
Absent thermal equilibration on fractional quantum Hall edges over
macroscopic scale

Downloaded from: https://research.chalmers.se, 2023-01-21 01:01 UTC

Citation for the original published paper (version of record):
Melcer, R., Dutta, B., Spånslätt Rugarn, C. et al (2022). Absent thermal equilibration on fractional
quantum Hall edges over macroscopic scale. Nature Communications, 13(1).
http://dx.doi.org/10.1038/s41467-022-28009-0

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



ARTICLE

Absent thermal equilibration on fractional quantum
Hall edges over macroscopic scale
Ron Aharon Melcer 1✉, Bivas Dutta 1, Christian Spånslätt 2,3,4, Jinhong Park 5,

Alexander D. Mirlin3,4,6,7 & Vladimir Umansky1

Two-dimensional topological insulators, and in particular quantum Hall states, are char-

acterized by an insulating bulk and a conducting edge. Fractional states may host both

downstream (dictated by the magnetic field) and upstream propagating edge modes, which

leads to complex transport behavior. Here, we combine two measurement techniques, local

noise thermometry and thermal conductance, to study thermal properties of states with

counter-propagating edge modes. We find that, while charge equilibration between counter-

propagating edge modes is very fast, the equilibration of heat is extremely inefficient, leading

to an almost ballistic heat transport over macroscopic distances. Moreover, we observe an

emergent quantization of the heat conductance associated with a strong interaction fixed

point of the edge modes. Such understanding of the thermal equilibration on edges with

counter-propagating modes is a natural route towards extracting the topological order of the

exotic 5/2 state.
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The quantum Hall effect (QHE) is perhaps the most studied
two-dimensional topological phenomenon. Whereas exci-
tations in the sample bulk are localized, gapless excitations

flow in one-dimensional chiral modes along the edge1. The integer
quantum Hall effect—emerging from quantization of electron
cyclotron orbits and an integer occupation of Landau levels—is
well understood within a single electron picture. By contrast, the
richer fractional quantum Hall effect arises from strong
electron–electron interactions. Among fractional states, particu-
larly peculiar are the hole-conjugate states (at fillings ν ¼ p

2p�1 ;

with integer p > 1; i.e., 2/3, 3/5, 4/7,…) since they host upstream
propagating edge modes. Such modes have been observed for
various filling factors and devices2–5.

Topological properties of the bulk are reflected in the edge
structure, allowing edge-transport coefficients to be quantized. In
particular, with full charge equilibration (e.g., by impurity scatter-
ing) between counter-propagating modes, the two-terminal elec-
trical conductance is given by G2T ¼ e2

h ν, where ν is the filling
factor. Likewise, for thermally equilibrated edges, the two-terminal
heat conductance is quantized6,7 as GQ

2T ¼ κ2TT ¼ jνQjκ0T , where
κ0 ¼ π2 k2B

3h, with kB the Boltzmann constant, T the temperature, and
νQ is an integer (or a fraction for non-Abelian states8). Importantly,
the value of νQ is an inherent property of the bulk topological order.
Specifically, for Abelian states, νQ is given by the net number of
edge modes, νQ ¼ nd � nu, with ndðnuÞ being the number of
downstream (upstream) modes. In hole-conjugate states, νQ can be
zero or negative, implying transport of heat in the direction
opposite to the charge flow. In recent years, thermal conductance
measurements were successfully performed in GaAs and in
graphene9–12, manifesting the quantization of thermal conductance
for both integer and thermally equilibrated fractional states.
Nonetheless, a detailed understanding of thermal equilibration on
the edge is crucial for interpreting13–17 the recent observation11 of
κ2T � 2:5κ0 at filling ν ¼ 5

2. As both the topological order and the
extent of thermal equilibration are not known, two contradicting

explanations were proposed: (i) full thermal equilibration11,
which implies νQ ¼ 2:5, indicating a topological order known as
the PH-Pfaffian, which is further supported by a recent
experiment18, (ii) partial thermal equilibration15 and νQ ¼ 1:5,
indicating the anti-Pfaffian order, which is supported by numerical
simulations19,20. Our present work paves the way towards the
solution, by combining local thermometry with thermal con-
ductance measurements to study thermal equilibration in Abelian
fractional states, for which the topological order is known.

The interplay between topology and equilibration also deter-
mines the temperature profile along the edge. Consider an edge
with two contacts attached at x ¼ 0 and x ¼ L, and upstream
modes sourced at an elevated temperature Tu 0ð Þ ¼ Tm, while
downstream modes emerge from a cold drain contact (for sim-
plicity assumed to be at zero temperature: Td Lð Þ ¼ 0). With
efficient thermal equilibration (thermal equilibration length
leq � L), the temperature of the upstream modes after propaga-
tion, Tu Lð Þ; is expected to be qualitatively different for three
topologically distinct classes21 determined by the sign of νQ: (i) for
νQ > 0 (e.g., in ν ¼ 5=3), upstream modes lose energy propagating
upstream and arrive cold at the drain up to exponential correc-

tions: Tu Lð Þ � Tme
� L

leq , (ii) for νQ < 0 ðν ¼ 3=5Þ, the injected heat
propagates ballistically to the drain up to exponential corrections:
TuðLÞ � Tmðconstþ e�

L
l eq Þ, (iii) for νQ ¼ 0 ðν ¼ 2=3Þ, the ther-

mal transport is diffusive rather than ballistic, resulting in

Tu Lð Þ � Tmð
leq
L Þ

1
2
.

A competing process along the edge is energy dissipation (loss
to the environment). Heat, unlike charge, can escape from edge
modes to phonons, photons (due to stray capacitances), or neu-
tral excitations in the bulk (localized states coupled by Coulomb
interaction). These processes cause an exponential decay in the
upstream temperature, Tu Lð Þ ¼ Tme

� L
ldis , with ldis a characteristic

dissipation length. Such dissipation is a compelling explanation to
recent observations of relaxation of heat flow in particle-like
states (with nu ¼ 0)22. If the thermal equilibration is weak
compared to the energy dissipation (ldis � leq), energy back-
scattering is of no importance, and an exponentially decaying
profile of Tu is expected regardless of the state’s topology23.

Results
Neutral mode thermometry. In order to measure the local
temperature of upstream modes, we fabricated devices based on a
high-mobility two-dimensional electron gas (2DEG), embedded
in a GaAs-AlGaAs heterostructure, with density 8:2 ´ 1010 cm�2

and mobility 4:4 ´ 106 cm2V�1s�1. Device A consists of three
Ohmic contacts: source (S), an upstream located amplifier contact
(A), and a ground contact (G) (see Fig. 1). The propagation
length L, between S and A, could be varied using three metallic
gates, which, when negatively charged, force the edge modes to
take a detour, thus elongating the propagation length. When bias
is applied to the source, power is dissipated at the back of the
contact, leading to a hotspot24 (depicted as a red fire) with an
elevated temperature Tm:

The temperature of the upstream modes reaching A was
determined from current fluctuations measured in A. This
upstream noise is a smoking-gun signature of the presence of
upstream modes3,4, as studied theoretically recently21,25. The
noise is generated in a noise spot (depicted as a white bolt sign
in Fig. 1), a region with size of the charge equilibration
length outside A. The existence of this noise spot is a consequence
of counter-propagating edge modes and efficient charge
equilibration21,25. The elevated temperature of upstream modes
at the noise spot excites particle-hole pairs. If a particle (or hole)
is absorbed by the amplifier contact while the hole (or particle)

G

VSVg

neutral (hot)
charge (cold)

chirality

10 μm

SA

Fig. 1 Device. False colors SEM image of the heart of Device A. This device
consists of three Ohmic contacts at the edge of the MESA (colored gray):
Source (S), Amplifier (A) and the cold-grounded drain (G) (shown by
symbol only). The propagation length of the edge modes between the S and
A contacts can be tuned by using the three metallic gates (light-yellow:
unbiased, dark-yellow: biased), which upon biasing, add the etched regions
inside the MESA (funnel shaped black regions) to the upstream path.
Applying a voltage Vs on S causes the formation of a hotspot (marked with
red fire) at the back of S. The upstream modes (red dashed line) emanating
from the hotspot, carry the heat to A where the noise is generated (marked
with white bolt). We depict here the path of the edge modes for the
situation where the middle gate (dark-yellow) redirects the edge modes
with the application of a gate voltage Vg, while the other two gates remain
unbiased (light-yellow), and hence do not affect the edge modes’ path. Zero
bias on all gates forms the shortest propagation length (straight line from S
to A), while biasing all three gates forms the longest propagation length.
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flows downstream, recombination does not take place and current
fluctuations are detected in contact A. Thus, the local temperature
of the upstream modes Tu Lð Þ is encoded in the excess noise

SUexcess / ðTu Lð Þ � T0Þ; ð1Þ
where T0 is the base temperature at A (we measured T0 =11 mK
at ν ¼ 3=5 and T0 =14 mK at ν ¼ 2=3). The proportionality
factor in Eq. (1) can depend on microscopic details of the edge
modes, but importantly, it does not depend on L (see Methods).

The measured noise is plotted in Fig. 2 at ν ¼ 2
3 ;

3
5 ; 1þ 2

3 ; 1þ 3
5,

for L in the range 30� 210 μm. In Fig. 2a, the excess upstream
noise is plotted as function of the voltage bias V for three
different L. Figure 2b displays the noise measured at the fixed
voltage 13 μV ; plotted as a function of L for several states from
distinct topological classes: at ν ¼ 3

5 ; νQ < 0; at ν ¼ 2
3 ; 1þ 3

5 ;

νQ ¼ 0; and at ν ¼ 1þ 2
3, νQ > 0. Remarkably, we find that all

noise profiles are similar. The noise strength vs L fits nicely to a
decaying exponent with a characteristic decay length of 200 μm.
This suggests an unequilibrated regime: leq > ldis � 200 μm.

Two-terminal thermal conductance. Next, we studied the ther-
mal conductance, which supplements the upstream thermometry,
as it is sensitive only to the heat returning to the source contact
(and not to dissipation). We used two devices, B1 and B2, where a
floating Ohmic contact was employed as the heat source (Fig. 3a).
The floating contact, with area of a few tens of μm2, was

connected to three separate arms of 2DEG. Simultaneously
sourcing currents þI and �I from contacts S1 and S2, respec-
tively, leads to a dissipation of power P ¼ I2=G2T in the Ohmic
contact, while its potential remains zero. Upstream and down-
stream noise was measured (Fig. 3b) at contacts (depicted as amp
DS and amp US) located in the upstream and downstream
direction. Similar to device A, the length between the Ohmic
contact and the upstream amplifier contact could be varied.
Devices B1 and B2 were designed for short ð15� 85 μmÞ and
long (35� 315 μm) upstream distances L, respectively.

The downstream current fluctuations further allow extraction of
the Ohmic contact temperature Tm (the downstream noise, unlike
the upstream noise, is independent of the local temperature of
upstream modes at the downstream amplifier), which in turn
determines the thermal conductance via a heat balance equation
(see Methods). The normalized thermal conductance vs L is
plotted in Fig. 3c. Remarkably, the thermal conductance is length-
independent for both ν ¼ 2

3 and ν ¼ 3
5 up to lengths of 315 μm.

On the other hand, the upstream-noise decays by as much as 85%
compared to the shortest length.

All measurements point to a lack of thermal equilibration, and
instead to dissipation-dominated heat transport. As shown in
Figs. 2b and 3c, the upstream-noise decays exponentially with L
independently of ν. If the edges were equilibrated, one would
expect distinct behavior of upstream noise depending on the
topological class due to different heat transport characteristics.
Hence, the upstream-noise data show that the thermal equilibra-
tion in the edge is not operative, and the noise decay is due to
dissipation of energy to the environment. This is further
supported by the length-independent thermal conductance at
ν ¼ 2

3, which is incompatible with diffusive transport in the
thermally equilibrated regime. Note that dissipation does not
affect the thermal conductance in our measurement scheme since
the dissipated heat does not return back to the Ohmic contact13.

Quantitative analysis of the thermal conductance and upstream
noise. In the unequilibrated regime, the classical Johnson-Nyquist
(JN) formula, used in similar experiments10–12,26 should be cor-
rected due to the mismatch between the upstream and downstream
modes’ temperature. The strength of the current fluctuations pro-
pagating downstream from a reservoir heated to a temperature Tm
is generally given by

SJN ¼ 2kbG2T ðTm � T0Þα; ð2Þ
where α is a pre-factor that depends on microscopic details of the
edge modes. The classical JN noise is restored (α ¼ 1) for a ther-
mally equilibrated state with nd ≥ nu, and in particular for any
integer or particle-like fractional state (where nu ¼ 0). For
unequilibrated ν ¼ 2

3 and ν ¼ 3
5 edges we find α ¼ 3

4 and α ¼ 7
10,

respectively (see Methods).
At this point we can quantitively determine the thermal

conductance. We plot the power P dissipated at the Ohmic contact
vs T2

m � T2
0. A linear fit to the energy-balance equation P ¼ I2

G2T
¼

3 κ2T
2 ðT2

m � T2
0Þ yields κ2T (see Methods). Note that κ2T determines

the two-terminal thermal conductance of each individual arm,
assuming that each arm contributes equally (which is the case in
the absence of equilibration). For three integer states ν ¼ 1; 2; 3,
the extracted thermal conductance agrees well with the expected
values κ2T=κ0 ¼ nd (see Supplementary Note 3). Here, the absence
of upstream modes in these states makes thermal equilibration
irrelevant. For the hole-conjugate states ν ¼ 2

3 and ν ¼ 3
5, we find

κ2T=κ0 ¼ 1:00 ± 0:03 and κ2T=κ0 ¼ 1:45 ± 0:03, respectively (see
Fig. 4a). For completeness, we point out that if one derives Tm
with the classical JN formula (α ¼ 1)10–12,26, a significantly higher

Fig. 2 Length profile of the upstream noise in different states. a Upstream
noise as a function of the applied bias to the Source for ν ¼ 2

3 (triangles)
and ν ¼ 3

5 (circles), for a few propagation lengths; 30 μm (red), 120 μm
(blue), 210 μm (green). The dashed lines mark the voltage for which the
length dependence profile was determined. b Length dependence of the
upstream noise. The noise is normalized (with respect to shortest length)
separately for each filling factor. Error bars represent the statistical error.
The noise profile of all fillings matches nicely with exponential decay with a
typical decay length of 200 μm (dashed line). This indicates the dominant
role of dissipation rather than thermal equilibration.
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thermal conductance value is obtained: κ2T=κ0 ¼ 1:5 and
κ2T=κ0 ¼ 2:5 for ν ¼ 2

3 and ν ¼ 3
5, respectively.

How can we understand the measured values of κ2T? As shown
in ref. 27 for ν ¼ 2

3 (see Supplementary Note 11 for derivation and
generalization to ν ¼ 3

5), an emerging quantization of κ2T is
expected as

κ2T=κ0 ¼ nu þ nd
� �� 2κ12=κ0; ð3Þ

in an intermediate transport regime LT � L � leq, where LT
is the thermal length. The first term in Eq. (3) is the expected
value in the absence of the thermal equilibration, but it is
lowered by the parameter 2κ12=κ0 due to backscattering of
plasmon modes at boundaries between contacts and the
edge. Generally, κ12 depends on interactions on the edge.
When the system is close to a low-energy fixed point28–30 at
which a charge mode is decoupled from neutral modes, we find
κ12=κ0 ¼ 2ð1� νÞ=ð2� νÞ. Then, κ2T=κ0 ¼ 1 for ν ¼ 2=3 with
nu ¼ 1; nd ¼ 1, and κ2T=κ0 ¼ 13=7 for ν ¼ 3=5 with nu ¼
2; nd ¼ 1: For ν ¼ 2=3, our measured value agrees very well
with the prediction27 κ2T=κ0 ¼ 1. For ν ¼ 3=5, the measured
value is slightly lower than 13=7, which might be related to a
deviation of the system from the infrared fixed point. Interest-
ingly, for ν ¼ 2=3, it was recently calculated that at the fixed
point, the thermal equilibration length diverges26.

We turn now to a quantitative analysis of the upstream noise.
With vanishing thermal equilibration, we can write:

SUexcess ¼ 2kBG2T f T Tm � T0

� � � 2kBG2T f TΔT; ð4Þ
with TuðLÞ replaced by Tm in comparison to Eq. (1). We denote
the proportionality constant, f T as the thermal Fano factor. In
Fig. 4b we plot the measured upstream excess noise as a function
of ΔT for different lengths. All curves are linearly proportional to
ΔT , in agreement with Eq. (4). When L decreases (and thus
dissipation becomes less important), f T increases, but even at the
shortest available length of 15 μm it is �2 times smaller than
predicted by our microscopic calculations (Supplementary Note 9).
The reason for this discrepancy remains to be understood.

Discussion
In summary, we demonstrated that counter-propagating modes
efficiently exchange charge, but not energy. While we estimate the
charge equilibration length to be shorter than 5 μm (see Meth-
ods), our observations set a lower bound on the thermal equili-
bration length leq > ldis � 200 μm. These observations seem to
agree (at least qualitatively) with recent measurements in short
(edge length � 5 μm) graphene samples26, but disagree with
previous measurements in GaAs10. We believe that the difference
in equilibration efficiency between our finding and those reported
in ref. 10 is due to microscopic differences between the measured
devices. Such apparently important details include disorder, edge

Fig. 3 Length profile of the thermal conductance and the upstream noise. a False colors SEM image of the central part of Device B1. The mesa (gray) is
divided into three arms by the etched regions (black). The three arms are connected by a floating metallic island (in red) with area 15´ 2 μm2, serving as a
heat source. When a current I from S1 and -I from S2 are sourced simultaneously, the floating island heats up to a temperature Tm . The resulting noise is
measured simultaneously in the downstream and upstream amplifiers. The propagation length from the floating contact to the upstream amplifier can be
varied using the metallic gates (yellow, as in Device A). Depicted is the case where the middle gate (darker yellow) redirects the path of the edge modes by
the application of a gate voltage Vg, while the other gates are unbiased, and hence do not affect the propagation length. b Downstream noise (full shapes)
and upstream noise (empty shapes) as a function of the current. Results are shown for ν ¼ 2

3 (triangles) and ν ¼ 3
5 (circles), and the propagation lengths

15 μm (red) and 75 μm (gray). The upstream-noise decays with length while the downstream noise does not. c Two-terminal thermal conductance κ2T
(extracted from the downstream noise) (blue), and upstream-noise strength (red) as a function of length (See Methods). The thermal conductance is
separately normalized for ν ¼ 2

3 and ν ¼ 3
5 with respect to their respective means. For both ν ¼ 2

3 and ν ¼ 3
5, we observe that κ2T is length-independent,

while the upstream-noise decays (similarly to Fig. 2b). This indicates an unequilibrated thermal regime. The empty (full) shapes mark the data measured in
device B1 (B2), and error bars represent the 95% confidence bounds of the normalized thermal conductance and the upstream-noise strength.
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mode velocities, and inter-mode interaction. More research is
required in order to fully understand the effect of such details. We
also note that for co-propagating integer modes, the thermal
equilibration has been reported to be much faster than charge
equilibration31. Our observation of a thermally non-equilibrated
transport regime for edges with counter-propagating modes
provides important insights into the physics of hole-conjugate
states.

Methods
Sample preparation. The Ohmic contacts and gates were patterned using standard
e-beam lithography-liftoff techniques. The Ohmic contact consists of Ni (7 nm),
Au(200 nm), Ge(100 nm), Ni (75 nm), Au(150 nm) alloyed at 440�C for

50 seconds. To minimize strain-induced reflection from the gates, the surface was
covered by 7 nm HfO2 deposited at 200�C. After deposition, we etched the HfO2,
(except under the gates) using buffered oxide etch. The gate electrode consists of
5 nm Ti and 15 nm Au.

Extraction of Tm from downstream noise. The excess downstream noise SDexcess in
the three-arm devices B1 and B2 (Fig. 3a) is given by

SDexcess ¼
2
3
ðΔImÞ2 þ

1
9

SS1excess þ SS2excess þ SUexcess
� �� 4

3
G2TkBT0; ðM1Þ

where the numerical factors come from the devices’ geometry (see Supplementary

Note 6 for details). Here, ðΔImÞ2 is the noise from the current fluctuations ema-
nating from the central floating contact and are thus related to the temperature Tm

of the central contact, while SS1excess and SS2excess are the excess noises generated at
noise spots (Supplementary Fig. 6) near sources S1 and S2. Since S

S1
excess and SS2excess

are analogous to the upstream noise, they can be taken into account by using
measurements of SUexcess at upstream distances 30 μm (corresponding to the distance
between S1 and the central contact) and 150 μm (the distance between S2 and the
central contact), respectively.

The generated noise ðΔImÞ2 on an edge segment is generally given by21

ðΔImÞ2 ¼
2e2

hlCeq

ν�
νþ

νþ � ν�
� �Z L

0
dxΛ xð Þe�2x=lCeq þ 2e2

h
kBTm

νþ � ν�
� �2

νþ
; ðM2Þ

where lCeq is the charge equilibration length and νþ(ν�) is the total filling factor of
the downstream (upstream) modes (e.g., νþ ¼ 1, ν� ¼ 1=3 for ν ¼ 2=3 and

νþ ¼ 1, ν� ¼ 2=5 for ν ¼ 3=5). The noise ðΔImÞ2 is the local noise generated by
inter-channel electron tunneling, which is encoded in the noise kernel Λ xð Þ.
Assuming absence of thermal equilibration, Λ xð Þ becomes independent of position
x [i.e., Λ xð Þ ¼ Λ0ðTm;T0Þ], and thus Eq. (M2) is simplified as

ΔI2m ¼ e2

h
ν�
νþ

νþ � ν�
� �

Λ0 Tm;T0

� �þ 2e2

h
kBTm

νþ � ν�
� �2

νþ
: ðM3Þ

The simplified noise kernel Λ0ðTm;T0Þ can be computed within a microscopic
model (see Supplementary Note 7 for details). Specifically, we divide the edge
segment into three regions: the left contact region, a central region, and the right
contact region. The inter-channel interaction is taken to change sharply from zero
in the contact regions to a finite value in the central region. The left and right
contacts are taken at different temperatures Tm and T0, respectively. Within this
model, we derive the formula Λ0 Tm;T0

� � ’ 2T0 þ 0:5ðTm � T0Þ, assuming strong
interactions. The downstream excess noise SDexcess then reads

SDexcess ¼
1
9

SS1excess þ SS2excess þ SUexcess
� �þ 4

3
G2TkB Tm � T0

� � 4νþ � 3ν�
4νþ

: ðM4Þ

Comparing to Eq. (2) and identifying SJN ¼ ðΔImÞ2 � 2kBG2TT0, we find

α ¼ 4νþ�3ν�
4νþ

. The central Ohmic contact temperature Tm can be extracted from Eq.

(M4). Ultimately, Tm is used for the determination of both the thermal
conductance κ2T and in plotting the upstream noise vs ΔT ¼ Tm�T0.

Extraction of κ2T . The thermal conductance κ2T is obtained from the heat balance
equation

P ¼ I2

G2T
¼ 3

2
κ2T T2

m � T2
0

� �
; ðM5Þ

which, in the steady state, equates the dissipated power and the emanating heat
currents in the central contact. Here, we neglected all other mechanisms evacuating
heat from the contact. The major correction to Eq, (M5) comes from the lattice
phonons, which at low temperatures evacuate power proportional to T5

m
32.

Radiative losses are completely negligible. In our device, the phonon contribution
becomes important only at Tm � 30mK . Thus we fitted our data only up to 25mK ,
where Eq. (M5) holds well. Moreover, we assume that all injected electrical power is
dissipated in the central contact and raises its temperature (see Supplementary
Note 10 for more details). The temperature Tm in Eq. (M5) is extracted from
downstream noise, Eq. (M4) as described above.

Upstream-noise theory. With the same model as for the downstream noise, the
upstream excess noise is computed as

SUexcess ¼
3
2
e2

h
ν�
νþ

νþ � ν�
� �

Tm � T0

� �
: ðM6Þ

The derivation of Eq. (M6) is given in the Supplementary Notes 7,9. In
comparison to Eq. (4), we have f T ¼ 3

4
ν�
νþ
: Eq. (M6) is used for the theoretical plots

in Fig. 4b.

Estimation of charge equilibration length. A slightly unequilibrated charge
conductance was reported at ν ¼ 2

3 for very short edge distances33. In order to test

Fig. 4 Quantitative analysis of the thermal conductance and the
upstream noise. a Dissipated power P as a function of T2

m � T2
0, where Tm

and T0 are the Ohmic contact and the base temperatures, respectively. The
base temperature was separately calibrated (see Supplementary Note 2) and
found to be T0 = 11mK at ν ¼ 3=5 and T0 = 14mK at ν ¼ 2=3. The colored
markers (low temperature data - Tm < 25mK) were linearly fitted to extract κ2T
(fits marked by colored dashed and full lines for ν ¼ 2

3 and ν ¼ 3
5, respectively).

The black markers are high temperature points, which were not fitted, since at
these temperatures, the cooling of the central contact by lattice phonons
becomes non-negligible. We plot the data for ν ¼ 2

3 and ν ¼ 3
5 for propagation

lengths 15 μm (red) 45 μm (blue), and 85 μm (green). We find length-
independent, thermal conductances κ2T=κ0 ¼ 1:00±0:03, κ2T=κ0 ¼
1:45±0:03 for ν ¼ 2

3 and ν ¼ 3
5, respectively. The theoretically expected values

for ν ¼ 2
3 (ν ¼ 3

5) are plotted as a black dashed (full) line. We find excellent
agreement with the data for ν ¼ 2

3, while the thermal conductance for ν ¼ 3
5 is

somewhat smaller than predicted. b Excess upstream noise as a function of Tm

for ν ¼ 2
3 and ν ¼ 3

5, and for propagation lengths 15 μm (red), 45 μm (blue),
and 85 μm (green). The slope of the linear fit, denoted as 2kBG2T fT in Eq. (3),
increases with decreasing length (due to diminishing dissipation) and
approaches a value of roughly 0:5 times that predicted by a microscopic
calculation. The predicted values (see Supplementary Note 9) are depicted by
the black, dashed, and solid line for ν ¼ 2

3 and ν ¼ 3
5, respectively.
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the equilibration of charge we sourced from S1 AC voltage at the resonance fre-
quency of the upstream amplifier (not DC current like the main measurements)
and measured the voltage in the upstream amplifier. Given the sourced voltage Vs ,
we find by using the standard Landauer-Büttiker formalism,

Vamp ¼ VS
GU ðLÞ
3G2T

; ðM7Þ

where GU Lð Þ is the upstream conductance from the floating Ohmic contact to the
upstream amplifier (the factor of 3 comes from the three arms of the B1 and B2
devices). In deriving Eq. (M7), we assumed GU � G2T . We see (Supplementary
Fig. 5) that only at ν ¼ 2

3 and ν ¼ 3
5, and only when the propagation length is short,

one would observe a finite GU ; which would indicate a not fully charge equilibrated
edge. At the shortest available length L ¼ 15 μm, we found GU

G2T
¼ 7 ´ 10�3 for ν ¼ 2

3

and GU
G2T

¼ 3 ´ 10�4 for ν ¼ 3
5 . To rule out the possibility that the upstream current

is a result of bulk currents due to finite longitudinal conductance, we repeated the
measurement at a higher temperature. We observed that GU decreases at 21mK , as
apparently the charge equilibration is faster. This behavior is inconsistent with bulk
currents, since the longitudinal conductance is expected to increase with tem-
perature. In a simple model for charge equilibration, we can write

GU ðLÞ ¼ GU;0e
� L

lCeq ; ðM8Þ

where GU;0 ¼ e2
h ν� is the zero length upstream conductance. From our data, we

find lCeq � 4 μm for ν ¼ 2
3 and lCeq � 2 μm for ν ¼ 3

5 : This charge equilibration
length stands in sharp contrast to our observed thermal equilibration lengths,
which are two orders of magnitude larger.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.
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