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THE CLOSEST ISOTROPIC, CUBIC AND TRANSVERSELY
ISOTROPIC STIFFNESS AND COMPLIANCE TENSOR

TO AN ARBITRARY ANISOTROPIC MATERIAL

XINYUAN SHAO, PETER D. FOLKOW AND MORTEZA ESKANDARI-GHADI

The aim of this paper is to provide, in the framework of Green elasticity, the closest or nearest fourth-
order isotropic, cubic and transversely isotropic elasticity tensors with higher symmetries for a general
anisotropic elasticity tensor or any other tensors with lower symmetry. Using a gauge parameter, the
procedure is done on a dimensionless form based on different generalized Euclidean distances, namely
conventional, log-, and power-Euclidean distance functions. In the case of power-Euclidean distance
functions, results are presented for powers of 0.5, 1 and 2. Except for the conventional distance function,
the different generalized distance functions adopted in this paper preserve the property of invariance
by inversion, meaning that the results for the closest stiffness tensor are also valid for the compliance
tensor. Explicit formulations are given for determining the closest isotropic and cubic tensors, where
the multiplication tables of the bases are diagonal. More involved coupled equations are given for the
coefficients of the closest transversely isotropic elasticity tensors, which can be solved numerically. Two
different material cases are studied in the numerical examples, which illustrate the material coefficients
and error measures based on the present methods, including the influence from the gauge parameter.

1. Introduction

Analytical solutions of engineering problems provide means for deep understanding for the phenomena
involved. Because of this, both engineers and applied mathematicians are interested in analytical solu-
tions for elastostatics and elastodynamics boundary value problems. However, determining analytical
solutions are difficult in many cases. One of the reasons is related to complicated constitutive law
governing the behaviour of the natural and artificial engineering materials. In mechanics, anisotropy
is natural rather than being exceptions. Dealing with general anisotropic material in elastostatics and
elastodynamics results in some complicated systems of partial differential equations that cannot be solved
analytically, even for simple problems. Therefore, finding the closest isotropic material, or anisotropic
material with certain symmetry properties (cubic, transversely isotropic), to the original anisotropic ma-
terial with lower symmetry is promising. By replacing the general anisotropic constitutive law with
constitutive law containing upper symmetry, one may find analytical solutions for various boundary
value problems.

One of the applications of determining the closest tensor with upper symmetry to the general anisotropic
tensor is for wave propagation phenomena, where the speed of different waves traveling in a particular
direction in an anisotropic material is of interest. Norris [2006b], with the use of conventional Euclidean
distance function, gave answers to Fedorov question: “What elastically isotropic material is the best
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acoustic fit to a given set of anisotropic moduli?” He proved that the solution based on minimizing a
Euclidean distance function is identical to the method of minimizing the mean-squared difference.

Linear vector space is a powerful tool for preparing a solution platform, where one may define distance
functions between general vectors. This allows to find the closest vector to a given general vector. As
the closest vector from a subspace to a general vector in a vector space is dependent on the distance
function used, different distance functions may result in different closest vectors. On the other hand,
the constitutive law in mechanics may be given in terms of either stiffness or compliance tensors. Thus,
the inverse of the closest stiffness tensor should also be the closest compliance tensor. One may hereby
define an inner product with the usual properties accompanied with the property of invariance under
inversion; see Morin et al. [2020].

Gazis et al. [1963] were, to the best knowledge of the authors, the first who used an inner product
space to present the closest isotropic tensor to an arbitrary fourth-order tensor in the subject of continuum
mechanics and elasticity. They used the conventional Euclidean (also named Frobenius) distance func-
tion for their investigation. Norris [2006a] presented an algorithm for determining the closest isotropic
tensors to a given material of arbitrary symmetry, based on three different distance functions: the Frobe-
nius, the Riemannian, and the log-Euclidean distance functions. Moakher and Norris [2006] applied
three different distance functions (Frobenius, Riemannian and log-Euclidean distance) and presented
algorithms for determining the best fourth-order tensor with arbitrary symmetry selected from a set of
ten different symmetries to an elasticity tensor of lower symmetry, where they used Walpole algebraic
tensor decomposition to represent bases for elastic material with different symmetries.

The conventional Euclidean distance function is not invariant under inversion of the elasticity tensor.
However, the Riemannian distance function [Moakher 2006] and the log-Euclidean distance function
[Arsigny et al. 2005] are invariant under inversion. On the other hand, the stiffness/compliance of an
elastic material is not dimensionless, and the distance function may be influenced by the order (values) of
the material properties [Morin et al. 2020]. Morin et al. [2020] modified different distance functions as to
make them dimensionless. To this end, they normalized the elasticity tensor by a gauge parameter with
the dimension of stiffness, where they showed that the closest isotropic tensor based on log-distance
function is independent from the parameter while the other distance functions, say arc-tan and power
distance functions, depend on that parameter.

In this paper, we present the closest isotropic, cubic and transversely isotropic fourth-order material
tensors to arbitrary general anisotropic tensors with the use of conventional, log-, and power-Euclidean
distance functions in the framework of Green-elasticity. In order to make dimensionless argument for
different distance functions, a gauge parameter with the dimension of stiffness is introduced as proposed
in [Morin et al. 2020]. The present work is a continuation to the studies on closest isotropic material in that
reference, by including the closest anisotropic materials with cubic and transversely isotropic symmetries.
Explicit solution processes are given for these simplified material configurations, and numerical results
based on two types of anisotropic materials are presented; one orthotropic material and one more general
anisotropic material.
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2. The general theory

This paper considers elasticity tensors defining so called Green-elastic linear materials. Consequently,
the material modelling based on fourth-order tensors having both major and minor symmetries, may be
equivalently expressed using second-order symmetric tensors in Kelvin notation. More specifically, a
general fourth-order elastic tensor C with components Ci jkl in the given Cartesian coordinate system
x1x2x3, may be expressed using the equivalent second-order tensor based on Kelvin notation Ĉ with
components ĉI J . The component relations are Ci jkl ≡ ĉI J , if I or J =1, 2, 3, 4, 5 and 6 correspond to
i j or kl = 11, 22, 33, 23, 13 and 12, respectively. In addition, we use a normalization factor of

√
2 for

off-diagonal 3× 3 sub-matrices. Thus, the Kelvin notation of the elastic moduli is shown by [Morin et al.
2020; Moakher and Norris 2006]

Ĉ=



c11 c12 c13
√

2c14
√

2c15
√

2c16

c12 c22 c23
√

2c24
√

2c25
√

2c26

c13 c23 c33
√

2c34
√

2c35
√

2c36√
2c14

√
2c24

√
2c34 2c44 2c45 2c46√

2c15
√

2c25
√

2c35 2c45 2c55 2c56√
2c16

√
2c26

√
2c36 2c46 2c56 2c66


. (2-1)

In order to find the closest tensor with upper symmetry in the sense of group theory for a given tensor
of lower symmetry or a general anisotropic Green-elastic material, we need to equip the pertinent linear
vector space with an appropriate inner product. In this context, a prerequisite for such a linear vector
space is that it should be equipped with a norm. With the norm defined for the vector space, one may thus
calculate distances from one tensor to another in the original linear vector space. In this paper, we adopt
the distance based on conventional inner product as well as some different f−Euclidean distances for
the linear vector space [Morin et al. 2020; Moakher and Norris 2006; Moakher 2006]. The scalar-valued
functions f , which define different distances, are strictly monotone functions which can be constructed
based on other continuously differentiable functions. Here, we chose log-, n-power- (n = 1 and 2), and
square root functions, to define different distances.

The inner product of two fourth-order tensors C and D is denoted by 〈C,D〉. Equivalently, the inner
product of two second-order tensors Ĉ and D̂ is denoted by 〈Ĉ, D̂〉. Based on the required properties
(symmetry, linearity, positive definiteness) the inner product using Kelvin notation is expressed as

〈C,D〉 = 〈Ĉ, D̂〉 = ĉI J d̂I J , (2-2)

from which the norm ‖C‖ of the tensor C is obtained from the property of positive definiteness as

‖C‖ ≡ ‖Ĉ‖ =
√

Ĉ : Ĉ=
√

ĉI J ĉI J . (2-3)

2A. Euclidean distances for elasticity tensors. From the definition of a norm, one may define distance
functions between tensors that should satisfy certain properties. For tensors M1, M2 and M3 these
properties are [Deza and Deza 2009]:

• Nonnegativity:
d (M1,M2)≥ 0, (2-4)
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where equality is valid if and only if M1 =M2.

• Symmetry:
d (M1,M2)= d (M2,M1) . (2-5)

• Triangle inequality:
d (M1,M2)≤ d (M1,M3)+ d (M2,M3) . (2-6)

Moreover, the distance function in elasticity must be invariant under the operation of inversion in order
not to affect the constitutive law expressed using stiffness or compliance tensors, which means

d (M1,M2)= d
(
M−1

1 ,M−1
2
)
. (2-7)

2B. Some definitions of distances. As mentioned earlier, we consider three different distance functions
in this paper. The conventional Euclidean distance and two function related Euclidean distances, namely
log-Euclidean and power-Euclidean distances. These are defined as:

• The conventional Euclidean distance [Norris 2006a]

dC(A,B)= ‖A−B‖. (2-8)

• The log-Euclidean distance [Arsigny et al. 2005]

dL(A,B)= ‖ ln(A)− ln(B)‖. (2-9)

• The power-Euclidean distance [Morin et al. 2020]

dP (A,B)= ‖An
−Bn

+B−n
−A−n

‖. (2-10)

Note that (2-8)–(2-10) can be expressed as

d f (A,B)= ‖ f (A)− f (B)‖, (2-11)

where f is a tensor function on a tensor set. Using from now on the Kelvin notation, the functions f
are to be established on positive definite 6× 6 matrices [Morin et al. 2020]. To do so, we may define
f (D) for a diagonal 6× 6 matrix D to be a diagonal 6× 6 matrix D̃, whose diagonal elements d̃I I are
determined by f (dI I ). Thus, the matrix Ã= f (A) may be determined by taking the following steps:

• Performing a diagonalization of matrix A= RTDR and obtain D.

• Applying the function to the diagonal elements of D, which results in D̃.

• Obtaining the function f (A) by Ã= f (A)= RTD̃R,

where D is the the diagonal matrix containing the eigenvalues of the original matrix A, and R is the
rotational matrix containing the eigenvectors of A.

Thus, the different distance functions of interest here are based on the elementary functions:

• For the conventional Euclidean distance

f (x)= x . (2-12)

• For the log-Euclidean distance
f (x)= ln (x) . (2-13)
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• For the power-Euclidean distance

f (x)= xn
− x−n. (2-14)

where n is a real number excluding zero. We should notice that since the elasticity tensor is a positive
definite tensor, its eigenvalues are positive and thus the log-Euclidean distance keep the positive definite-
ness property of the original tensor. In addition, the power-Euclidean distance is a monotonic function
based on the defined power function given in (2-14) (see also [Morin et al. 2020]).

3. Closest tensors with upper symmetry to tensors of lower symmetry

This section states the fundamentals for deriving the closest isotropic, cubic and transversely isotropic
elastic tensors to a given elastic tensor with arbitrary symmetry. To this end, we adopt the basic tensor
algebra presented by Walpole [1984] for making bases for these higher symmetry sub-spaces.

3A. Closest isotropic material for arbitrary anisotropic material. The main part of this section has in
essence already been presented by Morin et al. [2020], but is given below with some more details for
completeness.

A general isotropic fourth-order tensor is given by a linear combination of any two linear independent
isotropic tensors, given as bases for linear vector space of isotropic tensors. Following Walpole [1984]
(see also [Morin et al. 2020] and [Moakher and Norris 2006]), we select J and K, which are defined
shortly, as a bases here, whose multiplication table is diagonal. Using Kelvin notation, any arbitrary
isotropic tensor may be written as a linear combination of Ĵ and K̂:

Â= aĴ+ bK̂. (3-1)

In order to define the tensors Ĵ and K̂ in a given Cartesian coordinate system x1x2x3, we define the unit
vector u in the form of [Walpole 1984]

u=
(

1
√

3
1
√

3
1
√

3
0 0 0

)T
, (3-2)

which is used to construct the 6× 6 matrix Ĵ as

Ĵ= uuT. (3-3)

Then the matrix K̂ independent from Ĵ is given by

K̂= Î− Ĵ, (3-4)

in which the unit 6× 6 tensor Î is

Î= diag (1, 1, 1, 1, 1, 1) . (3-5)

Specifically, any isotropic elasticity tensor is written in the form of [Walpole 1984]

Ĉiso = 3κ Ĵ+ 2µK̂, (3-6)

in which κ and µ are the bulk and shear moduli for isotropic material.
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Based on the different distance functions given in the previous section, one may find the distance
between two given tensors. Select one of those tensors to be an arbitrary isotropic tensor, then the
distance will be a two-variable scalar-valued real function. The nearest isotropic tensor to the given
tensor is determined by minimizing this two-variable real distance function. The mathematical details
on this part can be found in [Morin et al. 2020].

Since the elements of elasticity tensor are not dimensionless, a gauge with a unit of the elements of
elasticity tensor, namely E0, can be used to get a nondimensional elastic tensor [Morin et al. 2020]. Then
the f -distance between an arbitrary elastic tensor, Ĉ, to an isotropic elastic tensor is calculated as

d f =

∥∥∥∥ f
(

Ĉ
E0

)
− f

(
Ĉiso

E0

)∥∥∥∥, (3-7)

where Ĉiso is the closest isotropic elasticity tensor we are looking for. With the definition of the f -function,
f (Ĉiso) is an isotropic elastic tensor which is also a linear combination of the bases

f (Ĉiso)= f (3κ) Ĵ+ f (2µ) K̂. (3-8)

Similarly

f
(

Ĉiso

E0

)
= f

(
3κ
E0

)
Ĵ+ f

(
2µ
E0

)
K̂. (3-9)

Substituting (3-9) into (3-7) results in

d f =

∥∥∥∥ f
(

Ĉ
E0

)
− f

(
3κ
E0

)
Ĵ− f

(
2µ
E0

)
K̂
∥∥∥∥. (3-10)

Looking for the minimum of d f or equally the minimum of d2
f , we may write

∂
(
d2

f

)
∂κ
= 0,

∂
(
d2

f

)
∂µ
= 0, (3-11)

from which [Morin et al. 2020]

f
(

3κ
E0

)
= f

(
Ĉ
E0

)
: Ĵ, f

(
2µ
E0

)
=

1
5

f
(

Ĉ
E0

)
: K̂. (3-12)

The function f is a strictly monotone function, thus is one-to-one, and its inverse exists. Applying the
inverse function, f −1, results in the parameters κ and µ:

κ =
E0

3
f −1

(
f
(

Ĉ
E0

)
: Ĵ
)
, µ=

E0

2
f −1

(
1
5

f
(

Ĉ
E0

)
: K̂
)
. (3-13)

From the definition of the logarithm of a positive definitive symmetric tensor Â, one may use the relation
ln(βÂ)= ln(β)Î+ ln(Â), which is valid for ∀β > 0, to show that the values of κ and µ are independent
from the gauge parameter E0 for log-distance function, while their values are E0-dependent for power-
distance functions.
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3B. Closest cubic material for arbitrary anisotropic material. As the three crystallographic direction of
the cubic system are perpendicular [Walpole 1984], a third symmetric tensor linearly independent from
J and K is needed to make a complete bases for cubic system, in which the unit vectors of Cartesian
coordinates are the three crystallographic direction. Following Walpole [1984], a general symmetric
fourth-order tensor for a cubic system can be given by a linear combination of the three linear independent
tensors J, L and M, whose multiplication table is diagonal (that is, J2

= J, L2
= L, M2

=M, JL= LJ=

JM=MJ= LM=ML= 0). Using Kelvin notation, any cubic second-order tensor may be written in
the form of

Â= aĴ+ bL̂+ cM̂, (3-14)

where Ĵ has been given in the previous section (equation (3-3)), while

L̂= diag (0, 0, 0, 1, 1, 1) , (3-15)

M̂= K̂− L̂, (3-16)

using K̂ from (3-4). By writing L̂ in terms of K̂ and M̂, a general cubic elasticity tensor may be written
in the form of linear combination of Ĵ, K̂ and M̂ as

Ĉcub = 3κ Ĵ+ 2µK̂+ 2ηM̂. (3-17)

The closest cubic material using the conventional Euclidean distance was studied by Moakher and
Norris [2006]. However, a different definition for the norm of a tensor was adopted in [Moakher 2006]
where ‖A‖ ≡

[
tr
(
AT A

)]1/2. On the other hand, we continue using the previously defined distance
functions in this section to determine the closest cubic system to the arbitrary anisotropic elasticity tensor.
The derivation is quite similar to that of the previous section. The f -distance function from an arbitrary
tensor to a cubic system is given as

d f =

∥∥∥∥ f
(

Ĉ
E0

)
− f

(
Ĉcub

E0

)∥∥∥∥. (3-18)

The results of applying the function f on a cubic elastic tensor is also a linear combination of the bases
[Moakher 2006]

f
(
Ĉcub

)
= f (3κ) Ĵ+ f (2µ) L̂+ f (2η) M̂. (3-19)

In the same way, if we use the scalar gauge E0, we may write

f
(

Ĉcub

E0

)
= f

(
3κ
E0

)
Ĵ+ f

(
2µ
E0

)
L̂+ f

(
2η
E0

)
M̂. (3-20)

Substituting (3-20) into (3-18) and looking for the stationarity points of d f , or equally d2
f , results in

∂
(
d2

f

)
∂κ
= 0,

∂
(
d2

f

)
∂µ
= 0,

∂
(
d2

f

)
∂η
= 0, (3-21)

from which the following equations are derived:

f
(

3κ
E0

)
= f

(
Ĉ
E0

)
: Ĵ, f

(
2µ
E0

)
=

1
3

f
(

Ĉ
E0

)
: L̂, f

(
2η
E0

)
=

1
2

f
(

Ĉ
E0

)
: M̂. (3-22)
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E1 E2 E3 E4 F G

E1 E1 O E3 O O O

E2 O E2 O E4 O O

E3 O E3 O E1 O O

E4 E4 O E2 O O O

F O O O O F O

G O O O O O G

Table 1. Multiplication table for transversely isotropic tensors.

As mentioned earlier, the inverse of f -function exists, so that the scalar coefficients κ , µ and η are
derived from

κ =
E0

3
f −1

(
f
(

Ĉ
E0

)
: Ĵ
)
, µ=

E0

2
f −1

(
1
3

f
(

Ĉ
E0

)
: L̂
)
, η =

E0

2
f −1

(
1
2

f
(

Ĉ
E0

)
: M̂

)
. (3-23)

Again, here it is easy to show that the values of κ , µ and η are independent from the gauge parameter
E0 for log-distance function, while their values are dependent on E0 for power-distance functions.

3C. Closest transversely isotropic material for arbitrary anisotropic material. Five linearly indepen-
dent fourth-order tensors are needed to make a complete bases for a general fourth-order transversely
isotropic tensor. Following Walpole [1984], we use the fourth-order tensors E1, E2, E3 + E4, F and G,
where the summation of E3 and E4 comes due to symmetry of the elastic tensor, and the multiplication
table was given in [Walpole 1984] (see also [Moakher and Norris 2006]). Thus, any arbitrary transversely
isotropic elastic tensor using Kelvin notation is written in the form of the following linear combination
of the bases

Ĉtr = aÊ1+ bÊ2+ c
(

Ê3+ Ê4

)
+ f F̂+ gĜ. (3-24)

The multiplication Table 1 for E1, E2, E3+ E4, F and G is not diagonal. Here F and G are orthogonal
to each other and also orthogonal to E1, E2 and E3 + E4. However E1, E2 and E3 + E4 do not make an
orthogonal set. This means that the scalar coefficients a, b and c are determined by solving a coupled
system of equations, which is independent from f and g. On the other hand, f and g are determined
based on uncoupled equations.

To have explicit forms of the basic tensors Ê1, Ê2, Ê3, Ê4, F̂ and Ĝ, we use unit vectors â, b̂ and ĉ
defined as

â=
(
1 0 0 0 0 0

)T
=
(
a2

1, a2
2, a2

3,
√

2a2a3,
√

2a3a1,
√

2a1a2
)T
,

b̂=
(
0 1 0 0 0 0

)T
=

(
b2

1, b2
2, b2

3,
√

2b2b3,
√

2b3b1,
√

2b1b2

)T
,

ĉ=
(
0 0 1 0 0 0

)T
,

(3-25)

to define the unit vectors

p̂= ĉ, q̂=
1
√

2
(â+ b̂), ẑ=

1
√

2
(â− b̂),

ŵ=
(√

2a1b1,
√

2a2b2, a
√

2a3b3, (a2b3+ a3b2) , (a3b1+ a1b3) , (a1b2+ a2b1)
)T
,

(3-26)
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which are used to define the basic tensors as

Ê1 = p̂p̂T, Ê2 = q̂q̂T, Ê3 = p̂q̂T, Ê4 = q̂p̂T, F̂= ŵŵT
+ ẑẑT, Ĝ= L̂− ŵŵT, (3-27)

in which the x3-axis is the axis of material symmetry of the transversely isotropic material defined in
this way. L̂ in (3-27) can be found in (3-15).

Because of different coupled system of algebraic equations encountered in determining the closest
transversely isotropic tensor to general arbitrary anisotropic material, we need to present the formulations
for different distance functions separately.

3C1. The conventional Euclidean distance. Using the Euclidean distance, the distance function is de-
fined as

dC = ‖Ĉ− Ĉtr‖, (3-28)

for the tensor Ĉtr as noted in (3-24). Consequently, the distance function in square becomes

d2
C =‖Ĉ− Ĉtr‖

2
=
∥∥Ĉ− aÊ1− bÊ2− c(Ê3+ Ê4)− f F̂− gĜ

∥∥2

=
(
Ĉ− aÊ1− bÊ2− c(Ê3+ Ê4)− f F̂− gĜ

)
:
(
Ĉ− aÊ1− bÊ2− c(Ê3+ Ê4)− f F̂− gĜ

)
= Ĉ : Ĉ− 2aĈ : Ê1− 2bĈ : Ê2− 2cĈ : (Ê3+ Ê4)− 2 f Ĉ : F̂− 2gĈ : Ĝ

+a2
+ b2
+ 2c2

+ 2 f 2
+ 2g2.

(3-29)

The corresponding stationary points are obtained from

∂(d2
C)

∂a
=2a− 2Ĉ : Ê1 = 0,

∂(d2
C)

∂b
= 2b− 2Ĉ : Ê2 = 0,

∂(d2
C)

∂c
= 4c− 2Ĉ : (Ê3+ Ê4)= 0,

∂(d2
C)

∂ f
=− 2Ĉ : F̂+ 4 f = 0,

∂(d2
C)

∂g
=−2Ĉ : Ĝ+ 4g = 0,

(3-30)
resulting in

a = Ĉ : Ê1, b = Ĉ : Ê2, c = 1
2

Ĉ : (Ê3+ Ê4), f = 1
2

Ĉ : F̂, g = 1
2

Ĉ : Ĝ. (3-31)

3C2. The log-Euclidean distance. Here the log-distance function is used to find the closest transversely
isotropic material for an arbitrary anisotropic elastic material. To do so, we may write the log-distance
function as

dL =

∥∥∥∥ln
(

Ĉ
E0

)
− ln

(
Ĉtr

E0

)∥∥∥∥. (3-32)

From the definition of the logarithm of a positive definitive symmetric tensor Â, one may write

ln(βÂ)= ln(β)Î+ ln(Â), ∀β > 0, (3-33)

which by virtue of the relation given in (3-32), results in

dL = ‖ln(Ĉ)− ln(Ĉtr)‖. (3-34)
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With the use of (3-24) for the transversely isotropic material, we may write [Moakher and Norris 2006]

ln Ĉtr = l1Ê1+ l2Ê2+ l3(Ê3+ Ê4)+ ln f F̂+ ln gĜ, (3-35)

where the l j are introduced shortly.
Looking for the stationary points of d2

L with respect to l1, l2, l3, f and g, we reach to the following
equations

∂(d2
L)

∂l1
= 2l1− 2ln(Ĉ) : Ê1 = 0,

∂(d2
L)

∂l2
= 2l2− 2ln(Ĉ) : Ê2 = 0,

∂(d2
L)

∂l3
= 4l3− 2ln(Ĉ) : (Ê3+ Ê4)= 0,

∂(d2
L)

∂ f
=−

2
f

ln(Ĉ) : F̂+
4
f

ln f = 0,

∂(d2
L)

∂g
=−

2
g

ln(Ĉ) : Ĝ+
4
g

ln g = 0,

(3-36)

from which the following analytical solutions result in for the unknown parameters l1, l2, l3, ln f and ln g:

l1= ln(Ĉ) : Ê1, l2= ln(Ĉ) : Ê2, l3= 1
2 ln(Ĉ) :(Ê3+ Ê4), ln f = 1

2 ln(Ĉ) : F̂, ln g= 1
2 ln(Ĉ) :Ĝ. (3-37)

From these five quantities we obtain f and g. However, we need to determine the parameters a, b, c.
According to [Walpole 1984], we have

l1 = ln δ+βl, l2 = ln δ−βl, l3 = cl, (3-38)

in which

l =


1
α

if γ = 0,

1
2γ

ln α+γ
α−γ

otherwise,
α =

1
2
(a+ b), γ =

1
2

√
(a− b)2+ 4c2. (3-39)

Then, a, b and c can, at least numerically, be determined by solving the system of nonlinear equations
just given. It is worth mentioning that γ = 0 results in a = b and c = 0, which is a special transversely
isotropic material. In this case, the bases is reduced to be constructed of four tensors E1, E2, F and G,
whose multiplication table is diagonal, and their sum come up to unit tensor.

Eventually, we may notice that there will be more than one solution and thus one has to choose the
adequate solution.

3C3. The power-Euclidean distance. In this part, power-Euclidean distance functions are considered,
from which the closest transversely isotropic tensor is given for an arbitrary anisotropic elastic material.
We present the details for the cases n = 1 and n = 0.5.

(i) Power-Euclidean distance function with n = 1

According to [Moakher and Norris 2006], the inverse of a transversely isotropic second-order tensor
defined by (3-24) is given by

Ĉ−1
tr =

1
ab− c2

[
bÊ1+ aÊ2− c(Ê3+ Ê4)

]
+

1
f

F̂+
1
g

Ĝ. (3-40)
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According to the definition given in (2-10) for the power-Euclidean distance, we may write

dP =

∥∥∥∥ f
(

Ĉ
E0

)
−

(
Ĉtr

E0

)
+

(
Ĉtr

E0

)−1∥∥∥∥, (3-41)

where

f
(

Ĉ
E0

)
=

(
Ĉ
E0

)
−

(
Ĉ
E0

)−1

. (3-42)

Substituting (3-24) and (3-40) into (3-41) results in

dP =

∥∥∥∥ f
(

Ĉ
E0

)
+

(
E0b

ab− c2 −
a
E0

)
Ê1+

(
E0a

ab− c2 −
b
E0

)
Ê2−

(
E0c

ab− c2 +
c

E0

)
(Ê3+ Ê4)

+

(
E0

f
−

f
E0

)
F̂+

(
E0

g
−

g
E0

)
Ĝ
∥∥∥∥. (3-43)

One might define

i =
E0b

ab− c2−
a
E0
, j =

E0a
ab− c2−

b
E0
, k=

E0c
ab− c2+

c
E0
, l=

E0

f
−

f
E0
, m=

E0

g
−

g
E0
, (3-44)

from which (3-43) becomes

dP =

∥∥∥∥ f
(

Ĉ
E0

)
+ iÊ1+ jÊ2− k (Ê3+ Ê4)+ lF̂+mĜ

∥∥∥∥. (3-45)

Thus, the square of the distance function is written as

d2
P = f

(
Ĉ
E0

)
: f
(

Ĉ
E0

)
+ 2i f

(
Ĉ
E0

)
: Ê1+ 2 j f

(
Ĉ
E0

)
: Ê2− 2k f

(
Ĉ
E0

)
: (Ê3+ Ê4)

+ 2l f
(

Ĉ
E0

)
: F̂+ 2m f

(
Ĉ
E0

)
: Ĝ+ i2

+ j2
+ 2k2

+ 2l2
+ 2m2,

(3-46)

where the relations Êp : Êq = Êp : F̂= Êp : Ĝ= F̂ : Ĝ= 0 and Êp : Êp = 1, with p and q 6= p equal to 1,
2, 3 or 4, and F̂ : F̂= Ĝ : Ĝ= 2 have been used. One may find the stationary points of d2

P as the solution
of the following system of equations

∂
(
d2

P

)
∂i
= 2 f

(
Ĉ
E0

)
: Ê1+ 2i = 0,

∂
(
d2

P

)
∂ j
= 2 f

(
Ĉ
E0

)
: Ê2+ 2 j = 0,

∂
(
d2

P

)
∂k
=−2 f

(
Ĉ
E0

)
:

(
Ê3+ Ê4

)
+ 4k = 0,

∂
(
d2

P

)
∂l
= 2 f

(
Ĉ
E0

)
: F̂+ 4l = 0,

∂
(
d2

P

)
∂m

= 2 f
(

Ĉ
E0

)
: Ĝ+ 4m = 0,

(3-47)
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whose solutions for i , j , k, l and m are presented as

i =− f
(

Ĉ
E0

)
: Ê1, j =− f

(
Ĉ
E0

)
: Ê2, k =

1
2

f
(

Ĉ
E0

)
: (Ê3+ Ê4),

l =−
1
2

f
(

Ĉ
E0

)
: F̂, m =−

1
2

f
(

Ĉ
E0

)
: Ĝ.

(3-48)

After i , j , k, l and m are known, equations (3-44) can be used to solve for a, b, c, f , and g. As
previously mentioned and seen from (3-44), the first three equations are coupled, while the remaining
two are uncoupled.

(ii) Power-Euclidean distance function with n = 1/2

Based on (2-14), we need both the square root and the inverse of the square root of the sought closest
transversely isotropic tensor. Writing the general form of a transversely isotropic tensor as (3-24), its
square root is given as [Moakher and Norris 2006]

Ĉ1/2
tr =

1
√

2 (α+ δ)

[
(a+ δ) Ê1+ (b+ δ) Ê2+ c(Ê3+ Ê4)

]
+
√

f F̂+
√

gĜ. (3-49)

The parameters δ and α in (3-49) have been previously given as δ =
√

ab− c2 and α = 1
2 (a+ b). The

inverse of the square root of Ĉtr is then given with the use of (3-40). According to the definition given
for the power-Euclidean distance in (2-10), the distance between the tensors for n = 1

2 is given by

dP = ‖ f
(

Ĉ
E0

)
−

(
Ĉtr

E0

)1/2

+

(
Ĉtr

E0

)−1/2

‖, (3-50)

in which
(
Ĉtr/E0

)1/2
= (1/

√
E0)Ĉ

1/2
tr . With the same procedure as given for n = 1, one may find the

stationary points of the square of this distance-function in terms of i, j, k, l and m as

i =− f
(

Ĉ
E0

)
: Ê1, j =− f

(
Ĉ
E0

)
: Ê2, k =

1
2

f
(

Ĉ
E0

)
: (Ê3+ Ê4),

l =−
1
2

f
(

Ĉ
E0

)
: F̂, m =−

1
2

f
(

Ĉ
E0

)
: Ĝ,

(3-51)

where i, j, k, l and m are written in terms of a, b, c, f and g in the form of

i =
(b+ δ)

√
2E0 (α+ δ)

(a+ δ) (b+ δ)− c2 −
a+ δ

√
2E0 (α+ δ)

, j =
(a+ δ)

√
2E0 (α+ δ)

(a+ δ) (b+ δ)− c2 −
b+ δ

√
2E0 (α+ δ)

,

k =
c
√

2E0 (α+ δ)

(a+ δ) (b+ δ)− c2 +
c

√
2E0 (α+ δ)

, l =

√
E0

f
−

√
f

E0
, m =

√
E0

g
−

√
g
E0
.

(3-52)

By knowing i, j, k, l and m from (3-51) the coefficients a, b, c, f and g are, at least numerically, deter-
mined by (3-52). It is seen that the equations for f and g are uncoupled from the other equations. On the
other hand, the coefficients a, b and c are determined from three nonlinear coupled equations. One needs
to be careful of the extra and nonphysical solutions which may be appear from numerical procedure.
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4. Numerical examples

We illustrate two examples in this section to present the closest isotropic, cubic and transversely isotropic
elastic tensors. First the results are based on an orthotropic material, and second based on an anisotropic
material with a full elasticity tensor. The former case is perhaps of particular importance due to the
amount of engineering applications, e.g., for composites. The results presented are for the different
f -distance functions derived in the previous section; that is conventional, log- and power-Euclidean
distances. The latter method is calculated using different power orders. For these power-Euclidean
cases, the elastic modulus are functions of the scalar gauge E0 and thus evaluated and plotted versus E0.

4A. Orthotropic elasticity tensor. Consider an orthotropic material according to the elasticity tensor

Ĉorth =



11.13 7.59 4.80 0 0 0
7.59 14.08 6.03 0 0 0
4.80 6.03 21.33 0 0 0

0 0 0 9.82 0 0
0 0 0 0 7.12 0
0 0 0 0 0 4.82


(GPa) (4-1)

The material constants for higher symmetry approximations are presented in Tables 1–3. Several
behaviour, noted for the isotropic approximation by Morin et al. [2020], may here also be stated for
cubic and transversely isotropic cases. In all cases, the results due to the conventional and log-Euclidean
distance functions are independent of the scalar gauge E0 as expected. The power-Euclidean cases with
different power orders vary with the gauge value, where the level of variation increases with the power
order. The constant log- and varying power-Euclidean curves almost cross at a certain gauge level for each
elastic moduli. However, by detail inspection, these curves do not actually meet at a specific mathematical
point for each modulus case. For all material parameters the conventional Euclidean solution represents
upper bounds for the power-Euclidean case with n = 1. This follow directly from the distance functions
definitions in Section 2B for the special case when E0 approaches 0.

For the isotropic and cubic cases shown in Figures 1–2, the variation among the material constants
using different distance functions (and gauge values) are more pronounced when compared to the trans-
versely isotropic case presented in Figure 3. This is somewhat expected as the difference among the
various distance theories should be less pronounced when aiming at approximating an original material
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Figure 1. Closest isotropic tensors to (4-1): modulus κ (left) and modulus µ (right).
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Figure 2. Closest cubic tensors to (4-1): modulus κ (top left), modulus µ (top right),
modulus η (bottom).

(orthotropic) with an approximate material (transversely isotropic) with certain common symmetries.
One may get an indication of the accuracies of each symmetry case by comparing the original tensor
(4-1) to the elastic tensors given in the Appendix (Section 6A) for the log-Euclidean distance case.

A way to further study the accuracy for the higher symmetry approximations is to calculate and
evaluate the error levels among the elasticity tensors using appropriate distance functions. Although one
may chose among the distance functions presented in this paper, it is preferable to consider a somewhat
alternative measure so as to avoid distinctly biased results. To this end, we here present results based
on the Euclidean distance function for the eigenvalues dC(D̂orth , D̂orth,appr), where D̂ is the diagonal
eigenvalue matrix for an elastic tensor Ĉ see Section 2B. More specifically, normalized errors using
‖D̂orth− D̂orth,appr‖/‖D̂orth‖ are presented for the closest isotropic, cubic and transversely isotropic elastic
tensors based on the measures from log- and power-Euclidean distance functions, see Table 2. Here, the
power cases with notation (L) is for the material values using the scalar gauge lower limit (E0→ 0),

log n = 1
2 (L) n = 1

2 (H) n = 1 (L) n = 1 (H)

iso 0.211 0.209 0.217 0.207 0.226
cub 0.178 0.166 0.195 0.149 0.212
tr 0.0564 0.0559 0.0571 0.0557 0.0594

Table 2. Normalized eigenvalue errors for higher symmetry approximations to (4-1)
using material parameters based on different distance functions.
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Figure 3. Closest transversely isotropic tensors to (4-1). Top row: moduli a and b.
Middle: modulus c. Bottom row: moduli f and g.

while the notation (H) is for the material values using the scalar gauge higher limit (E0 →∞); see
Figures 1–3.

These results show for each distance function measure that the isotropic approximation renders the
largest errors as expected. Moreover, the transversely isotropic approximations results in considerably
smaller errors compared to the cubic and isotropic approximations, in line with the expectations discussed
above. Similar qualitative error estimates among isotropic, cubic and transversely isotropic approxima-
tions are obtained using other tested error norms besides Euclidean distance norm for the eigenvalues
presented here. However, it should be emphasized that the best set of material parameters among the
distance functions for a specific higher symmetry elastic tensor may not be stated here. The lowest errors
for the power-Euclidean case n = 1 (L) in Table 2 are related to the Euclidean eigenvalue norm adopted
here.

4B. Full elasticity tensor. Consider next an anisotropic elasticity tensor studied by Morin et al. [2020].
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Figure 4. Closest isotropic tensors to (4-2): modulus κ (left) and modulus µ (right).
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Figure 5. Closest cubic tensors to (4-2): modulus κ (top left), modulus µ (top right),
modulus η (bottom).

This full anisotropic elasticity material parameters were determined from experiments by François et al.
[1998]:

Ĉfull =



243 136 135 31.1 73.5 −24
136 239 137 −39.6 15.6 22.6
135 137 233 41 −69.3 4.2
31.1 −39.6 41 266 −20 −4
73.5 15.6 −69.3 −20 238 −4
−24 22.6 4.2 −4 −4 260


(GPa). (4-2)

The material constants for higher symmetry approximations are presented in Figures 4–6. Much of
the behaviour reported for the higher symmetry approximations to orthotropic material in Section 4A
also hold here. In addition the c field in Figure 6, center, behaves differently compared to all the other
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Figure 6. Closest transversely isotropic tensors to (4-2). Top row: moduli a and b.
Middle: modulus c. Bottom row: moduli f and g.

fields as a function of the scalar gauge E0 for the power-Euclidean cases. Here the parameter values
increase with the gauge factor for reasons yet not explained.

The variation among the parameters for different distance functions (and gauge values) are here gener-
ally more pronounced compared to the orthotropic case presented in Section 4A. This could be seen as an
indication that these more symmetric material configurations are probably less suitable to approximate
the full anisotropic material presented here in (4-2). The corresponding approximate elastic tensors are
expressed in the Appendix (Section 6B) for the log-Euclidean distance case.

The corresponding normalized eigenvalue errors ‖D̂full−D̂full,appr‖/‖D̂full‖ are presented in Table 3. As
for the orthotropic case in Section 4A, the isotropic approximations render the largest errors as expected.
However, the smallest errors are found for the cubic approximations for each distance function measure;
a behaviour that may be supported by inspection of the tensors presented in Appendix 6B. Note that a
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log n = 1
2 (L) n = 1

2 (H) n = 1 (L) n = 1 (H)

iso 0.366 0.348 0.395 0.342 0.427
cub 0.141 0.123 0.177 0.123 0.232
tr 0.230 0.211 0.265 0.209 0.314

Table 3. Normalized eigenvalue errors for higher symmetry approximations to (4-2)
based on different distance functions.

cubic material is not a special case of transversely isotropic material. Moreover, the normalized error
levels here are more pronounced compared to the orthotropic case (Table 2) as discussed above.

5. Conclusion

The closest fourth-order isotropic, cubic and transversely isotropic elasticity tensors to general anisotropic
elasticity tensors have been analytically determined based on linear vector space and in the framework
of Green elasticity. Different generalized Euclidean distance functions including conventional, log-, and
power-Euclidean distance functions have been used. The power-Euclidean distance method has been
illustrated for powers of 0.5, 1 and 2. A dimensionless procedure based on [Morin et al. 2020] has
been used, and shown that the closest material for the power-Euclidean method is a function of the
dimensionless parameter, while the conventional and log-Euclidean distance functions are independent
from the dimensionless parameter.

The results from conventional Euclidean distance function are generally higher than from the log-
Euclidean distance function, and correspond to the extreme values for the power-Euclidean method
with n = 1. The material parameters using the log-Euclidean distance function are very close to the
corresponding ones from the various power-Euclidean methods, provided the values where they almost
intercept are chosen. In this way, one may proceed in line with Morin et al. [2020] and expect that the
log-Euclidean distance function probably is generally the best choice among other distance functions
used in this paper to represent the closest isotropic, cubic and transversely isotropic material to a general
anisotropic material. However, this is yet to be proven.

The present work shows how to choose material constants based on various distance functions. In
addition, it illustrates measures to evaluate among the higher symmetry tensors families for a specific
base material. More specifically, the most appropriate symmetry class may be suggested such as adopting
transversely isotropic symmetry for (4-1) and cubic symmetry for (4-2). However, the best choice among
the distance functions (log, power, etc.) are not evaluated here. It should be noted that much remains
regarding what simplification that should be stated for a specific engineering problem to secure a certain
degree of accuracy. Possible future work is to evaluate both the influence from the choice of distance
functions (log, power, etc.) and the chosen level of material symmetries (isotropic, cubic, transversely
isotropic, etc.) for various standard engineering problems (both elastostatics and elastodynamics).

6. Appendix: Closest elasticity tensors

This appendix presents the approximate elasticity tensors discussed in Section 4 for higher symmetry
approximations adopting the log-Euclidean distance function.
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6A. Orthotropic elasticity tensors. Approximations to the elasticity tensor (4-1) in Section 4A.

Isotropic material with κ = 9.12 GPa, µ= 3.71 GPa

Ĉorth,iso =



14.07 6.65 6.65 0 0 0
6.65 14.07 6.65 0 0 0
6.65 6.65 14.07 0 0 0

0 0 0 7.42 0 0
0 0 0 0 7.42 0
0 0 0 0 0 7.42


(GPa) (6-1)

Cubic material with κ = 9.12 GPa, µ= 3.48 GPa, η = 4.08 GPa

Ĉorth,cub =



14.56 6.40 6.40 0 0 0
6.40 14.56 6.40 0 0 0
6.40 6.40 14.56 0 0 0

0 0 0 6.96 0 0
0 0 0 0 6.96 0
0 0 0 0 0 6.96


(GPa) (6-2)

Transversely isotropic material with a = 21.30 GPa, b = 20.07 GPa, c = 7.60 GPa, f = 4.88 GPa,
g = 8.36 GPa

Ĉorth,tr =



12.47 7.60 5.37 0 0 0
7.60 12.47 5.37 0 0 0
5.37 5.37 21.30 0 0 0

0 0 0 8.36 0 0
0 0 0 0 8.36 0
0 0 0 0 0 4.88


(GPa) (6-3)

6B. Full elasticity tensors. Approximations to the elasticity tensor (4-2) in Section 4B.

Isotropic material with κ = 169.8 GPa, µ= 75.9 GPa:

Ĉfull,iso =



271.0 119.2 119.2 0 0 0
119.2 271.0 119.2 0 0 0
119.2 119.2 271.0 0 0 0

0 0 0 151.8 0 0
0 0 0 0 151.8 0
0 0 0 0 0 151.8


(GPa) (6-4)

Cubic material with κ = 169.8 GPa, µ= 116.2 GPa, η = 40.1 GPa:

Ĉfull,cub =



223.3 143.1 143.1 0 0 0
143.1 223.3 143.1 0 0 0
143.1 143.1 223.3 0 0 0

0 0 0 232.4 0 0
0 0 0 0 232.4 0
0 0 0 0 0 232.4


(GPa) (6-5)



470 XINYUAN SHAO, PETER D. FOLKOW AND MORTEZA ESKANDARI-GHADI

Transversely isotropic material with a = 214.9 GPa, b = 365.9 GPa, c = 205.8 GPa, f = 152.0 GPa,
g = 221.3 GPa:

Ĉfull,tr =



258.9 106.9 145.5 0 0 0
106.9 258.9 145.5 0 0 0
145.5 145.5 214.9 0 0 0

0 0 0 221.3 0
0 0 0 0 221.3 0
0 0 0 0 0 152.0


(GPa) (6-6)
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