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Machine Learning Based Methods for Virtual Validation of Autonomous Driving
Tobias Johansson
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
During the last decade, automotive manufacturers have introduced increasingly capa-
ble driving automation functions in consumer vehicles. As the functionality becomes
more advanced, the task of driving moves from the human to the car. Hence, making
sure that autonomous driving (AD) functions are reliable and safe is of high impor-
tance. Often, increased levels of automation result in more complex safety validation
procedures, that may be both expensive, time consuming, and dangerous to perform.
One way to address these problems is to move parts of the validation to the virtual
domain.

In this thesis, we investigate methods for validating AD functionality in virtual
simulation environments, using methods from machine learning and statistics. The
main focus is on how to make virtual simulations resemble real-world conditions as
closely as possible. We tackle this with an approach based on sensor error mod-
eling. Specifically, we develop a statistical sensor error model that can be used to
make ideal object measurements from simulations resemble measurements obtained
from the perception system of a real-world vehicle. The model, which is based on
autoregressive recurrent mixture density networks, was trained on sensor error data
collected on European roads.

The second part considers system falsification using reinforcement learning (RL);
a flexible framework for validation of system safety, which naturally allows for the
integration of, e.g., sensor error models. We compare results of system falsification
using RL to an exact approach based on reachability analysis.

With this thesis, we take steps towards more realistic statistical sensor error models
for virtual simulation environments. We also demonstrate that approximate methods
based on reinforcement learning may serve as an alternative to reachability analysis
for validation of high-dimensional systems. Finally, we connect the RL falsification
application to sensor error modeling as a possible direction for future research.

Keywords: Sensor Error Modeling, Autonomous Driving, Mixture Density Net-
works, Falsification, Validation, AD Simulation, Virtual Validation
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CHAPTER 1

Introduction

The introduction of autonomous driving (AD) has the potential to change how
transportation is perceived in a fundamental way. Time spent focused behind
the steering wheel driving from one place to another can instead be dedicated
to more rewarding endeavors. Moreover, without the need for a human driver,
cars can be designed according to completely different requirements to enable
a more pleasant journey, and to provide the passengers with an increased
level of safety. There is, however, a long way to go before fully autonomous
passenger vehicles will be standard on all public roads. For this to become
reality, further developments in both software and hardware in essentially
all levels of the AD stack are required, and evidence must be presented to
convince consumers and regulatory agencies that each AD vehicle is safe in
traffic. Exactly what evidence we need to collect is currently an open question,
and a significant amount of time and effort is being put into coming up with
answers to this, both from industry and academia.

The number of ways from which to approach safety validation of autonomous
vehicles is vast. In this thesis, we focus on using tools from machine learning
and statistics to propose methods for evaluating AD safety. Specifically, we
focus on methods to be used in virtual simulation environments. There are
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Chapter 1 Introduction

many benefits with a successful implementation of such an approach in terms
of experiment execution speed, safety, and cost. In the following section, we
give a background on autonomous driving, explain the common approaches
to AD validation, and contrast physical validation methods to virtual ones.
After this, we formulate the problem treated in this thesis, and state our
contributions.

1.1 Preliminaries

1.1.1 Autonomous Driving

In the last decade, car manufacturers have made tremendous efforts to develop
autonomous driving functionality. While AD has been promoted for a very
long time (with examples such as the General Motors futurama exhibition
at the 1939 world fair, featuring radio controlled cars on so-called superhigh-
ways [1], and popular culture appearances, such as KITT in Knight rider),
it is not until recently that computing power and sensor technology have be-
come affordable and small enough for AD to be a potentially reachable target.
The reasons to expand driving automation functionality for consumer vehicles
are plenty. Of particular importance is the possibility to reduce the number
of traffic accidents caused by human errors each year. Handing over critical
collision mitigation decisions to a computer that does not experience fatigue
and can react within milliseconds will undoubtedly save lives. This will not
only benefit the occupants of the AD vehicle, but also vulnerable road users
such as pedestrians and cyclists, which make up over half of all traffic deaths
[2].

A modern car, capable of a high degree of driving automation, is a complex
piece of machinery consisting of many interlinked components. Focusing on
the specifics of automated vehicles, the functionality linked to the AD soft-
ware is often divided into three parts: perception, planning and control [3]. In
the perception stage, the vehicle collects and processes information about the
surroundings and its own state, to create a representation of the environment
for usage in the planning phase. The planning task is to determine a course of
actions to take, in order to adhere to the driving objectives, such as following
a predetermined map path, or avoiding sudden obstacles in the road. Finally,
the control stage translates decisions of the planning stage to actuator re-
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Perception Planning Control

Environmental 
perception and

localization

Decision making 
and motion planning Vehicle control

Figure 1.1: The three components of driving automation software.

quests. The flow is illustrated in Figure 1.1. Formally, the perception stage is
made up of two parts: environmental perception and localization. The latter
refers to the task of estimating entities such as pose, velocity and global posi-
tion of the ego vehicle, i.e., the AD vehicle itself. In this thesis, we exclusively
refer to environmental perception when we mention perception. This is the
task of understanding the surrounding environment by, e.g., locating objects
and drivable road area.

It is common to classify automated vehicles into different categories depend-
ing on the level of automation they are capable of. The most frequently used
categorization is based on five classes [4]. Class 1 marks the lowest level of
automation, and class 5 indicates fully autonomous driving. Examples of level
1 functionality are adaptive cruise control (ACC) and lane keeping assistance
(LKA). By combining ACC and LKA we advance to level 2. Vehicles with
AD functionality reaching level 3 and above, are often referred to as unsuper-
vised self-driving cars. This reflects the fact that the driver does not have to
monitor the driving, which is a requirement for levels 1 and 2. The differences
between levels 3, 4 and 5 are mostly connected to when, or if, the driver needs
to be attentive and take control of the vehicle, as well as the operational de-
sign domain (ODD) of the AD functions. Most functions on level 1 and 2 are
referred to as advanced driver assistance system (ADAS) functions, but ADAS
is a more general term, not exclusively connected to driving automation.

1.1.2 Validation and verification of AD systems
There is a long history of increasing the level of safety in passenger vehicles.
The introduction of the three point seat belt [5], and the airbag [6], mark
groundbreaking events, and structural safety improvements are continuously
being made with the help of crash-test experiments and advanced simula-
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Chapter 1 Introduction

tion methods. With the inception of ADAS and AD, a new dimension is
added to safety validation and verification. In particular, a much stronger
emphasis is placed on software components. Standards and legal frameworks
have been devised for the development and evaluation of such systems [7]–[9].
The standards help in defining a common ground for automated function de-
velopment, but in terms of validating unsupervised self-driving functionality,
several questions remain unanswered. One of the main reasons is that there is
no consensus within industry and regulatory bodies on how to perform valida-
tion of such functionality. Hence, a large responsibility is put on automotive
manufacturers and suppliers to demonstrate that their product is safe, and to
propose methods for use in future standardization.

The methods currently employed to validate AD functionality range from
fully physical testing on public roads or test tracks, to semi-physical setups
such as hardware-in-the-loop (HIL) testing, all the way to fully virtual sim-
ulation environments with software-in-the-loop (SIL) validation. All of these
have more or less desirable aspects. Public road testing often requires driving
large distances [10] to get enough variation with respect to traffic scenario
coverage, costing both time and money. While a trained test driver is typi-
cally present, there is always a possibility that the functionality being tested
contains errors, putting the driver, and other road users at risk.

Test track experiments are time consuming to set up, and a large invest-
ment in infrastructure and personnel to manage the test equipment is often
necessary. However, performing physical testing is useful to obtain an under-
standing of how the vehicle acts in real-world conditions.

By using virtual validation methods, experiments can be controlled to a
much higher degree compared to the physical counterparts. They are also rel-
atively inexpensive to perform and do not risk damaging people or property.
A major challenge with virtual methods is to make them resemble real-world
driving conditions as close as possible. This can mean implementing realistic
driver models, accurate vehicle dynamics or to model the environmental per-
ception system, of which the latter is treated in this thesis. Another challenge
is to make virtual simulations fast and scalable enough for practical usage.
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1.2 Problem Formulation

1.2 Problem Formulation
The problem treated in this thesis is how to validate autonomous driving func-
tionality using computer simulations. We specifically ask: How can virtual
simulations be made more realistic through sensor error modeling? As a sec-
ondary objective, we have touched upon the question: How can reinforcement
learning be used for system validation in virtual simulation environments?

1.3 Contributions
The primary contribution of this thesis is a sensor error model based on au-
toregressive recurrent mixture density networks (Article A; see Section 3.1).
With this model, we take steps towards a more realistic statistical sensor er-
ror modeling approach for virtual simulation environments. A secondary con-
tribution is the comparison of falsification using reinforcement learning (RL)
and reachability analysis for linear systems (Article B; see Section 3.2). While
these contributions may seem far apart, there is a clear connection between
them which is discussed in Section 2.2.1).

1.4 Thesis outline
Chapter 2 provides a background to the topics explored in this thesis. Focus
is on sensor error modeling and its use in an AD validation framework, as
treated in Article A. An introduction to the concept of falsification using
reinforcement learning is also given, connecting to Article B (see Section 3.2).
In Chapter 3, a summary of the included articles is presented, and Chapter
4 provides conclusions and directions for future research. The second part of
this thesis contains the included articles, adapted to the layout of the thesis.
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CHAPTER 2

Background

This chapter introduces the core concepts of the two articles on which this
thesis is based. We begin with explaining the role of sensor models, specifically
sensor error models, in the AD validation chain. The main building block
of the model developed in Article A, namely mixture density networks, is
explained in greater detail, and two important model validation metrics are
discussed.

In Section 2.2, we describe the problem of falsification, a testing approach
meant to make a system fail to perform according to some given specifications,
by controlling system disturbances. This is the foundation of Article B, and to
facilitate understanding we give a more in depth overview of the fundamental
topics here. In particular, we cover the reinforcement learning algorithm used
for the experiments. We also give a short description of reachability analysis
and provide references for the interested reader.

2.1 Sensor error modeling
One of the most fundamental parts of an AD car is the perception system.
There, measurements of the surrounding environment are made and processed
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Chapter 2 Background

into a digital representation which is used in the planning and control func-
tions. It is clear, that if the vehicle perceives the environment in an inadequate
way, it will not be able to make grounded decisions during the planning and
control phases either. To make the perception as accurate as possible, an
AD vehicle is typically equipped with a wide range of sensors with different
capabilities and strengths. Common sensor setups include cameras, LiDARs,
radars, and ultrasonic sensors. The sensor measurements are combined in a
sensor fusion stage to form an as good approximation of the environment as
possible. While sensor redundancy, and sensor fusion, makes the perception
system significantly more accurate and robust, noise and erroneous measure-
ments will still inevitably be present. From a validation perspective, it is
important to take these errors into account when evaluating the system. In
particular, this applies for virtual validation methods where input to the AD
functions can be completely controlled by feeding them with ideal sensor data.
These ideal measurements are extracted directly from the ground truth repre-
sentations of the virtual simulation environment. However, ideal sensor data
may not match corresponding measurements from real-world sensors. As a
result, the planning and control functions may behave differently in simula-
tions compared to reality. One way to address this is to incorporate sensor
models, meant to reflect the characteristics of real-world vehicle sensors, in
the simulation environment.

There are many ways in which sensor models can be implemented. For ex-
ample, modeling physical sensor characteristics by simulating electromagnetic
fields [11] is common for evaluating radar sensors. Ray tracing techniques
have previously been used for both LiDAR and radar [12], [13], and many
recent studies consider generation of realistic camera data from a virtual sim-
ulation [14], [15]. All of these approaches have benefits and drawbacks: mod-
eling physical characteristics of radars using field simulations can result in
highly accurate approximations, but are often very computationally demand-
ing; there are efficient models for camera image generation, but evaluating the
output is challenging; and ray tracing for LiDARs can be performed in near-
real time, but may be misleading, depending on how well material properties
are modeled. In this thesis, we take a statistical approach to sensor modeling,
in which sensor errors are modeled based on collected expedition data. Here,
we target positional measurements of objects that have been detected in the
surrounding environment. This allows for fast error generation and enables
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Ideal object 
State

Simulation with ideal sensors
Planning

Control

Ideal object 
State

Sensor Error 
Model

State
estimate

Simulation with error model

Sensor
Fusion

State
estimate

Sensors
Real Driving

External 
Features

Figure 2.1: Input to the planning and control functions for real world driving (up-
per), simulations with ideal sensors (mid), and simulations with sensor
error models (lower).

capturing errors arising from not only the sensors, but also the fusion of sen-
sor measurements. In the following section, we describe how statistical sensor
error modeling fits into an AD validation framework.

2.1.1 Fit into validation framework
As indicated in the previous section, feeding the AD planning and control
functions with ideal sensor data in a simulation environment may lead to
unrealistic simulation results. We can mitigate this by adding an error to the
ideal measurement, and hence disturb a signal of interest, according to errors
observed during data collection expeditions. This process is illustrated in
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Figure 2.1. In the upper part, we see a simplified version of a typical perception
chain for an AD car. The middle part of the figure shows the input to the AD
functions in a simulation environment with ideal sensor measurements, and
the lower part displays the same setting when a sensor error model is added
to the simulation. The figure shows how, by adding a realistic sensor error
to the ideal object state, we can generate input to the planning and control
functions that corresponds to real-world data. Sensor error models can be
constructed to disturb specific components of the ideal object state, such as
the velocity or relative position of a tracked object. This thesis has focused
on the generation of positional sensor errors, but in theory, any component in
the ideal object representation can be modeled in similar ways.

2.1.2 Statistical sensor error modeling
By collecting large amounts of driving data and simultaneously record the
perception error for tracked objects, it is possible to construct a statistical
model relating ideal object states and other potentially influencing factors,
such as weather conditions, to the sensor error. Some notable examples of
sensor error models for automotive applications include [16], [17] and in par-
ticular [18], [19] which have been used as benchmarks for the model developed
within the scope of this thesis.

Before creating a model we need access to data. In practice, collecting
accurate sensor error data is a challenging task involving two main compo-
nents: the collection of reference (or ground truth) data, and the matching of
detected objects from the reference measurements with those of the original
perception system. These components are described below.

Collecting reference data

The sensors of a production vehicle meant for private consumers must be
affordable. Moreover, sensors should be relatively energy efficient and suf-
ficiently small for practical integration in the vehicles. These restrictions
naturally impact the performance of the perception system as well. When
collecting sensor data with prototype equipment, the limitations are largely
removed. We can use more expensive sensors, since they will only be mounted
on a few prototype vehicles, and it is possible to add external processing power,
together with additional energy sources, to allow for a substantial improve-

12
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Lat

Lgt

Reference 
Sensor

Original 
Sensor

Tracked 
VehicleEgo Vehicle

Time [s]

Time [s]

Lgt Err [m]

Lat Err [m]

Original Sensor
Measurement

Reference Sensor
Measurement

a)

b) c)

Figure 2.2: Illustration of sensor error data collection and matching: a) Both the
reference system and original sensors are used to track the target ve-
hicle. b) Sampling times are matched and the difference is computed
between the measurements. c) Time series of longitudinal and lateral
positional sensor errors resulting from the computations.

ment of the measurement fidelity. By using such a sensor system to collect
object data, we obtain much more accurate estimates of the true object state
than what is possible using the original perception system.

Matching objects

The computation of errors using collected reference data is a matter of sub-
tracting state estimates obtained from the original perception system with
those given by the reference system. However, since real world environ-
ments are often highly complex, where multiple objects may be simultane-
ously tracked, a matching procedure, such as [20], must be employed prior to
computing this difference. The process of reference data object matching is
visualized in Figure 2.2.
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2.1.3 Mixture Density Networks

One of the main building blocks of the sensor error model presented in [21] is
a mixture density network (MDN) [22]. In this section we present an overview
of this type of model and discuss the reasons for using MDNs for sensor error
modeling.

Mixture Density networks are constructed of a neural network that outputs
parameters to a mixture distribution. By scoring observations using the like-
lihood of a mixture distribution with parameters given by the neural network,
we have constructed a loss function that honors the distribution of residuals to
a much higher degree than other commonly used losses. Before going into the
details of MDNs we begin with an illustrative example of how a continuous
variable would be predicted using mean squared error as the loss function,
and point to situations where this approach may be problematic. Suppose
that we observe data {(xi, yi)}n

i=1 where xi ∈ Rk, k ∈ N+, are features and
yi ∈ R is a response variable of interest. Our goal is to fit a neural network
f , parametrized by a set of weights w, to input xi and output yi as well as
possible. This can be achieved by optimizing a loss function with respect to
the network weights w. Often, when the response is continuous, the mean
squared error loss function is used:

L(w) = 1
n

n∑
i=1

(f(xi; w) − yi)2. (2.1)

Here, f(xi; w) ∈ R denotes the output of the neural network for input xi and
weights w. While we have made no explicit distributional assumptions on the
residuals ϵ = f(xi; w)−yi it can be shown that the problem can be solved in an
identical fashion by assuming that yi is normally distributed with conditional
mean determined by the neural network, and a global variance parameter σ2,
that is

yi ∼ N (yi; f(xi; w), σ2). (2.2)

When maximizing the likelihood of yi, i = 1, . . . , n, by tuning the network
weights, we get the same results as when minimizing the mean squared error
loss (2.1). In other words, we obtain the least squares solution by maximizing
a normal likelihood.
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2.1 Sensor error modeling

In some situations minimizing MSE loss is not appropriate, including when
yi exhibits a multimodal behavior that is not reflected in xi, or when knowing
precise distributional characteristics of the residuals are of high value. These
issues can be mitigated by yet again taking the maximum likelihood approach
when searching for optimal network weights w, but instead of the conditional
normal ansatz, we assume that yi is distributed according to a mixture distri-
bution. Most often Gaussian (normal) mixtures are used for this purpose. The
resulting model is a mixture density network. Hence, by replacing the distri-
butional assumption (2.2) with a mixture distribution and adapting equation
(2.1) to a log-likelihood loss, the loss function for the MDN becomes

L(w) = −
n∑

i=1
log p(yi|xi),

where log p(yi|xi) is the log-likelihood of yi under a (Gaussian) mixture density
with M mixture components. That is,

p(yi|xi) =
M∑

m=1
πm(xi)N (yi;µm(xi), σ2

m(xi)),

where we have assumed that samples {(xi, yi)}n
i=1 are independent. Here, the

parameters for the mixture distribution πm, µm, σ
2
m, m = 1, . . . ,M are the

outputs of a neural network, and hence functions of xi. Moreover, the mixture
parameters are constrained as follows: the components of the mixture weight
vector π = (π1, . . . , πM ) are non-negative and sum to one; the variance σ2

m is
positive; and the mean µm takes values in the real numbers. In practice, these
constraints are met by letting the neural network have three output layers,
denoted by π, µ and σ2. That is, one for each set of parameters. The π layer
uses a softmax activation function, σ2 applies an exponential activation and
µ a linear activation.

In Article A, MDNs are used as the main component of the proposed sensor
error model. However, the model in the article is more complicated, involving
keeping track of a scenario history implemented through recurrent neural net-
works, and an autoregressive connection of the sampled error. These additions
were necessary to enable modeling of realistic error series.

Figure 2.3 illustrates how an MDN can be used for statistical sensor error
modeling. From left to right: scenario information xt is given as input to the
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Figure 2.3: Sensor error generation using mixture density networks.

neural network; the network outputs vectors of mixture components, which
are used to form a mixture distribution; a sensor error yt is sampled from the
mixture. Again, note that the figure displays a simplified version, without the
inclusion of scenario history dependence and autoregression.

2.1.4 Model evaluation metrics
Evaluating a probabilistic sensor error model is a challenge in itself. Often
multiple metrics are used to determine how well a model performs and it is
not uncommon that different models perform well on some metrics and worse
on others, making an objective judgment of model performance difficult. In
this section, we give a more detailed description of some of the metrics used
in Article A. In particular, we focus on the Jensen Shannon distance and
the empirical likelihood for evaluating how well a model captures scenario
information.

2.1.4.1 Jensen Shannon distance

Jensen Shannon distance (JSd) is a metric for comparing the similarity of two
probability distributions. It is a symmetric version of the relative entropy,
also known as the Kullback-Leibler (KL) divergence. In contrast to the KL
divergence, the JSd defines a metric since it is symmetric, satisfies the triangle
inequality, and is zero if two distributions are identical (see [23, p.13] for the
definition of a metric). Formally, the JSd is defined as

JSd(p∥q) =
√

1
2D(p∥r) + 1

2D(q∥r),
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2.1 Sensor error modeling

where r = (p + q)/2, and D(p∥q) is the KL divergence between distributions
p and q, defined as

D(p∥q) = Ep

[
log p(X)

q(X)

]
.

For evaluating sensor error model performance, the JSd is especially infor-
mative when considering performance on a global scale, such as the overall
distributions of sensor errors, or the distribution of first-differences (error in-
crements).

One important aspect of the JSd, as used in Article A, is that it effectively
removes the time dependence of the errors. That is, by permuting the error
series in time, e.g., sorting the errors in ascending order, we would still obtain
identical JSd for the global error distribution. Hence, it is crucial to also
consider metrics that are not permutation invariant.

2.1.4.2 Empirical likelihood

Using likelihood to evaluate statistical model performance is typical procedure.
For the statistical sensor error models considered in this thesis, an important
question is how well a model utilizes the scenario information to estimate
sensor errors. One way to investigate this is to employ a likelihood based
approach that uses Monte Carlo simulations to form approximate distributions
of time series generated by the model, for any given scenario. This approach
effectively disregards the autoregressive dependence of the error series and
enables comparisons between arbitrary models that can be used to generate
errors. In Figure 2.4, the process of computing the empirical likelihood is
illustrated. A trained sensor error model is used to sequentially generate
errors given scenario information xt ∈ Rk, k ∈ N+. The features in xt can
reflect the ideal object state, as given by either reference or ground truth data,
and additional information, such as ego-vehicle state and weather conditions.
By assuming that sensor errors yt are conditionally independent under the
scenario information, we can compute the log-likelihood of the observed error
yt under the empirical distribution given by the many generated time series
for the same scenario x = x1, . . . , xn, where n is the total number of time
steps for which an object was tracked. We use Kernel Density Estimation
(KDE) to compute estimates of log p(yt|x1, . . . , xt) for all t ∈ {1, . . . , n}, i.e.
the log-likelihood of the sensor error given the scenario history. By summing
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Time

Error

Time

Error
Observed

Generated
Observed
Density

Figure 2.4: To compute the empirical likelihood metric, a model is used to generate
multiple time series for the same scenario (blue lines). By smoothing
the resulting empirical distribution using, e.g., Kernel density estima-
tion (KDE), a probability density is obtained (green). This can be
used to evaluate the likelihood of the observed error (orange) for each
point in time.

these estimates over the entire trajectory we obtain a score on how well the
scenario information is utilized by the model. For the exact procedure, see
Algorithm 1 in Article A.

2.2 Falsification
The second part of this thesis treats an interesting approach to validation and
verification of system safety, called falsification. The main goal in falsifica-
tion problems is to disturb a system in such a way that it fails to perform
according to specifications. In the context of validating autonomous driving
functions, the framework fits nicely with the simulation based validation ap-
proach briefly described for sensor error modeling applications (see Section
2.1.1), where we have full control of the environment surrounding an AD en-
abled vehicle. Moreover, the flexibility of the falsification problem allows for
a natural incorporation of, e.g., statistical object motion models, as is the
case for [24], or statistical sensor error models analogously. While this the-
sis is mainly focused on validation methods for AD using perception error
modeling, the investigation of falsification approaches which can incorporate
such models, motivates the inclusion of Article B. In Section 2.2.1 we further
expand this argument.

The work conducted as part of this thesis investigates falsification using
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Figure 2.5: Example falsification setting.

reinforcement learning (RL). In Article B we compare falsification using re-
inforcement learning with an exact counterpart in the form of reachability
analysis (RA) for a system that can be analyzed using both methods. This
section gives an introduction to RL and the techniques used to falsify the
system in Article B. We also give a brief description of RA to assist the reader
of Article B. However, it should be noted that the work conducted within the
scope of this thesis primarily targets falsification using reinforcement learning
and not RA.

In Figure 2.5, an example falsification problem is illustrated. The leading
vehicle is under the control of the RL-agent and the car behind drives au-
tonomously. By generating control inputs to the leading vehicle and sensor
errors for the AD car, the RL-agent attempts to cause a crash. If this suc-
ceeds within a given time horizon, a reward is given. Otherwise, the agent is
either penalized or given no reward. Using experience collected from repeated
iteration of this process, the agent learns how to generate more dangerous
sequences, with a higher probability of leading to a crash.

2.2.1 Falsification and sensor error models
There are a wide range of methods available for system falsification. Some
require knowledge about the inner workings of the system, such as closed-
form expressions of the system dynamics, while others treat the system as
a black-box. For the latter case, [25] provides a comprehensive survey. One
of the benefits of using RL for falsification is connected to the simplicity of
introducing likelihood based penalties for generated system disturbances. As
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an example, we can consider the previously mentioned work in [24]. Here,
an RL agent generates motion trajectories for pedestrians with the goal of
causing an accident in the simulation environment. The generated motions are
penalized according to the Mahalanobis distance (which is closely connected to
the likelihood of a multivariate Gaussian distribution) to a preferred action. In
the same manner, we can penalize the generation of improbable sensor errors
with a trained probabilistic sensor error model. In particular, this is possible
when having access to a sensor error model in the form of the AR-RMDN (see
Article A) which enables direct computation of error likelihoods.

2.2.2 Reinforcement learning
Reinforcement learning deals with sequential decision making under uncer-
tainty. The problem setting is usually explained with an agent that acts in
an unknown environment. By receiving feedback based on the actions made,
the agent can iteratively improve its policy, i.e., which action to choose given
the current environment state. The fact that it is the RL agent that gener-
ates the data used for updating its policy marks a clear distinction between
RL and the typical machine learning paradigms: supervised and unsupervised
learning. In the following sections, we describe some fundamental concepts of
reinforcement learning and introduce the proximal policy optimization algo-
rithm [26] used for the falsification implementation in Article B.

2.2.2.1 Markov Decision Processes and policies

It is common to model the environment, as well as the interactions the agent
has with environment, using a Markov decision process (MDP). An MDP can
be defined by (see [27, Chapter 2] for a detailed description) a set of decision
epochs T , a set of states S, a set of (possibly state-dependent) actions As,
a state transition probability pt(·|s, a) and a reward function rt(s, a). The
system evolves in the following manner: at each decision epoch t ∈ T the
agent observes a state s ∈ S and makes a decision on which action a ∈ As to
choose. Next, the agent transitions from s to a new state s′ ∈ S according
to pt(s′|s, a) and receives a reward rt(a, s). The policy π(s) represents a rule
for choosing actions at the decision epochs. In the following sections, we also
write π(a|s) to denote the probability of choosing action a when in state s
under policy π. A typical goal of the agent is to find a policy that maximizes
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the total expected reward over all decision epochs T for a given MDP.

2.2.2.2 The value of a policy

Since different policies will result in different rewards, it is natural that some
policies are considered more valuable than others. This is quantified by the
value function of a policy. The state-value function of a policy is defined as
follows:

Definition 1 (From [28], Chapter 3.5): The value function of a state s un-
der a policy π, denoted vπ(s), is the expected return when starting in s and
following π thereafter. For MDPs, vπ can formally be defined as

vπ(s) := Eπ[Gt | St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s

]
,

where γ ∈ [0, 1) is a discount factor, Rt the (random) reward at time t, and
Gt is the return defined as

Gt =
∞∑

k=0
γkRt+k+1.

Another useful quantity is the action-value function:

Definition 2 (From [28], Chapter 3.5): The value of taking an action a in
state s under policy π, denoted qπ(s, a), is defined as the expected return when
starting from s, taking action a, and thereafter following policy π

qπ(s, a) := Eπ[Gt | St = s,At = a],

where Gt is defined as in Definition 1.

In the next section we also refer to the advantage function adv(s, a), which
is defined as

advπ(s, a) = qπ(s, a) − vπ(s). (2.3)

The advantage function provides a notion of how good it is to choose action a
in state s, compared to how good it is to be in state s in general. Often, the
advantage function is denoted by A(s, a). Here we used advπ(s, a) to avoid

21



Chapter 2 Background

potential confusion with the actions.

2.2.2.3 Proximal policy optimization

There are a wide range of ways in which to search for an optimal policy for
a given MDP. When dealing with very large state and action spaces, e.g.,
continuous ones, a common approach is to utilize so-called policy gradient
(PG) methods [28, Chapter 13]. The main idea behind PG methods is to
parametrize the policy π using a set of parameters θ such that πθ is differen-
tiable with respect to θ. Since the policy is differentiable, we can use gradient
based optimization methods to improve its value. A PG method that has been
shown to balance ease of implementation with high performance, especially
on continuous control tasks, is proximal policy optimization (PPO) [26].

Before going into the details of PPO, we should have an understanding
of some of the challenges connected to PG methods. The cornerstone of
PG methods is the policy gradient theorem, which relates the gradient of a
performance measure J(θ) to the policy parameters in the following way

∇θJ(θ) = Eπθ
[qπθ

(s, a)∇ log πθ(a|s)], (2.4)

where qπθ
is the action-value function for policy πθ. The exact definition of

J(θ) depends on the problem statement and is not important for this discus-
sion (see [28] for details). By direct application of the PG theorem we end up
with REINFORCE [29], a surprisingly simple algorithm for policy optimiza-
tion, which also forms the basis of many subsequent algorithms. In practice,
learning with REINFORCE is often slow since the gradient estimates are of
high variance. This is mainly due to the fact that the return Gt is used as
an unbiased estimate of the action-value function qπθ

(s, a) in equation (2.4),
which can vary significantly simply due to the stochastic nature of the en-
vironment. To reduce variance, and hence increase learning speed, we can
utilize so-called actor-critic methods [28]. The idea is to use a separate func-
tion approximator, e.g., a neural network, to estimate the state-value function
vπ(s). This can then be used to compute an advantage estimate Â by, e.g,
generalized advantage estimation (GAE) [30]. Similar to the way Gt is used as
an unbiased estimate of qπθ

(s, a) in the REINFORCE algorithm, we can use
Â as a slightly biased estimate, but often with significantly reduced variance.

Another issue with PG methods is that changing the policy too much may
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result in a substantial change of the state and action distribution between
optimization rounds. Hence, it may be necessary to somehow limit the change
of the policy to ensure that the parameter inference remains stable.

Proximal policy optimization effectively combines actor-critic methods with
a limitation of policy updates, in an algorithm that is both relatively simple to
implement and retains many of the benefits of more complicated approaches
(e.g., [31]). PPO makes use of the probability ratio rt(θ) = πθ(at|st)

πθold (at|st) between
the policy with updated parameters πθ and the policy before parameter up-
dates πθold , to limit the change of the policy. It considers the objective function

J(θ) = Ê
[
min(rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)

]
, (2.5)

where ϵ is a hyperparameter controlling how far from the previous policy to
step, Ât is an advantage estimate, and the expectation Ê[·] is the empirical
average over a batch of samples. The function clip(x, a, b) can equivalently be
stated as

clip(x, a, b) = max(min(x, b), a).

Finding the best θ is then a matter of optimizing (2.5) using a stochastic
gradient ascent algorithm.

2.2.3 Reachability analysis
Article B (see Section 3.2) is a collaborative work where my part concerned
falsification using reinforcement learning. The other subject of the article
is reachability analysis (RA). The RA part was contributed by the second
author and is not within the scope of this thesis. We end this background
with a short section meant to provide the interested reader with a notion of
what RA actually is, and give some references for further reading.

Reachability analysis consists of a set of methods that can be used to for-
mally verify system safety by analyzing possible system transitions in time
with respect to a target set of states. A typical application of RA is to com-
pute the states from which a system cannot avoid entering a predefined set
of failure states, despite applying the best possible control actions. In the
general non-linear continuous time case, Hamilton-Jacobi reachability analy-
sis is often used to investigate the possible disturbances (e.g control actions)
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that can lead to a system entering or leaving a target state. For the problems
treated in this thesis, where we consider linear discrete-time systems, it is
possible to use set-theoretic methods for analyzing reachable sets. RA is an
active research field with a rich history. However, this thesis places focus on
other methods for validation and verification. Hence, we refer the interested
reader to [32] for an excellent overview of Hamilton-Jacobi reachability, and
to [33] for set-theoretic methods.
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CHAPTER 3

Summary of included articles

This chapter provides a summary of the included articles.

3.1 Article A
Tobias Johansson, Anders Ödblom, Alexander Schliep.
”Autoregressive Mixture Density Networks for Sensor Error Generation
in Autonomous Driving”
Submitted for publication.

In this paper, we propose a new sensor error model based on autoregressive
mixture density networks (AR-RMDN). The model takes reference measure-
ments of tracked vehicle objects, as well as state information connected to the
ego-vehicle, as input and outputs an estimate of the longitudinal positional
sensor error of the tracked object. A data set consisting of over 9000 object
tracks was used to train and evaluate the model.

We looked into two state-of-the-art sensor errors models for benchmarks: a
recurrent conditional generative network (RCGAN) [19], and an autoregres-
sive input-output hidden Markov model (AIOHMM) [18], trained on the same
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data set. As the implementations of those models were not available to us,
they had to be implemented from scratch. We used this opportunity to ex-
plore improvements for the models and by doing so, managed to significantly
improve the computational efficiency of the AIOHMM using just-in-time com-
pilation features for Python.

A range of different evaluation metrics were considered, including Jensen
Shannon distance (JSd) and empirical likelihood. We found that our model
outperformed the two others on all considered metrics. In particular, the JSd
of the global error increment (first-difference) distribution was significantly
improved. We also observed that the AR-RMDN seemed to combine desir-
able aspects from the other models, such as the representational power of
deep learning connected to the RCGAN, and the training stability and more
reasonable error variability of the AIOHMM.

I was responsible for conducting and designing the experiments, coming up
with the idea of the model, and writing the paper.

3.2 Article B
Tobias Johansson, Angel Molina, Alexander Schliep, Paolo Falcone.
”Reinforcement Learning as an Alternative to Reachability Analysis for
Falsification of AD Functions”
Machine Learning for Autonomous Driving Workshop at the 35th Con-
ference on Neural Information Processing Systems (NeurIPS 2021), Syd-
ney, Australia.

In this paper, we present reinforcement learning (RL) as a possible alterna-
tive to reachability analysis (RA) for validation of autonomous driving func-
tions. As background, RA is powerful tool for system verification but suffers
an exponential increase in computational requirements when the system di-
mension grows. The idea of the article was to investigate if RL could be
used as an alternative to RA for high dimensional system verification and
validation. For this purpose, we investigate falsification of a linear adaptive
cruise controller (ACC) using both RA and RL. While the ACC controller is
low-dimensional system, it allows for exact computations of both RL and RA
falsification results, necessary for comparing the two methods.

We found that RL can serve as an alternative to RA in falsifying the
ACC system, given that some approximation error is acceptable. Moreover,
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the RL approach was able to handle falsification of a larger region of the
state-disturbance space compared to RA. This indicates that even for low-
dimensional systems, despite the relatively poor sample complexity in terms
of calls to the simulator, RL may be useful for system validation. More in-
terestingly, we presented preliminary results for a higher dimensional lateral
control example, for which RA could not obtain a solution within reasonable
time. In this example RL was able to falsify the system. While the results
are preliminary, they serve as an indication of that RL may be used instead
of RA for falsification of higher-dimensional systems.

This paper was a collaborative work conducted together with Angel Molina.
Equal contribution by the first two authors. I designed and conducted the
experiments on reinforcement learning, co-wrote the paper, and jointly came
up with the idea of the paper together with Angel Molina. I did not contribute
to the reachability analysis.
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CHAPTER 4

Concluding remarks and future work

In this thesis we have explored virtual validation methods for autonomous
driving based on machine learning. The problem of making virtual simu-
lations more realistic was addressed using sensor error modeling and a new
probabilistic model was developed for this purpose - the Autoregressive Re-
current Mixture Density Network (AR-RMDN). The new model uses mixture
density networks as its main component, which enables it to capture highly
complex error distributions, and hence, generate realistic errors. When eval-
uated against other state-of-the-art models we found that the AR-RMDN
performed better on all metrics considered.

We also investigated falsification of AD functions from the perspective of
reinforcement learning and compared the results with exact solutions obtained
from reachability analysis. The RL falsification approach used PPO to op-
timize parameters of a policy with Beta-distributed actions. We found that
RL can potentially be used as an alternative to reachability analysis for the
verification of high-dimensional systems, following fair correspondence on low-
dimensional tasks (falsifying an Adaptive Cruise Controller) and promising
results on preliminary data. However, to draw further conclusions, a more
thorough investigation is needed.
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During this work, we have identified several questions which would be in-
teresting to pursue in future research. For sensor error modeling we ask

1. How can probabilistic sensor error models be confidently deployed in
simulation environments?

2. How can the generative performance of probabilistic error models be
evaluated on a per-time-series basis?

3. How can models be adapted to new sensor software and hardware with-
out the need of extensive data collection?

The first and second points are closely related as they treat the generative per-
formance of error models. During our experiments, we have found that there
is a risk that ’strange’ error series are generated by the model. Specifically, the
model occasionally generates errors that are quite far from the typical errors
under a given scenario. From an evaluation point of view these error series
are difficult. Do they occur due to model irregularities or are they realistic
but very infrequent? The third point has not been treated in this thesis but
is certainly interesting to consider. It would be useful to somehow transfer in-
formation from models trained with similar perception setups to new systems,
and hence avoid having to collect a lot of data for each system change.

The investigations of falsification methods using reinforcement learning re-
vealed several aspects that deserve deeper investigation. We noticed that scal-
ability with respect to the state-disturbance dimension was not necessarily as
bad as for reachability analysis (according to preliminary results). However,
solving even simple problems, such as the falsification of an adaptive cruise
controller, is relatively expensive in terms of computational requirements. If
the simulation environment is very complex, using this falsification approach
may not be feasible. Hence, we need more sample efficient learning algorithms
to be able to apply RL-based falsification as a virtual validation tool.

As discussed in Section 2.2.1, by using RL for falsification we enable a
straightforward integration of sensor error models in the problem. This would
be interesting to explore further, especially in the context of identifying prob-
able disturbance sequences leading to specification violations. Previous work
has been conducted in this direction [24], [34], [35] but without explicitly
considering realistic sensor error models.
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