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Abstract
Why do languages partition mental concepts into words the way the do? Recent
works have taken a information-theoretic view on human language and suggested
that it is shaped by the need for efficient communication (Regier et al., 2015; Gibson
et al., 2017; Zaslavsky et al., 2018). This means that human language is shaped by
a simultaneous pressure for being informative, while also being simple in order to
minimize the cognitive load.

In this thesis we combine the information-theoretic perspective on language
with recent advances in deep multi-agent reinforcement learning. We explore how
efficient communication emerges between two artificial agents in a signaling game
as a by-product of them maximizing a shared reward signal. This is tested in the
domain of colors and numeral systems, two domains in which human languages tends
to support efficient communication (Zaslavsky et al., 2018; Xu et al., 2020). We find
that the communication developed by the artificial agents in these domains shares
characteristics with human languages when it comes to efficiency and structure of
semantic partitions. even though the agents lack the full perceptual and linguistic
architecture of humans.

Our results offer a computational learning perspective that may complement the
information-theoretic view on the structure of human languages. The results also
suggests that reinforcement learning is a powerful and flexible framework that can
be used to test and generate hypotheses in silico.

Keywords: Cognitive Science, Efficient Communication, Emergent Communica-
tion, Multi-Agent Reinforcement Learning.
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Part I

Introductory chapters





Chapter 1

Introduction

The ability to efficiently communicate and coordinate with each other in order to
solve common tasks is one of the keys behind the success of the human species. Due
to this, learning to communicate and coordinate efficiently via interactions, rather
than relying on supervision and possibly hand-crafted communication protocols, is
often seen as a pre-requisite for developing AI agents able to have more advanced
interactions with humans and other artificial agents.

In this thesis we bring together two strands of research. We explore how efficient
communication emerges in multi-agent reinforcement learning, with focus on the
fundamental trade-off between complexity and informativeness of communication
strategies that underlie an information-theoretic view of the structure of natural
languages (Regier, Kemp, et al., 2015; Gibson, Futrell, Jara-Ettinger, et al., 2017;
Zaslavsky et al., 2018). This view suggests that human languages are shaped by a
simultaneous pressure for being informative, to enable efficient communication, while
also being simple in order to minimize the cognitive load.

Recent research has made it increasingly apparent that deep reinforcement learning
serves as a powerful tool to develop interacting agents able to efficiently act in their
corresponding environments (Mnih et al., 2013; Silver, Huang, et al., 2016). As
a result, research on communication in multi-agent systems has moved towards a
goal-based paradigm, using reinforcement learning, for developing communication
(Foerster et al., 2016; Jorge et al., 2016; Mordatch et al., 2018). This paradigm
goes back to first principles, here the communication is formed out of necessity and
shaped by a reward signal. In this way agents develop a language grounded in the
environment and given task.

In addition, the growing body of work connecting standard reinforcement learning
techniques to neuroscience (Niv et al., 2005; Schulz et al., 2019; Dabney et al.,
2020; Eckstein et al., 2020) and the fact that the fields of artificial intelligence,
cognitive science and neuroscience are converging to the shared view on computational
intelligence, suggests for valuable cross-disciplinary exchanges when it comes to
research questions and methods (Gershman et al., 2015). Especially, studying how
communication emerges in deep learning agents might shed light on human language
evolution. At the same time borrowing ideas from the extensive literature on human
language and communication found in cognitive science (Regier, Kemp, et al., 2015;
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4

Goodman et al., 2016) might provide us with new insights in how to design artificial
agents able to use language in a functional and goal-driven way.

The main contributions of the thesis can be summarized as follows.

• We complement the information-theoretic view with a learning perspective
suggesting reinforcement learning as a plausible mechanistic explanation of the
efficiency phenomena found in language.

• We also make a methodological contribution by showing how reinforcement
learning can be used to explore the emergence of universals and variations in
language.

• From a practical viewpoint our results add to the growing evidence that
reinforcement learning can be used to design interactive agents with a language
grounded in the current environment and given task.

The thesis is structured in the following way. In Chapter 2 we will introduce the
concepts and topics necessary for understanding the models and results presented
throughout the thesis. In Chapter 3 we present brief summaries of the results
presented in the included papers, Kågebäck et al. (2020) (Paper 1) and Carlsson
et al. (2021) (Paper 2).This is followed by concluding remarks and a discussion about
possible future directions in Chapter 4. The second part of the thesis contains the
included papers.

In Paper 1 we explore how efficient communication emerge in a dyad of artificial
agents playing a signaling game where to goal is to communicate a certain color
tile from the Munsell chart used in the World Color Survey(Kay et al., 2014). The
resulting artificial languages are compared to human languages when it comes to
efficiency and structure. Especially, the artificial languages are evaluated using the
information-theoretic frameworks of Regier, Kemp, et al. (2015) and Gibson, Futrell,
Jara-Ettinger, et al. (2017).

Paper 2 builds on the framework developed in Paper 1 and we explore how
efficient numeral systems emerges via interaction and reinforcement learning. The
results are compared to the results for the human numeral systems studied in Xu
et al. (2020).



Chapter 2

Background

The following chapter introduces the concepts and topics used throughout the thesis.
We start by introducing the signaling game used in both Paper 1 and Paper 2 along
with a introduction to efficient communication. We then introduce the necessary
concepts from the reinforcement learning literature.

𝑆′𝑆

𝑊

𝑟(𝑆, 𝑆!)
Sender Listener

Figure 2.1: Illustration of the signaling game studied in Paper 1 and Paper 2. The
sender wants to communicate the state s by sending the utterance w. Given the
utterance w the listener produces a reconstruction s′ and a shared reward, r(s, s′),
based on how well the listener reconstructed s is given to both agents. This game
can be seen as an instance of the POMDP model studied in reinforcement learning
(defined in Section 2.2.1.)

2.1 Signaling Game
In this thesis we will study how communication emerges between two agents playing
a Lewis signaling game (Lewis, 1969) consisting of a sender agent and a listener
agent. The game consists of a space of possible states S and a vocabulary, or set
of utterances, W. In each round of the game a state, s ∈ S, is sampled from S
according to some need probability p(s) and provided to the sender agent. The goal
of the sender is to convey to state s to the listener by producing an utterance w ∈ W .

5



6 2.1. Signaling Game

Upon receiving the utterance w the listener produces a guess about the state s′ and
a shared reward, r(s, s′), is given to both agents depending on how well the listener
reconstructed the target state s. The game is schematically described in Figure 2.1.

𝑤 𝜖 𝑤!, 𝑤", 𝑤#

𝑤!

𝑤"𝑤#

𝑤

Listener

Listener

𝑤

𝑤 + 𝜂

Discrete Communication Channel 

Continuous Communication Channel 

𝜂 ~ 𝑁(0, 𝜎)

Figure 2.2: The different communication channels used throughout the thesis. In
the discrete channel a message is simply an index or a one-hot encoded vector
indicating which element in the vocabulary the sender is using. With a continuous
channel a sender can convey a convex combination of the different elements
available in the vocabulary and we will consider a noisy channel where Gaussian
noise is added to the message before reaching the listener.

2.1.1 Channels
Moreover, we will explore two different types of messages produced by the sender.
The first type is discrete messages, which we use in both Paper 1 and Paper 2, where
the vocabulary W is a finite set of elements and the sender conveys one of these
elements in each round. In Paper 1 we also explore a version of the game where W
corresponds to the probability simplex and the utterances are continuous vectors.
We can think of each continuous utterance w as a convex combination of discrete
utterances. The continuous utterance w is perturbed with Gaussian noise

ŵ = w + η, η ∼ N(0, σ)

before reaching the listener and the discreteness of the communication emerges as a
mean to ensure robust communication in the noisy environment. See Figure 2.2 for
an illustration of the two different communication channels.

2.1.2 Efficient Communication: A Theoretical Framework
We adopt an information-theoretic view on communication (Regier, Kemp, et al., 2015;
Kemp et al., 2018; Gibson, Futrell, S. P. Piantadosi, et al., 2019) with steams from
the classical setup of Claude Shannon(Shannon, 1948). This view is schematically
captured in Figure 2.1 where a sender wants to convey the state of the world, s, over
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a possibly noisy channel to the listener. Though the goal is to perfectly transmit
the state s, this might be impossible in practice due to noise, constraints on the
vocabulary and a possible infinitely sized state-space S. It is therefore meaningful
to talk about the communication cost of a sender-listener pair as a measure of how
much information is lost about the state s in expectation due the constraints on the
communication.

Co
m

m
un

ic
at

io
n 

Co
st

Complexity

Optimal Frontier

Near-optimal Tradeoff

Highly Sub-optimal 
Tradeoff

Figure 2.3: The fundamental trade-off between communication cost and complexity.
Human semantic systems tends to lie close to the optimal frontier.

One measure of communication cost commonly used (Gibson, Futrell, Jara-
Ettinger, et al., 2017) is the expected surprise defined as

EES = −
∑
s,w

p(s)S(w|s) logL(s|w) (2.1)

where S(w|s) denotes the probability that the sender uses the utterance w given
the state s and L(s|w) the probability that the listener produces the guess s given
the utterance w. The expected surprise can be seen as a measure of the surprise
incurred by the listener when the actual state the sender tried to communicate by w
was revealed.

A related measure of communication cost is the Kullback-Leibler divergence (KL)
between a sender S(s) and listener L(s|w)

KL(S(s)||L(s|w)) =
∑
s

S(s) log S(s)
L(s|w)

which measures the extra uncertainty about the state s experienced by the listener
when hearing the utterance w compared to the uncertainty the sender carries about
the state S(s). If we assume the sender to be certain about which state it want to



8 2.2. Reinforcement Learning

communicate, i.e. the sender distribution satisfies S(s) = 1 for some state s, and
that the sender has all its probability mass concentrated at some utterance w, the
KL-divergence reduces to

KL(S(s)||L(s|w)) = − logL(s|w) (2.2)

and the expected communication cost becomes

EKL = −
∑
s

p(s) logL(s|w). (2.3)

The reader should note that given sender certainty the EKL is a special case of EES

where we consider a mode sender.
In an information-theoretic sense, an efficient language should minimize the

communication cost while being as simple as possible, i.e. keeping the complexity of
the language as small as possible. Here we will measure the complexity of a language
as the size of the vocabularyW and an optimal language will be a language achieving
the smallest communication cost possible given a certain size of the vocabulary, see
Figure 2.3.

Efficiency Shapes Human Language

A growing body of work suggests human language is shaped by the need for effi-
ciency (Kemp et al., 2018; Gibson, Futrell, S. P. Piantadosi, et al., 2019). As stated
previously this boils down to a fundamental trade-off between informativeness and
complexity, see Figure 2.3. For example Regier, Kemp, et al. (2015), Gibson, Futrell,
Jara-Ettinger, et al. (2017), and Zaslavsky et al. (2018) suggest color systems found
in human languages to be optimized for efficient communication, while Xu et al.
(2020) show that numeral systems across languages support efficient communication.
In addition, information-theoretic principles seem to not only underpin semantic
representations but have also been shown to account for world-length (S. T. Pianta-
dosi et al., 2011), syntactic comprehension (Levy, 2008) and pragmatic language
understanding (Peloquin et al., 2020) to mention a few.

2.2 Reinforcement Learning
Reinforcement learning is a paradigm of machine learning concerned with designing
interactive and goal-oriented agents seeking to maximize their cumulative reward in
their environments (Sutton et al., 1998). This computational approach to learning via
interactions differs from the classical supervised learning paradigm in the sense that
the agent does not have access to examples labelled by some external expert and must
instead gather its own dataset to learn from by interacting with the environment.
This is often modelled as a feedback loop, see Figure 2.4, where an agent at time
t observes the state st and takes an action at, using some policy π(at|st), which is
sent to the environment. The environment responds with yielding a new state st+1
and an immediate reward rt. This dynamics give rise to a notoriously hard challenge
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for a reinforcement learning agent, namely the exploration-exploitation tradeoff. In
order to obtain a large amount of reward an agent needs to prefer playing actions
known to yield much reward, i.e. the agent needs to exploit its current knowledge
of the environment to maximize the reward. However, to acquire this knowledge in
the first place, an agent needs to explore actions it is uncertain about in order to
gain more information about the environment. In many tasks neither exploration
nor exploitation can be pursued separately and an agent needs to balance between
them and slowly move towards more preferable actions.

Environment Agent

𝑎!

𝑆!"#, 𝑟!

Figure 2.4: Illustration of a reinforcement learning agent interacting with an
environment. At time t the agent takes an action at and observes a new state
St+1 along with an immediate reward rt.

In the context of our signaling game, we will denote sender policy for producing
an utterance w given a state s as πS(w|s) and this will be a mapping on the form

πS : S → ∆(W) (2.4)

where ∆(W) denotes the set of probability distributions over the vocabularyW . The
listener policy for producing a reconstruction s′ given w will be written as πL(s′|w)
and will be a mapping from

πL :W → ∆(S) (2.5)

where ∆(S) is the set of probability distributions over the S.

2.2.1 Markov Decision Process
The interaction between the agent and the environment is usually modelled as a
Markov decision process (MDP) (Bellman, 1957). A MDP is a tuple (S,A, P, R)
where

• S denotes the set of possible states.
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• A denotes the set of possible actions available to the agent.

• P (st+1|st, at) denotes the transition probability from state st to state st+1 given
the action at.

• R(at, st) t denotes he, possibly stochastic, reward function associated with
taking action at given state st.

In the MDP framework it is assumed that the environment satisfies the Markov
property , which means that the transition, P , and reward, R, are conditionally
independent of previous actions and states given the current state and action (s, a).
Hence, only the current state of the world matters for future rewards.

An extension of the MDP framework of importance for this work is the partially
observable Markov decision process (POMDP) (Åström, 1965). In the POMDP
model the dynamics are assumed to follow an MDP but the agent does not have full
knowledge about the state of the environment and only partially observes the state.

Returning to the signaling game defined in Section 2.1, from each agent’s point of
view the game can be modelled as a 1-step POMDP, which refers to the fact that the
game terminates after one step and that we do not have to care about the transition
probability. From the sender perspective the state of the environment consists of the
observed state s and the unobserved listener model, πL(s′|w). The action set of the
sender is simply the vocabulary W. In contrast, from the listener’s point of view
the observed part of the state consists of the utterance w produced by the sender,
while the state s and the actual sender model, πS(w|s), are unobserved. The effect
of this is that the environment becomes non-stationary for the agents which might
have negative impact on the learning.

It is common in multi-agent reinforcement learning to, from one agent’s per-
spective, treat the other agents as part of the environment (Gronauer et al., 2021)
and this approach has provided a simple way to successfully train agents on various
communication tasks (Havrylov et al., 2017; Chaabouni et al., 2021). However, we
humans are able to practise deep and recursive reasoning about others before we act
in an environment (Hedden et al., 2002; Goodman et al., 2016). Achieving similar
behaviour in artificial agents seems like a very interesting research direction and is
something we will elaborate more on in Chapter 4 where we discuss possible future
directions.

2.2.2 Q-Learning
In Paper 2 we use a standard model-free reinforcement learning technique called
Q-learning (Watkins et al., 1992). In Q-learning an agent keeps an estimate of
the Q-value, or expected discounted utility, for each state-action pair (s, a). In our
signaling game this means that the sender keeps an estimate of expected utility of
conveying w given each state s

QS(s, w) = Es′∼πL(s′|w)[r(s, s′)] (2.6)
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while the listener keeps an estimate of the expected utility of producing s′ given w

QL(w, s′) = Ew∼πS(w|s)[r(s, s′)]. (2.7)

We will parametrize both QS and QL as neural networks and update them by
minimizing the mean-squared error (MSE) between the predicted utility and actual
reward using stochastic gradient descent over a batch of size m 1

MSES = 1
m

m∑
i=1

(QS(si, wi)− ri)2, (2.8)

MSEL = 1
m

m∑
i=1

(QL(wi, s′i)− ri)2. (2.9)

Dropout as a Bayesian Approximation

A common policy used in Q-learning is the well-known ε-greedy strategy where the
agent with probability ε plays an action uniformly and with probability 1−ε plays the
action with largest Q-value (Sutton et al., 1998, Ch: 6). However, this method leaves
room for improvement regarding adaptively balancing the exploration-exploitation
trade-off and in Paper 2 we will use a more sophisticated method with a Bayesian
flavour to it. More precisely, we will leverage that the regularization technique
dropout can be seen as a Bayesian approximation (Gal et al., 2015).

Dropout refers to a technique where hidden neurons in the neural networks are
ignored, i.e. forced to be 0, with some probability p (Srivastava et al., 2014). By
using dropout and passing the same state s though the neural network several times
one can estimate the agents uncertainty about the Q-values and the network can
be seen as an approximate posterior over the true Q-values given the data (Gal
et al., 2015). We construct a policy by sampling plausible Q-values from the network,
i.e. we make one pass trough the network, and then act greedy w.r.t. sampled
values. This approach is known as Thompson sampling in the machine learning
literature (Thompson, 1933) and has for example been used to handle exploration
in deep contextual bandits (Riquelme et al., 2018). Lately, it has also been shown
that Thompson sampling shares characteristics with exploration strategies used by
humans in various bandit tasks (Schulz et al., 2019).

2.2.3 Policy Optimization
An alternative to Q-learning is to directly optimize the policy πθ parametrized by
some θ (Sutton et al., 1998, Ch: 13). If we let θ be the parametrization of the sender
policy and φ the parametrization of the listener we can write the joint objective
function as

J(θ, φ) =
∑
s,w,s′

p(s)πS,θ(w|s)πL,φ(s′|w)r(s, s′). (2.10)

1Note that in our setup the temporal difference error (Sutton et al., 1998, Ch:6) reduces to the
MSE between the predicted utility and actual reward.
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The gradients of J w.r.t. θ and φ can be written as

∇θJ(θ, φ) = E[QL,φ(s, w)∇θ log πS,θ(w|s)] (2.11)
∇φJ(θ, φ) = E[QS,θ(w, s′)∇φ log πL,φ(s′|w)]. (2.12)

where QL,φ(s, w) is the expected utility of uttering w given the state s according to
the listener distribution

QL,φ(s, w) =
∑
s′
πL,φ(s′|w)r(s, s′). (2.13)

and QS,θ(w, s′) the expected utility of producing the state s′ given the utterance w

QS,θ(w, s′) =
∑
s

p(s)πS,θ(w|s)r(s, s′). (2.14)

A common approach is to estimate QL and QS by taking the mean reward over a
batch of data. This results in the classical algorithm REINFORCE (Williams, 1992)
adapted to our signaling game. We use this approach to train the agents in Paper 1.



Chapter 3

Summary of Papers

This chapter provides brief summaries of the papers appended to this thesis.

3.1 Paper 1: A reinforcement-learning approach
to efficient communication.

In this work we present a computational approach to partitioning semantic spaces
using deep multi-agent reinforcement learning. Two agents play a Lewis signaling
game together where the goal is to communicate a certain color in a noisy environment.
We successfully demonstrate that artificial agents can, via reinforcement learning,
come to an agreement on how to partition a semantic space, i.e. creating their own
artificial language. The main contribution of this paper is a complementary insight
to the approach of Regier, Kemp, et al. (2015), Gibson, Futrell, Jara-Ettinger, et al.
(2017), and Zaslavsky et al. (2018) by illustrating how a computational learning
mechanism accounts for near-optimal color partitions in an information-theoretic
sense.

The color given to the sender agent will be sampled from the Munsell Chart used
in the World Color Survey (Kay et al., 2014), see Figure 3.1, and represented as

Figure 3.1: The Munsell chart used in Paper 1. The sender observes a one of the
color chips from the chart and wants to communicate it to the listener.

13



14 3.1. Paper 1: A reinforcement-learning approach to efficient communication.

a three-dimensional vector in the CIELAB space. The reward will be based on a
perceptual similarity measure (Regier, Kay, et al., 2007) between the target color c
and the listener reconstruction c′

r(c, c′) = e−0.001||xc−xc′ ||22 . (3.1)

We can think of this reward as a sender and listener solving a co-operative task
where they need to communicate about colors. The success of the task depends on
how well the listener is able to approximate the color the sender had in mind. Thus,
it is reasonable to assume this reward to be proportional to the similarity between
the true color and the approximation.

The agents were trained using the reinforcement learning method REINFORCE
(Williams, 1992), using both a discrete and continuous communication channels,
over a sequence of signaling games. After training the agents were evaluated using
the information-theoretic frameworks of Regier, Kemp, et al. (2015) and Gibson,
Futrell, Jara-Ettinger, et al. (2017) along with using the well-formedness criterion
from Regier, Kay, et al. (2007).

Figure 3.2: Figure taken from Kågebäck et al. (2020). WCS stands for the results
of the languages from the World Color Survey and CIELAB correlation clustering
is an approximation of the optimal frontier. We observe that reinforcement
learning yields an efficiency in parity with what is found in the human languages
studied. The errorbars corresponds to ±1 standard deviation.

We found that the communication of the artificial agents replicates important
aspects of human color communication even though the agents lack the full perceptual
and linguistic architecture of human language users. To be more specific our results
indicates that the efficiency of the artificial communication matches the efficiency of
human languages on the same color task. This can be seen in Figure 3.2 where the
efficiency of the reinforcement learning agents follows the curve for the languages in
the World Color Survey (WCS).
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Our study also indicates that environmental noise plays an important role in
the complexity of the resulting language. A noisy environment produces a pressure
for low complexity solutions while a less noisy environment seems to lead to more
complex communication. Interestingly, we also found that training with a noisy
channel seems to yield similar results as training with a completely discrete channel.

3.2 Paper 2: Learning Approximate and Exact
Numeral Systems via Reinforcement Learn-
ing

In this paper we study how efficient approximate and exact numeral systems emerge
via reinforcement learning. A recent paper by Xu et al. (2020) illustrates that
human numeral systems show support for efficient communication, and our main
contribution in this paper is to show that reinforcement learning leads to efficient
partitioning of the number line. A motivation for using reinforcement learning in this
domain is the work of O’Shaughnessy et al. (2021) which highlights the importance
of social and economic factors for the construction of numeral systems. The reward
functions in our work can be considered as proxies for different culturally specific
goals that the agents want to achieve.

We trained the agents using Q-learning with a Bayesian exploration scheme. The
agents were trained during a sequence of signaling games where the goal was to
communicate a certain number from the set [1, 20]. The numbers where sampled
using various priors inferred from human data, e.g. the power-law prior considered in
Xu et al. (2020) which was derived from the Google Ngram data (Michel et al., 2011).
After training, we computed approximate systems by considering the resulting sender
distributions, and the exact systems were derived from taking the mode of the sender
distributions. We compared the efficiency of the artificial numeral systems with
the languages studied in Xu et al. (2020). We considered several different reward
functions

1− |n− n
′|

20 , (3.2)

(1 + |n− n′|)−1, (3.3)
e−|n−n

′|, (3.4)

and as in Paper 1 we can think of this as two agents solving a common task where the
sender needs to communicate a quantity to the listener. The different reward functions
can be viewed as different pressures for how precise the listener’s reconstruction has
to be for the task to succeed.

Our results indicate that reinforcement learning agents can develop efficient
communication on the same parity as found in the languages studied in Xu et al.
(2020). We observe that the agents tends to partition the number line in a similar
fashion as the human languages as well.
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3.2. Paper 2: Learning Approximate and Exact Numeral Systems via Reinforcement

Learning

In this paper we have focused on approximate and exact numeral systems and
the partitioning of the number line. The are still many things to explore when it
comes the reinforcement learning and numeral systems, and some examples are the
development of recursive systems and approximate arithmetic.



Chapter 4

Concluding Remarks and Future
Directions

In this chapter we present concluding remarks and some future research directions
we find promising.

4.1 Concluding Remarks
We have shown that artificial agents trained using reinforcement learning can via in-
teraction develop near-optimal communication by simply maximizing a shared reward
signal. We have seen that the resulting communication share some characteristics
with human communication on the same tasks without being explicitly programmed
to do so. We can relate these findings to the Reward is enough hypothesis (Silver,
Singh, et al., 2021) which suggests that

... the objective of maximising reward is enough to drive behaviour that
exhibits most if not all attributes of intelligence that are studied in natural
and artificial intelligence, including knowledge, learning, perception, social
intelligence, language and generalisation.

We do not argue about the general scientific support of this hypothesis but we note
that in our restricted setup, maximizing the reward signal seems to be enough in order
drive agents towards a behaviour that exhibits some of the efficiency characteristics
found in human semantic representation.

Moreover, we do not know what mechanisms led to the efficiency of human
language but our results suggest reinforcement learning as one plausible mechanism
contributing to this phenomenon. We thus offer a computational learning perspective
that may complement the information-theoretic view on human semantic repre-
sentation (Regier, Kemp, et al., 2015; Gibson, Futrell, Jara-Ettinger, et al., 2017;
Zaslavsky et al., 2018).

From a practical perspective our results adds to the growing body of work
illustrating how reinforcement learning can be used to design interactive agents with
a language grounded in the current environment and given task (Lazaridou et al.,
2020).

17



18 4.2. Future Directions

There are several limitations with our studies that may be interesting to explore
in the future. The generalization abilities of the agents are overlooked in our work
and this is important to address in order to create agents that can communicate
over a range of related tasks. There are also many other aspects to language than
partitioning concepts into words, where maybe the most striking characteristic of
human language is compositionality, which is something we do not address here and
is very interesting future direction. The Lewis signaling game used in this thesis
serves as a powerful framework in order to isolate certain phenomena, but it is
interesting to go beyond the signaling games and study how communication emerges
in more advanced settings where planning is needed.

4.2 Future Directions
In the sections below we elaborate on a few interesting future directions.

4.2.1 Contextual Efficiency
In this thesis we have studied the efficiency of the communication w.r.t. the entire
meaning space. That is, the efficiency has been analysed w.r.t. the listener’s
distribution over all possible choices. In most real-world scenarios there are contextual
clues that can be leveraged by the agents in order improve the efficiency of the
communication. A prominent computational model for communication in context
and pragmatic reasoning is the Rational Speech Act (RSA) (Frank et al., 2012). RSA
agents recursively reason about each other’s policies, in a regularized best-response
fashion, before acting.

An interesting future direction is to incorporate pragmatic reasoning in deep
reinforcement learning agents. Some recent work has already been done on combining
RSA and reinforcement learning(Kang et al., 2020; Ohmer et al., 2020). However,
we still believe there are much to explore when it comes to combining pragmatic
reasoning and reinforcement learning, for example regarding the learning dynamics
and incorporating the structure of the environment into the reasoning process.

Equipping artificial agents with an explicit model for reasoning about other
agents in the environment might also mitigate issues related to using single agent
reinforcement learning algorithms in multi-agent environments. The reason is that
the agent would be able to decouple the behavior of other agents from the stationary
environment.

4.2.2 Generalization and Compositionality
A drawback with many of the works on reinforcement learning and efficient commu-
nication, including the work presented in this thesis, is that the generalization ability
of the developed communication is overlooked. If we are interested in the design
of interacting agents acting in more open-ended environments, the communication
has to generalize beyond the training environment. In order to coordinate and com-
municate in novel environments, agents need to be able to combine already known
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concepts and expressions in new ways, i.e. have a compositional language. We believe
a prominent approach is to combine recent advances in neuro-symbolic programming
(Parisotto et al., 2017; Ellis et al., 2020) and reinforcement learning in order to design
agents with explainable, compositional and generalizable communication.

4.2.3 Efficient Learner and Regret Minimization
So far we have focused on the communication efficiency of agents in the sense of
a trade-off between communication cost and complexity. However, as discussed in
Hawkins et al. (2021) an efficient agent should be able to use flexible online learning
in order to coordinate with new partners. Hence, an efficient agent should also
be an efficient learner. To formalize the notion of efficient learner in the context
of signaling games we believe that the multi-armed bandit framework is suitable
(Lattimore et al., 2020).

A bandit problem usually consists of a agent, with a learning policy π, interacting
with an a-priori unknown environment over a sequence of T rounds. At each step
t > 0 some side-information xt is revealed to the agent before it takes an action
at after which an immediate stochastic reward rt(at, xt) is given to the agent. The
performance of an agent is usually measured by the expected cumulative regret

RT (π) = Eπ[
T∑
t=1

r∗t − rt] (4.1)

where r∗t is the reward associated with the best action in expectation and rt the
reward achieved by the agent. Thus, the cumulative regret becomes a measure of
the price paid by the agent for not knowing in advance what the best action given
xt is. Given a certain learning policy, π, one is often concerned with bounding the
regret of π like

lT ≤ RT (π) ≤ uT (π) (4.2)

where lT stands for a lower bound true for any policy and uT (π) stands for a upper
bound specific for the policy π. The efficiency of a learner can be measured by the
gap uT (π) − lT where a smaller gaps indicates a more efficient learner. From an
information-theoretic perspective the scaling of regret depends solely on the agent’s
ability to extract useful information from the environment (Garivier et al., 2019).

The notion of expected cumulative regret gets a very natural interpretation in
our signaling game as the price paid by an agent for not knowing the language of the
other agent before interacting, i.e. the cumulative regret measures the total number
of misscommunications over T interactions. An interesting future direction is to study
how the regret of different learning algorithms scales when an agent communicates
with novel partners over a set of interactions and if pragmatic reasoning models, like
the RSA, can theoretically and empirically improve the regret scaling of the agent.
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