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Revealing the polar nature 
of a ferroelectric nematic by means 
of circular alignment
Per Rudquist

The recent discovery of spontaneously polar nematic liquid crystals—so-called ferroelectric nematics—
more than a century after the first discussions about their possible existence—has attracted 
large interest, both from fundamental scientific and applicational points of view. However, the 
experimental demonstration of such a phase has, so-far, been non-trivial. Here I present a direct 
method for the experimental verification of a ferroelectric nematic liquid crystal phase. The method 
utilizes a single sample cell where the two substrates are linearly and circularly rubbed, respectively, 
and the ferroelectric nematic phase  (NF) is revealed by the orientation of the resulting disclination 
lines in the cell.

The simplest nematic liquid crystal phase (N, Fig. 1a) is a three-dimensional orientationally ordered liquid. The 
local average direction of the molecules is denoted by the director n, and characteristic for the N phase is that 
even if the constituent (usually rodlike) molecules may be polar themselves, n is invariant under sign reversal, 
i.e., n = − n. The structure and non-polar symmetry of the N phase is well-known since more than a century and 
the electrooptic effects of nematic liquid crystals are the basis for the multi-billion dollar liquid crystal display 
technology.

In 2017 Nishikawa et al.1 and Mandle et al.2,3, reported materials which apparently exhibited nematic phases 
where locally the sign-invariance of n was not valid. Nishikawa et al., reported a phase transition between two 
fluid nematic phases in the highly polar compound DIO. In the lower temperature phase, they observed mac-
roscopic polar ordering, probed by means of SHG measurements, in response to an applied electric field. They 
suggested the dipolar molecular associations to be “ferroelectric-like”. Mandle et al. proposed that the local polar 
order in the material RM734 was driven by spontaneous splay, (splay nematic phase) which resulted a periodic 
structure, with alternating direction of splay and  polarization2–4. Later, Sebastián et al., by means of second 
harmonic generation imaging, could draw the conclusion that the local order in the “splay nematic phase” of 
RM734 is polar on a macroscopic scale and that the splay and polarization modulation period is 5–10 µm. They 
also raised the important question whether a homogeneous uniaxial ferroelectric nematic phase can be realized, 
or if ferroelectric ordering in a nematic phase must be accompanied by orientational  deformation5.

In 2020, Clark and co-workers reported experimental evidence that the new liquid crystal phase in RM734, 
first synthesized in 2017 by Mandle, Cowling and  Goodby2–4, is the ferroelectric nematic  (NF)  phase6, cf. Fig-
ure 1b. The possible existence of such a spontaneously polar nematic phase, driven by dipolar ordering of molecu-
lar dipoles in highly polar materials, was proposed already by Born in  19167 but evidence for its existence has 
not been presented before. The discovery of the  NF phase “opens another chapter in condensed matter science 
and technology”  (Lavrentovich8) and has sparked an enormous interest, both from fundamental physics and 
from applicational points of view.

To understand the mechanisms behind the formation of the new  NF phase, and to explore its future applica-
tion potential, there is an immediate need to design, synthesize and investigate a vast number of similar materials, 
and rapidly scan these for the  NF phase. In this letter I present a surprisingly simple and fast method for direct 
experimental identification of the  NF phase, utilizing only a single sample cell and an optical microscope (or 
even the bare eye). No external electric or magnetic fields, no second harmonic generation experiments, nor 
any spectroscopic methods are needed. The study solely treats the experimental identification of the  NF phase, 
with no ambition at this stage, to further elaborate on the mechanisms behind the formation of the  NF phase.

In a nematic liquid crystal display cell, the quiescent state is governed by the boundary conditions at the 
two cell substrates. For homogeneous planar anchoring of n mechanically rubbed polyimide layers can be used, 
forcing n to align with the rubbing direction at the surfaces. In the conventional N phase, parallel, as well as 
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antiparallel, rubbing at the two surfaces produce a non-twisted director field, Fig. 2a, and if the rubbing direc-
tions are not colinear we get a director twist between the plates.

For the polar  NF phase the situation is fundamentally different: on a rubbed surface the  NF phase aligns with 
the spontaneous polarization parallel to the rubbing  direction9. The striking consequence is that when the rub-
bing directions are anti-parallel, we get a ± 180° director twist between the surfaces, cf. Figure 2b. When the angle 
between the two rubbing directions is neither 0 nor 180°, the  NF phase should adopt the state with the smallest 
twist matching the rubbing directions. When the two surfaces are rubbed in parallel we get a non-twisted state 
(just as in the N phase). The possible twisted states and electrooptic effects in the polar nematic phase are further 
discussed by Caimi et al.10 and Sebastián et al. 11.

Let us now make a cell where the bottom surface is linearly rubbed, and the top surface is circularly rubbed. 
Such circularly rubbed cells (CRCs) have been used by Suh et al. to measure the pitch in long pitch cholesteric 
 materials12. Linear alignment is obtained by gently rubbing the polyimide coated surface with a velvet cloth in 
a single direction. Circular alignment can be realized by putting the polyimide-coated substrate on a spinner 
chuck and gently press the rubbing cloth towards the spinning substrate for a few seconds. Alternatively, as in 
this study, a small piece of rubbing cloth can be attached to a flat rotating chuck, that is gently pressed towards to 
a then fixed substrate. As an alternative to mechanical rubbing,  photobuffing13 could likely be used provided that 
the pretilt, necessary for the effective in-plane polar surface anchoring, can be secured also in circular alignment.

In a CRC the N phase adopts the configuration illustrated in Fig. 3a12. If we use a clockface notation and the 
bottom substrate is rubbed along the 3–9 direction, we get a non-twisted director field at “12” and “6”. Away 
from the “12” and “6” positions we get an increasing twist and at 3 and at 9 the twist changes sign, to minimize 
the twist elastic energy. The discontinuous change from + 90° to − 90° twist occurs across two sharp disclination 
lines running horizontally, i.e. in the “9”–“3” orientation through the center of circular rubbing.

Let us now consider the case of the  NF phase in the same cell, cf. Fig. 3b. The circular rubbing is made coun-
terclockwise, and the rubbing directions are therefore parallel at “12” and antiparallel at “6”. The polar  NF phase 
orients with the polarization along the rubbing directions and to match the boundary conditions, we expect a 
non-twisted director at “12” where the rubbing directions are in parallel. When going away from “12” towards 
“6”, clockwise or anticlockwise, there is a twist that increases continuously all the way to the “6” position, where 
the rubbing directions become perfectly antiparallel. To minimize the elastic energy, the twist discontinuously 
changes from 180° right-handed to 180° left-handed at “6” across a disclination line, while the structure is con-
tinuous at all other positions in the cell. To summarize: in the CRC cell the N phase should make two disclination 
lines along the linear rubbing direction, while the  NF should make one disclination line normal to the linear rubbing 
direction, starting from the center of rubbing.

Figure 1.  Schematic representations of (a) the nematic (N) and (b) the ferroelectric nematic  (NF) phases.

Figure 2.  In the N-phase (a), parallel and anti-parallel rubbing gives a non-twisted structure. In the  NF-phase 
(b) the polarization (red) aligns with the rubbing direction. In the case of anti-parallel rubbing the structure has 
to make a right-handed (R) or left-handed (L) twist of 180° to match the in-plane polar boundary  conditions9,10.
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Figure 4 shows polarized optical microscope photographs of a 4 µm thick CRC filled with the archetype  NF 
material RM734 having a phase transition between the ferroelectric  NF and the conventional N phase at about 
133 °C, and between N and isotropic at 188 °C, respectively. The polyimide aligning layer on both surfaces is 
PI2610 from DuPont, and the bottom linearly rubbed substrate is the warmer substrate (in direct contact with 
the hot- plate). The cell was capillary filled with RM734 in the isotropic phase at 190 °C. At 140 °C (a and l)) we 
have two horizontal disclination lines emanating from the center of circular rubbing, as expected from the non-
polar N phase. At “12” and “6” on the clockface we get extinction of light as the director here is parallel to one of 
the crossed polarizers. At 130 °C (f) the two horizontal disclination lines have been replaced by one disclination 
line at “6” which proves that the sample is now in the  NF phase, cf. Fig. 3. Figure 4a–f shows the evolution of the 
cell on cooling from 140° to 130 °C at a rate of 3 °C/min. Soon after the phase transition (b) the two disclination 
lines at “9” and at “3” start to move downwards and become one disclination at “6”. On heating from 130 to 
140 °C (Fig. 4g–l) the single disclination line at “6”, soon after the transition to the N phase (h), splits close to the 
center of circular rubbing and branches symmetrically into the two horizontal disclinations characteristic of the 
N phase at the “9” and “3” positions (l). The course of events shown in Fig. 4 is perfectly reversible.

The observed defect behavior at the N-NF transition in CRC cells described here can be compared to the 
behavior of chiral  NF materials in so-called Cano-wedge cells 14,15. In chiral nematics (N*) the director forms a 
spontaneous twist with a helix axis normal to the director. In a wedge cell with homogenous planar anchoring, a 
periodic set of disclination lines appears, normal to the opening direction of the wedge. At each disclination the 
number of half-pitches increases in steps of one to minimize the elastic energy. In a polar and chiral  NF* phase 
where n ≠ − n, the number of half-pitches instead increases by two in each disclination in such wedge  cells14,15. 
Hence the number of disclination lines are then reduced by a factor of 2 at the transition between N* and  NF*. 
However, in the Cano-wedge case the material must be chiral to show this defect behavior. Furthermore, if the 
material does not exhibit both the N* phase and the  NF* phase in the sequence, one cannot, merely based on the 
number of disclination lines in the wedge, draw any conclusion about the polarity of the nematic phase under 
study. In contrast, the CRC method described here works for both achiral and chiral versions of the  NF phase, 
and importantly, regardless of whether the N phase is present or not in the phase sequence. Hence, in liquid 
crystals with a direct phase transition from isotropic to ferroelectric nematic, see for instance Manabe et al.16 
and Li et al.17, the configuration with one disclination line should still form in CRC cells, revealing the polar 
order of the  NF phase. It is also worth pointing out that the CRC cell method should in principle facilitate pitch 
measurements of the chiral  NF* phase, where the pitch in can be calculated from the azimuthal rotation of the 
single disclination line away from the “6” position, analogous to the pitch measurements of the conventional N* 
phase in CRC described by Suh et al.12.

To conclude, circularly rubbed cells and the position of the disclination line(s) in relation to the linear rub-
bing direction constitute a simple and yet powerful tool to probe the polar order of nematic liquid crystals, and 
in particular to unambiguously distinguish the  NF phase from the N phase.

The data that supports the findings of this study are available within the article.

Figure 3.  Schematics of circularly rubbed cells filled with (a) non polar N, and (b) polar  NF nematic liquid 
crystal. The N phase gives a disclination line parallel to the linear rubbing direction B, while the  NF phase gives 
a disclination line normal to B, starting at the center of circular rubbing. R and L denote right-handed and left-
handed twisted regions, respectively.
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Figure 4.  Evolution of the CRC structure of RM734 on cooling from 140 °C to 130 °C (a–f) and on heating 
from 130° to 140 °C (g-l). The disclinations and their direction of motion are marked with solid and dashed 
arrows, respectively. In b and h, the regions with irregular texture appear during the phase transition which 
occurs at approximately the same temperature (at ¨133 °C) on both cooling and heating. The faint circular 
stripes are due to scratches in the alignment layer, caused by mechanical unevenness during the circular rubbing 
process. Hence, these stripes visualize the rubbing orientation on the circularly rubbed top plate.
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