression support, we
use a selection of approximation-tolerant applications as summarized in table
5.4. The source code of each application has been annotated to label approx-
imable data structures. The data approximation caused by lossy compression
is introduced into the data during simulation, and applications are run to
completion in order to generate output. The modified FlatPack with both
lossy and lossless compression (FP-X) is compared to the original lossless-only
FlatPack (FPack), Compresso (Cpro), LCP (LCP), and finally a baseline
system with no compression or compaction.

Figure 5.20a shows the performance of the evaluated systems, normalized to
the non-compressing baseline system. Lossy FlatPack achieves an IPC 2.33×
that of the baseline. Lossless FlatPack follows with a 2.00× IPC, Compresso
with 1.70× and LCP with 1.70×.

112 CHAPTER 5. FLATPACK: FLEXIBLE COMPACTION OF COMPRESSED MEMORY

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P0
1
2
3
4
5

In
sn

. p
er

 C
yc

le

2.
33

2.
00

1.
70

1.
70

heat lattice lbm06 orbit cdelta sedov windt kmeans wrf06 GM

(a) Normalized Instructions Per Cycle (IPC).

FP
-X

FP
ac
k

Cp
ro

LC
P

FP
-X

FP
ac
k

Cp
ro

LC
P

FP
-X

FP
ac
k

Cp
ro

LC
P

FP
-X

FP
ac
k

Cp
ro

LC
P

FP
-X

FP
ac
k

Cp
ro

LC
P

FP
-X

FP
ac
k

Cp
ro

LC
P

FP
-X

FP
ac
k

Cp
ro

LC
P

FP
-X

FP
ac
k

Cp
ro

LC
P

FP
-X

FP
ac
k

Cp
ro

LC
P

FP
-X

FP
ac
k

Cp
ro

LC
P0

1

En
er
gy

0.
71

0.
75

0.
78

0.
79

heat lattice lbm06 orbit cdelta sedov windt kmeans wrf06 GM

Core L1+L2 LLC Compressor/Decompressor DRAM

(b) Normalized system energy consumption.

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P0

1

2

To
ta

l T
ra

ffi
c

0.
43

0.
55

0.
68

0.
73

heat lattice lbm06 orbit cdelta sedov windt kmeans wrf06 GM

Uncompr.
Compr.

Page Fault
Page Table

Meta
RMW

Page Mig
Block Mig

Lazy WB

(c) Normalized memory traffic.

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P

FP
-X

FP
ac

k
Cp

ro
LC

P0

1

M
em

or
y

Fo
ot

pr
in

t

0.
34

0.
43

0.
43

0.
51

heat lattice lbm06 orbit cdelta sedov windt kmeans wrf06 GM

Data
Metadata

Waste Gran
Waste Shrink

Waste Grow
Waste Uncompr

Overalloc

(d) Normalized physical footprint.

Figure 5.20: Multi-core results for FlatPack with lossy and lossless compression
(FP-X), FlatPack with lossless compression (FPack), Compresso (Cpro), and
LCP

5.5. CONCLUSION 113

1 2 3 4
Footprint Reduction

1

2

3

4

Ba
nd

wi
dt

h
Re

du
ct

io
n

1
1

1
2.2

1
3.7

2.3
1.8 2.9

2.3

3.2
3.2 Baseline

MemSZ
L2C
FlatPack
FP-X
Ideal

Figure 5.21: Bandwidth and footprint improvements of FlatPack compared to
other lossy memory compression systems.

As a consequence of the reduced execution time, energy consumption is
also reduced. Figure 5.20b shows a breakdown of total system energy. Lossy
FlatPack achieves a mean reduction of 32%, while lossless FlatPack manages
28%, and Compresso and LCP achieve 25% and 24%, respectively.

One important cause of the performance improvement is reduction of traffic
on the memory bus, shown in Figure 5.20c. Lossy FlatPack reduces total traffic
by 57%. Lossless FlatPack achieves a 46% reduction, followed by Compresso
at 32% and LCP at 27%.

Figure 5.20d shows the achieved memory footprints of the evaluated designs.
On average, Lossy FlatPack manages a 2.95× compaction, followed by lossless
FlatPack and Compresso both at 2.31×, and LCP at 1.94×.

The lossy MemSZ compression employed by FP-X introduces inaccuracy in
the final application output. Table 5.5 shows the deviation between approxi-
mated output and baseline output for each application. We find that the total
error does not exceed 0.25%.

Finally, Figure 5.21 shows the footprint and bandwidth reduction of FP-X
compared to MemSZ, L2C, and FlatPack. L2C achieves the greatest memory
bandwidth reduction thanks to its hybrid compression, and storing compressed
data in LLC allows it to reduce the cache miss rate and surpass the ideal set by
the raw compression ratio. FP-X is able to capitalize on lossy compression for
both bandwidth and footprint reduction, surpassing the lossless-only FlatPack.

5.5 Conclusion

FlatPack is a novel approach to memory compaction, which allows compressed
blocks to be packed fragmented within a page and share expansion space. It
uses a hardware mechanism to dynamically reorganize pages when blocks are
updated, without introducing any additional data movement. In a multicore
system with 4GB of 800MHz DDR4 per core and 1MB of LLC space per
core, FlatPack offers memory capacity increases on par with state-of-the-art
compaction systems, while improving on their memory bandwidth utilization
by up to 67%. By leveraging compression and compaction to reduce data
movement and costly page faults, FlatPack is shown to improve performance
and energy consumption of a single-core system by 107% and 36%, respectively

114 CHAPTER 5. FLATPACK: FLEXIBLE COMPACTION OF COMPRESSED MEMORY

and in a multi-core system, the improvements are 83% and 23%, respectively.
Compared to the best previous work, FlatPack improves performance by 36-46%
and energy by 12-24%, while achieving a comparable memory capacity.

By adding support for lossy compression to FlatPack, memory capacity
can be improved by an additional 28% compared to lossless FlatPack. Mem-
ory traffic is reduced by an additional 21%, leading to a 17% performance
improvement and a 6% energy reduction.

Chapter 6

Conclusion

The memory hierarchy is an increasingly important bottleneck in general-
purpose computing systems. The limited bandwidth of the bus is exposed to
saturation which leads to increased latency of memory requests. The capacity
of main memory is limited by cost and energy constraints, and leads to costly
page faults when exhausted. Compression is a potential solution to both of
these limitations. By transmitting compressed data over the bus, the hardware-
limited bandwidth can be utilized more efficiently, overall latency reduced and
performance improved. By compacting compressed data in physical memory,
the effective capacity can be increased, mitigating page faults.

Existing compression systems typically target only one of these bottlenecks,
aiming to reduce bandwidth or increase memory capacity. The straight-forward
approach to bandwidth reduction requires no compaction in memory, and thus
does not affect memory capacity. State-of-the-art memory compaction systems
introduce additional traffic, cancelling out the bandwidth benefits of their
compression.

This thesis presents several compression techniques aimed at mitigating
these bottlenecks, primarily by identifying approximation-tolerant data and
applying lossy compression to them.

6.1 Summary

Chapter 2 presented Approximate Value Reconstruction (AVR), a memory
compression system which uses lossy compression to relieve the bandwidth
pressure on the main memory bus. In order to achieve compression ratios of up
to 16×, AVR compresses large (1kB) contiguous blocks using a low-complexity
downsampling compressor. AVR uses a Decoupled Sectored design for the
Last-Level Cache, modified to allow both compressed and uncompressed data
to be co-located. Two separate, local, error thresholds are maintained, allowing
the application to set an acceptable level of approximation.

Chapter 3 proposed MemSZ, an extension to AVR. MemSZ introduces
a highly parallelized implementation of the Squeeze (SZ) lossy compression
scheme. An additional, global, error threshold ensures that accumulated
approximation error does not exceed acceptable levels. The related MemSZ-DC
implements memory compression, and uses a 3D-stacked DRAM cache to

115

116 CHAPTER 6. CONCLUSION

reduce the number of needed modifications to on-chip components such as the
SRAM LLC.

Chapter 4 introduced L2C, a hybrid lossy and lossless memory compression
system. The main improvement over MemSZ is the ability to use lossless
compression for data which are non-approximable, or data whose accumulated
approximation error have exceeded acceptable levels. L2C extends the cache
design of MemSZ to support multiple granularities of compression, in order to
best fit the differing characterstics of the two supported compression schemes.

Chapter 5 detailed FlatPack, a novel memory compaction scheme designed
to improve both memory capacity and memory bandwidth. FlatPack exploits
the large compression blocks of AVR, MemSZ and L2C to achieve greater
flexibility in physical memory. By fragmenting large blocks at the Memory
Access Granularity (MAG), they can be reorganized in physical memory without
affecting other blocks. Crucially, FlatPack can respond to growing and shrinking
blocks, reassigning free space to whichever block requires it.

6.2 Contributions

AVR is the first lossy memory compression scheme for general-purpose architec-
tures. It uses the following techniques to more efficiently utilize the available
main memory bandwidth:

• Low-complexity lossy compression of large blocks;

• Co-locating compressed blocks with uncompressed cache lines in the LLC;

• Handling LLC evictions in a lazy manner, reducing the overhead of block
recompression;

• Managing blocks which do not compress well;

• Selectively storing decompressed data in the LLC to reduce the overhead
of decompression.

For applications with significant fractions of approximation-tolerant data, AVR
reduces memory traffic by up to 70%, improving system performance by up to
55% and lowering energy consumption by up to 20% with a maximum of 1%
error introduced in application output.

MemSZ is a more advanced memory compression system, which extends
upon AVR in the following ways:

• MemSZ implements a more advanced lossy compression method, based
on SZ.

• A better cache replacement policy reduces duplication of data, utilizing
LLC capacity more efficiently.

• A new, global, error control mechanism limits accumulated error over the
lifetime of a block.

• MemSZ can be combined with a 3D-stacked DRAM Cache, allowing for
fewer modifications of on-chip components.

6.3. FUTURE WORK 117

Compared to a baseline system with no compression, MemSZ reduces memory
traffic by up to 81%, improves performance by up to 62%, and reduces total
system energy consumption by up to 25%.

L2C is the first general-purpose memory compression system to combine
lossy and lossless compression. In addition to memory compression, L2C is
applicable to I/O traffic. The key techniques to support these features are:

• Support for two granularities of memory blocks, tailored to each com-
pression method;

• A cache structure and main memory layout supporting blocks of both
granularities;

• A mechanism to dynamically select the most suitable compression method
for each block;

• A hybrid metadata format supporting the two block granularities, partially
embedding metadata with compressed blocks to reduce traffic overhead.

L2C is able to compress data which AVR and MemSZ had to leave uncompressed,
leading to additional benefits. Compared to MemSZ, L2C reduces memory
traffic by 18%, increases performance by 9% and reduces system energy by 3%.

FlatPack is a flexible memory compaction system which extends L2C with
the ability to reduce physical memory footprint. While existing memory
compression systems target either bandwidth or footprint, FlatPack is able to
improve both by reducing the traffic overhead of compaction. FlatPack makes
the following contributions:

• A flexible format of compressed pages, allowing compressed blocks to be
fragmented and share expansion space in physical memory;

• A hardware mechanism enabling the memory controller to utilize that
format and dynamically reorganize data within a physical page, without
software intervention and without affecting unrelated blocks.

FlatPack is able to reduce baseline memory traffic by 48%. In a multi-core
system, FlatPack improves mean system performance by 107% and energy
consumption by 36%. Compared to Compresso, the previous state-of-the-
art in memory compaction, FlatPack achieves a footprint within 6% and
improves mean system performance and energy consumption by 36% and 12%,
respectively. Memory traffic is reduced by up to 67%.

6.3 Future Work

The systems proposed in this thesis open up several avenues of future research.
This section contains a few suggestions for inquiry.

The principal trade-off of all approximate computing techniques is reduced
quality for increased performance or energy efficiency. This trade-off poses a
risk, compared to the traditional precise paradigm. As a result, approximate
computing is not yet widely accepted as a feasible option outside of a few
specific domains. One way to reduce this risk is more robust error models and
stricter guarantees on error bounds. AVR and MemSZ both offer mechanisms

118 CHAPTER 6. CONCLUSION

to limit the error of approximation, but base these mechanisms on estimates
rather than precise measurement. A beneficial future direction of research is
mechanisms to model the exact relationship between input approximation and
output error, which is highly application dependent.

A simpler shortcoming of the proposed designs lies in the annotation
of approximable data, and the distinction between approximable and non-
approximable data. The AVR family of compression systems all rely on
the application developer to manually provide these annotations, as well as
determining proper values for the various error thresholds. This additional
work is another hurdle for the adoption of lossy compression in specific and
approximate computing in general. With sufficient source-code level metadata,
it should be possible to devise an automatic profiling system which is able to
identify the best targets for approximation, based on input constraints. This
would allow the developer to make the more direct decision of determining an
acceptable output error, rather than experimentally determining the proper
input error thresholds required to achieve that goal.

A trivial addition to improve the effects of AVR, MemSZ, L2C and FlatPack
is the support for multiple compression algorithms. Some compressors such as
Frequent Pattern Compression (FPC) and Global Base-Delta-Immediate (GBDI)
target specific data types [112,113], while others like Bit-Plane Compression
(BPC) are type-agnostic [18], and systems like HyComp attempt to select the
most effective among multiple supported compressors [41]. Similarly, alternative
lossy compressors like ZFP may offer better compressibility depending on
application characteristics [114]. This type of support would require a few bits
of metadata (indicating the current compression method of each compressed
block) as well as hardware modules for each supported method. Decompression
latency and energy is not affected by such additions, and compression with all
supported methods can be performed in parallel. The main benefit is the ability
to dynamically choose the most effective compression algorithm at runtime,
which increases the potential compression ratio.

Finally, there is potential for co-design between lossy memory compression
and other approximation techniques. For example, AVR stores outliers at
half precision. An arithmetic unit with sufficient information could reduce
computation on these values to half-precision, thus reducing energy consumption
without introducing additional error.

Bibliography

[1] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W.
Keller, “Energy management for commercial servers,” Computer, vol. 36,
no. 12, pp. 39–48, 2003.

[2] J. Ahn et al., “Pim-enabled instructions: a low-overhead, locality-aware
processing-in-memory architecture,” in ISCA. ACM/IEEE, 2015, pp.
336–348.

[3] Y. Zhou and D. Wentzlaff, “Mitts: Memory inter-arrival time traffic
shaping,” in ISCA. ACM/IEEE, 2016, pp. 532–544.

[4] M. O’Connor et al., “Fine-grained dram: energy-efficient dram for ex-
treme bandwidth systems,” in MICRO, 2017, pp. 41–54.

[5] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin,
“Scaling the bandwidth wall: Challenges in and avenues for cmp scaling,”
in ISCA, 2009, pp. 371–382.

[6] J. Yang and J. Seymour, “Pmbench: A micro-benchmark for profiling
paging performance on a system with low-latency SSDs,” in Information
Technology-New Generations. Springer, 2018, pp. 627–633.

[7] NVIDIA, “Nvidia tegra x1: Nvidia’s new mobile superchip,” whitepaper,
2015.

[8] M. Doggett, “Texture caches,” in MICRO, vol. 32, no. 3. IEEE, 2012,
pp. 136–141.

[9] V. Sathish et al., “Lossless and lossy memory I/O link compression
for improving performance of GPGPU workloads,” in PACT, 2012, pp.
325–334.

[10] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz, T. B.
Smith, M. E. Wazlowski, and P. M. Bland, “IBM memory expansion
technology (MXT),” IBM Journal of Research and Development, vol. 45,
no. 2, pp. 271–285, 2001.

[11] E. Hallnor and S. Reinhardt, “A unified compressed memory hierar-
chy,” in 11th International Symposium on High-Performance Computer
Architecture, 2005, pp. 201–212.

119

120 BIBLIOGRAPHY

[12] M. Ekman and P. Stenstrom, “A robust main-memory compression
scheme,” in SIGARCH C.A. News, vol. 33, 2005, pp. 74–85.

[13] G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gib-
bons, M. A. Kozuch, and T. C. Mowry, “Linearly compressed pages: a
low-complexity, low-latency main memory compression framework,” in
MICRO. IEEE, 2016, pp. 172–184.

[14] Y. Cao, L. Chen, and Z. Zhang, “Flexible memory: A novel main
memory architecture with block-level memory compression,” in 2015
IEEE International Conference on Networking, Architecture and Storage
(NAS), 2015, pp. 285–294.

[15] J. Zhao, S. Li, J. Chang, J. L. Byrne, L. L. Ramirez, K. Lim, Y. Xie,
and P. Faraboschi, “Buri: Scaling big-memory computing with hardware-
based memory expansion,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 12, no. 3, p. 31, 2015.

[16] E. Choukse, M. Erez, and A. R. Alameldeen, “Compresso: Pragmatic
main memory compression,” in MICRO. IEEE, 2018, pp. 546–558.

[17] E. Choukse, M. B. Sullivan, M. O’Connor, M. Erez, J. Pool, D. Nellans,
and S. W. Keckler, “Buddy compression: Enabling larger memory for
deep learning and hpc workloads on gpus,” in 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA), 2020,
pp. 926–939.

[18] J. Kim, M. Sullivan, E. Choukse, and M. Erez, “Bit-plane compression:
Transforming data for better compression in many-core architectures,” in
ISCA. ACM/IEEE, 2016, pp. 329–340.

[19] V. K. Chippa et al., “Analysis and characterization of inherent application
resilience for approximate computing,” in DAC, 2013, pp. 1–9.

[20] J. R. Goldschneider, “Lossy compression of scientific data via wavelets
and vector quantization,” Ph.D. dissertation, Univ. of Washington, 1997.

[21] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson,
and J. B. Carter, “Architecting for power management: The ibm power7
approach,” in HPCA - 16 2010 The Sixteenth International Symposium
on High-Performance Computer Architecture, Jan 2010, pp. 1–11.

[22] L. Benini, D. Bruni, B. Ricco, A. Macii, and E. Macii, “An adaptive data
compression scheme for memory traffic minimization in processor-based
systems,” in ISCAS, vol. 4. IEEE, 2002, pp. IV–IV.

[23] J. Dusser and A. Seznec, “Decoupled zero-compressed memory,” in Int.
Conf. on HiPEAC. ACM, 2011, pp. 77–86.

[24] S. Kim, S. Lee, T. Kim, and J. Huh, “Transparent dual memory com-
pression architecture,” in 2017 26th International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2017, pp. 206–218.

BIBLIOGRAPHY 121

[25] S. Hong, P. J. Nair, B. Abali, A. Buyuktosunoglu, K. Kim, and M. Healy,
“Attaché: Towards ideal memory compression by mitigating metadata
bandwidth overheads,” in MICRO. IEEE, 2018, pp. 326–338.

[26] R. Kanakagiri, B. Panda, and M. Mutyam, “MBZip: Multiblock data
compression,” TACO, vol. 14, no. 4, pp. 1–29, 2017.

[27] A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis, “Memzip:
Exploring unconventional benefits from memory compression,” in HPCA,
2014, pp. 638–649.

[28] A. Jain et al., “Concise loads and stores: The case for an asymmetric
compute-memory architecture for approximation,” in MICRO. IEEE,
2016, pp. 1–13.

[29] A. Angerd et al., “A framework for automated and controlled floating-
point accuracy reduction in graphics applications on gpus,” TACO, vol. 14,
no. 4, pp. 1–25, 2017.

[30] P. Judd et al., “Proteus: Exploiting numerical precision variability in
deep neural networks,” in ICS. ACM, 2016, pp. 1–12.

[31] J. San Miguel et al., “Load value approximation,” in MICRO. IEEE,
2014, pp. 127–139.

[32] B. Thwaites et al., “Rollback-free value prediction with approximate
loads,” in PACT, 2014, pp. 493–494.

[33] A. Yazdanbakhsh et al., “RFVP: Rollback-free value prediction with
safe-to-approximate loads,” TACO, vol. 12, no. 4, p. 62, 2016.

[34] S. Di and F. Cappello, “Fast error-bounded lossy hpc data compression
with sz,” in IPDPS. IEEE, 2016, pp. 730–739.

[35] A. Seznec, “Decoupled sectored caches: conciliating low tag implemen-
tation cost and low miss ratio,” in ISCA. ACM/IEEE, Apr 1994, pp.
384–393.

[36] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of
the obvious,” SIGARCH C.A. News, vol. 23, no. 1, pp. 20–24, 1995.

[37] J. Ahn et al., “A scalable processing-in-memory accelerator for parallel
graph processing,” in ISCA. ACM/IEEE, 2015, pp. 105–117.

[38] M. Pavlovic, Y. Etsion, and A. Ramirez, “On the memory system re-
quirements of future scientific applications: Four case-studies,” in IISWC,
2011, pp. 159–170.

[39] J. San Miguel et al., “Doppelganger: A cache for approximate computing,”
in MICRO. IEEE, 2015, pp. 50–61.

[40] S. Sardashti, A. Seznec, and D. Wood, “Yet another compressed cache:
a low-cost yet effective compressed cache,” TACO, vol. 13, no. 3, p. 27,
2016.

122 BIBLIOGRAPHY

[41] A. Arelakis, F. Dahlgren, and P. Stenstrom, “HyComp: a hybrid cache
compression method for selection of data-type-specific compression meth-
ods,” in MICRO. IEEE, 2015, pp. 38–49.

[42] S. Sardashti et al., “Decoupled compressed cache: Exploiting spatial
locality for energy-optimized compressed caching,” in MICRO. IEEE,
2013, pp. 62–73.

[43] B. Panda et al., “Synergistic cache layout for reuse and compression,” in
PACT, 2018, pp. 1–13.

[44] J. San Miguel et al., “The bunker cache for spatio-value approximation,”
in MICRO. IEEE, 2016, pp. 1–12.

[45] A. Sampson et al., “Enerj: Approximate data types for safe and general
low-power computation,” ACM SIGPLAN Notices, vol. 46, no. 6, pp.
164–174, 2011.

[46] L. Saldanha et al., “Float-to-fixed and fixed-to-float hardware converters
for rapid hardware/software partitioning of floating point software appli-
cations to static and dynamic fixed point coprocessors,” Des. Aut. for
Emb. Sys., vol. 13, no. 3, pp. 139–157, 2009.

[47] E. Meijering, “A chronology of interpolation: from ancient astronomy to
modern signal and image processing,” Proc. of IEEE, vol. 90, 2002.

[48] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in ACM SIGPLAN Notices,
vol. 40, 2005, pp. 190–200.

[49] D. Genbrugge, S. Eyerman, and L. Eeckhout, “Interval simulation: Rais-
ing the level of abstraction in architectural simulation,” in HPCA, Jan
2010, pp. 1–12.

[50] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” IEEE CAL, vol. 10, no. 1, pp.
16–19, 2011.

[51] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO. IEEE,
2009, pp. 469–480.

[52] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP lab., vol. 27, pp. 22–31, 2009.

[53] J. Quinn Michael, “Parallel programming in c with mpi and openmp,”
ISBN 0-07-058201-7, Tech. Rep., 2004.

[54] S. Ansumali et al., “Minimal entropic kinetic models for hydrodynamics,”
Europhysics Letters, vol. 63, no. 6, p. 798, 2003.

[55] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
C.A. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

BIBLIOGRAPHY 123

[56] University of Chicago ASCF Center, “Flash4 user’s guide,” 2018, online;
Accessed 2019-04-18. [Online]. Available: http://flash.uchicago.edu/site/
flashcode/user support/flash4 ug 4p6.pdf

[57] “1D K-Means, Open Source,” 2018. [Online]. Available: https:
//github.com/eldstal/kmeans

[58] Lantmäteriet, “Swedish topological survey hdb 50+ västra götaland,
zone 63 3,” 2016. [Online]. Available: https://www.lantmateriet.se/

[59] A. Yazdanbakhsh et al., “Axbench: A multiplatform benchmark suite for
approximate computing,” IEEE Design & Test, vol. 34, no. 2, pp. 60–68,
2017.

[60] Q. Xiong et al., “Ghostsz: A transparent fpga-accelerated lossy compres-
sion framework,” in FCCM. IEEE, 2019, pp. 258–266.

[61] J. Sohn and E. E. Swartzlander, “A fused floating-point three-term adder,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61,
no. 10, pp. 2842–2850, Oct 2014.

[62] E. Vasilakis, V. Papaefstathiou, P. Trancoso, and I. Sourdis, “Decoupled
fused cache: Fusing a decoupled LLC with a DRAM cache,” TACO,
vol. 15, no. 4, pp. 65:1–65:23, 2019.

[63] C. Huang and V. Nagarajan, “Atcache: Reducing dram cache latency
via a small sram tag cache,” in PACT. ACM, 2014, pp. 51–60.

[64] D. Jevdjic et al., “Unison cache: A scalable and effective die-stacked
dram cache,” in MICRO. IEEE, 2014, pp. 25–37.

[65] Y. L. et al, “A fully associative, tagless dram cache,” in ISCA, ser. ISCA
’15. New York, NY, USA: ACM, 2015, pp. 211–222.

[66] H. Jang, Y. Lee, J. Kim, Y. Kim, J. Kim, J. Jeong, and J. W. Lee,
“Efficient footprint caching for tagless dram caches,” in HPCA. IEEE,
2016, pp. 237–248.

[67] A. Eldst̊al-Damlin, P. Trancoso, and I. Sourdis, “AVR: Reducing memory
traffic with approximate value reconstruction,” in ICPP, 2019, pp. 1–10.

[68] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, bigger
digital shadows, and biggest growth in the far east,” December 2012.

[69] A. R. Alameldeen and D. A. Wood, “Frequent pattern compression: A
significance-based compression scheme for l2 caches,” Dept. Comp. Scie.,
Univ. Wisconsin-Madison, Tech. Rep, vol. 1500, 2004.

[70] X. Chen, L. Yang, R. P. Dick, L. Shang, and H. Lekatsas, “C-pack: A
high-performance microprocessor cache compression algorithm,” IEEE
transactions on very large scale integration (VLSI) systems, vol. 18, no. 8,
pp. 1196–1208, 2010.

124 BIBLIOGRAPHY

[71] G. Pekhimenko, V. Seshadri, O. Mutlu, M. A. Kozuch, P. B. Gibbons,
and T. C. Mowry, “Base-delta-immediate compression: Practical data
compression for on-chip caches,” in PACT, 2012, pp. 377–388.

[72] A. Arelakis and P. Stenstrom, “SC2: a statistical compression cache
scheme,” in ACM SIGARCH Computer Arch. News, vol. 42. IEEE
Press, 2014, pp. 145–156.

[73] C. J. Deepu et al., “A hybrid data compression scheme for power reduction
in wireless sensors for IoT,” IEEE Trans. on Biomedical Circuits and
Systems, vol. 11, no. 2, pp. 245–254, 2017.

[74] B. Abali, B. Blaner, J. J. Reilly, M. Klein, A. Mishra, C. B. Agricola,
B. Sendir, A. Buyuktosunoglu, C. Jacobi, W. J. Starke, H. Myneni, and
C. Wang, “Data compression accelerator on IBM POWER9 and z15
processors : Industrial product,” in ISCA ’20. IEEE, 2020, pp. 1–14.

[75] A. Malek et al., “Odd-ecc: on-demand dram error correcting codes,” in
MEMSYS, 2017, pp. 96–111.

[76] A. Eldst̊al-Ahrens and I. Sourdis, “MemSZ: Squeezing memory traffic
with lossy compression,” ACM TACO, vol. 17, no. 4, pp. 40:1–40:25, Nov.
2020.

[77] M. Vecchio et al., “Adaptive lossless entropy compressors for tiny iot
devices,” IEEE Transactions on Wireless Communications, vol. 13, no. 2,
pp. 1088–1100, 2014.

[78] G. Campobello et al., “An efficient lossless compression algorithm for
electrocardiogram signals,” in 2018 26th European Signal Processing
Conference (EUSIPCO), 2018, pp. 777–781.

[79] R. Vestergaard et al., “Generalized deduplication: Lossless compression
for large amounts of small iot data,” in European Wireless 2019; 25th
European Wireless Conference, 2019, pp. 1–5.

[80] D. Blalock et al., “Sprintz: Time series compression for the internet of
things,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 2,
no. 3, Sep. 2018. [Online]. Available: https://doi.org/10.1145/3264903

[81] B. R. Stojkoska and Z. Nikolovski, “Data compression for energy efficient
iot solutions,” in 2017 25th Telecommunication Forum (TELFOR), 2017,
pp. 1–4.

[82] K. B. Adedeji, “Performance evaluation of data compression algorithms
for iot-based smart water network management applications,” Journal of
Applied Science & Process Engineering, vol. 7, no. 2, pp. 554–563, 2020.

[83] A. Moon et al., “Lossy compression on IoT big data by exploiting spa-
tiotemporal correlation,” in 2017 IEEE High Performance Extreme Com-
puting Conference (HPEC), 2017, pp. 1–7.

[84] A. Khelifati et al., “Corad: Correlation-aware compression of massive
time series using sparse dictionary coding,” in 2019 IEEE International
Conference on Big Data (Big Data), 2019, pp. 2289–2298.

BIBLIOGRAPHY 125

[85] A. Ukil et al., “Adaptive sensor data compression in iot systems: Sensor
data analytics based approach,” in IEEE Int. Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2015, pp. 5515–5519.

[86] ——, “Iot data compression: Sensor-agnostic approach,” in 2015 Data
Compression Conference, 2015, pp. 303–312.

[87] H. Esmaeilzadeh et al., “Neural acceleration for general-purpose approxi-
mate programs,” in MICRO. IEEE, 2012, pp. 449–460.

[88] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization for floating-
point multimedia applications,” IEEE Trans. Comput., vol. 54, no. 7, pp.
922–927, 2005.

[89] M. de Kruijf et al., “Relax: An architectural framework for software
recovery of hardware faults,” in ISCA. ACM/IEEE, 2010, pp. 497–508.

[90] D. Jevdjic, K. Strauss, L. Ceze, and H. S. Malvar, “Approximate storage
of compressed and encrypted videos,” in ASPLOS, 2017, pp. 361–373.

[91] A. Sampson et al., “Approximate storage in solid-state memories,” ACM
TOCS, vol. 32, no. 3, p. 9, 2014.

[92] A. Angerd et al., “A GPU register file using static data compression,” in
ICPP. ACM, 2020.

[93] A. Ranjan, A. Raha, V. Raghunathan, and A. Raghunathan, “Approxi-
mate memory compression,” IEEE TVLSI, vol. 28, no. 4, pp. 980–991,
2020.

[94] S. Lal, J. Lucas, and B. Juurlink, “SLC: Memory access granularity
aware selective lossy compression for gpus,” in DATE. IEEE, 2019, pp.
1184–1189.

[95] NASA/JPL, “JPL SMAP level 3 CAP sea surface salinity standard
mapped image 8-day running mean v4.3 validated dataset,” 2019, online;
Accessed 2020-01-18.

[96] T. McGlynn et al., “Skyview: The multi-wavelength sky on the internet,”
in Symposium-International Astronomical Union, vol. 179. Cambridge
University Press, 1998, pp. 465–466.

[97] Swedish Meteorological and Hydrological Institute, “STRÅNG - a
mesoscale model for solar radiation,” 2020, online; Accessed 2020-01-18.
[Online]. Available: http://strang.smhi.se/

[98] S. Lobov et al., “Latent factors limiting the performance of sEMG-
interfaces,” Sensors, vol. 18, no. 4, p. 1122, 2018.

[99] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet:
Components of a new research resource for complex physiologic signals,”
Circulation, vol. 101, no. 23, pp. e215–e220, 2000 (June 13).

126 BIBLIOGRAPHY

[100] S. Makonin et al., “Electricity, water, and natural gas consumption of a
residential house in Canada from 2012 to 2014,” Scientific Data, vol. 3,
no. 160037, pp. 1–12, 2016.

[101] S. De Vito et al., “On field calibration of an electronic nose for benzene
estimation in an urban pollution monitoring scenario,” Sensors and
Actuators B: Chemical, vol. 129, no. 2, pp. 750–757, 2008.

[102] J. Fonollosa et al., “Reservoir computing compensates slow response
of chemosensor arrays exposed to fast varying gas concentrations in
continuous monitoring,” Sensors and Actuators B: Chemical, vol. 215,
pp. 618–629, 2015.

[103] N. Helwig et al., “Condition monitoring of a complex hydraulic system
using multivariate statistics,” in IEEE I2MTC, 2015, pp. 210–215.

[104] Y. Zhang and R. Gupta, “Enabling partial cache line prefetching through
data compression,” in 2003 International Conference on Parallel Process-
ing, 2003. Proceedings. IEEE, 2003, pp. 277–285.

[105] S. Park, I. Kang, Y. Moon, J. H. Ahn, and G. E. Suh, “BCD
deduplication: Effective memory compression using partial cache-line
deduplication,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 52–64. [Online]. Available:
https://doi.org/10.1145/3445814.3446722

[106] D. J. Palframan, N. S. Kim, and M. H. Lipasti, “Cop: To compress and
protect main memory,” in Proceedings of the 42nd Annual International
Symposium on Computer Architecture, ser. ISCA ’15. New York, NY,
USA: Association for Computing Machinery, 2015, p. 682–693. [Online].
Available: https://doi.org/10.1145/2749469.2750377

[107] L. Seiler, D. Lin, and C. Yuksel, “Compacted cpu/gpu data
compression via modified virtual address translation,” Proc. ACM
Comput. Graph. Interact. Tech., vol. 3, no. 2, Aug. 2020. [Online].
Available: https://doi.org/10.1145/3406177

[108] P. A. Franaszek and D. E. Poff, “Management of guest os memory
compression in virtualized systems,” U.S. Patent US20 080 307 188A1,
2007.

[109] “SPEC CPU 2017,” Standard Performance Evaluation Corporation,
2017. [Online]. Available: https://www.spec.org/cpu2017

[110] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500,” Cray Users Group (CUG), vol. 19, pp. 45–74, 2010.

[111] J. Leskovec and R. Sosič, “Snap: A general-purpose network analysis
and graph-mining library,” ACM Transactions on Intelligent Systems
and Technology (TIST), vol. 8, no. 1, pp. 1–20, 2016.

BIBLIOGRAPHY 127

[112] M. Burtscher and P. Ratanaworabhan, “FPC: A high-speed compressor for
double-precision floating-point data,” IEEE Transactions on Computers,
vol. 58, no. 1, pp. 18–31, 2008.

[113] A. Angerd, A. Arelakis, V. Spiliopoulos, E. Sintorn, and P. Stenström,
“GBDI: Going beyond base-delta-immediate compression with global
bases,” in 2022 IEEE International Symposium on High Performance
Computer Architecture (HPCA). Washington, DC, USA: IEEE Computer
Society, 2022.

[114] G. Sun and S. Jun, “ZFP-V: Hardware-optimized lossy floating point
compression,” in ICFPT. IEEE, 2019, pp. 117–125.

128 BIBLIOGRAPHY

