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Abstract
In the Heisenberg group of dimension 2n + 1, we consider the sub-Laplacian with a
drift in the horizontal coordinates. There is a related measure for which this operator
is symmetric. The corresponding Riesz transforms are known to be L p bounded with
respect to this measure. We prove that the Riesz transforms of order 1 are also of weak
type (1, 1), and that this is false for order 3 and above. Further, we consider the related
maximal Littlewood–Paley–Stein operators and prove the weak type (1, 1) for those
of order 1 and disprove it for higher orders.

Keywords Heisenberg group · Sub-Laplacian with drift · Riesz transforms ·
Littlewood–Paley–Stein operators

Mathematics Subject Classification 58J35, 22E25, 43A80

1 Introduction

The Riesz transform ∇(−�)− 1
2 on R

n , which is the Hilbert transform for n = 1,
is one of the most fundamental operators in Analysis. It is closely related to the
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development of Harmonic Analysis, and has a very wide range of applications. This
classical Calderón–Zygmund convolution operator is an isometry on L2(Rn), as seen
by means of the Fourier transform. As is well known, it is bounded on L p(Rn) for 1 <

p < +∞ and ofweak type (1, 1). There aremany other aspects of the Riesz transform,
such as endpoint boundedness H1 −→ L1 and L∞ −→ BMO , dimension-free L p-
norm bounds, weighted inequalities as well as the Riesz transforms associated to
Schrödinger operators, etc. The literature on these topics is huge. In this paper, we
restrict ourselves to the L p boundedness and the weak type (1, 1) (endpoint) estimate,
in the Heisenberg setting defined below.

With the development of analysis and geometry, it is natural to extend the classical
results to the settings of Lie groups, weighted Riemannian manifolds and various
second-order differential operators. See for example [2,5,11,23,38–44,49,51,52] for
early work.

We now consider a smooth manifold M endowed with a measure dμ, a second-
order differential operator� and a first-order operator∇ such that the Green’s formula
holds; our Heisenberg setting is a special case of this. Then the (first-order) Riesz
transform is defined as ∇(−�)−1/2, with a suitable modification in the case where 0
is an eigenvalue of � in L2(μ). Note that this operator is always bounded on L2(μ).
Without the Fourier transform, the usual tools to study its L p boundedness are instead
the Poisson semi-group, probabilistic Littlewood–Paley theory, the resolvent and in
particular the heat semi-group and its kernel.

For the case 2 < p < +∞, the classical result is not always valid in this general
setting. More precisely, for any fixed p0 ≥ 2, there exists a Riemannian manifold of
this type where the Riesz transform is bounded on L p for 2 < p < p0 but unbounded
for p > p0; if p0 > 2 it is unbounded also on L p0 and not even of weak type
(p0, p0). See [18,31] and [14–17,25–27] as well as [28] for some concrete examples.
We also mention [8,9,13,20,21] and references therein, with characterizations under
the assumptions of volume doubling and Gaussian heat kernel estimates.

For the opposite case 1 < p < 2, there are many known results but, to the best of
our knowledge, no counterexample. In particular, an interesting dichotomy has been
obtained in [4]: for any fixed p0 ∈ (1, 2) and fixed n ≥ 1, either there is an L p0 bound
on the Riesz transform which is uniform over all complete Riemannian manifolds of
dimension n, or there exists a complete n-dimensional Riemannian manifold in which
the Riesz transform is unbounded on L p0 .

Next, we focus on the weak type (1, 1) property for the Riesz transform. There
exist numerous known specific results and several general sufficient conditions. We
distinguish the following cases.

1. The standard assumption of Harmonic Analysis, namely the volume doubling
property, holds. Then themost striking result is due to T. Coulhon andX. T. Duong.
They showed in [18] that Gaussian estimates for the heat kernel imply the weak
type (1, 1), without assuming Gaussian estimates for its gradient. Such gradient
estimates are necessary in earlier works that use standard singular integral theory,
but in general they do not hold in the setting of a complete Riemannian manifold.
Furthermore, the method of Coulhon and Duong can be adapted to settings with
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sub-Gaussian heat kernel estimates and to even more general situations. See [17]
and [37] for details.

2. The volume is not doubling but of at most polynomial growth in the sense of
Nazarov–Treil–Volberg (cf. for example [47]). The best-known example seems to
be the classical Ornstein–Uhlenbeck operator, studied by P.A. Meyer, R. Gundy,
G. Pisier and many other authors. In particular, this example satisfies Bakry and
Émery’s condition �2 ≥ 0 (cf. [10]). The weak type (1, 1) estimate for the Riesz
transform associated to the Ornstein–Uhlenbeck operator can be found in [22]; see
also [48] for higher order Riesz transforms and other related operators. Recently,
A. Hassell and A. Sikora provided another interesting example, the connected
sum of a finite number of Riemannian manifolds with very strong geometric and
analytic conditions. For this setting, they proved the weak type (1, 1) of the Riesz
transform in [28, Theorem 7.1]. Their proof is based on spectral multipliers and
the resolvent. One may naturally ask whether their result can be proved by means
of the singular integral theory developed in [47].

3. Manifolds of exponential volume growth without spectral gap. The typical case
is the affine group, for which a partial result can be found in [50] and a suitable
singular integral operator theory has been established in [29].Moreover, this theory
can be adapted to some other situations.

4. Manifolds of exponential volume growth with spectral gap. Under some additional
assumptions such as the local volume doubling property and small-time Gaussian
heat kernel estimates, the L p boundedness of the Riesz transform for 1 < p < 2
can be found in [18]. As for the weak type (1, 1) estimate, there is at present no
adequate singular integral theory, as far as the authors know.However, in the setting
of a symmetric space of the non-compact type, Anker obtained in [2] the weak
type (1, 1) of the first- and second-order Riesz transforms. See also [6] for other
examples. Recently, the present authors studied Riesz transforms associated to the
Laplacianwith drift in [34,36] and [35]. Also notice that in the papers [36] and [35],
which treat the Laplacian with drift in Euclidean space, the setting can be seen
as the direct product of a Euclidean space and the simplest weighted manifold
on the real line satisfying exponential volume growth with spectral gap. Let us
finally observe that the setting of the present paper is natural in this context, since
it consists of a sub-Laplacian with drift in a typical sub-Riemannian manifold, the
Heisenberg group. We refer the reader to [46] and [1] and references therein for
further details about sub-Riemannian manifold.

2 Description of the Setting and Statements of Results

Let Hn = R
n × R

n × R be the Heisenberg group of 2n + 1 real dimensions, with
points written g = (x, y, t). The group law is

(x, y, t) · (x ′, y′, t ′) =
⎛
⎝x + x ′, y + y′, t + t ′ + 2

n∑
j=1

(
y j x

′
j − x j y

′
j

)⎞⎠ , (2.1)
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and the Haar measure dg on Hn coincides with the (2n + 1)-dimensional Lebesgue
measure.

The vector fields

X j = ∂

∂x j
+ 2y j

∂

∂t
, Y j = ∂

∂ y j
− 2x j

∂

∂t
, 1 ≤ j ≤ n,

are left invariant on Hn and generate its Lie algebra. The associated sub-Laplacian is

� =
n∑
j=1

(
X2

j + Y2
j

)
.

Further, ∇ = (X ,Y ) = (X1, . . . ,Xn,Y1, . . . ,Yn) is the horizontal gradient.
Thedrift is definedby anonzero vectorv = (a, b) ∈ R

n×R
n , and the sub-Laplacian

with this drift is

�v = � + 2
n∑

i=1

(aiXi + biYi ).

Consider the homomorphism from Hn to the multiplicative group R+

ψv(g) = exp

[
n∑

i=1

(ai xi + bi yi )

]
,

and the measure dμv(g) = ψv(g)2 dg.
It is easy to verify that �v and μv satisfy the Green’s formula

∫
f �vw dμv = −

∫
〈∇ f ,∇w〉 dμv =

∫
�v f w dμv,

provided that f and w are smooth in Hn and that f or w has compact support. Thus
�v is symmetric and has a negative-definite, self-adjoint extension in L2(dμv). Its
spectral gap is positive and equals |v|2, since

�v f = 1

ψv

(
� − |v|2

)
(ψv f ).

The heat semigroup (eh�v )h>0 generated by �v is a diffusion semigroup to which
the general Littlewood–Paley–Stein theory applies; see [51, Chap. III].

The Riesz transform Rk = ∇k(−�v)
−k/2 of any order k ∈ {1, 2, . . .} can be

expressed in terms of the heat semigroup; indeed

Rk = 1

�(k/2)

∫ ∞

0
hk/2−1 ∇k eh�v dh. (2.2)
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This operator is bounded on L p(dμv) for 1 < p < +∞ and any k, as verified in
Lohoué andMustapha [44, Théorème 2(ii)]; see also the remarks about the Heisenberg
group in Sect. 4 of the same paper. Observe further that the Green’s formula implies
that the first-order Riesz transform ∇(−�v)

−1/2 is an isometry on L2(dμv).
Our results deal with the weak type (1, 1) of Riesz transforms and some other

operators.

Theorem 1 The first-order Riesz transform R1 is of weak type (1, 1) with respect to
dμv .

We do not know whether the same holds for the second-order transform. But we
have the following negative result.

Theorem 2 The Riesz transforms Rk of order k ≥ 3 are not of weak type (1, 1) for
dμv .

The maximal Littlewood–Paley–Stein operators related to �v are given by

Hk f (g) = sup
h>0

∣∣∣hk/2 ∇keh�v f (g)
∣∣∣ , k = 0, 1, . . . .

In particular,H0 is the maximal operator of the semigroup, and Littlewood–Paley–
Stein theory implies that H0 is bounded on L p(dμv), 1 < p < +∞. Actually, Hk

is bounded on these L p spaces for all k = 0, 1, . . . ; see for instance Lohoué’s paper
[40]. In Sect. 4.3, we give another proof of this result. As for weak type (1, 1), we
prove the following result.

Theorem 3 For k = 0 and k = 1, the operator Hk is of weak type (1, 1) with respect
to dμv , but not for k ≥ 2.

In this paper, we do not include the horizontal Littlewood–Paley–Stein functions,
obtained by replacing ∇k by differentiations with respect to t . However, we believe
that they can be treated with similar methods, combined with arguments from [34]
and [35].

We also mention the (first) Littlewood–Paley–Stein operator

H1 f (g) =
(∫ +∞

0

∣∣∣h 1
2 ∇eh�v f (g)

∣∣∣2 dh

h

) 1
2

.

The operator H1 is bounded on L p(dμv) for 1 < p < +∞. In the case 1 < p ≤ 2,
this follows from results obtained in the setting of a manifold by Coulhon–Duong–
Li [19, Theorems 1.2 or 1.3]; their arguments hold also in our case. Moreover, the
boundedness for 2 < p < +∞ can be seen by adapting the techniques used in [40] or
[9] to our setting. The weak type (1, 1) of H1 can be proved essentially by the method
used for our Theorem 1.

The proof of our Theorem 1 and that of the result for H1 in Theorem 3 follow the
same lines. The kernels of these operators are computed and estimated. In both cases,
the local part of the operator is relatively simple to deal with. After several reductions,
the arguments for the global parts boil down to an estimate for a maximal operator



   10 Page 6 of 29 Journal of Fourier Analysis and Applications            (2022) 28:10 

defined by taking convolutions with the characteristic functions of certain rectangles.
This is Proposition 7, which is the fundamental point of our arguments.

The plan of this paper is as follows. After some preliminaries in Sect. 3, we prove
the positive part of Theorem 3 in Sect. 4. The long arguments in Sect. 4.1 include
Proposition 7, mentioned above and also used to prove Theorem 1 in Sect. 5. Finally,
Sect. 6 contains the counterexamples needed for Theorem 2 and the negative part of
Theorem 3.

3 Notation and Auxiliary Results

3.1 Notation

We will often use complex notation for Hn = C
n × R. Setting z j = x j + iy j and

z = (z1, . . . , zn), we write points of Hn as g = (z, t) instead of (x, y, t) whenever
convenient. Further, we let |z| = (∑n

1 |z j |2
)1/2

.
From now on, we assume that |v| = 1 and that b = 0 in the expression for v, so

that v = (a, 0) with a = (a1, . . . , an) ∈ S
n−1. This means no loss of generality, as

seen via a dilation and an orthogonal transformation. Thus �v = � + 2
∑n

j=1 a jX j

and ψv(g) = exp (a · x), where a · x = ∑n
j=1 a j x j . When n ≥ 2, the vector x is

decomposed into orthogonal components as x = (a · x)a + x⊥.
We denote by c > 0 and C < ∞ many different constants which only depend on

n and the quantities k and p appearing in the statements of the theorems. By A � B
and A � B we mean A ≤ CB and A ≥ cB, respectively, for positive quantities A
and B. When both these inequalities hold, we write A ∼ B.

3.2 The Carnot–Carathéodory Distance

The Carnot–Carathéodory distance on Hn will be denoted by d(., .). We write
d(g) = d(g, o) where g ∈ Hn and o = (0, 0, 0) is the origin of Hn , and observe
that d(g′, g) = d(g−1g′). Moreover, B(g, r) denotes for g ∈ Hn and r > 0 the ball
{g′ ∈ Hn; d(g′, g) < r}.

It is well known that for all g = (z, t) ∈ Hn

|z| ≤ d(g) ∼ |z| +√|t | ∼ |a · x | + |x⊥| + |y| +√|t |, (3.1)

see for example [33, pp. 98–99].
More precisely, it is shown in [12, Theorem 1.36] that d for z 
= 0 is given by

d(z, t) = |z| θ

sin θ
,

where θ ∈ (−π, π) is determined by

μ(θ) = t/|z|2
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and μ : (−π, π) → R is the strictly increasing bijection

μ(θ) = 2θ − sin 2θ

2 sin2 θ
. (3.2)

From this, we will deduce for z 
= 0 a sharp estimate of the difference

d(z, t) − |a · x | = d(z, t) − |z| + |z| − |a · x |

and start with

d(z, t) − |z| = |z| θ − sin θ

sin θ
. (3.3)

From (3.2) we see that μ(±π/2) = ±π/2 and that |μ(θ)| ∼ |θ | for |θ | ≤ π/2. In the
case when |t |/|z|2 ≤ π/2, we thus have |θ | = |μ−1(|t |/|z|2)| ≤ π/2, and (3.3) leads
to

d(z, t) − |z| ∼ |z| θ2 ∼ t2

|z|3 .

In the opposite case |t |/|z|2 > π/2, one has instead |θ | > π/2 and |μ(θ)| ∼
1/ sin2 θ , and thus 1/| sin θ | ∼ √|t |/|z|. Now (3.3) implies

d(z, t) − |z| ∼ |z|
| sin θ | ∼ |t |1/2.

In both cases one also has

|z| − |a · x | = |z|2 − (a · x)2
|z| + |a · x | ∼ |x⊥|2 + |y|2

|z| .

All this can be summarized as follows; here the case z = 0, t 
= 0 is obtained by
continuity.

Lemma 4 For all points g = (z, t) 
= o in Hn,

d(z, t) − |a · x | ∼ Q(g), (3.4)

where

Q(g) = ((a · x)2 + |x⊥|2 + |y|2)(|x⊥|2 + |y|2) + t2(|a · x | + |x⊥| + |y| + √|t |)3
. (3.5)

This allows us to compute the μv-measure of a ball. Observe that

μv (B(g, r)) = ψ2
v (g) μv (B(o, r)) , ∀g ∈ Hn, r > 0.

Lemma 5

μv (B(o, r)) ∼
{
r2n+2, 0 < r < 1,
rn+1e2r , r ≥ 1.

(3.6)
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Proof The case r < 1 is clear, since the density of the measure is of constant order of
magnitude in B(o, 1). So we assume r ≥ 1. By m(h), 0 < h < 2r , we denote the
2n−dimensional Lebesgue measure of the set

Eh = {(z, t) ∈ B(o, r) : a · x = r − h}.

Then

μv (B(o, r)) =
∫ 2r

0
m(h) e2(r−h) dh. (3.7)

Let g = (z, t) be a point in Eh for some h ∈ (0, 2r). Then (3.4) implies that

Q(g) � r − |r − h| ≤ h. (3.8)

From (3.5) and (3.8) we get

(|x⊥| + |y| + √|t |)4
(
r + |x⊥| + |y| + √|t |)3

� Q(g) � r ,

which, considering the case where |x⊥| + |y| + √|t | ≥ r , leads to

|x⊥| + |y| +√|t | � r . (3.9)

This implies
m(h) � r2n+1.

Assume now that h < r/2, in order to get a better estimate of m(h). Then |a · x | =
|r − h| ≥ r/2, and (3.8), (3.5) and (3.9) imply

h � Q(g) � r2 (|x⊥| + |y|)2 + t2

r3
.

From this we obtain

|x⊥| + |y| �
√
rh and t � r3/2 h1/2,

and we conclude that
m(h) � rn+1 hn . (3.10)

Inserting now our two estimates for m(h) in the integral in (3.7), we will get

μv (B(o, r)) �
∫ r/2

0
rn+1 hn e2(r−h) dh +

∫ 2r

r/2
r2n+1 e2(r−h) dh � rn+1 e2r .

(3.11)
This is the upper estimate for r ≥ 1 in the lemma. To get also the lower estimate,

we let 1/4 < h < 1/2 and take |x⊥| < c
√
r , |y| < c

√
r and |t | < c r3/2. If the

positive constant c here is small enough, Q(g) will be much smaller than h, and (3.4)
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will imply that the point g is in Eh . It follows that the estimate (3.10) is sharp for these
h. Now (3.7) gives the desired lower estimate, and the lemma is proved. ��

3.3 Semigroup Kernels

The heat semigroup (eh�)h>0 generated by the sub-Laplacian has a convolution kernel
ph , in the sense that

eh� f (g) = f ∗ ph(g) =
∫
Hn

f (g′)ph((g′)−1g) dg′

for suitable functions f . It is well known that ph has the form (cf. [24,30] or [45])

ph(z, t) = 1

2(4πh)n+1

∫
R

exp
( λ

4h
(i t − |z|2 coth λ)

)( λ

sinh λ

)n
dλ. (3.12)

We note the homogeneity property of ph

ph(z, t) = h−n−1 p1

(
z√
h

,
t

h

)
, h > 0, (z, t) ∈ Hn . (3.13)

The following sharp global estimate for ph , proved in [32, Théorème 1], will play an
important role:

ph(z, t) ∼ h−n−1
(
1 + |z| d(z, t)

h

)−1/2 [ h + d(z, t)2

h + |z| d(z, t)

]n−1

e− d(z,t)2
4h , (3.14)

for all h > 0 and (z, t) ∈ Hn .
We will also need sharp upper estimates for horizontal derivatives of ph , see [32,

Théorème 2],

|∇k ph(g)| � h−k/2
(
1 + d(g)√

h

)k

ph(g), h > 0, g ∈ Hn, (3.15)

for k = 1, 2, . . . .
Next, we consider the sub-Laplacian with drift. The corresponding semigroup

(eh�v )h>0 has an integral kernel p(v)
h (g, g′), in the sense that

eh�v f (g) =
∫

p(v)
h (g, g′) f (g′) dμv(g

′), h > 0, g ∈ Hn,

for suitable functions f . It is explicitly given by (cf. [3, p. 4])

p(v)
h (g, g′) = e−h 1

ψv(g)ψv(g′)
ph((g

′)−1g) = e−h−a·x−a·x ′
ph((g

′)−1g), (3.16)

for all h > 0, g ∈ Hn, g′ = (x ′, y′, t ′) ∈ Hn .
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4 Proof of Theorem 3

The proof of the negative result for weak type (1, 1) and k ≥ 3 is deferred to Sect. 6.

4.1 Weak Type (1, 1) ofH1

Given φ ∈ L1(dμv), we must prove that H1φ is in L1,∞(dμv). We prefer to work
with f (g) = φ(g) e2 a·x , which satisfies

‖ f ‖L1(dg) = ‖φ‖L1(dμv)
,

and we can assume that these functions are nonnegative.
To write H1 φ in terms of a convolution involving f , we first see from (3.16) that

the kernel of ∇ eh�v is ∇g p(v)
h (g, g′). It satisfies

∣∣∣∇g p(v)
h (g, g′)

∣∣∣ =
∣∣∣
(
∇g e

−h−a·x−a·x ′)
ph((g

′)−1g) + e−h−a·x−a·x ′ ∇g ph((g
′)−1g)

∣∣∣
� e−h−2a·x ea·(x−x ′)

(
ph((g

′)−1g) + |∇g ph((g
′)−1g)|

)
.

Observe that the factor ea·(x−x ′) is a function of (g′)−1g. We now use (3.14) and (3.15)
to estimate ph and |∇ ph | here. If we define Kh(g) by

h−1/2 Kh(g) = e−h ea·x h−n−1
(
1 + h− 1

2

(
1 + d(g)√

h

)) (
1 + |z|d(g)

h

)−1/2

×
[
h + d(g)2

h + |z|d(g)

]n−1

e− d(g)2

4h , (4.1)

the result will be
∣∣∣∇g p(v)

h (g, g′)
∣∣∣ � e−2 a·x h−1/2 Kh((g

′)−1g). (4.2)

Integrating (4.2) against h1/2 φ(g′) dμv(g′) = h1/2 f (g′) dg′, we get

|h1/2 ∇ eh�vφ(g)| � e−2 a·x
∫

f (g′)Kh((g
′)−1g) dg′ = e−2 a·x f ∗ Kh(g). (4.3)

We begin with the local part of H1. Thus we replace Kh(g) in (4.3) by K loc
h (g) =

Kh(g) χ{d(g)≤1}, and consider

sup
h>0

e−2 a·x f ∗ K loc
h (g).

To estimate the right-hand side of (4.1) for d(g) ≤ 1, we replace 4 by 8 in the last
exponent. This allows us to eliminate the powers of d(g)2/h in the factors preceding
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the exponentials, and one finds that

K loc
h (g) � h−n−1 e− d(g)2

8h χ{d(g)≤1}.

From (4.2) it follows that the local part ofH1 can be estimated in terms of the analogue
of the Euclidean local gaussian maximal operator; notice that the local homogeneous
dimension of our space is 2n+2. Since themeasureμv is locally doubling, this implies
the weak type (1, 1) of the local part of H1.

It remains to deal with the global part ofH1, with kernel

K glob
h (g) = Kh(g) χ{d(g)>1}.

We must estimate
sup
h>0

e−2 a·x f ∗ K glob
h (g). (4.4)

Thus we assume that d(g) > 1 and observe that d(g) � 1+ |z|, since also d(g) ≥ |z|
because of (3.1).

To bound the right-hand side of (4.1), we first use the fact that

− h − d(g)2

4h
= −d(g) − (d(g) − 2h)2

4h
(4.5)

to rewrite the exponentials. Hence,

K glob
h (g) � h−n−1/2

(
1 + 1√

h
+ d(g)

h

) (
1 + |z|d(g)

h

)−1/2

×
[
1 + d(g)2

h + |z|d(g)

]n−1

exp

(
a · x − d(g) − (d(g) − 2h)2

4h

)
. (4.6)

We shall estimate this product in a way that depends on the relative size of h and d(g).
If h < d(g) < 4h, d(g) > 1, the product of the factors preceding the exponential

in (4.6) is controlled by

d(g)−n− 1
2 (1 + |z|)− 1

2

(
d(g)

1 + |z|
)n−1

� d(g)−
3
2 (1 + |z|)−n+ 1

2 � (1 + |z|)−n−1.

(4.7)
It follows that

K glob
h (g) � (1 + |z|)−n−1 exp (a · x − d(g)) . (4.8)

If instead 1 < d(g) ≤ h, the factors preceding the exponential in (4.6) have a
product controlled by h−n−1/2 d(g)n−1 � 1, and

(d(g) − 2h)2

4h
≥ h2

4h
≥ 1

4
max(h, d(g)) ∼ h + d(g).



   10 Page 12 of 29 Journal of Fourier Analysis and Applications            (2022) 28:10 

We conclude that then

K glob
h (g) � exp (a · x − d(g) − c h − c d(g)) ≤ exp(−c d(g)), (4.9)

the last inequality in view of (3.1).
It remains to consider the case d(g) ≥ 4h, d(g) > 1. Then

(d(g) − 2h)2

4h
≥ d(g)2

16h
� max(d(g), h−1) ∼ d(g) + h−1. (4.10)

One also has
√
h � d(g) since d(g) > 1, so that 1/

√
h � d(g)/h. This allows us to

estimate the non-exponential factors in (4.6) by constant times

h−n−1/2 d(g)

h

(
d(g)2

h

)n−1

≤ h−C d(g)C

for some C . But these powers can be absorbed by the factor exp
(−c d(g) − c h−1

)
coming from (4.10). We conclude that in this case

K glob
h (g) � exp

(
a · x − d(g) − c d(g) − c h−1

)
≤ exp (−c d(g)) . (4.11)

The following simple lemma will allow us to restrict the kernel K glob
h to a smaller

set depending on h.

Lemma 6 If L ∈ L1(dg), the operator S defined by

S f (g) = e−2 a·x f ∗ L(g)

is bounded from L1(dg) into L1(dμv).

Proof It is enough to integrate S f (g) with respect to dμv(g) and swap the order of
integration. ��

Applying this lemma with L(g) = exp(−c d(g)), the estimate (4.2) together with
(4.9) and (4.11) allows us to conclude that the operator obtained by multiplying K glob

h
in (4.4) by the characteristic function of the set

{g : 1 < d(g) /∈ (h, 4h)}

is of strong type (1,1). In the remaining set {g : max(h, 1) < d(g) < 4h}, (4.8) yields

K glob
h (g) � (1 + |z|)−n−1 exp (a · x − d(g)) =: K̃ glob(g).

Now if a · x ≤ 1 then K̃ glob(g) � e−d(g), and Lemma 6 implies that the corre-
sponding part of the operator is of strong type (1, 1).
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Further, if |x⊥| + |y| + √|t | ≥ a · x > 1, then (3.5) and (3.1) imply Q(g) � d(g).
From (3.4), we see that K̃ glob(g) is then dominated by e−c Q(g) � e−c d(g) for some
constants c. Again, Lemma 6 shows that the corresponding part of the operator is of
strong type (1, 1).

What we need to consider is thus

sup
h>0

e−2 a·x f ∗
(
K̃ glob χEh

)
(g),

where

Eh = {g : max(h, 1) < d(g) < 4h, a · x > 1, |x⊥| + |y| +√|t | < a · x}.

If g ∈ Eh for some h > 0, we have h > 1/4 and h ∼ d(g) ∼ a · x ∼ 1+ |z|. This
and (3.4) imply that K̃ glob(g) � (a · x)−n−1 e−c Q(g) in Eh .

Defining for k = 1, 2, . . .

Ek =
{
g : 2k−1 < a · x ≤ 2k, |x⊥| + |y| +√|t | ≤ 2k

}
,

we get for each h > 1/4 and some C

Eh ⊂
⋃

h/C<2k<Ch
k≥1

Ek .

This leads to an estimate for our remaining operator saying that

sup
h>0

e−2 a·x f ∗ (K̃ glob χEh )(g) � sup
k≥1

e−2 a·x f ∗ Mk(g), (4.12)

where
Mk(g) = 2−(n+1)k e−c Q(g) χEk (g). (4.13)

Let g = (x, y, t) ∈ Ek . Then
√|t | ≤ 2k and so

|x⊥| + |y| + 2−k |t | < |x⊥| + |y| +√|t | ≤ 2k .

Thus there exists an m ∈ {1, . . . , k} for which

2(m−1)/2 2k/2 < |x⊥| + |y| + 2−k |t | ≤ 2m/2 2k/2 if m ≥ 2,

|x⊥| + |y| + 2−k |t | ≤ 2m/2 2k/2 if m = 1.

For m > 1, we then have

|x⊥| + |y| > 2(m−1)/2−1 2k/2 or 2−k |t | > 2(m−1)/2−1 2k/2.
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In both cases, one sees from (3.5) that Q(g) � 2m . Thus by (4.13)

Mk(g) � e−c 2m 2−(n+1)k,

and this inequality holds trivially also if m = 1. For any g ∈ Ek , this allows us to
conclude that

Mk(g) �
k∑

m=1

e−c 2m 2−(n+1)k χEk,m (g),

where

Ek,m =
{g : 2k−1 < a · x ≤ 2k, |x⊥| ≤ 2m/2 2k/2, |y| ≤ 2m/2 2k/2, |t | ≤ 2m/2 23k/2}.

We now define operators

Tm f (g) = sup
k≥m

e−2 a·x 2−(n+1)k f ∗ χEk,m (g), m = 1, 2, . . . .

For the right-hand side of (4.12), we then have

sup
k≥1

e−2 a·x f ∗ Mk(g) �
∞∑

m=1

e−c 2m Tm f (g). (4.14)

The following proposition will allow summation in m in the space L1,∞(dμv), and
make the proof of the weak type (1, 1) of H1 complete.

Proposition 7 For each m ∈ {1, 2, . . . }, the operator Tm is bounded from L1(dg) into
L1,∞(dμv) with quasinorm no larger than C 2Cm for some constant C.

Proof Fixing m, we let 0 ≤ f ∈ L1(dg) and take λ > 0. Choosing a large � > 0, we
consider the level set

Lm
λ = {g : Tm f (g) ≥ λ, a · x ≥ −�}.

To prove the proposition, we shall verify that

μv(L
m
λ ) ≤ C

2Cm

λ

∫
f (g′) dg′,

with constants C independent of m, f , λ and �.
Now if g ∈ Lm

λ , we have for some k ∈ {m, m + 1, . . . }

2(n+1)k ≤ e−2 a·x

λ

∫
gE−1

k,m

f dg′ ≤ e2�

λ

∫
f dg′,
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and this implies an upper bound for k, say k ≤ κ = κ( f , λ,�). Then

Lm
λ =

{
g : a · x ≥ −�, max

m≤k≤κ
e−2 a·x 2−(n+1)k f ∗ χEk,m (g) ≥ λ

}
,

which is a closed set since each f ∗χEk,m is a continuous function. For each g ∈ Lm
λ , we

let k(g) ∈ {m,m +1, . . . , κ} be the maximal value of k for which e−2 a·x 2−(n+1)k f ∗
χEk,m (g) ≥ λ.

We verify that the set Lm
λ is bounded. For g ∈ Lm

λ we have

∫
gE−1

f dg′ ≥ e−2�λ, (4.15)

where E is the compact set

E =
κ⋃

k=m

Ek,m .

Since f is integrable, the integral in (4.15) tends to 0 as d(g) → ∞. Thus Lm
λ is

bounded and hence a compact set.
We will construct by recursion a sequence of points

g j = (x ( j), y( j), t ( j)
) ∈ Lm

λ , j = 1, 2, . . . ,

which will turn out to be finite. With each g j we will associate an open set g j P
−1
j ,

called a forbidden region; here

Pj = {g : a · x > −1, |x⊥| < 2m/2 22+k(g j )/2,

|y| < 2m/2 22+k(g j )/2, |t | < 2m/2 24+3k(g j )/2}.

Together, these regions will be seen to cover the level set Lm
λ .

Assume gi defined for 1 ≤ i < j , where j ∈ {1, 2, . . . }. Our idea is to choose
g j as a point in Lm

λ but not in any region forbidden by the already selected points gi .
Further, it should maximize k(g j ) and, secondly, maximize the quantity a · x ( j).

More precisely, let

k j = max

⎧⎨
⎩k(g) ∈ {m,m + 1, . . . , κ} : g ∈ Lm

λ \
⋃

1≤i< j

gi P
−1
i

⎫⎬
⎭ ,

provided the set Lm
λ \⋃1≤i< j gi P

−1
i is nonempty; otherwise the recursion ends. We

choose g j as a point in the compact set

A j =
⎧⎨
⎩g ∈ Lm

λ \
⋃

1≤i< j

gi P
−1
i : k(g) = k j

⎫⎬
⎭ (4.16)
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such that a · x is maximal among the points of this set. To verify thatA j is closed and
thus compact, assume that g̃
 −→ g̃ as 
 −→ +∞ and that g̃
 ∈ A j . Then

e−2 a·x 2−(n+1)k j f ∗ χEk j ,m
(g̃
) ≥ λ

for all 
, and by continuity the same inequality holds at g̃. This means that k(g̃) ≥ k j ;
thus k(g̃) = k j and g̃ ∈ A j . (Here we actually verified that the function g �−→ k(g)
is upper semicontinuous.)

Having thus defined the sequence (g j ), we observe that 1 ≤ i < j implies k j ≤ ki ,
and that if here k j = ki then a · x ( j) ≤ a · x (i). We will verify the following three
claims:

Lm
λ ⊂

⋃
j≥1

g j P
−1
j , (4.17)

μv(g j P
−1
j ) � 2nm e2 a·x ( j)

2(n+1)k j (4.18)

and
the sets g j E

−1
k j ,m

, j = 1, 2, . . . , are pairwise disjoint. (4.19)

This would imply Proposition 7, since we would get

μv(L
m
λ ) ≤

∑
j

μv(g j P
−1
j ) � 2nm

∑
j

e2 a·x ( j)
2(n+1)k j

≤ 2nm
∑
j

1

λ

∫
g j E

−1
k j ,m

f (g) dg ≤ 2nm
1

λ

∫
f (g) dg.

In the third step here, we used the fact that g j ∈ Lm
λ .

To verify (4.18), notice that

μv(g j P
−1
j ) = e2 a·x ( j)

∫
Pj

e−2 a·x dxdydt

= e2 a·x ( j)
∫

|x⊥|<2m/2 22+k j /2

a·x>−1

e−2 a·x
∫

|y|<2m/2 22+k j /2

|t |<2m/2 24+3k j /2

dydt dx

� e2 a·x ( j)
2nm 2(n+1)k j .

Aiming at (4.19), we argue by contradiction and assume that gi E
−1
ki ,m

and g j E
−1
k j ,m

have a common point for some 1 ≤ i < j . Then there exist points

g̃(i) = (x̃ (i), ỹ(i), t̃ (i)
) ∈ Eki ,m and g̃( j) = (x̃ ( j), ỹ( j), t̃ ( j)

) ∈ Ek j ,m

such that gi
(
g̃(i)
)−1 = g j

(
g̃( j)
)−1 or equivalently g j = gi ĝ−1, where ĝ =(

g̃( j)
)−1

g̃(i).



Journal of Fourier Analysis and Applications            (2022) 28:10 Page 17 of 29    10 

To get the contradiction, it is enough to verify that the point ĝ = (̂x, ŷ, t̂) is in Pi ,
since g j cannot be in the forbidden region gi P

−1
i .

For the components in the a direction of these points, we have

a · x̂ = a · x̃ (i) − a · x̃ ( j).

Since 2ki−1 < a · x̃ (i) ≤ 2ki and 2k j−1 < a · x̃ ( j) ≤ 2k j , this leads to a · x̂ ≥ 2ki−1−2k j .
Here k j ≤ ki , and if this last inequality is strict, we conclude that a · x̂ ≥ 0. But if
k j = ki , then a · x̃ (i) ≥ a · x̃ ( j) because of the recurrence construction, and thus
a · x̂ ≥ 0 also in this case.

For the components orthogonal to a, we get (when n ≥ 2)

|̂x⊥| = |x̃ (i)
⊥ − x̃ ( j)

⊥ | ≤ |x̃ (i)
⊥ | + |x̃ ( j)

⊥ | ≤ 2m/2 2ki /2 + 2m/2 2k j /2 ≤ 2 · 2m/2 2ki /2.

In the same way, |̂y| ≤ 2 · 2m/2 2ki /2. For the t coordinates, we have

t̂ = t̃ (i) − t̃ ( j) + 2x̃ ( j) · ỹ(i) − 2x̃ (i) · ỹ( j).

Since
|x̃ ( j)| ≤ |a · x̃ ( j)| + |x̃ ( j)

⊥ | ≤ 2k j + 2m/2 2k j /2 ≤ 2 · 2k j ,

and similarly for x̃ (i), this implies

|̂t | ≤ 2m/2 23ki /2+2m/2 23k j /2+4·2k j 2m/2 2ki /2+4·2ki 2m/2 2k j /2 ≤ 10·2m/2 23ki /2.

It follows that ĝ ∈ Pi , and (4.19) is proved.
To verify (4.17), observe that for any j one has

∫
g j E

−1
k j ,m

f (g′) dg′ ≥ e−2�λ.

Because of (4.19) and since f is integrable, this can only happen for a finite number
of j , so the sequence (g j )must be finite. This means that the set L(m)

λ \⋃1≤i< j gi P
−1
i

is empty for some j , which is (4.17).
Proposition 7 is proved, and so is the weak type (1, 1) of H1. ��

4.2 Weak Type (1, 1) ofH0

Here one follows the argument just given forH1. The main difference will be that the
factor (1 + |z|)−n−1 in (4.8) is now (1 + |z|)−n−3/2.
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4.3 Lp-Boundedness ofHk

Fix k ≥ 1 and p ∈ (1,+∞). We first consider small h and note that there exists a
constant C > 1 such that

hk/2
∣∣∣∇k

g p(v)
h (g, g′)

∣∣∣ � p(v)
Ch(g, g

′), 0 < h ≤ 1, g, g′ ∈ Hn . (4.20)

This can be seen from the expression (3.16) and the classical gaussian estimates for
the heat kernel and its derivatives on stratified groups; see Theorems IV.4.2 and IV.4.3
of [53]. Consequently,

sup
0<h≤1

hk/2
∣∣∣∇keh�vφ(g)

∣∣∣ � H0 φ(g),

and H0 is bounded on L p(μv) as pointed out in the Introduction.
It remains to prove the L p boundedness of

sup
h>1

hk/2
∣∣∣∇keh�vφ(g)

∣∣∣ .

We use an argument inspired by [51, p. 75]. Let ε(p) = k/2+1/p′, where p′ denotes
the conjugate exponent of p.

Write for h > 1

∣∣∣∇keh�vφ

∣∣∣ =
∣∣∣∣
∫ +∞

h

d

ds

(
∇kes�vφ

)
ds

∣∣∣∣ ;

the convergence of the integral follows from Theorem IV.4.2 of [53]. By Hölder’s
inequality, this is majorized by

(∫ +∞

h
s−p′ε(p) ds

)1/p′ [∫ +∞

h

∣∣∣∣sε(p) d

ds

(
∇kes�vφ

)∣∣∣∣
p

ds

]1/p

� h−k/2
[∫ +∞

1

∣∣∣sε(p) ∇k�v e
s�vφ

∣∣∣p ds

]1/p
.

In conclusion, we get

sup
h>1

hk/2
∣∣∣∇keh�vφ(g)

∣∣∣ �
[∫ +∞

1

∣∣∣sε(p) ∇k�v e
s�vφ

∣∣∣p ds

]1/p
.

With s > 1 we write∇k�v es�v = ∇ke�v/4�v e�v/4 e(s−1/2)�v , and for the operator
norms on L p(dμv) we will have

‖∇k�v e
s�v‖p→p ≤ ‖∇ke�v/4‖p→p ‖�v e

�v/4‖p→p ‖e(s−1/2)�v‖p→p.
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From (4.20) and the boundedness of H0, it follows that ‖∇ke�v/4‖p→p � 1
and ‖�v e�v/4‖p→p � 1. Using interpolation and the spectral gap, we see that
‖e(s−1/2)�v‖p→p is exponentially decreasing as s → +∞. The boundedness of Hk

on L p(μv) follows.

5 Proof of Theorem 1

We let f (g) = φ(g) e2 a·x as in Sect. 4.1.
The first-order Riesz transform is given by

R1 = 1√
π

∫ ∞

0
h−1/2 ∇ eh�v dh,

cf. (2.2). Except for a factor h−1, the integrand here appeared in connection with the
operatorH1 in the beginning of Sect. 4.1. Again, we have a kernel which is a function
of (g′)−1g multiplied by e−2a·x , and we arrive at a convolution, cf. (4.3). Indeed, for
any g = (x, y, t) ∈ Hn

h−1/2 ∇ eh�v φ(g) = e−2a·x f ∗ K̂h(g),

where
K̂h(g) = h−1/2 ∇(e−h+a·x ph(g)).

Moreover, (4.2) implies that |K̂h | � h−1 Kh , where Kh is given by (4.1).
For the Riesz operator, we are thus led to the expression

R1 φ(g) = 1√
π
e−2a·x

∫ ∞

0
f ∗ K̂h(g) dh. (5.1)

We shall now verify the convergence of the integral
∫∞
0 |K̂h(g)| dh and estimate it,

for all g 
= o. It will then follow thatR1 is given by (5.1) for all g /∈ suppφ = supp f .
Assume first that 0 < d(g) ≤ 2, so that a · x ≤ 2. From (4.1) we then see that

∫ ∞

0
|K̂h(g)| dh �

∫ ∞

0
h−1 Kh(g) dh

�
∫ ∞

0
h−n−3/2

(
1 + h− 1

2

(
1 + d(g)√

h

)) [
1 + d(g)2

h

]n−1

× exp

(
−d(g)2

4h

)
dh.

To estimate this integral, one uses the exponential factor for h < d(g)2 but not for
other values of h, and finds that

∫ ∞

0
|K̂h(g)| dh � d(g)−2n−2, 0 < d(g) ≤ 2. (5.2)
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Using again (3.15), one also verifies that

∫ ∞

0
|∇ K̂h(g)| dh � d(g)−2n−3, 0 < d(g) ≤ 2. (5.3)

Assuming now d(g) > 1, we first consider the integral over d(g)/4 < h < d(g).
For such h, we use (4.6) and the middle quantity in (4.7), and get

∫ d(g)

d(g)/4
h−1 Kh(g) dh

� ea·x−d(g) d(g)−
5
2 (1 + |z|) 1

2−n
∫ d(g)

d(g)/4
exp

{
− (2h − d(g))2

4h

}
dh

∼ ea·x−d(g) d(g)−2 (1 + |z|) 1
2−n .

The integral over 0 < h /∈ (d(g)/4, d(g)) is controlled by ea·x−d(g)−cd(g), as seen by
means of the middle expressions in (4.9) and (4.11). Thus altogether

∫ ∞

0
|K̂h(g)| dh � ea·x−d(g) d(g)−2 (1 + |z|) 1

2−n, d(g) > 1. (5.4)

To prove the weak type (1,1) of R1, we split the operator into a global and a local
part. Choose a smooth function η ≥ 0 in Hn satisfying η(g) = 1 if d(g) ≤ 1 and
η(g) = 0 if d(g) ≥ 2. Then we define K̂ glob

h (g) = K̂h(g) (1 − η(g)) and

Rglob
1 φ(g) = 1√

π
e−2a·x

∫ ∞

0
f ∗ K̂ glob

h (g) dh.

The local part is
Rloc

1 = R1 − Rglob
1 .

For g /∈ supp f , the local part is given by

Rloc
1 φ(g) = 1√

π
e−2a·x

∫ ∞

0
f ∗ K̂ loc

h (g) dh,

where K̂ loc
h (g) = K̂h(g) η(g) satisfies the estimates (5.2) and (5.3), like K̂h . Notice

that these are the standard estimates for singular integrals of Calderón–Zygmund type.
By means of a suitable splitting of Hn into pieces, it can be proved first that Rloc

1 is
bounded on L p(μv), 1 < p < ∞, and then that it is also of weak type (1,1), see [7,
Lemma 5 p. 1316 f.].

For the global part, (5.4) implies that

∫ ∞

0
|K̂ glob

h (g)| dh � ea·x−d(g) d(g)−2 (1 + |z|) 1
2−n =: K ∗(g). (5.5)
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The operator we thus need to estimate is f �→ e−2 a·x f ∗K ∗, for 0 ≤ f ∈ L1(dg).
It is actually enough to consider e−2 a·x f ∗ (K ∗ χE ), where

E = {g : a · x > 1, |x⊥| + |y| +√|t | ≤ a · x}.

Indeed, for the complement of this set we can apply Lemma 6 as in Sect. 4.1.
If the point g ∈ E is in the slice defined by 2k−1 < a · x ≤ 2k for some k ∈

{1, 2, . . . }, we combine (5.5) with (3.4) to conclude that

K ∗(g) � 2−(n+3/2)k e−cQ(g).

With Mk defined by (4.13), possibly with another value of the constant c, this means
that

K ∗(g) �
+∞∑
k=1

2−k/2Mk(g). (5.6)

From (4.14) and Proposition 7, we know that the operator

f �→ e−2 a·x f ∗ Mk(g)

is bounded from L1(dg) into L1,∞(μv), uniformly in k. The estimate (5.6) thenmakes
it possible to sum in L1,∞(μv) and obtain the weak type (1, 1) of the operator f �→
e−2 a·x f ∗ (K ∗ χE )(g). ThusRglob

1 is of weak type (1, 1), and the proof of Theorem 1
is complete.

6 Counterexamples

6.1 Proof of Theorem 2

Let k ≥ 3. Instead ofRk , it is enough to find a counterexample for (a ·X)k(−�v)
−k/2.

We will apply this operator to a function φ supported near the origin, and evaluate
(a · X)k(−�v)

−k/2 φ at points far away.
For large r > 0 we introduce the set

�r =
{
g = (x, y, t) : r − 1 < a · x < r , |x⊥| <

√
r , |y| <

√
r , |t | < r3/2

}
.

If g ∈ �r , Lemma 4 implies that |Q(g)| � 1, and so

d(g) = a · x + O(1) = r + O(1), r → ∞. (6.1)

Lemma 8 If g ∈ �r and r is large enough, then

(−1)k
∫ ∞

0
hk/2−1 (a · X)k p(v)

h (g, o) dh � e−2r r−n−k/2−2. (6.2)
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The kernel p(v)
h was introduced in Sect. 3.3. Before proving this lemma, we use it

to construct the desired counterexample. Let φ be a nonnegative, continuous function
supported in the ball B(o, ρ) for some small ρ, and satisfying

∫
φ dμv = 1. When

the point g is not in the support of φ, one has

(a · X)k e−h�v φ(g) =
∫

(a · Xg)
k p(v)

h ((g′)−1g) φ(g′) dμv(g
′). (6.3)

We define a subset of �r by

�′
r =

{
g : r − 3

4
< a · x < r − 1

4
, |x⊥| <

√
r

2
, |y| <

√
r

2
, |t | <

r3/2

2

}
.

Then we can fix ρ > 0 such that (g′)−1g ∈ �r if g′ ∈ B(o, ρ) and g ∈ �′
r , for any

large r . This is seen from the group law (2.1), and ρ will depend only on n.
We now combine (6.3) with (2.2), where ∇ is replaced by a · X. With g ∈ �′

r , we
can swap the order of integration and obtain

(a · X)k (−�)−k/2 φ(g)

= 1

�(k/2)

∫ ∞

0
hk/2−1

∫
(a · Xg)

k p(v)
h ((g′)−1g) φ(g′) dμv(g

′) dh

= 1

�(k/2)

∫ ∫ ∞

0
hk/2−1 (a · Xg)

k p(v)
h ((g′)−1g) dh φ(g′) dμv(g

′).

From Lemma 8, we conclude that for g ∈ �′
r

(−1)k (a · X)k (−�v)
−k/2 φ(g) �

∫
e−2r r−n−k/2−2 φ(g′) dμv(g

′)

= e−2r r−n−k/2−2.

Since μv(�
′
r ) ∼ e2r rn+1 and k ≥ 3 , this violates the weak type (1,1) for (a ·

X)k(−�v)
−k/2 as r → +∞ and ends the proof of Theorem 2.

Proof of Lemma 8 We start by estimating the integral in (6.2) taken only over 0 < h /∈
(d(g)/4, d(g)), in terms of the kernel Kh introduced in the beginning of Sect. 4.1.
Letting g′ = o in (4.2), we get |∇ p(v)

h (g, o)| � e−2 a·x h−1/2 Kh(g). In our case, we
have derivatives of order k, and (3.15) says that this gives extra factors controlled by
1 + h−k/2 + h−kd(g)k .

If h > d(g), we can estimate Kh(g) = K glob
h (g) bymeans of (4.9). Then all powers

of h and d(g) can be absorbed by the factors exp(−ch − cd(g)) in (4.9). As a result,

∫ ∞

d(g)
hk/2−1 |(a · X)k p(v)

h (g, o)| dh � exp(− a · x − d(g) − cd(g)) ∼ e−2r−cr ,
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the last estimate because of (6.1). For the integral over 0 < h < d(g)/4, we use
instead (4.11) in a very similar way, to get

∫ d(g)/4

0
hk/2−1 |(a · X)k p(v)

h (g, o)| dh � e−2r−cr .

These parts of the integral in (6.2) are thus much smaller than the right-hand side and
can be neglected. It remains to deal with the integral over d(g)/4 < h < d(g), which
requires much more precision.

We start by using Leibniz’ rule and (3.16) together with the fact that (a ·X) e−a·x =
−e−a·x , to get

(a · X)k p(v)
h (g, o) = e−h e−a·x

k∑
j=0

(k
j

)
(−1)k− j

(
(a · X) j ph

)
(g). (6.4)

Now (3.12) and the definition of X show that for j = 0, . . . , k and any point g =
(z, t) = (x, y, t)

(a · X) j ph(g)

= 1

2(4π)n+1 h−n−1
∫
R

(a · ∇x + 2a · y ∂/∂t) j exp (F(λ))

(
λ

sinh λ

)n

dλ (6.5)

where

F(λ) = 1

4h

(
i tλ − |z|2λ coth λ

)

and ∇x = (∂/∂x1, . . . , ∂/∂xn ) is the ordinary gradient in R
n .

One finds that

(a · ∇x + 2a · y ∂/∂t) j exp (F(λ))

=
∑
α,β

cα,β h−α−β (−λ coth λ)α (a · x)2α+β− j (a · y)β (iλ)β exp (F(λ))

for some positive constants cα,β , where the sum is taken over all nonnegative integers
α, β verifying α + β ≤ j and 2α + β ≥ j . The reason for this last inequality is
that each term in the sum arises when α differentiations a · ∇x and β differentiations
2a · y ∂/∂t fall on exp (F(λ)), and the remaining j − α − β differentiations fall on
the powers of a · x that will occur. Thus one must have j − α − β ≤ α.

So (6.5) implies that for 0 ≤ j ≤ k, with other positive constants cα,β ,

(a · X) j ph(g) = h−n−1
∑
α,β

cα,β (−1)α h−α−β (a · x)2α+β− j (a · y)β Iα,β (6.6)

where

Iα,β =
∫
R

exp (F(λ))

(
λ

sinh λ

)n

(λ coth λ)α (iλ)β dλ.
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We will estimate Iα,β , assuming the point g = (z, t) = (x, y, t) in �r for some
large r , and we take h ∈ (d(g)/4, d(g)). Then h ∼ d(g) ∼ r , and |z|2/h ∼ r and
t/h ∼ √

r . We remark that Beals, Gaveau and Greiner [12, Sect. 2] compute a similar
integral, by moving the contour of integration to a line in the complex plane; in our
case this is not necessary.

The main part of Iα,β comes from a neighborhood of the point λ = 0, and we
observe that F(0) = −|z|2/(4h). Further,

F(λ)−F(0) = −|z|2
4h

(λ coth λ−1)+ i
tλ

4h
= −|z|2

4h

(
1

3
λ2 + O(λ4)

)
+ i

tλ

4h
(6.7)

as λ → 0. Using the symbol ∧ for the minimum, we also have

λ coth λ − 1 ∼ λ2 ∧ |λ|, λ ∈ R \ {0}. (6.8)

This is because the quotient (λ coth λ − 1)/(λ2 ∧ |λ|) is continuous and positive for
λ 
= 0 and has positive limits at 0 and at ±∞. Thus

�(F(λ) − F(0)) < −c r λ2 ∧ |λ|, λ ∈ R \ {0}

for some c > 0. Since λ/ sinh λ is bounded on R and |λ coth λ| � 1 + |λ|, we will
have

|Iα,β | � exp

(
−|z|2

4h

) ∫
R

e−c r λ2∧|λ| (1 + |λ|α) |λ|β dλ.

Here we separate the integrals over |λ| < 1 and |λ| > 1 and easily get

|Iα,β | � exp

(
−|z|2

4h

)
r−1/2−β/2. (6.9)

Next we verify that this estimate is sharp in the case α = j . Notice that α = j
forces β = 0. We split I j,0 as I j,0 = I 0 + I∞, where

I 0 =
∫ r−1/4

−r−1/4
exp (F(λ))

(
λ

sinh λ

)n

(λ coth λ) j dλ

and I∞ is the corresponding integral over |λ| > r−1/4.
If |λ| > r−1/4, (6.8) implies λ coth λ − 1 � r−1/2 + λ2 ∧ |λ|. Thus

|I∞| � exp

(
−|z|2

4h

)
exp

(
−c r1/2

) ∫
R

e−c rλ2∧|λ| (1 + |λ| j ) dλ

� exp

(
−|z|2

4h

)
exp

(
−c r1/2

)
, (6.10)

for some positive constants c.
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For I 0 we use (6.7) and the fact that λ/ sinh λ = 1 + O(λ2) as λ → 0, getting

I 0 = exp

(
−|z|2

4h

)∫ r−1/4

−r−1/4
exp

(
− |z|2
12h

λ2 + i
tλ

4h
+ O(rλ4)

) (
1 + O(λ2)

)
dλ.

Since here rλ4 ≤ 1, we can replace the term O(rλ4) in the exponent by a factor
1 + O(rλ4) outside the exponential. Thus we have

I 0 = exp

(
−|z|2

4h

)∫ r−1/4

−r−1/4
exp

(
− |z|2
12h

λ2 + i
tλ

4h

) (
1 + O(rλ4 + λ2)

)
dλ.

The effect of the O(. . . ) term in this integral is controlled by

exp

(
−|z|2

4h

)∫ r−1/4

−r−1/4
exp

(
−c r λ2

)
(rλ4 + λ2) dλ � exp

(
−|z|2

4h

)
r−3/2.

What remains is

exp

(
−|z|2

4h

)∫ r−1/4

−r−1/4
exp

(
− |z|2
12h

λ2 + i
tλ

4h

)
dλ.

Here we can extend the integration to all of R, with an error that can be estimated as
in (6.10). The resulting integral over R is an elementary Fourier transform, taken at
the point t/(4h). Its value is

√
π

√
12h

|z| exp

(
− 12h

4|z|2
(

t

4h

)2
)

∼ r−1/2,

because 12h
4|z|2

( t
4h

)2 ∼ 1.
We can now summarize the last few estimates, and conclude that for large r

I j,0 ∼ I 0 ∼ exp

(
−|z|2

4h

)
r−1/2; (6.11)

cf. (6.9).
The next step is to insert our estimates for Iα,β in (6.6). The inequality (6.9) implies

∣∣h−α−β (a · x)2α+β− j (a · y)β Iα,β

∣∣ � rα+β/2− j |Iα,β | � exp

(
−|z|2

4h

)
r−1/2+α− j .

In the case when α = j , and thus β = 0, (6.11) shows that this estimate is sharp in
the sense that

h−α−β (a · x)2α+β− j (a · y)β Iα,β = h− j (a · x) j I j,0 ∼ exp

(
−|z|2

4h

)
r−1/2.
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This means that the term with α = j dominates in the sum in (6.6), and

(−1) j (a · X) j ph(g) ∼ exp

(
−|z|2

4h

)
r−n−3/2.

When we now insert this estimate in (6.4), the factors (−1) j will cancel, and we
conclude that

(−1)k (a · X)k p(v)
h (g, o) ∼ e−h e−a·x

k∑
j=0

(k
j

)
exp

(
−|z|2

4h

)
r−n−3/2

∼ e−h e−a·x exp

(
−|z|2

4h

)
r−n−3/2. (6.12)

Next, we verify that in �r

|z|2
4h

= d(g)2

4h
+ O(1), r → ∞. (6.13)

Indeed,

|z|2 − d(g)2 = (a · x)2 − d(g)2 + |x⊥|2 + |y|2
= (a · x + d(g))(a · x − d(g)) + O(r) = O(r),

where we applied (6.1). This proves (6.13), and then (6.12) can be rewritten as

(−1)k (a · X)k p(v)
h (g, o) ∼ e−a·x−d(g) exp

(
− (2h − d(g))2

4h

)
r−n−3/2.

Integrating and applying again (6.1), we arrive at

(−1)k
∫ d(g)

d(g)/4
hk/2−1 (a · X)k p(v)

h (g, o) dh

∼ e−2r r−n−3/2
∫ d(g)

d(g)/4
hk/2−1 exp

(
− (2h − d(g))2

4h

)
dh ∼ e−2r r−n−k/2−2,

holding for all g ∈ �r . Lemma 8 is proved. ��

6.2 Counterexample for Theorem 3

As in the preceding subsection, we consider (a ·X)k p(v)
h (g) with g ∈ �r . But we fix

h = d(g)/2 instead of integrating in h, and there is now a factor hk/2 that replaces
hk/2−1. Instead of the estimate in Lemma 8, we now get for g ∈ �r

∣∣∣hk/2 (a · X)k p(v)
h (g, o)

∣∣
h=d(g)/2

∣∣∣ ∼ e−a·x−d(g) rk/2−n−3/2 ∼ e−2r rk/2−n−3/2.
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As r → +∞, this contradicts the weak type (1, 1) inequality for Hk when k ≥ 2.
The proof of Theorem 3 is complete.
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