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This paper presents the extension of a method to verify transient neutron transport solvers earlier devel-
oped for reactors with non-moving fuel, to the case of Molten Salt Reactors (MSRs). This method is based
on the extraction of the point-kinetic response of a nuclear reactor excited by a mono-chromatic pertur-
bation and on its subsequent comparison with its expected functional dependence. Whereas a simple
expression for this dependence exists for systems with fixed fuel, this is not the case for MSRs, as high-
lighted in many past studies. A workaround is nevertheless proposed in this work, thus giving the pos-
sibility to use a similar verification method to the case of MSRs. The method is applied to a simple
dynamic MSR solver, demonstrating the capabilities of the technique. Contrary to other verification
methods for which the system has to be simplified so that analytical solutions can be derived, the present
method can be applied to any heterogeneous system.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Molten Salt Reactors (MSRs) represent, from a reactor physics
and fuel processing viewpoint in particular, systems that signifi-
cantly differ from today’s reactors. The difference arises from the
movement and possible online reprocessing of the fuel in MSRs,
as opposed to static fuel in present reactors. Because of the inter-
play between the prompt and delayed neutrons occurring at differ-
ent time scales, the movement of the fuel gives rise to peculiarities
in MSRs, both in steady-state and non-steady-state conditions.
Such specificities have been known since the early developments
of MSRs (Prince et al., 1968; Haubenreich, 1969; Haubenreich
and Engel, 1970).

In the early 2000s, the MSR concept was selected by the Gener-
ation IV International Forum as one of the six Generation IV reactor
technologies to be further developed. The renewed interest in
MSRs resulted in many research groups developing modelling
capabilities specifically targeted at MSRs. As part of the software
development, efforts are dedicated to the verification and valida-
tion of the tools – see e.g., (Tiberga et al., 2020).

Typically, verification relies on the demonstration that the
numerical implementation of a chosen model is correct. Validation,
on the other hand, is based on the successful comparison between
the results of the solver being considered and either experimental
data or the results of other already verified/validated solvers
(Boehm, 1981; Oberkampf and Trucano, 2008; Oberkampf et al.,
2004). Although such solvers might use other approximations,
their solutions can be considered as the reference solution. In the
area of code verification, a simple enough system configuration is
chosen, so that an analytical solution can be calculated, to which
the numerical solver can be compared, while refining the dis-
cretization of the variables. Alternatively, another solver that has
already been verified and that relies on the same approximations
of the representation of the physical phenomena being modelling
can be used. In recent years, the Method of Manufactured Solutions
(MMS) has also received a particular attention for code verification
(Roache et al., 2019). In this method, a mathematical expression is
chosen. Putting this expression in the non-discretized balance
equations allows computing a source term to those. This source
term can then be inserted into the discretized equations in the
code being verified. When refining the discretization of the vari-
ables, the code should thus return the artificially manufactured
original mathematical expression.

This paper presents the extension of a validation/verification
method of transient neutron transport solvers earlier developed
in (Demazière et al., 2017) for the case of reactors with fixed
fuel, to the case of MSRs. As detailed in (Demazière et al.,
2017), the technique falls in the category of both code verifica-
tion and validation. This method is based on the extraction of
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the point-kinetic response of a system excited by a mono-
chromatic perturbation as computed by a modelling software
and on its subsequent comparison with its expected functional
dependence when the frequency of the perturbation is varied.
This functional dependence reduces to a simple analytical form
for systems with fixed fuel. The point-kinetic response is then
given by the well-known zero-power reactor transfer function
multiplied by the reactivity effect of the applied perturbation
(Bell and Glasstone, 1970). In the case of MSRs, the formulation
of an equivalent zero-power reactor transfer function is much
more involved, and no simple expression exists between the
reactivity effect and the corresponding point-kinetic response,
as pointed out in several past studies – see e.g., (Pázsit et al.,
2014). The main reason behind the impossibility to write a
closed form of the zero-power reactor transfer function in the
case of MSRs lies with the spatial dependence of the adjoint
functions being different with respect to the neutron flux and
to the precursors of delayed neutrons, respectively. In the case
of a reactor with fixed fuel, these two adjoint functions have
the same spatial dependence. In the case of MSRs, the spatial
dependence of the adjoint function associated to the precursors
of delayed neutrons is fundamentally different from the one
associated to the neutron flux, due to the transport of the pre-
cursors with the moving fuel.

Despite this difference and the complications arising from it,
the work reported hereafter presents a workaround. The novel
method relies on the extraction of the point-kinetic component
of both the neutron flux and the precursors of delayed neutrons,
respectively, and on the estimation of corresponding variations of
the so-called shape functions, for both the neutron flux and the
precursors of delayed neutrons. As a function of the frequency of
the applied perturbation, functional dependences between those
four quantities exist and need to be verified. The inability of a code
output to reproduce such functional dependencies might corre-
spond to a deficiency of the software. The method reported in
the following thus offers the possibility to verify the proper imple-
mentation of a neutron transport solver for the case of MSRs with-
out turning to the MMS or analytical/semi-analytical solutions, for
which simplified homogeneous or piece-wise homogeneous sys-
tems in one or two dimensions at the most need to be considered.
The novel method can instead be applied to three-dimensional
heterogeneous systems.

This paper is structured as follows. The next section defines
the system being considered, as well as the modelling framework
used for deriving the verification framework. As explained in this
paper, the verification method relies on the excitation of the sys-
tem by a mono-chromatic perturbation expressed as fluctuations
of the macroscopic cross-sections, as compared to a stationary
state of the reactor. Both the stationary reactor conditions and
the deviations from the corresponding steady-state conditions
need to be considered. The former is presented in the third sec-
tion of this paper, together with the formulation of the adjoint
functions necessary for the verification method. The latter is con-
sidered in the fourth section of the paper, assuming a factoriza-
tion of the neutron flux and the precursors of delayed neutrons
into an amplitude factor and a shape function. Such factorizations
are required for deriving the linearized point-kinetic equations,
presented in the fifth section of the paper. The verification
scheme is then introduced in the sixth section and the demon-
stration of the method in the seventh section. The paper ends
with some conclusions and remarks on the applicability of the
method. Although the method is derived in the most general case
of three-dimensional systems and could be readily used for veri-
fying any three-dimensional solver, the method is applied to and
demonstrated on a one-dimensional system for the sake of sim-
plicity and illustration.
2

2. Definition of the system and of the associated modelling
framework

As indicated in the introduction, the verification method is
based on the estimation of the so-called linearized neutron noise
in the frequency domain, which will be formally defined in the
subsequent sections of this paper, and on the extraction of the
point-kinetic components for the neutron noise and the noise in
the concentration of the precursors of delayed neutrons. Pioneer-
ing work related to neutron noise in the specific case of MSRs is
reported in depth in (Pázsit and Dykin, 2017).

Although the verification method reported hereafter can be
applied to neutron transport solvers, it will be demonstrated in
the framework of two energy group diffusion theory, since most
of the neutronic core simulators are based on such a resolution
in energy and angle. The methodology followed to derive the gov-
erning equations describing the noise in the neutron density and in
the concentration of precursors of delayed neutrons is standard
and largely inspired from past studies in this area (Pázsit and
Dykin, 2017; Pázsit and Jonsson, 2011; Jonsson and Pázsit, 2011;
Pázsit et al., 2012; Dykin and Pázsit, 2016). In this work, three-
dimensional heterogeneous systems are however considered,
whereas one-dimensional homogeneous systems were investi-
gated in (Pázsit and Dykin, 2017; Pázsit and Jonsson, 2011;
Jonsson and Pázsit, 2011; Pázsit et al., 2012; Dykin and Pázsit,
2016). Moreover, the velocity of the fuel is space-dependent, as
opposed to a space-independent velocity assumed in the models
presented in (Pázsit and Dykin, 2017; Pázsit and Jonsson, 2011;
Jonsson and Pázsit, 2011; Pázsit et al., 2012; Dykin and Pázsit,
2016). The non-homogeneous nature of the velocity has some
implication for the estimation of the adjoint operators, to which
we will return in the next Section. Finally, the last major difference
between the model used in this paper and earlier investigations
lies with the boundary condition used in such investigations.
Instead of a simple decay of precursors outside of the core, a more
generic inlet boundary condition in the concentration of the neu-
tron precursors is implemented. Such a choice is more suitable
for modelling a three-dimensional system with on-line reprocess-
ing of the fuel. This will have some implication for the estimation
of the concentration of the precursors of delayed neutrons and on
their corresponding adjoint functions.

For a three-dimensional heterogeneous MSR of cylindrical
shape in which the fuel velocity is assumed to be time-
independent and mono-directional along the vertical upward axis,
i.e.,

u0 rð Þ ¼ uz;0 rð Þz ð1Þ
with z being the unit upward vector, the time- and space-
dependent balance equations in two group diffusion theory and
one group of delayed neutrons read as:

� 1
v1;0 rð Þ

@
@t þR1;1 r; tð Þ R2;1 r; tð Þ k0 rð Þ

R1;2 r; tð Þ � 1
v2;0 rð Þ

@
@t þR2;2 r; tð Þ 0

b0 rð ÞtRf ;1 r; tð Þ b0 rð ÞtRf ;2 r; tð Þ � @
@t � I r; tð Þ

2
664

3
775�

/1 r; tð Þ
/2 r; tð Þ
C r; tð Þ

2
64

3
75 ¼

0
0
0

2
64

3
75

ð2Þ

In the above equation:

� /g r; tð Þ represents the space- and time-dependent scalar neu-
tron flux in the energy group g.

� C r; tð Þ represents the space- and time-dependent concentration
of the precursors of delayed neutrons.

� vg;0 rð Þ is the neutron speed, assumed to be only space-
dependent.

� k0 rð Þ is the decay constant of the precursors of delayed neu-
trons, assumed to be only space-dependent.
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� b0 rð Þ is the fraction of delayed neutrons, assumed to be only
space-dependent.

� R1;1 r; tð Þ is a space- and time-dependent operator acting upon
/1 r; tð Þ as:

R1;1 r; tð Þ/1 r; tð Þ
¼ $ � D1;0 rð Þ$/1 r; tð Þ½ � þ 1� b0 rð Þ½ �tRf ;1 r; tð Þ/1 r; tð Þ
�Ra;1 r; tð Þ/1 r; tð Þ � Rr r; tð Þ/1 r; tð Þ

ð3Þ

� R2;1 r; tð Þ is a space- and time-dependent operator acting upon
/2 r; tð Þ as:

R2;1 r; tð Þ/2 r; tð Þ ¼ 1� b0 rð Þ½ �tRf ;2 r; tð Þ/2 r; tð Þ ð4Þ

� R1;2 r; tð Þ is a space- and time-dependent operator acting upon
/1 r; tð Þ as:

R1;1 r; tð Þ/1 r; tð Þ ¼ Rr r; tð Þ/1 r; tð Þ ð5Þ

� R2;2 r; tð Þ is a space- and time-dependent operator acting upon
/2 r; tð Þ as:

R2;2 r; tð Þ/2 r; tð Þ ¼ $ � D2;0 rð Þ$/2 r; tð Þ½ � � Ra;2 r; tð Þ/2 r; tð Þ ð6Þ

� Dg;0 rð Þ is the diffusion coefficient in the energy group g,
assumed to be only space-dependent.

� tRf ;g r; tð Þ is the space- and time-dependent product between
the average number of neutrons released by fission event and
the macroscopic fission cross-section, in the energy group g.

� Ra;g r; tð Þ is the space- and time-dependent macroscopic absorp-
tion cross-section in the energy group g.

� Rr r; tð Þ is the space- and time-dependent macroscopic removal
cross-section.

� I r; tð Þ is a time- and space-dependent operator acting upon
C r; tð Þ as:

I r; tð ÞC r; tð Þ ¼ $: u0 rð ÞC r; tð Þ½ � þ k0 rð ÞC r; tð Þ ð7Þ
which, in the present case, further simplifies into:

I r; tð ÞC r; tð Þ ¼ @

@z
uz;0 rð ÞC r; tð Þ½ � þ k0 rð ÞC r; tð Þ ð8Þ

The governing equations given by Eq. (2) are complemented by
the following boundary conditions:

/g rb; tð Þ ¼ 0; g ¼ 1;2;8t
C rin; tð Þ given;8t
C rrad; tð Þ ¼ 0;8t

8><
>: ð9Þ

where rb represents the boundary of the system, rrad the radial only
boundary, and rin the inlet only boundary. rrad and rin are thus sub-
sets of rb. All distances related to the boundaries are assumed to be
extrapolated.

As compared to earlier work, e.g., (Pázsit and Dykin, 2017;
Pázsit and Jonsson, 2011; Jonsson and Pázsit, 2011; Pázsit et al.,
2012; Dykin and Pázsit, 2016), the inlet boundary condition with
respect to the precursors of delayed neutrons defined in Eq. (9)
offers a larger flexibility for representing the possible online repro-
cessing of the moving fuel, the inherent mixing of the fuel between
the outlet and the inlet, the possible removal and addition of pre-
cursors, etc. Specifying a given relationship between the outlet and
inlet of the core with respect to the precursors of delayed neutrons,
for instance a pure decay of the form C rin; tð Þ ¼ C rout; t � sð Þ
exp �k0sð Þ as in (Pázsit and Dykin, 2017; Pázsit and Jonsson,
2011; Jonsson and Pázsit, 2011; Pázsit et al., 2012; Dykin and
Pázsit, 2016) (with s representing the transit time in the external
3

loop), can thus be considered as a subcase of the model considered
in this work.

3. Definition of the static problem

The static problem is formulated by removing the time-
dependence in Eq. (2). This results in the following balance
equations:

R1;1;0 rð Þ R2;1;0 rð Þ k0 rð Þ
R1;2;0 rð Þ R2;2;0 rð Þ 0
b0 rð ÞtRf ;1;0 rð Þ b0 rð ÞtRf ;2;0 rð Þ �I0 rð Þ

2
64

3
75�

/1;0 rð Þ
/2;0 rð Þ
C0 rð Þ

2
64

3
75 ¼

0
0
0

2
64

3
75
ð10Þ

where the subscript 0 represents time-independent quantities.
When deriving the point-kinetic equations in Section 5, the

adjoint functions associated with the neutron flux and the precur-
sors of delayed neutrons will be needed. We introduce hereafter
adjoint operators and functions, following common practice in
reactor dynamics (Bell and Glasstone, 1970). For any space-
dependent operator @ rð Þ acting upon a space-dependent function
f rð Þ being a column vector having for components f 1 rð Þ and f 2 rð Þ
for the fast energy and thermal energy groups, respectively, we thus
define the corresponding adjoint operator @þ rð Þ and adjoint func-
tion f þ rð Þ, itself having two components fþ1 rð Þ and fþ2 rð Þ for the fast
energy and thermal energy groups, respectively. The adjoint opera-
tor and functions should fulfil the following condition:

f þ rð Þ;@ rð Þf rð Þ� � ¼ @þ rð Þf þ rð Þ; f rð Þ� � ð11Þ
with the inner product between two space-dependent functions
u rð Þ and w rð Þ being defined, in a two-energy group structure, as:

u rð Þ;w rð Þh i ¼
Z
V

u1 rð Þ
u2 rð Þ

� �T
� w1 rð Þ

w2 rð Þ

� �
d3r ð12Þ

In the equation above, T denotes the transpose operator, and V
represents the volume of the reactor core. Finding the adjoint oper-
ator corresponding to operators involving spatial derivatives
requires some extra attention. In the balance equations given by
Eq. (10), two types of operators involving spatial derivatives
appear: $ � Dg;0 rð Þ$/g;0 rð Þ� �

and $ � u0 rð ÞC0 rð Þ½ �.
For the operator $ � Dg;0 rð Þ$/g;0 rð Þ� �

, one could demonstrate,
using a double integration by parts, Gauss divergence theorem
and the boundary conditions for the static neutron fluxes defined
by Eq. (9), that:

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;$ � D1;0 rð Þ 0

0 D2;0 rð Þ
� �

� $
/1;0 rð Þ
/2;0 rð Þ

" #( )* +

¼ $ � D1;0 rð Þ 0
0 D2;0 rð Þ

� �
� $

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #( )
;

/1;0 rð Þ
/2;0 rð Þ

" #* + ð13Þ

if the following boundary condition for the adjoint function of
the neutron flux is introduced:

/þ
g;0 rbð Þ ¼ 0; g ¼ 1;2 ð14Þ
For the operator $ � u0 rð ÞC0 rð Þ½ �, one could demonstrate, using

an integration by parts, Gauss divergence theorem and the bound-
ary conditions for the precursors of delayed neutrons defined by
Eq. (9), that:

Cþ
0 rð Þ

0

" #
;$ � u0 rð Þ 0

0 0

� �
� C0 rð Þ

0

� �� 	* +

¼ � u0 rð Þ 0
0 0

� �
� $ Cþ

0 rð Þ
0

" #
;

C0 rð Þ
0

� �* + ð15Þ
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if the following boundary condition for the adjoint function of
the neutron flux is introduced:

Cþ
0 rradð Þ ¼ 0 ð16Þ

and

Cþ
0 q; h; zoutð Þ ¼ Cþ

0 q; h; zinð Þ uz;0 q; h; zinð ÞC0 q; h; zinð Þ
uz;0 q; h; zoutð ÞC0 q; h; zoutð Þ ;8 q; hð Þ ð17Þ

using cylindrical coordinates to describe the position in the reactor
core.

It could further be demonstrated that the property of the
adjoint defined in Eq. (11) requires the adjoint functions to fulfil
the following balance equations:

R1;1;0 rð Þ R1;2;0 rð Þ b0 rð ÞtRf ;1;0 rð Þ
R2;1;0 rð Þ R2;2;0 rð Þ b0 rð ÞtRf ;2;0 rð Þ
k0 rð Þ 0 Iþ

0 rð Þ

2
64

3
75�

/þ
1;0 rð Þ

/þ
2;0 rð Þ

Cþ
0 rð Þ

2
64

3
75 ¼

0
0
0

2
64

3
75 ð18Þ

where Eqs. (13) and (15) were used. In Eq. (18), one has:

Iþ
0 rð ÞCþ

0 rð Þ ¼ u0 rð Þ � $Cþ
0 rð Þ � k0 rð ÞCþ

0 rð Þ ð19Þ
which, in the present case, simplifies into:

Iþ
0 rð ÞCþ

0 rð Þ ¼ uz;0 rð Þ @

@z
Cþ
0 rð Þ � k0 rð ÞCþ

0 rð Þ ð20Þ
4. Definition of the dynamic problem in its factorized form

In order to later derive the point-kinetic approximation, the
time- and space-dependent scalar neutron fluxes and concentra-
tion of the precursors of delayed neutrons are factorized as:

/1 r; tð Þ
/2 r; tð Þ

� �
¼ P tð Þ w1 r; tð Þ

w2 r; tð Þ

� �
ð21Þ

and

C r; tð Þ ¼ Q tð Þu r; tð Þ ð22Þ
with P tð Þ and Q tð Þ being the time-dependent amplitude factors
associated with the scalar neutron fluxes and concentration of the
precursors, respectively, whereas wg r; tð Þ; g ¼ 1;2 and u r; tð Þ are
the time- and space-dependent shape functions associated with
the scalar neutron fluxes and concentration of the precursors,
respectively.

The system is assumed to be at steady-state conditions until the
time t ¼ 0, which represents the time at which a perturbation to
the system is applied. For the sake of simplicity, we normalize
the amplitude factors at time t ¼ 0 to unity as:

P 0ð Þ ¼ 1 ¼ P0

Q 0ð Þ ¼ 1 ¼ Q0

�
ð23Þ

This results in:

/1;0 rð Þ
/2;0 rð Þ

" #
¼ /1 r;0ð Þ

/2 r;0ð Þ

� �
¼ w1 r; 0ð Þ

w2 r; 0ð Þ

� �
¼ w1;0 rð Þ

w2;0 rð Þ

" #
ð24Þ

and

C0 rð Þ ¼ C r;0ð Þ ¼ u r;0ð Þ ¼ u0 rð Þ ð25Þ
The boundary conditions expressed in Eq. (9) lead to:

wg rb; tð Þ ¼ 0; g ¼ 1;2;8t
Q tð Þu rin; tð Þ given;8t
u rrad; tð Þ ¼ 0;8t

8><
>: ð26Þ

In order to be able to obtain the point-kinetic approximation
(later derived in this Section), the following normalization condi-
4

tions of the shape functions are introduced for the neutron flux
(Bell and Glasstone, 1970):

@

@t

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;

1
v1;0 rð Þw1 r; tð Þ

1
v2;0 rð Þw2 r; tð Þ

" #* +
¼ /þ

1;0 rð Þ
/þ

2;0 rð Þ

" #
;

1
v1;0 rð Þ

@
@tw1 r; tð Þ

1
v2;0 rð Þ

@
@tw2 r; tð Þ

" #* +
¼ 0

ð27Þ
resulting in:

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;

1
v1;0 rð Þw1 r; tð Þ

1
v2;0 rð Þw2 r; tð Þ

" #* +
¼ /þ

1;0 rð Þ
/þ

2;0 rð Þ

" #
;

1
v1;0 rð Þw1 r;0ð Þ

1
v2;0 rð Þw2 r;0ð Þ

" #* +

¼ /þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;

1
v1;0 rð Þ/1;0 rð Þ

1
v2;0 rð Þ/2;0 rð Þ

" #* +
;8t

ð28Þ
and for the delayed neutron precursors (Bell and Glasstone,

1970):

@

@t
Cþ
0 rð Þ

0

" #
;
u r; tð Þ
0

� �* +
¼ Cþ

0 rð Þ
0

" #
;

@
@tu r; tð Þ
0

� �* +
¼ 0 ð29Þ

resulting in:

Cþ
0 rð Þ

0

" #
;
u r; tð Þ
0

� �* +
¼ Cþ

0 rð Þ
0

" #
;
u r;0ð Þ
0

� �* +

¼ Cþ
0 rð Þ

0

" #
;

C0 rð Þ
0

� �* +
;8t

ð30Þ

where Eqs. (24) and (25) were used for the last equalities in Eqs.
(28) and (30), respectively. Eqs. (28) and (30) also express the fact
that the quantities

/þ
1;0 rð Þ

/þ
2;0 rð Þ

� �
;

1
v1;0 rð Þw1 r; tð Þ

1
v2;0 rð Þw2 r; tð Þ

" #* +
and Cþ

0 rð Þ
0

� �
;
u r; tð Þ
0

� �
 �
are

time-independent. It should be mentioned that the conditions
expressed by Eqs. (27) and (29) are the only possible normaliza-
tions if one wants to derive the point-kinetic equations, according
to which balance equations for the time-dependent amplitude fac-
tors only are obtained. Any other normalization would result in
time-derivatives associated with the shape functions remaining
as well.

The three time-dependent equations given by Eq. (2) are then
multiplied by /þ

1;0 rð Þ, /þ
2;0 rð Þ and Cþ

0 rð Þ, respectively, and inte-
grated on the entire reactor volume. The adjoint balance equa-
tions given by Eq. (18) are multiplied by /1 r; tð Þ, /2 r; tð Þ, and
C r; tð Þ, respectively, taken in their factorized form (i.e., expressed
using Eqs. (21) and (22)), and integrated on the entire reactor
volume. Taking the difference between these two sets of
equations results in:

@

@t
P tð Þ ¼ q tð Þ � b

�
tð Þ

K tð Þ P tð Þ þ k
�

tð ÞQ tð Þ ð31Þ

and

Kd tð Þ @

@t
þ S tð Þ

� �
Q tð Þ ¼ b

�
tð Þ þ q

�
tð Þ

K tð Þ P tð Þ � k
�

tð ÞQ tð Þ ð32Þ

In the equations above, the various quantities are defined
as:

K tð Þ ¼

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;

1
v1;0 rð Þw1 r; tð Þ

1
v2;0 rð Þw2 r; tð Þ

" #* +

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;
tRf ;1;0 rð Þ/1;0 rð Þ
tRf ;2;0 rð Þ/2;0 rð Þ

" #* + ð33Þ
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q tð Þ ¼

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;

dR1;1 r; tð Þ dR2;1 r; tð Þ
dR1;2 r; tð Þ dR2;2 r; tð Þ

� �
� w1 r; tð Þ

w2 r; tð Þ
� �* +

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;
tRf ;1;0 rð Þ/1;0 rð Þ
tRf ;2;0 rð Þ/2;0 rð Þ

" #* + ð34Þ

b
�

tð Þ ¼

b0 rð ÞtRf ;1;0 rð ÞCþ
0 rð Þ

b0 rð ÞtRf ;2;0 rð ÞCþ
0 rð Þ

" #
;

w1 r; tð Þ
w2 r; tð Þ

� �* +

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;
tRf ;1;0 rð Þ/1;0 rð Þ
tRf ;2;0 rð Þ/2;0 rð Þ

" #* + ð35Þ

k
�

tð Þ ¼

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;

k0 rð Þu r; tð Þ
0

� �* +

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;

1
v1;0 rð Þw1 r; tð Þ

1
v2;0 rð Þw2 r; tð Þ

" #* + ð36Þ

Kd tð Þ ¼

Cþ
0 rð Þ

0

" #
;
u r; tð Þ
0

� �* +

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;

1
v1;0 rð Þw1 r; tð Þ

1
v2;0 rð Þw2 r; tð Þ

" #* + ð37Þ

q
�

tð Þ ¼

Cþ
0 rð Þ

Cþ
0 rð Þ

" #
;

b0 rð ÞdtRf ;1 r; tð Þw1 r; tð Þ
b0 rð ÞdtRf ;2 r; tð Þw2 r; tð Þ

� �* +

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;
tRf ;1;0 rð Þ/1;0 rð Þ
tRf ;2;0 rð Þ/2;0 rð Þ

" #* + ð38Þ

S tð Þ ¼
R
Sout

uz;0 rð ÞCþ
0 rð Þu r; tð Þd2r � R

Sin
uz;0 rð ÞCþ

0 rð Þu r; tð Þd2r

Cþ
0 rð Þ

0

" #
;
u r; tð Þ
0

� �* + ð39Þ

In the equations above, the fluctuations of any time-dependent
and most generally space-dependent quantity X r; tð Þ are defined
as:

dX r; tð Þ ¼ X r; tð Þ � X0 rð Þ ð40Þ
with X0 rð Þ representing the steady-state value of X r; tð Þ.

Eqs. (31) and (32) were obtained making use of the fact that the
steady-state values of all quantities appearing in the balance equa-
tions fulfil Eq. (10). Moreover, the following relationships were
utilized:

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;r � D1;0 rð Þ 0

0 D2;0 rð Þ
� �

�r w1 r; tð Þ
w2 r; tð Þ

� �� 	* +

¼ r � D1;0 rð Þ 0
0 D2;0 rð Þ

� �
�r /þ

1;0 rð Þ
/þ

2;0 rð Þ

" #( )
;

w1 r; tð Þ
w2 r; tð Þ

� �* + ð41Þ

Cþ
0 rð Þ

0

" #
;r � u0 rð Þ 0

0 0

� �
� u r; tð Þ

0

� �� 	* +

þ u0 rð Þ 0
0 0

� �
� r Cþ

0 rð Þ
0

" #
;
u r; tð Þ
0

� �* +

¼ S tð Þ Cþ
0 rð Þ

0

" #
;
u r; tð Þ
0

� �* +
ð42Þ

Eqs. (41) and (42) can be derived in the same manner as Eqs.
(13) and (15), using the boundary conditions of the shape functions
introduced in Eq. (26), and more precisely wg rb; tð Þ ¼ 0; g ¼ 1;2;8t
and u rrad; tð Þ ¼ 0;8t.
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Finally, the normalization conditions corresponding to Eqs. (27)-
(30) were introduced to eliminate the volume integrals involving
partial time-derivatives related to any of the shape functions. The
normalization conditions are precisely introduced to eliminate
such terms. It is only thanks to the normalization conditions
defined by Eqs. (27) and (29) that expressions for the time varia-
tions of the amplitude factors P tð Þ and Q tð Þ alone are obtained, as
earlier mentioned. Eqs. (31) and (32) correspond to the classical
point-kinetic equations, although their expressions are more
involved in the present case of MSRs as compared to the case of
reactorswith fixed fuel. These equations are comparable to the ones
obtained elsewhere (see e.g. (Pázsit et al., 2014) in one-group diffu-
sion theory and (Dykin and Pázsit, 2016) in two-group diffusion
theory), if the same modelling assumptions are used.

Comparing the point-kinetics equations for MSRs with the ones
for reactors with fixed fuel, beyond the fact that the shape func-
tions are different with respect to the neutron fluxes and precur-
sors of delayed neutrons, respectively, a new term, S tð Þ, exists in
the time-dependent equation associated to the amplitude factor
of the precursors of delayed neutrons, as earlier pointed out by
Pázsit et al. in (Pázsit et al., 2014). As Eq. (39) demonstrates, this
term is not equal to zero in an MSR. This is in clear contrast with
systems with fixed fuel, for which strict equality with zero would
be obtained, since in such systems the concentration of the neu-
tron precursors has the same boundary conditions as for the scalar
neutron flux. The fact that such a simple boundary condition is not
applicable in MSRs makes such systems more challenging when
deriving reactor dynamics approximations.

5. Linearization of the point-kinetic equations

The normalization of the shape functions given by Eqs. (28) and
(30), respectively, leads to:

K tð Þ ¼

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;

1
v1;0 rð Þ/1;0 rð Þ

1
v2;0 rð Þ/2;0 rð Þ

" #* +

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;
tRf ;1;0 rð Þ/1;0 rð Þ
tRf ;2;0 rð Þ/2;0 rð Þ

" #* + ¼ K0;8t ð43Þ

and

Kd tð Þ ¼

Cþ
0 rð Þ

0

" #
;

C0 rð Þ
0

� �* +

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;

1
v1;0 rð Þ/1;0 rð Þ

1
v2;0 rð Þ/2;0 rð Þ

" #* + ¼ Kd;0;8t ð44Þ

Then Eqs. (31) and (32) can be rewritten as:

@
@t P tð Þ ¼ q tð Þ�b

�
tð Þ

K0
P tð Þ þ k

�
tð ÞQ tð Þ

Kd;0
@
@t þ S tð Þ� �

Q tð Þ ¼ b
�

tð Þþq� tð Þ
K0

P tð Þ � k
�

tð ÞQ tð Þ

8<
: ð45Þ

Following the same approach as in (Pázsit et al., 2014), all time-
dependent quantities are expressed as sums between their steady-
state values and their deviations from steady-state – see Eq. (40).
Neglecting second-order perturbation terms and taking a Fourier
transform gives:

dP xð Þ ¼ 1

ixþb
�
0

K0

Kd;0 ix

Kd;0 ixþk
�
0

1
K0

q xð Þ þ k
�
0

Kd;0 ixþk
�
0
q
�
xð Þ

� �
� Kd;0 ix

Kd;0 ixþk
�
0

d b
�
xð Þ

K0

þ Kd;0 ix

Kd;0 ixþk
�
0
d k

�
xð Þ � k

�
0Kd;0

Kd;0 ixþk
�
0
dS xð Þ

8>><
>>:

9>>=
>>;

dQ xð Þ ¼ 1
Kd;0 ixþk

�
0
� d b

�
xð Þþq� xð Þ
K0

þ b
�
0

K0
dP xð Þ � Kd;0dS xð Þ � d k

�
xð Þ

h i

8>>>>>>><
>>>>>>>:

ð46Þ
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which represent the linearized point-kinetic equations in the fre-
quency domain. For the sake of simplicity, the same notations were
used for functions f tð Þ depending on time t and their Fourier-
transform counterpart f xð Þ, with x being the angular frequency.
In first order, the various terms appearing in Eq. (46) are defined as:

q xð Þ �

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;

dR1;1 r;xð Þ dR2;1 r;xð Þ
dR1;2 r;xð Þ dR2;2 r;xð Þ

� �
� /1;0 rð Þ

/2;0 rð Þ

" #* +

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;
tRf ;1;0 rð Þ/1;0 rð Þ
tRf ;2;0 rð Þ/2;0 rð Þ

" #* +

ð47Þ

d b
�
xð Þ ¼

b0 rð ÞtRf ;1;0 rð ÞCþ
0 rð Þ

b0 rð ÞtRf ;2;0 rð ÞCþ
0 rð Þ

" #
;

dw1 r;xð Þ
dw2 r;xð Þ

� �* +

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;
tRf ;1;0 rð Þ/1;0 rð Þ
tRf ;2;0 rð Þ/2;0 rð Þ

" #* + ð48Þ

d k
�
xð Þ ¼

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;

k0 rð Þdu r;xð Þ
0

� �* +

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;

1
v1;0 rð Þ/1;0 rð Þ

1
v2;0 rð Þ/2;0 rð Þ

" #* + ð49Þ

q
�
xð Þ �

Cþ
0 rð Þ

Cþ
0 rð Þ

" #
;

b0 rð ÞdtRf ;1 r;xð Þ/1;0 rð Þ
b0 rð ÞdtRf ;2 r;xð Þ/2;0 rð Þ

" #* +

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;
tRf ;1;0 rð Þ/1;0 rð Þ
tRf ;2;0 rð Þ/2;0 rð Þ

" #* + ð50Þ

dS xð Þ ¼
R
Sout

uz;0 rð ÞCþ
0 rð Þdu r;xð Þd2r � R

Sin
uz;0 rð ÞCþ

0 rð Þdu r;xð Þd2r

Cþ
0 rð Þ

0

" #
;

C0 rð Þ
0

� �* +

ð51Þ
and

b
�
0 ¼

b0 rð ÞtRf ;1;0 rð ÞCþ
0 rð Þ

b0 rð ÞtRf ;2;0 rð ÞCþ
0 rð Þ

" #
;

/1;0 rð Þ
/2;0 rð Þ

" #* +

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;
tRf ;1;0 rð Þ/1;0 rð Þ
tRf ;2;0 rð Þ/2;0 rð Þ

" #* + ð52Þ

k
�
0 ¼

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;

k0 rð ÞC0 rð Þ
0

� �* +

/þ
1;0 rð Þ

/þ
2;0 rð Þ

" #
;

1
v1;0 rð Þ/1;0 rð Þ

1
v2;0 rð Þ/2;0 rð Þ

" #* + ð53Þ

where the normalization conditions given by Eqs. (28) and (30)
were used, as well as Eq. (17). A closer examination of Eqs. (48),
(49) and (51) reveals that the knowledge of the fluctuations of the
shape functions dwg r;xð Þ; g ¼ 1;2 and du r;xð Þ is required in order

to estimate d b
�
xð Þ, d k

�
xð Þ and dS xð Þ. The fluctuations of the shape

functions can be evaluated as detailed below.
Using a first-order approximation, one has for the neutron flux:

d/1 r;xð Þ
d/2 r;xð Þ

� �
� dP xð Þ � /1;0 rð Þ

/2;0 rð Þ

" #
þ dw1 r;xð Þ

dw2 r;xð Þ
� �

ð54Þ

The normalization condition given by Eq. (27), together with
the initial condition dwg r; t ¼ 0ð Þ ¼ 0; g ¼ 1;2 derived from Eq.
(24), results in:
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@
@t

1
v1;0 rð Þ/

þ
1;0 rð Þ

1
v2;0 rð Þ/

þ
2;0 rð Þ

" #
;

dw1 r; tð Þ
dw2 r; tð Þ

� �* +
¼ 0

()
1

v1;0 rð Þ/
þ
1;0 rð Þ

1
v2;0 rð Þ/

þ
2;0 rð Þ

" #
;

dw1 r; tð Þ
dw2 r; tð Þ

� �* +

¼
1

v1;0 rð Þ/
þ
1;0 rð Þ

1
v2;0 rð Þ/

þ
2;0 rð Þ

" #
;

dw1 r; t ¼ 0ð Þ
dw2 r; t ¼ 0ð Þ

� �* +
¼ 0

ð55Þ

which gives in the frequency domain:

1
v1;0 rð Þ/

þ
1;0 rð Þ

1
v2;0 rð Þ/

þ
2;0 rð Þ

" #
;

dw1 r;xð Þ
dw2 r;xð Þ

� �* +
¼ 0 ð56Þ

From Eqs. (54) and (56), one concludes that:

1
v1;0 rð Þ/

þ
1;0 rð Þ

1
v2;0 rð Þ/

þ
2;0 rð Þ

" #
;

d/1 r;xð Þ
d/2 r;xð Þ

� �* +

¼ dP xð Þ
1

v1;0 rð Þ/
þ
1;0 rð Þ

1
v2;0 rð Þ/

þ
2;0 rð Þ

" #
;

/1;0 rð Þ
/2;0 rð Þ

" #* + ð57Þ

or

dP xð Þ ¼

1
v1;0 rð Þ/

þ
1;0 rð Þ

1
v2;0 rð Þ/

þ
2;0 rð Þ

" #
;

d/1 r;xð Þ
d/2 r;xð Þ

� �* +

1
v1;0 rð Þ/

þ
1;0 rð Þ

1
v2;0 rð Þ/

þ
2;0 rð Þ

" #
;

/1;0 rð Þ
/2;0 rð Þ

" #* + ð58Þ

Once dP xð Þ has been evaluated from Eq. (58), the fluctuations of
the shape functions are thus given, via Eq. (54), as:

dw1 r;xð Þ
dw2 r;xð Þ

� �
� d/1 r;xð Þ

d/2 r;xð Þ

� �
� dP xð Þ � /1;0 rð Þ

/2;0 rð Þ

" #
ð59Þ

Likewise, using a first-order approximation, one has for the pre-
cursors of delayed neutrons:

dC r;xð Þ � dQ xð ÞC0 rð Þ þ du r;xð Þ ð60Þ
The normalization condition given by Eq. (29), together with

the initial condition du r; t ¼ 0ð Þ ¼ 0 derived from Eq. (25), results
in:

@
@t

Cþ
0 rð Þ

0

" #
;

du r; tð Þ
0

� �* +
¼ 0

() Cþ
0 rð Þ

0

" #
;

du r; tð Þ
0

� �* +
¼ Cþ

0 rð Þ
0

" #
;

du r; t ¼ 0ð Þ
0

� �* +
¼ 0

ð61Þ
which gives in the frequency domain:

Cþ
0 rð Þ

0

" #
;

du r;xð Þ
0

� �* +
¼ 0 ð62Þ

From Eq. (62), one concludes that:

Cþ
0 rð Þ

0

" #
;

dC r;xð Þ
0

� �* +
¼ dQ xð Þ Cþ

0 rð Þ
0

" #
;

C0 rð Þ
0

� �* +
ð63Þ

or

dQ xð Þ ¼

Cþ
0 rð Þ

0

" #
;

dC r;xð Þ
0

� �* +

Cþ
0 rð Þ

0

" #
;

C0 rð Þ
0

� �* + ð64Þ
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Once dQ xð Þ has been evaluated from Eq. (64), the fluctuations
of the shape functions are thus given, using Eq. (60), as:

du r;xð Þ � dC r;xð Þ � dQ xð ÞC0 rð Þ ð65Þ
6. Derivation of the verification method

Eq. (46) can be compared to the one obtained in the case of
reactors with fixed fuel, for which the following relation holds
(Bell and Glasstone, 1970):

dP xð Þjuz;0¼0 ¼ G0 xð Þdq xð Þ ð66Þ

with the zero-power reactor transfer function G0 xð Þ being defined
as:

G0 xð Þ ¼ 1

ix K0 þ b
�
0

ixþk
�
0

� 
 ð67Þ

In the case of reactors with fixed fuel, a simple analytical
expression exists between the point-kinetic component of the
induced neutron noise dP xð Þjuz;0¼0 and the reactivity noise dq xð Þ,
via the zero-power reactor transfer function G0 xð Þ. Once the per-
turbation of the system is defined, dq xð Þ can be estimated accord-
ingly. Multiplying dq xð Þ by G0 xð Þ thus gives the point-kinetic
component of the induced neutron noise, which could also be com-
pared to the point-kinetic component extracted from the full solu-
tion to the problem via Eq. (58). Varying the angular frequency of
the applied perturbation allows verifying whether the extracted
point-kinetic response from a code output coincides with its
expected analytical solution. This is exactly the principle of the
verification method proposed in (Demazière et al., 2017) for the
case of reactors with fixed fuel.

In the case of MSRs, no simple analytical expression for the
zero-power reactor transfer function exists. Nevertheless, a func-

tional dependence between dP xð Þ, q xð Þ, q� xð Þ, d b
�
xð Þ, d k

�
xð Þ,

and dS xð Þ exists, as Eq. (46) highlights. Since the last four terms
themselves only depend on the deviation from point-kinetics of
the neutron flux, dwg r;xð Þ; g ¼ 1;2, and of the concentration of
the precursors of delayed neutrons, du r;xð Þ, the functional depen-
dence can be formally recast into dP xð Þ ¼ f dw1 r;xð Þ;ð
dw2 r;xð Þ; du r;xð ÞÞ. Likewise, for the precursors of delayed
neutrons, a functional dependence between dQ xð Þ, dwg r;xð Þ;
g ¼ 1;2, and du r;xð Þ, also exists, i.e., dQ xð Þ ¼ g dw1 r;xð Þ;ð
dw2 r;xð Þ; du r;xð ÞÞ.

A verification method equivalent to the case of reactors with
fixed fuel can thus be derived. The method is aimed at demonstrat-
ing that the functional dependencies f and g are verified between
dP xð Þ, dQ xð Þ, dwg r;xð Þ; g ¼ 1;2 and du r;xð Þ estimated from the
code output.

Assuming that the neutron noise d/g r;xð Þ; g ¼ 1;2 and the
noise dC r;xð Þ in the concentration of the precursors of delayed
neutrons induced by a given perturbation are estimated by a soft-
ware, the verification method proposed in this paper goes as
follows:

1. dP xð Þ and dQ xð Þ are extracted from the code output using Eqs.
(58) and (65), respectively.

2. dwg r;xð Þ; g ¼ 1;2 and du r;xð Þ are extracted from the code out-
put using Eqs. (59) and (65), respectively.

3. The terms defined in Eqs. (43), (44), (47)-(53) are evaluated.
4. dP xð Þ and dQ xð Þ are also estimated from Eq. (46) (with dP xð Þ

evaluated from the first equation and used on the right-hand
side of the second equation for dQ xð Þ).
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5. dP xð Þ and dQ xð Þ estimated at step 1 are compared with those
estimated at step 4.

The process above is repeated for various angular frequencies
x. Step 5 then allows determining whether the software works
as intended.

7. Application and demonstration of the verification method

For the purpose of illustration, the method derived above is
applied to a simple MSR solver. The system being considered cor-
responds to the test case used in (Pázsit et al., 2014): a homoge-
neous one-dimensional reactor of size 300 cm, in which the fuel
is circulating through the core at a homogeneous speed uz;0 of
50 cm/s. One energy group and one group of delayed neutrons
are assumed. The reactor composition is thus entirely defined by
its macroscopic data tRf ;0 ¼ 1:0075� 10�2cm�1, Ra;0 ¼ 10�2cm�1,
and D0 ¼ 0:33 cm, and by its kinetic data b0 ¼ 650 pcm and
k0 ¼ 0:1 s�1. The fission cross-section is also adjusted in order to
obtain a critical system. The dynamic problem is defined by intro-
ducing a mono-chromatic point-wise perturbation in the macro-
scopic absorption cross-section at the center of the reactor. A
frequency-independent noise source is assumed (white noise). A
time delay s of 8 s between the outlet and the inlet is assumed
for the decay of the precursors of delayed neutrons, as:

Cin tð Þ ¼ Cout t � sð Þexp �k0sð Þ ð68Þ
A one-energy group diffusion-based solver was developed to

estimate the static solution and the fluctuations in neutron flux
and in the concentration of the precursors of delayed neutrons in
the frequency-domain directly. The adjoint functions to the static
problem were then determined from the static forward solution
following the derivation in (Pázsit et al., 2014), which yields:

/þ
0 zð Þ ¼ /0 �zð Þ ð69Þ

and

Cþ
0 zð Þ ¼ k0C0 �zð Þ= b0tRf ;0

� � ð70Þ
The spatial discretization of the solver is based on finite differ-

ences. In the present test case, the mesh size was set to 1 cm, with
the discretized quantities evaluated at the faces of each mesh
(point-scheme).

The verification process described in Section 6 is illustrated for
the solver under investigation. Fig. 1 and Fig. 2 show the amplitude
and phase, respectively, of the point-kinetic component dP xð Þ of
the neutron flux, and Fig. 3 and Fig. 4 show the amplitude and
phase, respectively, of the point-kinetic component dQ xð Þ of the
precursors of delayed neutrons. The figures also include the rela-
tive differences computed, for the amplitude factor dP xð Þ related
to the neutron flux, as:

amplitudeof dP xð Þ � amplitudeof f dw1 r;xð Þ; dw2 r;xð Þ; du r;xð Þð Þ
amplitudeof f dw1 r;xð Þ; dw2 r;xð Þ; du r;xð Þð Þ

ð71Þ
and for the amplitude factor dQ xð Þ related to the precursors of

delayed neutrons, as:

amplitude of dQ xð Þ � amplitudeof g dw1 r;xð Þ; dw2 r;xð Þ; du r;xð Þð Þ
amplitudeof g dw1 r;xð Þ; dw2 r;xð Þ; du r;xð Þð Þ

ð72Þ
The differences in absolute terms are computed, for the phase of

the amplitude factor dP xð Þ related to the neutron flux, as:

phase of dP xð Þ � phase of f dw1 r;xð Þ; dw2 r;xð Þ; du r;xð Þð Þ ð73Þ



Fig. 4. Variation of the phase of the point-kinetic component dQ xð Þ of the
precursors of delayed neutrons.

Fig. 1. Variation of the amplitude of the point-kinetic component dP xð Þ of the
neutron flux.

Fig. 2. Variation of the phase of the point-kinetic component dP xð Þ of the neutron
flux.

Fig. 3. Variation of the amplitude of the point-kinetic component dQ xð Þ of the
precursors of delayed neutrons.
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and for the phase of the amplitude factor dQ xð Þ related to the pre-
cursors of delayed neutrons, as:

phase of dQ xð Þ � phase of g dw1 r;xð Þ; dw2 r;xð Þ; du r;xð Þð Þ
ð74Þ

In Eqs. (71)-(74), dP xð Þ and dQ xð Þ are directly computed from
the code output using Eqs. (58) and (64), respectively, whereas the
functions f and g, respectively, represent the evaluation of the cor-
responding terms dP xð Þ and dQ xð Þ using Eq. (46).

As can be seen in those figures, the agreement between the
point-kinetic components directly computed from Eqs. (58) and
(64) for the neutron flux and the precursors of delayed neutrons,
respectively, and computed using the expressions given by Eq.
(46) is excellent, both regarding the amplitude and phase. Despite
varying over several orders of magnitude as a function of fre-
quency, the amplitudes of the point-kinetic terms are correctly
predicted. The peaks present at given frequencies in the amplitude
of dP xð Þ and dQ xð Þ correspond to resonances introduced by the
recirculation of the precursors of delayed neutrons, as explained
in, e.g., (Pázsit et al., 2014). The agreement between dP xð Þ and
dQ xð Þ directly computed from the code output and the functions
f and g, respectively, demonstrates that the solver is working sat-
isfactorily. In case of discrepancies, the examination of those may
help to identify possible ‘‘bugs” in the solver.

8. Conclusions

In this paper, the verification method earlier developed in
(Demazière et al., 2017) for the case of reactors with fixed fuel
was extended to the case of reactors with moving fuel. Whereas
in the former case, the extraction of the point-kinetic component
from the results of a code can be directly compared with an analyt-
ical expression, the comparison in the latter case requires addi-
tional quantities, which can only be estimated from the
simulations. Such quantities appear on the right hand-side of Eq.
(46) for dP xð Þ as:

� Kd;0ix

Kd;0ixþ k
�
0

d b
�
xð Þ

K0
þ Kd;0ix

Kd;0ixþ k
�
0

d k
�
xð Þ � k

�
0Kd;0

Kd;0ixþ k
�
0

dS xð Þ

If the above was negligible in comparison with:

1
K0

q xð Þ þ k
�
0

Kd;0ixþ k
�
0

q
�
xð Þ

" #



Fig. 6. Variation of the amplitude of the various contributions to dQ xð Þ in Eq. (46).
Each contribution is represented after multiplication by its corresponding pre-
factor in this equation. The contribution related to q

�
xð Þ is identically equal to zero

in the considered test case and is thus omitted.
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a closed analytical expression for the expected point-kinetic
component could be obtained, as for the case of reactors with fixed
fuel. As Eqs. (48), (49), and (51) demonstrate, the estimation of

d b
�
xð Þ, d k

�
xð Þ and dS xð Þ, respectively, relies on the prior estima-

tion of the shape functions dwg r;xð Þ; g ¼ 1;2 and du r;xð Þ.
Although such estimates can be extracted from a code output fol-
lowing the procedure highlighted in Section 6, this significantly
complicates the verification method, as compared to its counter-
part for fixed fuel.

An examination of the respective contributions of the terms

associated with d b
�
xð Þ, d k

�
xð Þ and dS xð Þ for the case of the one-

dimensional one-energy group homogeneous MSR considered in
Section 7 shows that the contribution related to dS xð Þ is significant
at intermediate and low frequencies, as Fig. 5 demonstrates. This
contribution cannot be neglected, whereas the ones due to

d b
�
xð Þ and d k

�
xð Þ are comparatively much smaller in the consid-

ered test case.
A similar analysis for the contributions to dQ xð Þ is represented

in Fig. 6. The most important terms are the contribution related to
dP xð Þ over the entire frequency range, the contribution related to
dS xð Þ in the lower end of the intermediate frequency range, and

the contribution related to d b
�
xð Þ at high frequencies.

Although demonstrated in this paper for a homogeneous sys-
tem, the method is applicable to any heterogeneous system, as
for the case of reactors with fixed fuel (Demazière et al., 2017).
To the authors’ knowledge, this is one of very few verification
methods, where an analytical functional dependence can be used
to verify the proper implementation of a solver, despite the system
being heterogeneous. Compared to other verification methods, no
simplification of the system is required, i.e., considering a homoge-
neous or piece-wise homogeneous system, for which a reference
analytical solution could be estimated, can be avoided. Further-
more, refining the discretization is not indispensable (although
additional tests by changing the discretization are beneficial).
Compared to the case of MMS in particular, there is no need to
compute the source term resulting from the mathematical expres-
sion chosen for the assumed solution. Moreover, no modification of
the source code is necessary, as this would otherwise often be the
Fig. 5. Variation of the amplitude of the various contributions to dP xð Þ in Eq. (46).
Each contribution is represented after multiplication by its corresponding pre-
factor in this equation. The contribution related to q

�
xð Þ is identically equal to zero

in the considered test case and is thus omitted.
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case when using the MMS. Compared to validation methods, no
access to measurement data or to a reference solution provided
by another verified/validated code is called for. The proposed
method requires no additional data, code development/modifica-
tion, or extra determination of reference analytical solutions/man-
ufactured solutions.

The method can be extended and applied to transport solvers
and multi-energy group solvers. Any time- or frequency-
dependent neutronic MSR solver can be verified following the
methodology presented in this paper. In addition to the availability
of the space-dependence of the macroscopic cross-sections and
kinetic parameters, the application of the method requires the
prior estimation of the spatial dependence of the static neutron
flux and concentration of the precursors of delayed neutrons,
together with the corresponding adjoint functions. Once all those
distributions are estimated, the time or frequency response of
the system to a monochromatic perturbation for various frequen-
cies is estimated. The extraction of various terms from those
responses following the method presented above allows verifying
the proper functional dependence between those terms, thus
demonstrating the proper implementation of the solver for MSR.
In essence, the method checks the ability of a code to reproduce
one of the basic features of a nuclear reactor, i.e., point-kinetics.
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