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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Mixed-model assembly usually involves numerous component variants that require effective materials supply. Here, picking activities are often 
performed manually, but the prospect of robotics for bin picking has potential to improve quality while reducing man-hour consumption. Robots 
can make use of vision systems to learn how to perform their tasks. This paper aims to understand the differences in two learning approaches, 
supervised learning, and unsupervised learning. An experiment containing engineering preparation time (EPT) and recognition quality (RQ) is 
performed. The findings show an improved RQ but longer EPT with a supervised compared to an unsupervised approach. 
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1. Introduction 

Mixed-model assembly usually involves numerous 
component variants that require effective materials supply 
[1]. Picking and sorting activities are often performed in 
warehouses or at logistics workspaces, e.g. as kit preparation, 
in order to arrange materials for the assembly processes, and 
high levels of quality, flexibility, and productivity is 
essential. 

Picking processes involve extensive material handling 
work, but it also involves considerable engineering work with 
keeping the process up to date with changes in the product 
structure and SKU (Stock-Keeping Unit) assortment. The 
engineering work is critical for normal operation of the 
picking process, and it is important that the engineers are 
equipped with effective tools to this end [2]. 
 Using robotics for picking and sorting activities has the 
potential to improve quality and productivity [3]. While 
robots tend to perform effectively in deterministic settings 
where all critical factors are known before task execution, the 

application of robots to picking activities usually implies 
dealing with materials arranged as received from suppliers, 
in form of picking and sorting of randomly organized 
materials inside bins – often referred to as bin picking [4]. 
Bin picking is a challenge in most robotic applications, owing 
to the precise information needed about the items position 
and orientation for the robot to effectively perform its task. 

Vision systems – referring to a scanner for taking 2D or 
3D images of objects, and a software for analyzing the 
images to extract useful information – can be an effective 
support for robotic bin picking applications, whereby robots 
can learn to recognize components in order to perform their 
tasks. Robots can learn in accordance with two principal 
approaches: supervised and unsupervised. With the former, a 
person shows the robot what to recognize, for example by 
means of indicating the shapes of items to pick on a set of 
images, a process hereon forth denoted as annotation. With 
the latter, the learning takes place automatically by means of 
a deep learning model which is capable of distinguishing 
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objects and object features, ideally without the support of a 
person. 

While introducing robotics for picking activities is 
appealing from a standpoint of improved quality and 
productivity, it is crucial to consider the work involved with 
setting up and maintaining normal operation of the process. 
With robot-supported applications, reconfigurability of tasks 
and resources [5] are key from both an operational and from 
an organisational standpoint. Supervised and unsupervised 
learning presents two different approaches that may affect 
both operational performance and the engineering work 
required to maintain the process, which, in turn, play key 
roles for reconfigurability of robot tasks and collaboration 
between humans and robots. Previous research presents little 
guidance on which learning approach to use, and what the 
associated effects are of using either option. Therefore, this 
paper aims to understand the differences in two learning 
approaches: supervised learning and unsupervised learning, 
with respect to picking and sorting activities in robotic bin 
picking applications. 

The paper presents a laboratory experiment containing 
engineering preparation time and recognition quality with 
respect to supervised and unsupervised learning as means of 
training for vision systems to support bin picking 
applications. In the next section, the method is presented, 
followed by a presentation of the results. Finally, the results 
are discussed, and conclusions are formulated. 

2. Frame of reference and study objective 

Certain aspects within the area of industry 4.0 regarding 
kit preparation have been dealt with in previous research, 
such as human factors and cognitive automation of kitting 
processes, [6], material feeding [7] and digital twins for 
supply chain [7]. 

Several studies have addressed the picking information 
system and cognitive automation solutions used to support 
manual kit preparation [6], [8-10]. All these studies uses time 
efficiency of the picker as the main KPI, the studies also 
consider picking quality, in terms of how many picking 
errors are made. An economic comparison of different 
paperless picking information systems in a warehouse order 
picking context has been executed [6]. In [8], focus was on 
comparisons with respect to the use of different picking 
information systems, e.g. pick-by-light, pick-by-voice, and 
pick-by-HUD, while [9] considered the use of augmented 
reality to support manual kit preparation. In [10], a time-
efficiency and picking quality comparison was made 
between confirmation methods in manual kit preparation. 

Increased physical automation, e.g. robotic kit preparation, 
was addressed more than twenty years ago (e.g. [11,12]) but 
has not yet gained widespread application within industry. It 
is possible to design kit preparation in collaborative setups, 
where a robot and a human operator work together. One 
potential advantage of collaborative setups is that the 
flexibility of the human operator may be used to manage 
some of the complexity in the system. Collaborative setups 
have been addressed in several publications, considering 
different perspectives, such as safety, time efficiency, and 

ergonomics (e.g. [13-16]). Fully automated picking entails 
multiple challenges, including finding suitable gripper types 
to match the component characteristics [17-19]. Another 
important challenge is to get the robot to match the location 
and the orientation of the items to be picked. Unless the 
orientation of the items is predetermined and fix, some 
mechanism is required to support the robot in this. 

Robot picking of items that are randomly oriented inside 
a bin is often referred to as bin picking and there are 
numerous technologies that can support this sort of process 
[20]. The use of vision systems to support bin picking has 
received some attention, most of which focuses on technical 
aspects in the design of such systems. [21] propose a visual 
recognition system for learning-based bin-picking. [22] 
propose a deep learning approach for image completion and 
masking, which should be applied in robotic bin picking. [23] 
focus on picking of textureless planar-faced objects propose 
a depth-based vision-guided robot bin-picking system that 
utilises a deep convolutional neural network model. 

While there are publications that address certain technical 
aspects of automated bin picking with regard to machine 
learning, less research seems to have taken perspectives 
directly relevant to those production or logistics practitioners 
who may apply robotic picking in industrial applications, 
such as kit preparation, and who are facing choices of which 
type of system to choose. To the best of our knowledge, there 
is no study available that directly compares supervised and 
unsupervised learning in vision-guided robotic bin picking 
applications. An effective bin picking process relies on 
several aspects to synergise, where the vision system plays 
one of the key roles. However, the robot’s path planning is 
also essential, as is the type of gripper used, for the robot to 
successfully be able to grasp components. Therefore, in order 
to carry out a fair comparison of the two learning approaches, 
the focus with the experiment in this paper is set on the 
quality of vision results, in terms of recognition quality, and 
on the time involved in producing the results, in terms of 
engineering preparation time. The robot’s ability to grasp 
components are outside the scope of this research, as there 
are many more factors that come into play besides the vision 
results. 

Engineering preparation for manual kit preparation in 
terms of task descriptions and ergonomic analysis can be 
very time consuming and is often made based on 
experiences. Production planners tend to neglect actions 
proposed by system planners because they are unwilling to 
trust techniques they know are inadequate [24]. Detailed 
planning or optimisation also becomes unattainable if 
planning systems use inaccurate data [25]. Optimisation can 
become meaningful, and less manual work will be needed in 
the planning and control process [26]. By using more 
automatic solutions with help of AI and optimisation 
algorithms, the time for preparation could decrease and the 
picking quality can increase. 

3. Method 

An experiment was designed to compare the engineering 
preparation time and the recognition accuracy of two 
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learning approaches: supervised and unsupervised. The two 
approaches were compered in terms of five different 
categories and criteria with respect to the ability of the vision 
system to provide a robot manipulator with reliable 
information in order to carry out bin picking of components 
in an application for kit preparation. The criteria used for 
distinguishing each of the categories are shown in Table 1. 

 
Table 1. Criteria and categories used for analysing recognition results 

Category Criteria 

Detected 
An object has been indicated as detected by a square in 
the 2D-results, and by 3-axis spatial coordinates on the 
object in the 3D-results. 

Undetected The object is clearly visible in the 2D- and 3D-scans 
but has not been indicated as a detected object. 

Correct 
detected 
objects 

A detected object has been assigned 3-axis spatial 
coordinates at its center of volume that is aligned with 
key shape features of the object.   

Partially 
correct 

detected 
objects 

A detected object has been assigned 3-axis spatial 
coordinates at its center of volume, but the coordinates 
are randomly aligned with key shape features of the 
object for different objects of the same type.   

Incorrect 
detected 
objects 

A detected object has been assigned 3-axis spatial 
coordinates that are not centered at the object’s center 
of volume, and that is randomly aligned with key shape 
features of the object for different objects of the same 
type.   

The analysis was carried out by statistical comparison of 
the engineering preparation time and the grasping accuracy 
between the two learning approaches. 

 
3.1 Experiment set-up 
A setup for comparing the effects of two learning approaches 
for vision systems with respect to kit preparation was built. 
The setup simulated a process for kit preparation, whereby a 
3D-scanner was positioned above a rack with bins that 
contained the components. The setup involved a Solomon 
SLM 3DRBP-0501C 3D-scanner and the accompanying 
software Accupick v.3.1.2. The rack configuration, in terms 
of the tilt and height of the shelf levels, was adjusted with 
respect to the reach of a robot arm positioned in front of the 
rack, see Figure 1. The robot’s reach was tested in order to 
ensure that robot could reach inside each bin presented in the 
rack, and the scanner’s position relative to the rack was 
adjusted, in terms of its height, tilt, and position relative to 
the rack center, so that all nine bins in the rack could be 
scanned successfully in a single scan. 

 
3.2 Component selection 
Three components were selected to be analyzed in the 
experiment. The selection criteria were to include 
components that represented different recognition 
requirements and different geometry challenges in terms of 
graspability (this is out of scoop for this paper). Hence, the 
components differed in terms of their visual characteristics 
(see Figure 2), but were all light in terms of weight, and all 
could be picked by means of a two-finger servo-electric 
gripper.  

As shown in Figure 2, Component 1 had a simple shape 
and, in terms of orientation, only required differentiation 
between its long and short sides, in addition to knowledge 
about its center of volume. Component 2 was cylindrical and 
slightly more complex, where four small holes penetrated the 

component between its planar faces. Pairwise, the four holes 
were positioned with different distances apart. Component 2 
had an orientation requirement with respect to the four holes, 
in addition to knowledge of its center of volume. Component 
3 was more complex and had to be grasped by its end. 
Furthermore, multiple items of component 3 were prone to 
tangle inside the bin. 
 

3.3 Engineering preparation activities 
With respect to engineering preparation time, the three 
components were prepared for bin picking by means of the 
two learning approaches. For each of the three components, 
the time for performing the activities involved in preparing 
the vision system to recognize the components was 
measured, using both learning approaches. The engineering 
preparation time was estimated as the total time required for 
each component and learning approach. For each component, 
the measurement of engineering preparation time was started 
the moment the engineer grabbed a bin with the components 
that the vision system should learn. 

The activities involved with the supervised learning 
approach were as follows: 

1. Grab bin and position bin in field-of-view of the 
scanner (photography activity) 

2. Acquire 25 pictures of the bin contents, and shuffle 
the contents between each picture (photography 
activity) 

3. Determine 2D geometric figure approximation to use 
for annotation of principal orientations of the 
component in the vision-system software (annotation 
activity) 

4. Annotate all instances of the principal orientations 
(one annotation class for each principal orientation) 
(annotation activity) 

Fig. 2. The three component types considered: Component 1 (left), 
Component 2 (middle), Component 3 (right) 

Fig. 1. Overview of the experiment setup 
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5. Generate deep-learning model (training activity) 
6. Test and verify the learning results by performing 

recognition of one of the pictures in the input picture 
set (validation activity) 

7. In case of failed verification, readjust the settings 
until the verification passed (validation activity) 

With the unsupervised learning approach, the activities 
were as follows: 

1. Test and verify the learning results by performing a 
recognition on the bin to pick from (validation 
activity) 

2. In case of failed verification, readjust the settings 
until the verification passes (validation activity) 

With the supervised approach, the final step, in terms of 
readjusting the settings if the verification failed, involved 
checking the annotations and fixing any errors, adjusting the 
region of interest, and then regenerating the deep learning 
model. With the unsupervised approach, readjusting the 
settings only involved adjusting the region of interest. 

3.4 Recognition settings 
With recognition quality, vision analysis was performed 

five times on each of the three bins with the supervised and 
unsupervised approaches, respectively. Here, 3 bins, with 30 
components of one of the component types in each bin, were 
positioned on the middle shelf level in the three-level box 
rack. The runs were performed alternatively between the two 
learning approaches, and the components inside each bin 

were shuffled between each pair of pictures. Hence, for each 
of the two modes, the same five random shuffling of the 
components inside each bin were scanned. 

For the analysis, the 2D- and 3D recognition results were 
exported, as shown in Figure 3. A first check was performed 
on basis of the 2D-results and subsequently verified by a 
detailed examination of the 3D-results. The number of 
detected objects, undetected objects, correct detected 
objects, partially correct detected objects, and incorrect 
detected objects were noted for each experiment setting. 

 
4. Results 

This section presents the results with respect to 
engineering preparation time and recognition quality for the 
two learning approaches. 

 

4.1 Engineering preparation time 
The time required for the vision-system to learn to recognise 

each of the three component types is shown in Figure 4. 
 

As Figure 4 shows, most of the engineering preparation 
time associated with supervised learning is spent on 
performing annotation. Here, the specific annotation tool 
used plays a critical role for the time required, as does the 
experience level of the user who performs the annotations. 

The annotation time shows a substantial variability among 
the component types. This variability originates from the 
different annotation procedures used for each of the 
components. Here, two principal orientations were defined 
for both component 1 and component 2, and, with component 
2, the flat orientation also had an orientation requirement. 
With component 3, there was only one principal orientation 
by which picking would be possible. However, the total 
number of annotations for each of the more frequent classes 
– flat for component 1 and 2 – matched with the number of 
annotations for component 3. 

In conclusion, the results in Figure 4 show a stark contrast 
between the supervised and the unsupervised approach with 
respect to engineering preparation time. 
 
4.2 Recognition quality 

The recognition quality results, shown in Figure 5, show 
important differences between the two learning approaches. 

With respect to detection, the unsupervised approach was 
more effective at distinguishing objects inside the scanner’s 
field of view. Here, in most of the pictures, all the 
components within the field of view were identified as either 
one or several objects. However, many times several objects 
were detected as single object, where sometimes the separate 
objects were detected individually as well as in a group-
object. In the 3D-results, this had the effect of creating 
several 3D-spatial coordinates which appeared to float in the 
air, or that was positioned between components, which is 
problematic for robot picking. 

As can be seen in Figure 5, the unsupervised approach had 
very few components it was unable to detect, but on the other 
hand had a greater number of partially correct and incorrect 
detections. Here, an outlier is component 3, where the 
unsupervised approach showed a larger number of 
undetected objects, as well as a high incorrect detection rate. 
This was because the detection results grouped many of the 
components together and missed that the groups were 

Fig. 3. Example of exported 2D- (left) and 3D-results (right) 
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composed of several smaller objects. However, some 
components were still identified correctly, and hence would 
be graspable. With component 2, the unsupervised approach 
was able to detect many of the components partially correct, 
meaning that the orientation of the spatial coordinates was 
wrong, but that the coordinates were centered on the center 
of volume. This also occurred for some of the components of 
type component 3. These components would be graspable in 
a kitting scenario, but their orientation would not be possible 
to control when the components are placed in the kit. With 
component 1, the unsupervised approach resulted in more 
correct detections than did the supervised approach. This 
likely due to the simplicity of the component 1 geometry. 
 

With the supervised approach, there was generally fewer 
objects detected in each image, but the detections were 
correct to a greater extent. With component 3, only nine 
objects were detected on average, but all detections were 
accurately assigned with coordinates that would allow 
successful robot grasping. 

5. Discussion and future work 

The paper has presented an experiment dealing with 
engineering preparation time and recognition accuracy for 
two different learning approaches for a vision-system in a 
robotic bin picking application. This is important in industry, 
as it plays an important role for reconfigurability of 
automated processes. 

The experiment involved specific types of technology and 
equipment, in terms of a 3D scanner, and a software for 
robot-vision. Furthermore, three component types with 
variable characteristics were considered. It is, therefore, of 
interest for further studies to also account for other variants 
of the technology and equipment, to form a complete and 
generalizable overview of how learning approaches affect 
reconfigurability. 

The paper contributes to the literature in terms of 
demonstrating a hands-on example of the effects from two 
principally different learning approaches for vision systems, 
with respect to engineering preparation time and grasping 
accuracy. As the paper demonstrates, there are distinct 
operational effects from the choice of learning approach to 
apply when dealing with automated material handling. 

The results highlight a tradeoff between engineering 
preparation time and recognition quality with respect to the 
learning approach, indicating that the two approaches can be 
beneficial in different situations. Supervised learning, which 
was associated with substantially longer engineering 
preparation time and higher recognition quality, is likely the 
more suitable approach in less dynamic settings, such as 
when products are produced in high volumes with less 
variety, and where the product assortment, in terms of 
product life cycles, is more stable over time. This is typical 
in many assembly systems but can also be achieved in more 
dynamic environments where a product structure is 
available, by assigning high-runner parts to the automated 
process. 

The supervised approach considered in the paper could 
lend opportunity for generation and post-processing of the 
training model. Here, it is possible to generate annotations 
automatically from CAD-models that can be used for 
supervised learning, which likely would reduce the 
engineering preparation time. Furthermore, for enhanced 
detection, and the ability to generate custom pick-points 
offset from the object center-of-volume, it is possible to 
match the point clouds with a reference model of the object, 
in line with the approach described by [27]. Here, the 
reference model can be derived from a CAD-file or from a 
high-quality 3D-scan of the object. 

While the paper accounts for operational effects of two 
learning approaches as associated with an automated 
process, the results also have implications for hybrid 
systems, whereby humans and robots work together [1]. A 
key for hybrid systems is flexibility, whereby humans and 
robots can support each other, and it is crucial that the robot 
can perform its tasks effectively and with high precision. 
Here, it is likely beneficial to employ a supervised approach, 
to ensure predictability in the robot’s actions, which 
otherwise could lead to interference in the collaboration. 
With stochastic order patterns and volume fluctuations, 
picking robots could support a human workforce in handling 
the volume fluctuations. Here, it is important that the robots 
can be deployed quickly and making use of unsupervised 
learning could be suitable. This, of course, implies high 
requirements on the software infrastructure, where flexibility 
is key. An agent- and role-based planning approach that 
allows for strengths of both human and robot operators to be 
realized is important for achieving effective collaboration in 
the collaborative materials handling process [28]. 

A natural extension of the presented research is to 
compare the supervised and the unsupervised approach with 
respect to bin picking of components in a kit preparation 
application. However, in addition to the focus of this paper, 
this would also need account for the relationship between the 
type of gripper used and the component characteristics, as 

Fig. 5. Recognition results for the two learning approaches 
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noted by [29]. Furthermore, how to deal with components 
that are positioned close to the bin wall, or components that 
are entangled with each other, must also be accounted for. 
Moreover, it may well be the case that different gripper types 
are more suitable depending on the principal orientation of 
the component to be picked – i.e., in terms of recognition, the 
recognition class. 
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