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1. Introduction

Concrete has always been indispensable as a material for the engineering and con-
struction of hydraulic structures (e.g., dams, underwater tunnels, sluices, and other un-
derwater buildings) [1]. Currently, a series of world-class huge hydropower stations, such
as the Yebatan arch dam (located at the boundary between Sichuan and Tibet, 217 m),
Wudongde arch dam (in Sichuan, 270 m), Liangjiangkou rockfill dam (in Sichuan, 295 m),
Shuangjiangkou rockfill dam (in Sichuan, 315 m), etc., are being built in the southwest of
China [2]. The construction of these hydraulic projects, especially the concrete dam, needs
a huge amount of hydraulic concrete [3,4].

Hydropower resources are often distributed in alpine regions, which are characterized
by complex terrain, large climate changes, and frequent extreme weather. Such harsh
environments undoubtedly pose new challenges for the durability of hydraulic concrete,
which is easily damaged by various environmental factors [5]. The main damages of
hydraulic concrete caused by the harsh environments can be classified into the following
forms: (1) freezing and thawing damage of concrete in cold regions where air temperatures
as low as −20 ◦C are common during winter months [6]; (2) abrasion damage of concrete in
spillway, the flood discharge tunnel and the overflow surface of the hydropower stations,
is often caused by high-speed water flow (40–100 m/s) containing sand and gravel due
to high water pressure (200–300 m water heat) [7]; (3) deterioration of concrete due to
the erosion of adverse ions such as chloride and sulfate in underground water and ocean
regions [8–11]; (4) dissolution due to the flowing soft water action which could lower the
concentration of liquid lime in concrete and cause decomposition of hydration products
in some cases, resulting in weakened mechanical and durability performance and even
structure failure [12]; (5) seepage failure by the high water pressure [13]; (6) plastic and
drying shrinkage caused by the evaporation of water in drying environments or strong
wind [2]; (7) autogenous shrinkage caused by a low water to binder ratio and the usage of
some extreme fine powders such as silica fume [14]; (8) thermal stress due to temperature
differences and fluctuations [15], etc. Temperature rising and shrinkage are particularly
important to hydraulic mass concrete projects, in which cracking may occur due to the
temperature gradient or shrinkage [16]. It is generally recognized that cracks could weaken
the performance and durability of concrete and even jeopardize the integrity of hydraulic
concrete structures [17]. In fact, concrete often fails before reaching its designed service
life due to these environmental damages. However, this is not the only issue facing the
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industry: Recent changes in general green awareness have meant that the development of
sustainable hydraulic concrete is now inevitable.

The main features of sustainable hydraulic concrete are a low amount of cement [2,4]
and utilization of a large amount of supplementary cementitious materials (SCMs) such as
fly ash, slag, limestone powder, and so on [18–20]. Since hydraulic concrete is a typical mass
concrete, low cement content and high mineral admixture amount (as high as 70% or even
more) are beneficial to reduce the hydration heat caused by cement hydration [15]. However,
both features inevitably lower the early concrete strength and consequently slow down the
construction process. There are several strategies to develop sustainable hydraulic concrete.
For instance, to increase the toughness of concrete, many kinds of fibers are widely used to
develop sustainable hydraulic concrete with high ductility [21,22]; in recent years, to reduce
the thermal shrinkage and reduce the cracking risk, low heat Portland cement has been
used to lower the cement hydration heat [14,23,24]; to improve the mechanical properties
and microstructure of concrete, nanomaterials such as silica fume are adopted [14,25];
to compensate the drying shrinkage and autogenous shrinkage, MgO expansion agent
is used, etc. [26,27]. Overall, many innovations in sustainable hydraulic concrete have
enabled the design and construction of sustainable and durable infrastructure.

Moreover, hydraulic concrete shows highly heterogeneous compositions and complex
spatial distributions, from the nano- to the macroscales [28,29]. It is widely accepted
that the macro-level properties of concrete, e.g., the mechanical properties, volumetric
shrinkage, permeability, and durability, are intrinsically related to their material structure
at the micro- and mesoscales [30–32]. Therefore, the investigation of microstructures is
essential to accurately evaluate the macro-mechanical performances of hydraulic concrete.
In addition, the increase in demand for high-performance hydraulic concrete has resulted
in renewed interest in the study of the new technologies and new theories for investigating
microstructures and enhancing the performance of concrete [13,33–35].

This special issue gathers two papers regarding the investigation of durability, prepa-
ration, and microstructure of hydraulic concrete and aims at providing contributions on
the topic of sustainable high-performance hydraulic concrete.

2. Overview of This Special Issue

Various kinds of pores and microcracks are distributed in concrete, which could signif-
icantly affect the elastic modulus of porous materials. To investigate the effects of porosity
and aggregate gradation on the elastic modulus of concrete, Zhang et al. [36] developed
a four-phase model, which takes aggregate gradation and porosity into account in the
prediction of the elastic modulus of concrete, based on the micromechanical theories. The
model has been verified with their experimental results. First, using the Mori Tanaka and
differential self-consistent methods, the pores in both the mortar and interfacial transition
zone (ITZ) were homogenized. Then, the continuously graded aggregates were divided
into finite aggregate size intervals. Further, based on the generalized self-consistent model
and multiphase composite model derived from the Mori Tanaka method, an aggregate
gradation model for the prediction of the elastic modulus of concrete was developed. By
simulating the pores in concrete with expanded polystyrene sphere grains, the effect of
overall porosity on the elastic modulus of concrete was investigated. The research results
show that aggregate gradation and porosity have a remarkable influence on the elastic
modulus of concrete, and the proposed model is effective to estimate the elastic modulus
of concrete, the deviation between the predicted elastic modulus and experimental elastic
modulus is less than 8%. The elastic modulus decreases with increasing ITZ porosity.
However, for ITZ porosity exceeding 40%, the decrease in the elastic modulus is large
with increasing ITZ porosity. For a fixed overall porosity, the ITZ porosity owned more
influences than the mortar porosity on the elastic modulus of concrete. Enhancing the
ITZ elastic modulus and decreasing the ITZ thickness are efficient in increasing the elastic
modulus of concrete.
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Magnesium oxychloride cement (MOC) foam concrete (MOCFC) is an air-hardening
cementing material formed by mixing magnesium chloride solution (MgCl2) and light-
burned magnesia (i.e., active MgO) [37,38]. In practical application, adding caustic dolomite
powder into light-burned magnesite powder can reduce the MOCFC production cost. The
brine content of MOC changes with the incorporation of caustic dolomite powder. The
study of Zheng et al. [39] in this special issue investigated the relationship between the
mass percent concentration and the Baumé degree of a magnesium chloride solution after
bischofite (MgCl2·6H2O) from a salt lake was dissolved in water. Then the proportional
relationship between the amount of water in brine and bischofite and the functional formula
for the water-to-cement ratio (W/C) of MOC mixed with caustic dolomite powder were
deduced. Finally, the functional relationship was verified as feasible for preparing MOC
through the experiment.

3. Conclusions

In this special issue, two papers were collected regarding the investigation of dura-
bility, preparation, and microstructure of hydraulic concrete. The aforementioned are
the state-of-the-art studies, aiming at providing contributions on the topic of sustainable
high-performance hydraulic concrete. New technologies and theories for investigating
microstructures and enhancing the performance of hydraulic concrete will be gathered in
other issues.
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