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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Material-related grindability variations when grinding recycled and ore-based steel can significantly impair the process efficiency during 
finishing of automotive crankshafts. To address this problem and to achieve more robust grinding processes, the underlying causes of variation 
need to be understood. The present work investigates the feasibility of using quality data obtained during production to study grindability 
variations and identify material-related effects. Analysis of non-destructive inspection protocols indicates steel supplier-dependent differences 
in grindability. However, no systematic grindability differences between recycled and ore-based steel could be identified. Possible correlations 
between grindability and material characteristics obtained from supplied steel certificates are discussed. 
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1. Introduction 

Automotive crankshafts for heavy-duty vehicles need to be 
able to sustain severe in-service loads. Cyclic bending and 
torsional stresses require high fatigue resistance of the 
crankshaft in order to function properly during the 
component’s lifetime. During manufacture, special attention 
is paid to finishing operations and assessment of surface 
integrity by employing non-destructive testing procedures like 
the Barkhausen noise analysis [1]. In this way it is ensured 
that finished surfaces meet the design requirements and are 
free from defects such as thermal damage (e.g. grinding burn). 
Variations in the input material can lead to grindability 
inconsistencies which causes process disruptions and 

scrapping of components, affecting the overall efficiency and 
productivity of a production line. 

Following the general definition of machinability, the 
grindability of a material can be defined as the ease at which a 
certain material can be ground under given process 
conditions. Grindability of a material may therefore be 
assessed by one or more of the following criteria: 
• Mechanical: e.g., specific grinding energy (relating to 

material flow stress, strain, strain rate, hardness, etc.) 
• Tribological: friction and wheel wear (caused by grit/bond 

fracture and attrition processes – such as microchipping) 
• Thermal: caused by high grinding temperatures (leading to 

workpiece burn, tempering, residual stresses and/or 
material phase transformations such as rehardening). 
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In the present case, grindability issues primarily concern 
thermal aspects, namely uncontrolled high temperatures 
during grinding leading to unfavorable tensile residual 
stresses, tempering of the induction hardened surfaces, or in 
the most severe cases phase transformations or formation of 
cracks in the ground surfaces [2]. One source for such 
problems is suspected to be metallurgical variations in the 
input workpiece material, when steel batches obtained from 
different suppliers are fed into production lines. Specifically, 
some automotive companies perceive steel from suppliers 
producing recycled steel as more prone to thermal damage 
during grinding as compared with virgin, ore-based steel. 

In order to facilitate more extensive use of recycled steel 
and to maximize its sustainability benefits [3], potential 
detrimental effects on manufacturing processes such as 
grinding need to be identified and the underlying reasons for 
such behavior need to be determined. 

The aim of the present study is to investigate the feasibility 
to utilize data obtained during crankshaft production to 
identify grindability variations. In particular, systematic 
grindability differences between steel batches from suppliers 
producing recycled or ore-based steel are addressed. 

2. Case background 

The identification of input-material variations and its effect 
on grindability is complex. Firstly, metallurgical variations in 
large parts such as automotive crankshafts are challenging to 
detect as metallographic examinations are localized and time 
consuming. Secondly, only a few scientific studies addressing 
the effect of material microstructure on grindability have been 
published and mainly focus on differences between various 
steel grades [4–7]. To the best of our knowledge, material 
variations when grinding batches of the same steel grade from 
different suppliers have not been addressed so far. The lack of 
fundamental understanding of material effects on grindability 
therefore makes it difficult to correlate observed 
microstructural characteristics to the specific grinding 
response. 

To overcome the limitations of experimental approaches, 
data analysis and machine learning have been applied to 

improve manufacturing systems [8] and crankshaft production 
in particular [9]. The present work builds upon a similar 
approach while focusing on the effect of input material on 
crankshaft production. 
 
2.1 Crankshaft manufacturing sequence 

The investigated component is a six-cylinder crankshaft 
used in heavy-duty trucks that is made of a micro-alloyed 
medium carbon steel grade (38MnVS5). The manufacturing 
sequence (production chain) of crankshafts and the 
corresponding material flow are illustrated in Figure 1. The 
input material is supplied by five different steel mills in form 
of hot-rolled round bars, which are subsequently forged into 
crankshaft blanks by two different forging companies. 
Crankshaft blanks are then delivered to the automotive 
OEM/end-user where they are fed into one of the two soft 
machining lines (“Line G” or “Line B”). Among others, the 
bearing surfaces and radii of the crankpins and mains are 
machined close to the final dimensions during this step. 
Subsequently, machined crankshafts merge into one flow 
where they undergo induction hardening of the crankpin and 
main journal surfaces followed by a tempering heat treatment 
to attain the desired combination of hardness and residual 
stresses. Subsequent grinding of the crankpin and main 
journals is performed in one of the three grinding machines, 
followed by non-destructive testing by means of Barkhausen 
noise (BHN) analysis. The crankshaft grinding process is 
patented by Scania and involves parameters revealed in [1]. 

2.2 Description of utilized data 

The data sources utilized in this study comprised material 
certificates obtained from the steel mills (“input data”) 
including steel mill name, batch number, batch-specific 
chemical composition and (in some cases) rating of non-
metallic inclusions. In addition, non-destructive BHN testing 
protocols obtained from the automotive end-user (“output 
data”) were studied. BHN measurements give indications of  

Fig. 1. Schematic of the material flow and processing steps involved in manufacture of the investigated crankshaft type prior to superfinishing 
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the surface integrity (quality) obtained after grinding and 
thereby act as an indirect grindability measure. 

The BHN measurement results were obtained around the 
circumference of ground surfaces on crankpin and mains. The 
measurements were done using a Rollscan 200 Barkhausen 
noise analyser while rotating the crankshaft. A summary of 
the specific locations measured can be found in Figure 2 and 
Table 1. For each crankshaft a total of up to 38 individual 
locations were measured. In addition to the measurements, 
each BHN protocol contained information on the processing 
route (identifying soft machining line, grinding machine, and 
number of crankshafts that have been ground since last 
dressing of a grinding wheel) and the steel batch number, 
which enabled to link each crankshaft to the respective 
material certificate. A total of 535 protocols, each concerning 
one crankshaft were included in this study. The crankshafts 
were ground over the period of two years. 

Table 1. List of measured (“x”) locations on the various crankshaft features 
during BHN analysis. Locations not included in the BHN measurements are 
indicated by “-“. 

Feature  Crankpins 1 to 6 Mains 1 to 7 

Radius F-side X - 
B-side X - 

Bearing 
surface 

F-side X X 
B-side X X 

2.3 Principle of Barkhausen noise analysis 

The measurement principle of BHN is based on the 
Barkhausen effect, which occurs during magnetization of 
ferromagnetic materials. Magnetization causes the material’s 
magnetic domains to align with the external magnetic field 
causing movement of domain walls. Interactions of moving 
domain walls with pinning sites in the probed material (e.g., 
dislocations, stresses, grain boundaries) lead to generation of 
noise-like signal that can be detected and measured by a 
suitable sensor [10]. 

The BHN signal is mainly affected by a few material 
characteristics, namely the material’s residual stress state, 
hardness, and microstructure. The correlation between BHN 
and material characteristics (i.e., surface integrity) can be 
utilized in quality control of machined surfaces [11,12]. 
During grinding for example, surface-quality problems like 
grinding burn (thermal damage) can occur as a result of 
exceedingly high grinding temperatures leading to shifts 

toward more tensile residual stresses and/or lower hardness 
[13]. Both these changes in material characteristics result in 
an increase in BHN intensity during inspection [10]. In 
contrast, comparably lower BHN measurements would 
indicate more favourable surface integrity, namely shifts 
toward more compressive residual stresses and/or no 
softening of the ground material. In practice, during 
crankshaft production, BHN measurements above a specified 
threshold therefore alert potential grinding problems which 
lead to further inspection (e.g., magnetic particle testing [14]) 
or can cause part-rejection, i.e., scrapping of the component. 

3. Data analysis 

Analysis of the data was conducted using the statistical 
data analysis software JMP© PRO (Version 15.2.1.0) by SAS. 
The output BHN data was both correlated over time and 
between crankshaft features. Minor autocorrelation (~0,2) per 
feature, originating from long-term process drift, was 
removed by fitting integrated moving average models 
IMA(1,1) to each feature time series. After removal of the 
diachronic correlation, the remaining strong synchronic 
correlation between various crankshaft features and locations 
are shown in Figure 3. The colours and their levels show the 
type and strength of correlation (red: positive relationship, 
blue: negative or inverse correlation, grey: no correlation). In 
general, correlations are primarily positive, i.e., an increase of 
one location’s BHN tends to be associated with other 
locations on the crankshaft increasing as well. However, the 
strength of correlations vary, strong positive correlations are 
seen between BHN measured on the same features (e.g., 
correlation coefficients of close to +1 between different pin 
radii) and less strong or limited correlations are seen between 
different features (e.g., correlation coefficients around +0.4 
between pin radii and main bearing surfaces). This sub-
grouping of correlations likely originates from the grinding 
process, e.g., from slightly different set-up protocols 
depending on type of crankshaft feature, rather than from 
input material differences. 

Apart from correlations, the colour map in Figure 3 with its 
38x38 elements illustrates the multidimensional nature of the 
output data. Due to the strong correlations and 

Fig. 3. Colour map showing correlations between BHN measurements on 
different crankshaft features 

Fig. 2. Schematic of the investigated crankshaft type (a) and the features 
with specific locations of BHN measurements exemplified on a crankpin 
(b). At each location, the measurement is done 360° around the 
circumference of the feature 
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multidimensionality, the dimensions of the data were reduced 
using principal component analysis (PCA). PCA enables to 
extract the data’s most significant information and to get 
simpler representations of the respective data set by 
significantly reducing the number of variables. Results of the 
PCA on the residuals (after auto-correlation removal) of the 
output BHN data are shown in Figure 4. As seen in (c), 
around 83 % of the variation in the BHN measurements can 
be described with 3 principal components (PCs), where the 
first component explains 60% of the variation in the data. A 
scatterplot showing the data plotted as a function of the first 
two components (“PC1.BHN” and “PC2.BHN”) is provided 
in Figure 4a. The loading plot in Figure 4b shows how 
strongly the first two PCAs are influenced by each 
characteristic. PC1.BHN contains information on the general 
level of BHN and explains the largest part of the variations in 
the data. PC2.BHN and PC3.BHN capture differences 
between the various measurement locations (see crankpin 
radii, crankpin, and main bearing surfaces in the loading plot). 
Generally speaking: PC1.BHN explains the general colour 
(red) tone in Figure 3 and PC2.BHN and PC3.BHN explain 
the difference between the feature sub-groups. 

The analysis of the input data (material certificates), i.e., 
the correlations between elements and inclusion ratings are 
shown in Figure 5. A total of 26 elements and 8 inclusion 
ratings are included and many strong positive and negative 
correlations between elements and inclusions can be seen. 

When looking at the steel mills individually (see Figure 5b), 
one can observe significant differences in correlation matrices 
indicating that, even though all steel batches meet the same 
steel grade specification, the individual steel mills produce 
distinct chemical compositions with substantially different 
correlation between elements (bearing in mind that some of 
this variation might originate from differences between 
characterization equipment and analysis procedures at each 
steel mill). 

Additionally, it can also be seen that not all steel mills 
consistently provide the same information in their material 
certificates. For example, steel mills 2 and 4 do not report 
inclusion ratings and they report fewer elements as compared 
with the other suppliers. This issue of missing information 
could be resolved by more stringent requirements by the end 
users / buyers of steel. 

4. Correlations between material data and Barkhausen 
noise measurements 

Commonalities regarding processing route between 
crankshafts with relatively high BHN are seen in the 
distribution plots in Figure 6. For crankshafts with PC1.BHN 
> 5 (that corresponds to a high BHN number, see Figure 6a), 
the components’ distribution (dark green) across grinding 
machines is similar to the overall distribution (light green) of 
all analysed crankshafts (see Figure 6d). The same relative 

Fig. 4. PCA of output data (BHN measurements). (a) Scatterplot of the data as function of first two components (PC1.BHN and PC2.BHN) with 
colouring according to steel suppliers, (b) loadings of the original variables with PC1.BHN and PC2.BHN (I: Main bearing surfaces, II: Crankpin 
bearing surfaces, III: Crankpin radii). (c) List of characteristics of first 4 principal components. 

Fig. 5. (a) Overall correlation between elements and inclusion ratings. (b) Separate correlations stratified for different steel mills. Note that 
steel mills 2 and 4 do not report inclusions and report fewer elements compared with the other suppliers. 
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number of crankshafts have been processed in all machines. 
Similarly, their distribution across the dressing intervals 
(Figure 6e) and soft machining line (Figure 6g) are 
approximately following the same shape/trend as the 
distribution of all measured crankshafts, which indicates that 
high BHN numbers are probably caused by other factors. 
However, when looking at the steel sources in Figure 6c, one 
can see that the majority of the selected crankshafts with high 
BHN values originate from two steel suppliers, specifically 
steel mills 3 (recycled steel) and 5 (ore-based steel) which 
both supply their steel to forging company 1. As a result, high 
BHN results are not confined to only recycled steel but also 
occur for ore-based steel batches. Instead, high BHN appears 
to primarily occur for material from specific steel suppliers, 
here steel mills 3 and 5, independently of steel type 
(ore/recycled). 

To obtain a better insight into possible reasons for the 
identified supplier-specific differences in BHN, the respective 
material data reported in the certificates was studied. The 
types and amounts of non-metallic inclusions present in the 
steel batches can impact grindability and the resulting surface 
quality. Hard oxide inclusions, in particular, are expected to 
have an impact on the grinding process by acting as abrasive 
particles when coming in contact with the grinding wheel 
(grits and bond). The impact of hard, abrasive particles on 
wear of grinding wheels has been investigated previously by 
Badger [4]. Attritious wear of grinding wheels (i.e., wear by 
abrasion) was reported to lead to dulling/flattening of the 
wheel’s grits which in turn increases the wheel-workpiece 
contact area which significantly increases specific grinding 
energy, heat input and temperature in the grinding zone. 
Grinding of steel with relatively high amounts of hard oxide 

inclusions would therefore lead to enhanced rates of wheel 
wear that ultimately leads to deterioration of obtained surface 
integrity, which should be reflected in increasing BHN values. 
In the present case, the information on inclusions was only 
available for three of the steel mills. Note that the reported 
inclusion ratings are in accordance with “Method A” in 
ASTM E45 standard [15]. 

Steel mills 1 and 3 (both producing recycled steel) reported 
higher severity ratings of oxide inclusions as compared with 
steel mill 5 (ore-based), see inclusion types B, C, and D, in 
Figure 7. This is primarily the case for the heavy (i.e. 
comparably thick) inclusions shown in (a - upper panels). 
According to the preceding discussion on the potential 
effect(s) of oxide inclusions on wheel wear and resulting 
surface integrity, grinding of steel from suppliers 1 and 3 
should be subjected to higher wheel-wear rates compared to 
steel from supplier 5. This is however not reflected in the 
BHN results for these steel mills (see Figure 6) indicating that 
the differences in BHN between steel mills 3 and 5 (high 
BHN) compared with steel mill 1 (low BHN) cannot be 
explained by only oxide inclusion amounts. The amounts of 
soft and deformable sulphide inclusions (type A) for steel 
mills 1 and 3 (recycled) is also higher for the ore-based steel 
mill 3, see inclusion type A in Figure 7. 

To obtain indications of other potential underlying 
material-related reasons for the variations in BHN, a 
multivariate analysis using Partial Least Square (PLS) 
regression was conducted. PLS is a regression method that 
can handle correlations in both predictors (input “x”, here 
material data) and responses (output “y”, here the principal 
component PC1-3.BHN representing the BHN measurements) 
[16]. Only PC1.BHN showed any relationship with the 
material data, which further confirms that PC2.BHN and 
PC3.BHN are process related as discussed in section 3. The 
refined analysis on PC1.BHN is a stepwise process starting 
with all input data (26 elements and 8 inclusion ratings). 
Using a VIP (Variable Importance for the Projection) 

Fig. 6. Processing characteristics of crankshafts with relatively high 
BHN. Selection of crankshafts with PC1.BHN > 5 and 
corresponding distributions across different classifications. 

Fig. 7. Reported inclusion ratings of material supplied by three of the 
investigated steel mills. 

Fig. 8. Summary of PLS model 
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multidimensionality, the dimensions of the data were reduced 
using principal component analysis (PCA). PCA enables to 
extract the data’s most significant information and to get 
simpler representations of the respective data set by 
significantly reducing the number of variables. Results of the 
PCA on the residuals (after auto-correlation removal) of the 
output BHN data are shown in Figure 4. As seen in (c), 
around 83 % of the variation in the BHN measurements can 
be described with 3 principal components (PCs), where the 
first component explains 60% of the variation in the data. A 
scatterplot showing the data plotted as a function of the first 
two components (“PC1.BHN” and “PC2.BHN”) is provided 
in Figure 4a. The loading plot in Figure 4b shows how 
strongly the first two PCAs are influenced by each 
characteristic. PC1.BHN contains information on the general 
level of BHN and explains the largest part of the variations in 
the data. PC2.BHN and PC3.BHN capture differences 
between the various measurement locations (see crankpin 
radii, crankpin, and main bearing surfaces in the loading plot). 
Generally speaking: PC1.BHN explains the general colour 
(red) tone in Figure 3 and PC2.BHN and PC3.BHN explain 
the difference between the feature sub-groups. 

The analysis of the input data (material certificates), i.e., 
the correlations between elements and inclusion ratings are 
shown in Figure 5. A total of 26 elements and 8 inclusion 
ratings are included and many strong positive and negative 
correlations between elements and inclusions can be seen. 

When looking at the steel mills individually (see Figure 5b), 
one can observe significant differences in correlation matrices 
indicating that, even though all steel batches meet the same 
steel grade specification, the individual steel mills produce 
distinct chemical compositions with substantially different 
correlation between elements (bearing in mind that some of 
this variation might originate from differences between 
characterization equipment and analysis procedures at each 
steel mill). 

Additionally, it can also be seen that not all steel mills 
consistently provide the same information in their material 
certificates. For example, steel mills 2 and 4 do not report 
inclusion ratings and they report fewer elements as compared 
with the other suppliers. This issue of missing information 
could be resolved by more stringent requirements by the end 
users / buyers of steel. 

4. Correlations between material data and Barkhausen 
noise measurements 

Commonalities regarding processing route between 
crankshafts with relatively high BHN are seen in the 
distribution plots in Figure 6. For crankshafts with PC1.BHN 
> 5 (that corresponds to a high BHN number, see Figure 6a), 
the components’ distribution (dark green) across grinding 
machines is similar to the overall distribution (light green) of 
all analysed crankshafts (see Figure 6d). The same relative 

Fig. 4. PCA of output data (BHN measurements). (a) Scatterplot of the data as function of first two components (PC1.BHN and PC2.BHN) with 
colouring according to steel suppliers, (b) loadings of the original variables with PC1.BHN and PC2.BHN (I: Main bearing surfaces, II: Crankpin 
bearing surfaces, III: Crankpin radii). (c) List of characteristics of first 4 principal components. 

Fig. 5. (a) Overall correlation between elements and inclusion ratings. (b) Separate correlations stratified for different steel mills. Note that 
steel mills 2 and 4 do not report inclusions and report fewer elements compared with the other suppliers. 
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number of crankshafts have been processed in all machines. 
Similarly, their distribution across the dressing intervals 
(Figure 6e) and soft machining line (Figure 6g) are 
approximately following the same shape/trend as the 
distribution of all measured crankshafts, which indicates that 
high BHN numbers are probably caused by other factors. 
However, when looking at the steel sources in Figure 6c, one 
can see that the majority of the selected crankshafts with high 
BHN values originate from two steel suppliers, specifically 
steel mills 3 (recycled steel) and 5 (ore-based steel) which 
both supply their steel to forging company 1. As a result, high 
BHN results are not confined to only recycled steel but also 
occur for ore-based steel batches. Instead, high BHN appears 
to primarily occur for material from specific steel suppliers, 
here steel mills 3 and 5, independently of steel type 
(ore/recycled). 

To obtain a better insight into possible reasons for the 
identified supplier-specific differences in BHN, the respective 
material data reported in the certificates was studied. The 
types and amounts of non-metallic inclusions present in the 
steel batches can impact grindability and the resulting surface 
quality. Hard oxide inclusions, in particular, are expected to 
have an impact on the grinding process by acting as abrasive 
particles when coming in contact with the grinding wheel 
(grits and bond). The impact of hard, abrasive particles on 
wear of grinding wheels has been investigated previously by 
Badger [4]. Attritious wear of grinding wheels (i.e., wear by 
abrasion) was reported to lead to dulling/flattening of the 
wheel’s grits which in turn increases the wheel-workpiece 
contact area which significantly increases specific grinding 
energy, heat input and temperature in the grinding zone. 
Grinding of steel with relatively high amounts of hard oxide 

inclusions would therefore lead to enhanced rates of wheel 
wear that ultimately leads to deterioration of obtained surface 
integrity, which should be reflected in increasing BHN values. 
In the present case, the information on inclusions was only 
available for three of the steel mills. Note that the reported 
inclusion ratings are in accordance with “Method A” in 
ASTM E45 standard [15]. 

Steel mills 1 and 3 (both producing recycled steel) reported 
higher severity ratings of oxide inclusions as compared with 
steel mill 5 (ore-based), see inclusion types B, C, and D, in 
Figure 7. This is primarily the case for the heavy (i.e. 
comparably thick) inclusions shown in (a - upper panels). 
According to the preceding discussion on the potential 
effect(s) of oxide inclusions on wheel wear and resulting 
surface integrity, grinding of steel from suppliers 1 and 3 
should be subjected to higher wheel-wear rates compared to 
steel from supplier 5. This is however not reflected in the 
BHN results for these steel mills (see Figure 6) indicating that 
the differences in BHN between steel mills 3 and 5 (high 
BHN) compared with steel mill 1 (low BHN) cannot be 
explained by only oxide inclusion amounts. The amounts of 
soft and deformable sulphide inclusions (type A) for steel 
mills 1 and 3 (recycled) is also higher for the ore-based steel 
mill 3, see inclusion type A in Figure 7. 

To obtain indications of other potential underlying 
material-related reasons for the variations in BHN, a 
multivariate analysis using Partial Least Square (PLS) 
regression was conducted. PLS is a regression method that 
can handle correlations in both predictors (input “x”, here 
material data) and responses (output “y”, here the principal 
component PC1-3.BHN representing the BHN measurements) 
[16]. Only PC1.BHN showed any relationship with the 
material data, which further confirms that PC2.BHN and 
PC3.BHN are process related as discussed in section 3. The 
refined analysis on PC1.BHN is a stepwise process starting 
with all input data (26 elements and 8 inclusion ratings). 
Using a VIP (Variable Importance for the Projection) 

Fig. 6. Processing characteristics of crankshafts with relatively high 
BHN. Selection of crankshafts with PC1.BHN > 5 and 
corresponding distributions across different classifications. 

Fig. 7. Reported inclusion ratings of material supplied by three of the 
investigated steel mills. 

Fig. 8. Summary of PLS model 
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threshold of >0,8 for when to keep a factor, the model was 
trained on 70% of the data, validated on 15% and holding 
back the remaining 15% of the data for model testing. The 
data sub-sets were randomly picked/stratified for steel mills, 
which means that the same ratio of the data from each sub-
group was used for training, validation and testing the model 
in each step. After several steps of factor screening the final 
model is summarized in Figure 8. Two latent factors based on 
four elements were used in the final model. With those four 
elements, almost 94% of the variation in the input can be 
explained and it captures 44% of the variation in the BHN 
data (Figure 8a), leaving the rest of the variation to other 
sources, such as measurement system reproducability and 
repeatability (that is precision). Figure 8b and c show the 
regression coefficients for the centred and scaled data and the 
original data, respectively. Figure 8d shows the significance 
of the elements as factors in the model and Figure 8e shows 
that latent factor 1 captures most of the variation and factor 2 
adds some explanation on the Ni and Nb, that indicates a 
potential pairwise connection between these elements in the 
data. 

In summary, almost half of the variation in BHN can be 
explained by the proposed statistical model with Si, Ni, Nb, 
and Ti as the influential elements. It was seen that steel 
batches with low amounts in Si and Nb combined with high 
amounts in Ni and Ti tend to be correlated with unfavourable 
high BHN values. In contrast, the opposite combination of the 
four elements (high amounts of Si and Nb combined with low 
amounts of Ni and Ti) tend to be associated with comparably 
low BHN values. The part of the BHN variations that cannot 
be explained by the proposed model is likely connected to 
effects that are not captured in the present study, such as 
process-variations along the manufacturing value chain (e.g., 
heat treatment) and/or lack of material data from certain steel 
suppliers. It is therefore suggested to test the indications 
identified in this study under controlled hardening and 
grinding conditions in a laboratory environment where these 
elements can be varied independently in a controlled 
experimental design while excluding differences in 
measurement systems and material-processing variations. For 
this purpose, custom-made test batches of steel with 
systematically varying amounts of the potentially influential 
four elements could be compared regarding their 
microstructures and respective grindability. 

5. Conclusions 

A data-analysis approach to identify grindability variations 
in crankshaft production has been presented. BHN 
measurements on more than 500 crankshafts have been 
utilized as indicators of grindability of the same crankshaft 
steel grade supplied by various steel mills – producing either 
recycled or ore-based steel. Even though distinct differences 
in BHN values after grinding have been observed for the 
different steel suppliers, no significant indications for 
systematic differences when comparing grindability of 
recycled steel with ore-based steel have been found. Grinding 
of recycled steel does not necessarily result in unfavourable 
BHN results. Vice versa, grinding of ore-based steel does not 
automatically result in more favourable BHN measurements. 

The analysed material certificates revealed that despite 
meeting the same material specification, steel supplied by 
different steel mills shows small but distinct variations in 
chemical composition and element correlation. Of those, a 
sub-group of Ni, Si, Ti, and Nb appear to correlate with BHN 
most significantly as a group, in pairs or individually. Any 
influence of steel inclusions to the varying BHN has not been 
detected but may contribute to the remaining variation in the 
data which was not explained by the sub-group of elements. 
The indications given in this study can be used as a base for 
dedicated grinding experiments to test the influence of the 
elements of interest systematically while excluding other 
processing-related variations. Further development and 
extension of the presented material science/data analysis 
approach could aid to address material variations and their 
effects on a wide variety of manufacturing processes 
involving processing of metallic materials. 
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