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DNA-damaging agents, such as radiation and chemotherapy, are common in cancer treatment, but the
dosing has proven to be challenging, leading to severe side effects in some patients. Hence, to be able to
personalize DNA-damaging chemotherapy, it is important to develop fast and reliable methods to
measure the resulting DNA damage in patient cells. Here, we demonstrate how single DNA molecule
imaging using fluorescence microscopy can quantify DNA-damage caused by the topoisomerase II
(TopoII) poison etoposide. The assay uses an enzyme cocktail consisting of base excision repair (BER)
enzymes to repair the DNA damage caused by etoposide and label the sites using a DNA polymerase and
fluorescently labeled nucleotides. Using this DNA-damage detection assay we find a large variation in
etoposide induced DNA-damage after in vitro treatment of blood cells from healthy individuals. We
furthermore used the TopoII inhibitor ICRF-193 to show that the etoposide-induced damage in DNA was
TopoII dependent. We discuss how our results support a potential future use of the assay for personalized
dosing of chemotherapy.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The treatment of cancer includes DNA-damaging agents like
radiation and chemotherapy [1]. Chemotherapeutic drugs, such as
cisplatin, doxorubicin and etoposide, induce DNA damage of
various forms, such as double-strand breaks (DSBs), single-strand
breaks (SSBs), crosslinks and damaged bases [2]. DNA damage is
more toxic to the rapidly dividing cancer cells [3e6], but also re-
sults in adverse side effects in fast dividing normal tissue, such as
the bone marrow and the gastrointestinal tract. There is a variation
in both the cancer treatment efficiency and the severity of normal
tissue toxicity, due to interindividual variations in drug
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bioavailability, inherent individual sensitivity to DNA-damage,
previous chemotherapy, age, as well as other factors [2,7e12].
Methods to measure and monitor interindividual variation in
chemotherapy response are still lacking, which has resulted in a
crude dosing model [13]. This in turn means that while some pa-
tients are underdosed so that there is little effect of the drug, other
patients experience severe side effects. There is therefore a need for
methods to personalize cancer therapy.

Topoisomerase II (TopoII) plays a pivotal role in DNA replication,
transcription and chromosome segregation [14], and TopoII in-
hibitors are used for cancer chemotherapy. TopoII can untangle
DNA, leading to the separation of intertwined chromosomes during
anaphase by sequentially cleaving and relegating double-stranded
DNA in an ATP-dependent manner [15]. Etoposide is a TopoII poi-
son that inhibits the ligase function in the dimeric TopoII [14],
which converts TopoII to a DNA-damaging agent, since the enzyme
can cleave but not religate DNA [14]. As the dimeric TopoII has two
ligase sites, most etoposide bound TopoII molecules will generate
SSBs at clinically relevant concentrations. At higher levels of eto-
poside, DSBs are also generated as the available ligase pockets
become saturated [16]. Etoposide has also been demonstrated to
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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produce radicals and radical-mediated DNA-damage [17,18]. The
relevance of this mode of action at clinically relevant concentra-
tions remains to be clarified. TopoII can be inhibited by another
class of molecules that hinders its nuclease function by interfering
with ATP binding. ICRF-193 is an example of such an inhibitor [19].
It efficiently inhibits DNA-damage by etoposide as it locks the
enzyme in a “closed clamp” conformation unable to cleave DNA
[19].

Quantification of DNA lesions caused by DNA damaging agents
in patient cells has the potential to be an important clinical
biomarker. Techniques available to quantify DNA breaks include the
comet assay [20], ligation mediated PCR [21], electrochemical
detection [22], enzyme-linked immunosorbent assay (ELISA) [22],
and radioimmunoassay (RIA) [23]. Since specific antibodies for the
detection of all types of damages are not available, highly sensitive
techniques like ELISA and RIA have not yet been used in clinical
settings [24,25].

Recently, a technique that combines nick translation with
single-molecule imaging to quantify single-strand DNA lesions
formed by different DNA damaging agents has been developed [26].
It uses a combination of DNA repair enzymes that excise the
damaged DNA lesions and make the DNA ends ready for DNA po-
lymerase 1 action. The polymerase then adds fluorescently labeled
nucleotides at each damage site. This assay has been used to
quantify UV, ethanol and hydrogen peroxide induced DNA damage
[26e28]. We recently demonstrated that the same assay can also be
used to quantify damage induced by ionizing radiation and hy-
perthermia [29], bleomycin [30], as well as novel metallodrugs [31].

Here, we use the assay to quantify DNA lesions induced by
etoposide on peripheral blood mononuclear cells (PBMC) from
healthy individuals. We observe a large interindividual variation in
the amount of damage detected for the same drug dose. We also
observe a significant decrease in etoposide-induced damage levels
when co-incubating with ICRF-193, indicating that the method
specifically measures etoposide-induced damage. This supports the
idea of potential future use of the method to personalize chemo-
therapy dosing for patients.

2. Materials and methods

2.1. Collection of blood samples

Excess blood (EDTA tubes) from individuals with normal dif-
ferential blood count were collected from the Hematology Unit at
the Clinical Chemistry Laboratory at Sahlgrenska University Hos-
pital in Gothenburg, Sweden. Gradient centrifugation using Lym-
phoprep (Axis-Shield PoC AS, Oslo, Norway) was used for
separation of PBMC according to the manufacturer's instructions.

2.2. Drug preparation and treatment

A 50 mM stock solution of etoposide phosphate (SANTA CRUZ)
was prepared in Milli-Q water and stored at -80 �C. Approximately
2.5 � 105 lymphocytes/sample, were resuspended in RPMI 1640 in
a total volume of 400 mL, treated with etoposide concentrations
ranging from 0.5 mM to 100 mM, and incubated on a thermal block at
37 �C for 1 h. TopoII inhibition by ICRF-193 (Sigma Aldrich) was
performed by pre-incubating PBMC (2.5 � 105 lymphocytes/
400 mL) with ICRF-193 (10 mM) at 37 �C for 1 h on a thermal block,
followed by incubation with etoposide (10 mM) at 37 �C for 1 h.

2.3. Fluorescent labeling of the DNA damage

After the drug treatment, DNA extraction was done using
GenElute-MammalianGenomic DNAMiniprep Kit (Sigma) kit.Wide
58
bore tips were used to minimize DNA breaks caused by pipetting. A
two-step labeling of the damaged sites was performed [26,30]. The
first step involved treatment of 100ngofDNAwithAPE1 (2.5U), FpG
(2.5U), Endo III (2.5U), Endo IV (2.5U), EndoVIII (2.5U) andUDG(2.5
U) in 1X CutSmart Buffer (New England BioLabs (NEB)) for 1 h at
37 �C [30]. These enzymes constitute the “enzyme cocktail”. The
second step involved fluorescent labeling of the damage sites with
1 mMof dATP, dGTP, dCTP, 0.25 mMdTTP (SigmaAldrich) and0.25 mM
Aminoallyl-dUTP-ATTO-647 N (Jena Bioscience) in 1X NEBuffer 2
(NEB) and DNA polymerase 1 (1.25 U) for 1 h at 20 �C. The reaction
was terminated using 2.5 mL of 0.25 M EDTA (Sigma-Aldrich).

2.4. Silanization of coverslips

The silanization of standard 22 � 22 mm glass coverslips (Su-
perior MARIENFELD Laboratory Glassware) was adapted from Wei
et al. [29,32]. The coverslips were carefully put in an acetone so-
lution consisting of 1% APTES and 1% ATMS, (v/v) to avoid lumping
that can lead to irregular silanization. The silanization was per-
formed overnight and after the completion of silanization, the
coated coverslips were rinsed with acetone, Milli-Q water three
times, and then dried by air purging. The air-dried coverslips could
be stored for one week.

2.5. DNA staining and imaging

The fluorescently labeled DNA (7 mL/sample) was diluted in
0.5X TBE and stained with 320 nM YOYO-1 (Invitrogen) in a total
volume of 50 mL. b-mercaptoethanol (2% v/v, Sigma-Aldrich) was
added just before the image acquisition to minimize photo-
bleaching. Approximately, 3.4 mL of the sample was put at the
interface of an activated coverslip and a clean microscopic slide
(VWR Frosted) and the extended DNAmolecules were imaged with
a fluorescence microscope (Zeiss Observer.Z1) using an Andor iXON
Ultra EMCCD camera equipped with a Colibri 7 LED illumination
system. Two appropriate band-pass excitation filters (475/40 and
640/30) and bandpass emission filters (530/50 and 690/50), for
YOYO-1 and ATTO-647 N, respectively, were used. An EM gain
setting of 100 and exposure times of 50 ms and 500 ms for YOYO-1
and Aminoallyl-dUTP-ATTO-647 N, respectively, were used.

2.6. Data analysis

A custom-made software was used to determine the total DNA
length inpixels andcount thenumberof colocalizedATTO-647Nsites
as dots/pixel. Fluorescent labels at the ends of the DNA were not
counted to exclude DNA strand breaks caused by shear and non-
specific labeling by DNA polymerase 1. Two or more overlapping
DNAstrandswerealsoexcluded fromthequantification. The software
cannot distinguish two or more dots within the diffraction limit. The
DNA lengthwasconverted frompixel tomm(1pixel¼0.129mm)using
lambda-DNA (48502 bp, New England Biolab) as a size reference.We
determined that 1 mm stretched DNA¼ ~3000 bp, and this valuewas
used for convertingdots/pixel to dots/MBp [30]. The valueswere then
presented as dots/MBp as follows:

Damage detected (DD, dots/Mbp) ¼ total number of sites detected
per DNA length

It is important to note that the DD-value corresponds to the
number of sites that DNA polymerase 1 can elongate after the
cocktail of repair enzymes has made the dirty DNA ends
polymerizable.

To assess the statistical significance, the experiments were
performed in technical triplicates unless otherwise noted, and
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differences between the groups were assessed by ANOVA analysis
(Tukey's post-hoc test) (*** represents p < 0.001, and * represents
p < 0.05).

3. Results

3.1. Detection of DNA damage caused by etoposide

The protocol for quantifying single-strand lesions caused by
etoposide and fluorescent labeling of the damaged sites is sche-
matically outlined in Fig. 1 A (see Methods for details) [29,30].
PBMCwere isolated from blood samples of individuals with normal
blood count, treated with etoposide and the DNA was extracted.
The damaged DNAwas treatedwith BER enzymes and labeled using
DNA polymerase 1 and dNTPs, including the fluorescent analogue
Aminoallyl-dUTP-ATTO-647 N, leading to DNA molecules where
each damage site was fluorescently labeled. The sample was then
stained with YOYO-1 and stretched on a silanized glass surface.
Representative images from the analysis software for untreated and
10 mM etoposide treated samples are shown in Fig. 1 B, where the
etoposide treated sample harbors much more fluorescently labeled
damage sites than the control.

3.2. Detection of the etoposide induced DNA damage using the
enzyme cocktail

To investigate the ability of the enzyme cocktail, containing
APE1, FpG, Endo III, Endo IV, Endo VIII, and UDG, to detect etoposide
Fig. 1. (A) Schematic of the steps involved in the detection of DNA damage caused by etopo
the BER enzymes, collectively called the “enzyme cocktail”, were used to process the dama
dNTPs including one fluorescent analogue. (B) Representative images from the analysis softw
stained with YOYO-1 (green) and damage sites were labeled with Aminoallyl-dUTP-ATTO-64
legend, the reader is referred to the Web version of this article.)
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induced DNA damage, PBMC from mixed blood were analyzed. An
increase in the level of damage was detected compared to the un-
treated samples (Fig. 2) (Fig. S1, Supporting Information). The DNA
damage increased ~5.4 and ~8.0 times at 0.5 mM and 10 mM eto-
poside, respectively, compared to the no enzyme control. Inter-
estingly, DNA polymerase 1 alone did not lead to increased DNA
damage levels in the presence of etoposide. As the enzyme cocktail
was required to detect the etoposide-induced damage it was used
for all the following experiments.
3.3. Inter-individual variation and concentration dependent
response in etoposide induced DNA damage

To explore inter-individual differences in the response to eto-
poside, we extended the analysis to blood samples collected from
13 healthy individuals (Fig. 3 A). To compare the etoposide induced
damage, we first subtracted the damage for the untreated sample
(Fig. S2, Supporting Information) from the etoposide treated sam-
ples. Interestingly, there was a ~20-fold difference between the
highest and lowest level of detected damage at 10 mM etoposide
concentration, with some individuals showing no significant in-
crease compared to the untreated sample. The coefficient of vari-
ation (CV) in the etoposide induced damage for the individuals
assayed was 63.3%, indicating a large variation among the tested
individuals.

A potential reason for the difference in response between in-
dividuals is that the etoposide concentration required to cause a
significant response differs. We next investigated the response at
side. The labeling of etoposide induced DNA damage was performed in two steps; first
ged sites and second, these processed sites were labeled using DNA polymerase 1 and
are of (i) untreated and (ii) etoposide (10 mM) treated samples. The DNA backbone was
7 N (red). Scale bar ¼ 10 mm. (For interpretation of the references to colour in this figure



Fig. 2. DNA damage (DD-values) detected in chromosomal DNA extracted from un-
treated, and etoposide (0.5 mM) and (10 mM) treated, PBMC collected from pooled
blood and incubated with/without enzyme cocktail. Standard deviations were calcu-
lated from independent technical duplicates.

V. Singh, P. Johansson, E. Ekedahl et al. Biochemical and Biophysical Research Communications 594 (2022) 57e62
concentrations of etoposide ranging from 0.5 mM to 100 mM for two
healthy individuals (Fig. 3 B). There was a significant difference in
Fig. 3. (A) DNA damage (DD-values) for PBMC from thirteen healthy individuals treated w
(individuals 8 and 12) or technical triplicates (the other individuals). (B) DNA damage (DD-va
(Individual 14 and Individual 15) exposed to increasing concentrations (from 0 to 100 mM) of
or technical duplicate (Individual 15).
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the response of the two individuals, but for both the individuals we
observed a plateau (Individual 14) and a ~28.0% decrease (Indi-
vidual 15) in DD-values at the higher etoposide concentration
(100 mM), respectively.

3.4. Effect of TopoII inhibition on etoposide induced DNA damage

To demonstrate that the damage detected was caused by eto-
poside's inhibition of TopoII, we used the TopoII inhibitor ICRF-193
(see Methods). The effect of ICRF-193 on etoposide induced strand
breaks in five healthy individuals is presented in Fig. 4. ICRF-193
increased the damage detected 1.5-7.3 times without etoposide in
the five individuals, indicating that ICRF-193, as expected, induces
some DNA damage [19]. However, in all five individuals we
observed that the damage induced by etoposide was lower (1.5-2.8
times) when ICRF-193 was present, indicating that the etoposide
induced damage is mediated through inhibition of TopoII (Fig. S3,
Supporting Information).

4. Discussion

Chemotherapeutic drugs can cause severe side-effects that
impact the quality of life for cancer survivors or lead to mortality
[33,34]. Since many such drugs induce DNA damage as their cyto-
toxic mechanism, methods for detecting the total amount of DNA
lesions formed hold promise to be used for personalized dosing of
ith 10 mM etoposide. Standard deviations were calculated from technical duplicates
lues) detected in chromosomal DNA extracted from PBMC from two healthy individuals
etoposide. Standard deviations were calculated from technical triplicate (Individual 14)



Fig. 4. DNA damage (DD-values) detected in chromosomal DNA extracted from PBMC
from five healthy individuals (Individual 16-20) treated with ICRF-193 (10 mM), eto-
poside (10 mM), or both. Standard deviations were calculated from technical duplicates.
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chemotherapy. Here, we demonstrate the use of such an assay to
quantify DNA damage induced by the cytotoxic drug etoposide, a
TopoII poison.

We show that the damage formed by etoposide can not be
repaired by only DNA polymerase 1, but also requires the addition
of a cocktail of DNA repair enzymes. This indicates that the DNA
lesions formed include those that require processing by BER en-
zymes and are not only simple nicks that would be labeled by DNA
polymerase alone. Oxidative DNA lesions, TopoII-SSB complexes
and DNA protein adducts have previously been reported to be
formed by etoposide treatment [35e37]. The enzyme cocktail used
here was able to detect the single-strand DNA lesions at clinically
relevant doses of etoposide.

A large variation between healthy individuals observed in the
response to etoposide was observed. This high variation between
individuals can potentially be explained by varying TopoII levels.
Variations in TopoII levels have been reported widely in acute
myeloid leukaemia and acute lymphoblastic leukaemia [38e40]
and may be so even for normal tissue.

When titrating the concentration of etoposide we observed
differences between individuals in the dose-response, in particular
at high concentrations. This may be due to the saturation of TopoII
poisoning at the lower concentration and/or the generation of in-
termediates that the enzyme cocktail cannot process completely
and require additional enzymes [37,41,42] at high etoposide con-
centration. Therefore, special care must be taken to uncover these
protein-bound DNA-breaks if onewants to measure the total extent
of etoposide-induced DNA damage in patient cells [18].

We used the TopoII inhibitor ICRF-193 to demonstrate that the
etoposide-induced damage detected was due to its function as a
TopoII poison. ICRF-193 is known to decrease the etoposide
induced strand breaks by ~50%, which agrees with our observations
[43]. We also observed DNA damage caused by ICRF-193 only,
which contradicts some earlier studies. We believe that we
observed this activity since our cell lysis solution contains GuHCl, a
chaotropic protein denaturant that is required to detect the for-
mation of SSBs by ICRF-193 [19,44].

To conclude, we have adapted a recently developed method for
detection of single-strand lesions caused by the chemotherapeutic
drug etoposide. We report a large inter-patient variability in drug
dose response between individuals. We also report that the DNA
61
damage detection assay can be used to gain mechanistic insight of
action of chemotherapy drugs. This assay could in the future be
used both to personalize chemotherapy by determining patient
sensitivity, but also to identify inhibitors and activators that can be
used to design co-treatment strategies to improve future
chemotherapy.
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