
THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

3D modelling of epidermal nerve
fiber patterns

Konstantinos Konstantinou

Division of Applied Mathematics and Statistics
Department of Mathematical Sciences

Chalmers University of Technology
Göteborg, Sweden 2022



3D modelling of epidermal nerve fiber patterns
Konstantinos Konstantinou
Göteborg 2022

© Konstantinos Konstantinou, 2022

Division of Applied Mathematics and Statistics
Department of Mathematical Sciences
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31 772 1000

Typeset with LATEX
Printed in Göteborg, Sweden 2022



3D modelling of epidermal nerve fiber patterns

Konstantinos Konstantinou

Division of Applied Mathematics and Statistics
Department of Mathematical Sciences

Chalmers University of Technology

Abstract

Neuropathical disorders, such as diabetic neuropathy, damage the nerve struc-
ture in the epidermis. This thesis presents statistical analyses and models for
the epidermal nerve fibers (ENFs). The main objective is to improve our under-
standing regarding the three dimensional ENF structure and for this purpose,
stochastic models are constructed. The ENF data are treated as point process
configurations in three dimensional boxes, and samples from mild diabetic
subjects and healthy volunteers are considered. In Paper I, the structure of
the nerve trees is analyzed by comparing distributional properties of the first
and later nerve tree segments. Using tools from spatial point process theory,
second order properties of the underlying processes are examined and com-
pared. We also defined a new measure, called epidermal active territory, to
measure the volume of the epidermis covered by the nerves. Further, a three
dimensional point process model for the nerve structure, is developed and
evaluated using spatial summary statistics. The two dimensional version of
the model captured the planar spatial structure, however, the complete model
was unable to capture the attraction between the nerve fiber endings in the
data. Therefore, a pairwise interaction Markov model allowing neighboring
end points to interact was proposed in Paper II. Due to the anisotropic nature
of the data, directional summary statistics were used to assess the goodness
of fit of the models. The model was able to capture the attraction between the
nerve fiber endings in the data.

Keywords: Anisotropy, diabetic neuropathy, epidermal nerve fibers, point
processes.
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1 Introduction

Epidermal nerve fibers (ENF) are dendroidal, unmyelinated thin sensory nerve
fibers found in the epidermis, the skin’s outermost living layer. They pass
across dermis, the skin layer beneath the epidermis, enter and grow within
the epidermis with or without branching until they terminate (see Figure 2.1).
The ENF endings are responsible for transferring signals such as pain and
heat to the central nervous system. Peripheral neuropathies, such as diabetic
neuropathy, a neuropathic disorder caused by diabetes, damage the nerves.
This damage translates into symptoms such as neuropathic pain and loss of
sensation. As there is no current treatment able to restore the nerve fibers
functionality, diagnosis of the neuropathy at an early stage is important.

After some improved imaging procedures for visualisation and detection of
ENFs had been established in the early nineties, research focus shifted towards
the potential diagnostic capabilities of ENFs (Kennedy and Wendelschafer-
Crabb, 1993; Kennedy et al., 1996, 1999). Epidermal nerve fiber data can be
collected through suction induced skin biopsies, a procedure where a portion
of the epidermis is removed, mounted on a slide and stained for imaging. Con-
focal microscopy is then used to manually trace the locations where the nerve
fibers enter the epidermis, branch and terminate (Kennedy and Wendelschafer-
Crabb, 1993). Throughout this thesis, those points will be referred to as base,
branch and end points, respectively. Spatial point pattern data from healthy
volunteers and diabetic patients obtained from different body parts are avail-
able. For our statistical analyses, we treat the base, branch and end points as
realisations of point processes in three dimensional boxes. The observational
boxes have fixed lengths and widths, and varying heights that depend on the
local thickness of the epidermis.

The earliest research findings suggest that there is a negative correlation be-
tween the spatial intensity of the base and end point patterns with the degree
of the neuropathy (Kennedy et al., 1996, 1999). Based on this observation some
diagnostic tools have been developed. In particular, the current clinical practice
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2 1. Introduction

is based on the normative reference ranges of the intraepidermal nerve fiber
density that was established in a series of studies (Lauria et al., 2010). Moreover,
the negative correlation between the degree of the neuropathy and total ENF
coverage of the epidermis is discussed in many studies (Waller et al., 2011;
Myllymäki et al., 2012; Andersson et al., 2016; Olsbo et al., 2013). The reduction
of the total ENF coverage is strongly related with the observed symptoms, i.e
loss of sensation and neuropathic pain. However, those physiological changes
do not occur simultaneously throughout the body. The skin samples obtained
from more distant body parts like feet poses higher diagnostic value than the
skin samples from e.g thigh and calf. Therefore, in our analyses we considered
only ENF data obtained from feet (Kennedy et al., 1999).

Several studies propose clustered point process models for the planar spatial
structure of the ENFs end points (Olsbo et al., 2013; Andersson et al., 2016;
Ghorbanpour et al., 2021; Garcia et al., 2020). Here, we are particularly inter-
ested in the so-called Non-Orphan Cluster (NOC) model developed by Olsbo
et al. (2013) and the Uniform Cluster Centre (UCC) model developed by An-
dersson et al. (2016). In the NOC and UCC models the end point clusters
are constructed conditioned on the empirical base point patterns. The main
difference of the models is the end point cluster direction, i.e the direction of
the end point clusters with respect to their corresponding base points. In the
UCC model there is no preferred direction, while in the NOC model the end
point clusters are constructed toward open space. The direction opposite to
the closest other base point was used to approximate the open space direction.
Point process model for the base point patterns are suggested in Andersson
et al. (2019) and Andersson and Mrkvička (2020). Even the base points were
found to be clustered indicating that the nerve fibers may branch prior to
entering the epidermis.

The main goal of this thesis is to further enhance our understanding of the bio-
logical process that leads the morphological alterations in nerve fibers caused
by neuropathy. Better understanding of the underlying process can contribute
to the development of more efficient techniques for early identification of the
disease. To achieve our objectives, we investigated the three-dimensional struc-
ture of the nerve trees. Unlike the previous models that solely examine the base
and end point locations, we included the first branching points in the analyses.

In Paper I, the three dimensional structure of the ENFs endings was investi-
gated, to the best of our knowledge, for the first time. The nerve tree structure
within the individual nerve fibers and between the disease groups was in-
vestigated. Our findings indicate that the segments connecting the end and
branching points in the two groups have significant distributional differences.
Then, we examined possible competitive behaviours between the nerve fibers.
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For this purpose, the concept of epidermal active territory (EAT), a tool that
approximates the volume of the epidermis covered by the nerve trees was
introduced. The EAT values for each individual nerve tree were then attached
as marks to the base point patterns. No evidence was found to suggest that
the nerve fibers compete with each other in terms of mark correlation. Finally,
we constructed a three-dimensional two-step spatial point process model for
the end points that includes some ingredients from the NOC and UCC mod-
els. In the first step, the branching point locations are constructed towards
open space, as in the NOC model, while in the second step, the end point
clusters are constructed around the branching points, as in the UCC model.
The two-dimensional version of the model fitted the data quite well while the
3D version failed to capture the structure of the data at intermediate distances.

The model proposed in Paper I was further developed in Paper II. This exten-
sion allowed interaction between nerve fiber end points. In this model, the
planar point patterns were simulated using the 2D version of the initial model.
Then, the z-coordinates of the points were constructed using a pairwise interac-
tion Markov field model (Christoffersen et al., 2021). For evaluating the model
we considered samples from two healthy and two mild diabetic subjects. To
assess the goodness of fit we used directional summary functions from spatial
statistics due to the anisotropic nature of the data. We found some indication
of variations in the degree of interaction and the extent of the interaction zone
between the groups.

The thesis is structured as follows. In Section 2, we describe the epidermal
nerve fiber dataset and in Section 3, we briefly present some theoretical aspects
of the point process theory and in Section 4, present some additional statistical
tools. A brief summary of the appended papers is given in Section 5. Discussion
about the main contributions and future work are presented in Section 6.
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2 Data

The epidermal nerve fiber dataset is a hierarchically structured point pattern
collection comprising data from healthy volunteers and diabetic patients. The
main hierarchies are the degree of diabetic neuropathy, i.e healthy, mild,
moderate or severe, the different subjects and samples within the subjects.
As the primary goal of this thesis is to investigate neuropathy at the earliest
feasible stage, we concentrated on data collected from 8 mild diabetic subjects
and 32 healthy controls. Furthermore, data from each subject’s feet, calves, and
thighs are available. However, we focus on the foot data since research has
shown that changes in the physiology of the ENFs occur at an early stage in the
distant body regions (Andersson et al., 2016). For each subject, three to six skin
samples are available. The ENF dataset further contains non-spatial covariates
such as age, BMI and gender which are not considered in the spatial analyses
in this thesis.

The data are modeled as point processes in a three-dimensional box. Each point
pattern contains three different types of points: base, branch, and end points.
Despite the fact that the base points are the locations, where the nerves enter
the epidermis, their height values fluctuate because the base of the epidermis is
not totally flat. Since the nerve fibers may branch in deeper skin layers the base
points are clustered. The second type of points that are of interest are the first
branching points, which will be referred to as branching point throughout the
thesis. Those are the points where the fibers begin to branch in the epidermis.
The epidermal nerve fiber endings are the third type of points. Those are the
points responsible for feeling heat and pain and hence their spatial structure is
important. Similarly to the base points, the end point configurations are also
clustered.

In the statistical analyses conducted in this thesis, an epidermal nerve tree is
represented by its base, first branching and end points. The structure of the
ENF data is presented in Figure 2.1. The segments connecting the branching
points and other types of points are also presented to offer a more accurate
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6 2. Data

representation of the nerve tree structure.
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Figure 2.1: An illustration of the ENF data structure (left). An example of the three
dimensional multi-type point patterns of the ENF base, branch and end points (top
right). The corresponding two dimensional point pattern of the projections of the ENF
base, branch and end points (bottom right). The connections between the branching
points and the base and end points are also illustrated.



3 Spatial point processes

The aim of this chapter is to provide a brief introduction to the theoretical
concepts used throughout the thesis. In the chapter, basic concept definitions
and a brief overview of spatial summary functions for spatial point processes
are recalled and discussed. For a more mathematically rigorous treatment to
the subject, the reader is referred to the literature (Illian et al., 2008; Møller and
Waagepetersen, 2004; Chiu et al., 2013). The definitions and notations given
here mainly follow the book by Illian et al. (2008). Throughout this work Rd
and B(Rd), denote the d-dimensional Euclidean space and its corresponding
Borel sets, respectively. The indicator function is denoted by I{·} and the 6=
above summation sign denotes the summation over all distinct pairs.

3.1 Basic definitions

Spatial point processes are mathematical models suitable for characterising a
random set of points. A point process describes the stochastic probabilistic
rule that constructs point patterns according to a certain distribution. The
process is usually defined in the entire spatial domain D, but is only observed
in an observational window W ⊂ D. Realisations of point processes are called
point patterns or point configurations and the points are often referred to as
events. Point processes are central in many applications and serve as models
for a wide range of physical phenomena. Such applications include astronomy,
which involves modeling the spatial locations of galaxies and stars, forestry,
which involves modeling the spatial distribution and interactions between
e.g. different tree species, and medical applications, for instance modeling the
changes in the spatial structure of the termination locations of epidermal nerve
fibers as diabetic neuropathy progresses. The latter application is the subject of
this thesis.

7



8 3. Spatial point processes

The point processes are assumed to be simple, meaning that at every distinct
location the process place at most one point, and locally finite, indicating that
for every bounded Borel set B, the random variable NX(B) associated with
the number of the points of the process X = {Xi} in B, is finite. The notation
Xi, denotes the locations of random points in D. In mathematical notation this
is written as follows.

(i) X is simple ⇐⇒ P(Xi 6= Xj) = 1, ∀ i 6= j

(ii) X is locally finite ⇐⇒ ∀B ∈ B(Rd) that is bounded, we have that
NX(B) <∞

The intensity measure of a point process, Λ(B) : B(Rd)→ [0,∞), is defined as
the expected number of points of the process X in B, i.e Λ(B) ≡ E[NX(B)].
In applications, the intensity measure Λ(B) can be assumed to be absolutely
continuous with respect to the Lebesgue measure, hence it can be expressed as

Λ(B) =

∫
B

λ(x)dx, (3.1)

where the function λ : B(Rd)→ [0,∞), is called the intensity function.

A point process X is stationary if its distribution is invariant under translations.
For stationary point processes, and hence translation invariant measures, a
measure theoretic result states that the intensity measure should be a multiple
of the Lebesgue measure | · |, i.e Λ(B) = λ | B |, which implies that the
intensity function λ(x) ≡ λ. Since the intensity function is constant, it is
often referred as the intensity or point density of the process, and may be
interpreted as the mean number of points per unit area. On the other hand,
proving the stationarity assumption of the underlying process from just one
realisation is statistically impossible, and justifying stationarity is mainly based
on application related arguments. Lastly, a point process X is isotropic if its
distribution is invariant under rotations around the origin. In the appended
Papers, the point patterns containing the projections of the ENF base, branch
and end points into the plane, are assumed to be realizations from stationary
and isotropic point processes. However, the three dimensional point patterns
are assumed to be stationary but not isotropic.

There are three main types of point patterns, namely clustered, regular and
completely spatially random (CSR) patterns. In a clustered pattern, there are
attractive spatial dependencies between the points, in a regular pattern, there
are repulsive dependencies between the points and in the CSR patterns, there
is no structure, i.e the points are uniformly and independently distributed
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in space. An illustration of the three main types of points patterns is given
in Figure 3.1. More complicated types of point processes may be created by
incorporating different type of dependencies at different scales, for instance a
clustered pattern with repulsion between the clusters. Therefore, characterizing
the structure of the point pattern data at hand is one of the key research topics
in point process theory.

Figure 3.1: The three main types of point patterns: clustered (left), completely spatially
random (middle) and regular (right).

3.1.1 Poisson point process

The Poisson point process is a mathematical model describing the complete
spatial randomness case. A point process is a homogeneous Poisson point
process with intensity λ ≥ 0 if

(i) The random number of points of the process in a set B follows a Poisson
distribution with the expectation λ | B |, i.e NX(B) ∼ Pois(λ | B |), and

(ii) Conditioned on NX(B) = n, the points are uniformly and independently
allocated in B.

Despite its simplicity the Poisson process has a fundamental role in the charac-
terisation of the spatial structure of spatial point patterns. As many theoretical
properties and spatial summary functions can explicitly be derived for the
Poisson point process, it is used as a reference model. That is, the summary
functions estimated from empirical point patterns are compared to the theoreti-
cal values under CSR.

Furthermore, it serves as a basic building block for constructing more complex
clustered and regular point processes. For instance, it serves as a model for
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the parent process in Neyman-Scott point processes, a family of models for
clustered point patterns (see Section 3.3.1), as well as a model for the parent
process in hardcore type of processes, a family of models for regular point
patterns.

3.2 Functional summary statistics

We recall that the ENF base, branch and end points are treated as realisations of
stationary point processes in a three-dimensional box. In this section, functional
summary statistics for stationary point processes are briefly recalled.

3.2.1 Distribution functions

The empty space distribution function F (r) : [0,∞)→ [0, 1] gives the probability
that the ball around an arbitrary point x ∈ Rd with radius r, b(x, r) contains
at least one event of the point process X . For stationary point processes, it is
sufficient to consider x to be the origin o. In mathematical notation, F (r) is
expressed as

F (r) = 1− P(NX(b(o, r)) = 0) (3.2)

Similarly, the nearest neighbour distance distribution functionG(r) : [0,∞)→ [0, 1]
gives the probability that the ball around an arbitrary point of the process x
with radius r, b(x, r), contains its nearest neighbouring point of the process X .
Assuming that the process is stationary we can assume that x is the origin. The
nearest neighbour function G(r) is given by

G(r) = 1− Po(NX(b(o, r) \ {o}) = 0) (3.3)

where Po is a conditional probability given that there is an event in the origin.

A more interpretive summary function can be constructed from the nearest
neighbour function G(r) and empty space function F (r). The so-called J
function is given by

J(r) =
1−G(r)

1− F (r)
, when F (r) < 1

The values for the summary functions for the three main types of point patterns
are interpreted as follows
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(i) For CSR point patterns the following are true for r ≥ 0

F (r) = G(r) = 1− e−λπr
2

J(r) ≡ 1
(3.4)

(ii) For regular point patterns, we have that for r ≥ 0

F (r) > 1− e−λπr
2

> G(r)

J(r) > 1
(3.5)

(iii) For clustered patterns, we have that for r ≥ 0

G(r) > 1− e−λπr
2

> F (r)

J(r) < 1
(3.6)

It is important to note that the G, F, and J functions are appropriate for
describing the spatial structure at small scales, since they consider the nearest
events, but cannot provide any information about the structure at larger scales.
Further, we should be careful when interpreting values of the J function as
J ≡ 1 does not imply that X is the homogeneous Poisson process (Bedford
and Van den Berg, 1997). Moreover, since lim

r→∞
1− F (r) = 0 the variance of the

estimate Ĵ(r) increases with increasing r.

3.2.2 Second-order characteristics

Ripley’s K function proposed by Ripley (1977) is a second order summary func-
tion that can characterise the structure of a point pattern at different scales. For
stationary and isotropic point processes with intensity λ, Ripley’s K function
has a straightforward interpretation. In particular, λK(r) gives the expected
number of further points of the process X within distance r from an arbitrary
point of the process x. As X is stationary, we can assume that x is the origin o.
In mathematical terms, Ripley’s K function is defined as

λK(r) = Eo[NX(b(o, r) \ {o})] (3.7)

where Eo is a conditional expectation given that there is an event in the origin.
The values of Ripley’s K function for point patterns in Rd, can be interpreted
as follows
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(i) For CSR patterns, K(r) =| b(o, r) |, r ≥ 0

(ii) For regular patterns, K(r) <| b(o, r) |, r ≥ 0

(iii) For clustered patterns, K(r) >| b(o, r) |, r ≥ 0

where b(o, r) is the d-dimensional ball centered at the origin o with radius r. A
more interpretative version of theK function is the so called centred L function.
The centered L function is given by

L(r)− r = d

√
K(r)

bd
− r, r > 0. (3.8)

where bd is the volume of the d-dimensional unit ball. The theoretical value
for the CSR case is L(r) − r ≡ 0, and hence we can determine if a pattern is
clustered or regular by comparing the value of the summary function directly
with zero.

3.2.3 Edge corrections

Naive estimators of the summary functions ignore neighbouring points that
might have not been observed, i.e. points outside of W , which makes the
estimators biased. In point process literature, this issue is referred to as edge
effects. An illustration of this issue is displayed in Figure 3.2.

Figure 3.2: Example of edge effects. The points outside the observational window W
are ignored in the estimation.
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Therefore, to construct unbiased estimators, edge correction weights C(xi, xj)
are included within the estimators. Even though, the summary functions intro-
duced earlier need to be edge corrected, this Section presents edge correction
schemes only for the K function. The most common corrections for Ripley’s
K function are the translation, isotropic and minus sampling corrections. For a
stationary point process the translation correction weights C(xi, xj) are defined
as follows.

C(xi, xj) =
1

|W ∩Wxi−xj |
(3.9)

where Wxi−xj
denotes the translated window Wxi−xj

and | · | the Lebesgue
measure. If the process is also isotropic, the isotropic correction is defined as

C(xi, xj) =
ν1(∂b(xi, || xi − xj ||) ∩W )

2π || xi − xj ||
(3.10)

where ν1 denotes the length of a curve, ∂ denotes the boundary of a set and
b(xi, r) the ball centred at xi with radius r. The above expression can be
interpreted as the proportion of the perimeter of the ball that lies within the
window W . In the minus sampling correction, only the points that have a
distance larger than r from the boundary of the window ∂W are used as
reference points - the ball centres - in the estimation of the summary function.
A visual interpretation of the different edge corrections schemes is given in
Figure 3.3

r

 
 
 

Figure 3.3: Illustration of the translation (left), isotropic (middle) and minus sampling
(right) edge corrections

Therefore, an unbiased estimate for Ripley’s K function is given by the follow-
ing formula

K̂(r) =
1

λ̂n

6=∑
x1,x2∈X∩W

C(x1, x2)I{|| x1 − x2 ||≤ r}, r ≥ 0, (3.11)
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where C(xi, xj) is the edge correction weight, λ̂ an estimate of the process
intensity and n the total number of events.

3.2.4 Extensions of the K function

Bivariate K function

The K function can be extended for multi-type point processes. Let Xa and
Xb be realizations of two stationary point processes observed in W , and let
λa, λb be the intensities of Xa and Xb respectively. Then, λbKa,b(r) gives the
expected number of further points of the process Xb in the d-dimensional ball
with radius r centered at an arbitrary point x of the process Xa. If the process
is stationary, x can be assumed to be the origin o. In mathematical notation this
is expressed as follows

λbKa,b(r) = Eo[NXb
(b(o, r) \ {o})], (3.12)

where Eo is a conditional expectation given there is an event of Xa in the
origin o. Important to note that the bivariate Ka,b(r) function coincides with the
original Ripley’s K function when Xa = Xb. An unbiased estimator for Ka,b(r)
can be obtained by

K̂a,b(r) =
1

λ̂bλ̂a |W |

na∑
i=1

nb∑
j=1

C(xai , xbj )I{0 <|| xai − xbj ||≤ r}, r ≥ 0,

(3.13)
where C(xai , xbj ) is an edge correction term, na and nb are the numbers of
points and λ̂a and λ̂b the intensity estimates of Xa and Xb, respectively.

Cylindrical K function

The isotropic K function is not an appropriate summary statistic for non-
isotropic point patterns due to its symmetric structuring element, i.e. a d-
dimensional ball. Directional K functions with non-symmetric structuring ele-
ments have been suggested as extensions of Ripley’s K function for anisotropic
point processes (see e.g Stoyan and Stoyan (1994); Rajala et al. (2018)). The
three-dimensional end point clusters are anisotropic, as the behaviour in the xy
plane differs from the behaviour in the z direction, i.e the end point clusters
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have a cylindrical shape. The cylindrical K function Ku
cyl(r) is a directional K

function that uses a cylindrical structuring element (Møller et al., 2016). Similar
to Ripley’s K function the values of the cylindrical variant can be interpreted
as the expected number of further events within distance r from an arbitrary
event x, that is within a cylinder centred at x with a fixed half-width w and
oriented towards u divided by the process intensity. Choosing appropriate
directions u mainly depend on the nature of the application. For instance, the
cylindrical Ku

cyl(r) function is often estimated towards directions of the three
main axes to test the assumption of isotropy. If the behaviour of Ku

cyl(r) is
significantly different in a direction u, then this indicates that the data are of
anisotropic nature. An unbiased estimator for Ku

cyl(r) is given by

Ku
cyl(r) =

1

λ̂2

6=∑
x1,x2∈X∩W

C(x1, x2)[x1 − x2 ∈ Bu(r, w)], r > 0, (3.14)

where C(x1, x2) is an edge correction term, Bu(r, w) denotes the shape created
by the intersection of a cylinder with fixed half-width w and direction u with
spheres of radius r > 0 and λ̂2 is an estimate for the process squared intensity.
As the half width w is fixed, Ku

cyl(r) is defined as a function of distance r.
Similarly to Ripley’s K function, more interpretative variants can be defined
for both the bivariate and cylindricalK functions. Hence, conclusions about the
spatial structure of the point patterns are obtained by comparing the empirical
curve with the line y = 0, corresponding to the CSR case. It is important to
note that the spatial structure of a three dimensional pattern and the pattern
consisting of the projected events to the plane might have different clustering
behaviours. An example of such a case is illustrated in Figure 3.4. The pattern
on the left (purple) is more clustered than the right pattern (red) in R2 but
less clustered in R3. Further the differences in the structuring elements of the
isotropic K function and the cylindrical K function oriented towards the z-axis
are also illustrated.
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Figure 3.4: Illustration of potential differences in clustering in different dimensions.
The projections of the "red" pattern are less clustered in R2 but more clustered than the
"purple" pattern in R3. The structuring elements for the Ripley’s K and cylindrical K
functions are also illustrated.

Pooled K function

The aforementioned spatial summary functions are appropriate for describing
the spatial structure of a single point pattern. When point pattern replicates are
available, the summary functions can be extended to characterize the average
spatial structure. For instance, the ENF data set is hierarchically structured into
groups depending on the neuropathy severity, subjects within those groups,
and several samples within each subject, and we want to compare the average
spatial structure of the ENF patterns between the groups. The following
methodology can be applied to extend the sample-wise summary functions
to subject and group wise functions. Firstly, samplewise summary functions
Kij(r) for sample j ∈ {1, ...,mi} of subject i can be estimated for each point
pattern. Then, subject specific K̄i(r) functions can be obtained as a weighted
mean of the Kij(r) functions for all subjects i ∈ {1, ...,m} as

K̄i(r) =

mi∑
j=1

wijKij(r) (3.15)
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Finally, the subjectwise K̄i(r) functions are weighted to obtain the groupwise
K̄g(r) function for the group g.

K̄g(r) =

m∑
i=1

wiK̄i(r) (3.16)

Several weight schemes can be applied to calculate the weights. As our samples
cannot be assumed to have the same intensity, we used a square number weight
scheme (Diggle et al., 2000). An explicit description of this weight scheme is
as follows. Let nij be the number of points in sample j of subject i, and
let ni =

∑mi

j=1 nij be the total number of points in the samples from subject
i ∈ {1, ...,m}. Then the square point number weights for the groupwise K̄g(r)
and subjectwise K̄i(r) are given by

wi =
n2i∑m
k=1 n

2
k

, wij =
n2ij∑mi

k=1 n
2
ik

(3.17)

3.2.5 Mark correlation function

Often in applications numerical quantities, often referred as marks, are attached
to the points. Generally, the marks are either integers, i.e different types of
points in multi-type point patterns, or real valued numbers, i.e size related
features such as height, diameter or width, even though functional marks are
also possible. The mark correlation function is a second order characteristic
for marked point processes able to detect spatial dependencies between the
marks. The classical mark correlation function Kmm(r) for quantitative marks
is defined as follows.

Kmm(r) =
cmm(r)

µ2
r ≥ 0 (3.18)

where cmm(r) = Eo,r(mo·mr) is the conditional expectation given that there is a
point of the process in the origin and a point distance r away and µ2 = cmm(∞)
is the squared mean mark. The mark correlation function can be interpreted as
follows

(i) If there is no correlation between the marks, then Kmm(r) ≡ 1.

(ii) If there is a negative correlation between the marks, for instance, there is
competition between the points, we expect smaller than average marks
for close points and hence Kmm(r) < 1.
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(iii) If there is a positive correlation between the marks, for instance, the
points benefit from being close together, we expect larger than average
marks and hence Kmm(r) > 1.

Generalisations of the mark correlation function through the test function
t(mo,mr) can be defined in a natural way. The classical mark correlation
function (Stoyan, 1984) is obtained with the test function t(mo,mr) = mo ·mr.
An unbiased estimator of Kmm(r) for r ≥ 0 is given by

K̂mm(r) =
1

λ̂2µ̂2

6=∑
x1,x2∈X∩W

C(x1, x2)m(x1)m(x2)I{|| x1 − x2 ||≤ r}, (3.19)

where λ̂ is an estimate for the process intensity, µ̂ is an estimate for the mean of
the mark distribution and C(x1, x2) is an edge correction term.

Simulation envelopes under the null hypothesis that there is no correlation
between the marks, can be constructed using a Monte Carlo method. In particu-
lar, at each iteration of the method the marks are randomly permuted between
the points, keeping the locations of the points fixed, and the mark correlation
function for the permuted marked configurations is computed. Simulations
using this method construct marked point patterns with randomly labeled
marks which are then used to create simulation based envelopes.

3.3 Point process models for clustered patterns

This Section focuses on point process models for clustered patterns. The
Neyman-Scott family of cluster point process models is described first, fol-
lowed by cluster models developed specifically for the ENFs.

3.3.1 Neyman-Scott point processes

Neyman-Scott point processes are cluster processes introduced by Neyman
and Scott (1952) to model the locations of galaxies in space. The construction of
a Neyman-Scott point process is rather simple. First, a Poisson point process P
with intensity λp, often referred to as the parent process, is constructed. Then,
a distribution for the number of daughter points Nc per cluster centre c ∈ P
is considered. The daughter points x ∈ Xc are distributed in space according
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to a scattering distribution δ. The final process X is then X = ∪cXc, hence the
parent points are not observed.

A Neyman-Scott process X is stationary and if the scattering distribution is
isotropic then X is also isotropic. Moreover, first and second order properties
ofX can be derived explicitly. Let α = E[Nc] be the expectation of the offspring
distribution Nc, then the intensity of X is given by

λ = λpα (3.20)

Now let pk = P(Nc = k), for k ∈ N∪{0} and Fd(r) be the distribution function
of the random distance between two independent points in the same cluster
Xc. Then, Ripley’s K function for X is given by

K(r) = πr2 +
1

λα

∞∑
i=2

pii(i− 1)Fd(r), r ≥ 0 (3.21)

The most notable examples of Neyman-Scott point processes are the Matérn
and Thomas cluster point processes. In both point process models, the dis-
tribution of the random number of offspring follows a Poisson distribution
with expectation α, that is Nc ∼ Poisson(α). In the Matérn cluster process,
the scattering distribution δ is a uniform distribution in the ball b(c,R), for
c ∈ P and some radius parameter R. In the Thomas cluster process, δ is a
Gaussian distribution with variance parameter σ. In both cases, δ is isotropic
and hence X is a stationary and isotropic process. When the distribution of Nc
is considered to be a discrete distribution other than Poisson, generalisations
of the Matérn and Thomas processes can be obtained (see e.g Andersson and
Mrkvička (2020)).

3.3.2 Cluster models for ENFs

This section, aims to give a brief review of the most relevant models found
in the literature. We recall that the Neyman-Scott processes assume that the
parent process is completely spatially random. If we further assume that
the base point patterns represent the parent patterns for the end points, then
Neyman-Scott are not appropriate models, since the base point patterns are
clustered. As a result in previous studies on the nerve fibers, different type of
cluster models for the planar spatial structure of the endpoints were suggested.
The models presented here are models for the end points, and are constructed
conditioned on the empirical base point patterns. Each model, consists of
three main components, namely the length L, angle Φ, and tree size S, and
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distributions for every component are suggested. The main assumption that is
common in both models is the independence between the different components,
which simplifies the parameter estimation procedure significantly.
The Non-Orphan Cluster (NOC) model (Olsbo et al., 2013) is given by

L∼Gamma(α, β)

Φ | µ∼V onMises(µ, κ)

S∼Jonquiere(δ, γ)

(3.22)

where µ is the so called open space direction, defined for each base point as the
direction opposite to the closest other base point.

The Uniform Cluster Centre (UCC)(Andersson et al., 2016) is given by

L∼Gamma(α, β)

Φ | µ∼V onMises(µ, κ)

S∼NegativeBinomial(k, p)
(3.23)

where there is no preference for µ.



4 General statistical tools

In this Section, some general tools used in the analysis of the ENFs point
patterns are briefly desribed.

4.1 Metropolis-Hastings algorithm

Markov Chain Monte Carlo (MCMC) methods are statistical methods for infer-
ence and simulation from a target density π(x) (see e.g Brooks et al. (2011)).
If certain conditions are satisfied, a Markov chain Y0, Y1, ... having the target
distribution as its limiting distribution can be constructed. Metropolis-Hastings
algorithm is an MCMC algorithm, that requires the target distribution to have
probability density (or probability mass) function to be known up to a con-
stant (Metropolis et al., 1953; Hastings, 1970). Hence, Metropolis-Hastings
algorithms are also useful for simulating spatial point processes defined by an
unnormalised density h. The algorithm described in this section conditions on
the number of points in the point pattern, i.e NX(B) = n. Therefore, we are
interested in simulating from the conditional unnormalised density hn such as

π(x1, x2, ..., xn) ∝ hn({x1, x2, ..., xn}). (4.1)

If certain conditions are satisfied, the algorithm creates a Markov chain of point
configurations Y0, Y1, ... whose stationary distribution converges to the target
distribution ofX . Let Ik denote the index of the point to be updated at iteration
k of the algorithm. In a systematic updating scheme (Møller and Waagepetersen,
2004) we cycle through each point in every iteration as follows

I0 = 1, ..., In−1 = n, In = 1, ..., I2n−1 = n, ...

21
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Given that the state at iteration k, Ik = i and Yk = x̄ = (x1, ..., xn), we propose
a new point ξ ∼ qi(x̄, ·) from a proposal density. The Hastings ratio ri(x̄, ξ) is
given by

ri(x̄, ξ) =
hn((x̄ \ xi) ∪ ξ)qi((x1, ..., xi−1, ξ, xi+1, ..., xn), xi)

hn(x̄)qi(x̄, ξ)
. (4.2)

Choosing a symmetric proposal, i.e. a proposal density such that qi(x, y) =
qi(y, x), simplifies the Hastings ratio ri(x̄, ξ) to

ri(x̄, ξ) =
hn((x̄ \ xi) ∪ ξ)

hn(x̄)
. (4.3)

Further, if we assume that the unconditional process is Markov, the expression
for the Hastings ratio can be further simplified. A proposed state is then
accepted with acceptance probability ai(x̄, ξ) given by

ai(x̄, ξ) = min(1, ri(x̄, ξ)) (4.4)

Moreover, properties of the Markov chain created by the specific algorithm,
such as irreducibility and reversibility can be proved. For a more mathemati-
cally rigorous treatment to the subject you are referred to Chapter 7 in Møller
and Waagepetersen (2004). In Paper II, a Metropolis-Hastings algorithm with
uniform proposal was used to simulate from the model. A pseudo-algorithm
for a generic Metropolis-Hastings for point processes with conditional density
hn and fixed number of points is given in Algorithm 1.

Algorithm 1:
Result: A realisation from X given NX(B) = n
Set Y0 = (x1, ..., xn);
for m = 0,. . . ,M do

Given that Ym = x̄;
for j = 1,. . . ,n do

Draw ξ ∼qj(x̄, ·);
Calculate rj(x̄, ξ) using (4.2);
Calculate aj(x̄, ξ) using (4.4);
Draw U ∼ Uniform(0, 1);
if U < aj(x̄, ξ) then

Set Ym = (x1, ..., xj−1, ξ, xj+1, ..., xn)
else

Set Ym = x̄
end

end
end
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4.2 Shift plots and qq plots

The shift function introduced in Doksum and Sievers (1976) is a statistical tool
for comparing two distributions, graphically. Let X ∼ F and Y ∼ G, the shift
function is defined as the function ∆(x) such as F (x) = G(x+ ∆(x)). Solving
for ∆(x) we get that ∆(x) = G−1(F (x))−x. Hence, ∆(·) expresses the amount
of ’shift’ required so that X and Y coincide. Further, ∆(x) ≡ 0 implies that X
and Y have the same distribution. The qq (quantile quantile) plot is closely
related to the shift function. When comparing two random samples with a
qq-plot, the quantiles of one sample are plotted against the quantiles of the
other. If they have the same distribution, the points should fall on the line
y = x. The shift function ∆(x) is the shortest distance between the qq-plot
points and the line y = x.

Simultaneous 95% confidence bands for ∆(x) can be created using the Kolmogorov-
Smirnov statistic. Hence, if the line y = 0 lies within the confidence bands
of the estimated shift function ∆̂(x) then F and G are statistically indistin-
guishable. One advantage of this statistical tool is that if F and G differ, visual
inspection of the shift plot can provide information on how the distributions
differ. Example on how shift plots can be used to compare the distribution of
two random random variables are shown in Figure 4.1.
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Figure 4.1: Illustration of the shift plots for two random variables that are statistically
indistinguishable (left) and from different distributions (right), with 95% confidence
bands based on the Kolmogorov-Smirvov statistic.
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5 Summary of papers

5.1 Paper I

In this paper, we studied the 3D spatial structure of epidermal nerve fibers
by representing each nerve tree by the base point, first branching point and
end points. For the analysis, we considered skin samples obtained from the
feet of 32 healthy volunteers and 8 mild diabetic subjects. We included the
first-branching point patterns into the analysis, since they are a naturally better
choice for endpoint cluster centers than the base points, and unlike the base
points, that are clustered, they are indistinguishable from completely spatially
random patterns. Moreover, we compared the three-dimensional structure
of the endpoint patterns between the two disease groups using summary
functions for point patterns. Even though, the planar point patterns of the
mild group are more clustered than the point patterns in the healthy group, no
significant difference in clustering was found between the three-dimensional
point patterns of the two groups in terms of second-order summary statistics.

To study the tree structure within the individual nerve trees, we considered the
branch lengths and angles of the first segments, the tree segment connecting
the base to the branching points, and the later segments, the tree segments
connecting the branching points to the end points. We used shift plots to
compare the branch lengths and angular distributions of the two tree segments.
Our statistical analysis suggested that the first segment length is significantly
larger and the first segments grow more vertically than the later segments.
Further, we compared the tree structure between the groups. Our results
indicated that there are significant differences between the angular distributions
of the later segments of the two groups.

Moreover, we extended the concept of reactive territories, in our paper called
epidermal active territories (EAT), introduced in Andersson et al. (2016) for
2D point patterns, to 3D point patterns. The epidermal active territory is

25
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defined as the volume of the area in the epidermis covered by individual nerve
fibers. Our results showed that the total volume of the epidermis covered
by the nerve trees was larger in the healthy group than in the mild group.
In addition, possible competitive behavior between individual nerves was
examined by using the mark correlation function of the base point process
with the epidermal active territories as marks. No spatial dependencies were
detected between the marks.

Finally, we proposed a two-step point process model for the end points condi-
tioned on the base point patterns. In the first step, the first branching points
are sent towards open space, as in the NOC model in Olsbo et al. (2013). In the
second step, the endpoint clusters are constructed around the simulated branch-
ing points. The two-dimensional version of the model fitted the data quite
well, while the three-dimensional version revealed that there are interactions
between the endpoints that were not captured by the model.

5.2 Paper II

Inspired by Christoffersen et al. (2021) we developed a 3D point process model,
that allowed the end points to interact with each other. The model consisted of
two steps. In the first step, the planar point patterns were obtained using the
two-dimensional version of the model introduced in Paper I. In the second step,
the process in the z-direction Xz given the planar process Xp was constructed
using a pairwise interaction Markov random field model. In the model, two
points are considered neighbors if they lie within a cylindrical interaction
region centered in one of the points. The conditional density consisted of two
parts, one modelling the cylindrical attraction between the endpoints and a
hardcore ball not allowing points to be closer than the points in the data. The
parameters of the model, θ = (h,w, t, γ), were estimated by maximizing the
pseudolikelihood over a grid of values for the cylinder parameters (w, t) using
the minimum distance between the endpoints in the data multiplied by n−1

n
as an estimate for the hardcore distance h. To reduce the bias due to edge
effects, minus sampling was used. The parameter estimates suggest that in
both groups, after a hardcore radius h the end points attract each other. The
attraction is larger in the healthy group than in the mild diabetic group.

Furthermore, a Markov chain Monte Carlo algorithm, where the number of
points in the planar process Xp are fixed, was used to simulate from the model.
We used a systematic updating scheme cycling over the point indexes 1 to n
and using a uniform proposal for a new point in Wz . Due to the anisotropic
nature of the data the goodness-of-fit of the model was evaluated using the
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cylindrical K function. Simulations from the model were able to capture
both the complete spatial structure of the endpoints and the structure of the
endpoints with respect to their branching points. However, as the model
utilises a Metropolis-Hastings algorithm, it is computationally expensive to
simulate. Therefore, our goodness-of-fit analysis was limited to two arbitrary
chosen healthy and two mild diabetic subjects. Finally, we would like to point
out that the proposed methodology is generic, and hence can be used for point
pattern data in general.
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6 Conclusion and future work

To the best of our knowledge, this is the first study that analyzed the nerve
fiber patterns in three dimensions. In contrast to the planar patterns, second
order analysis of the patterns indicated that there is no significant difference
in clustering between the data from the two disease groups. As a result, the
clusters in the diabetic samples are tighter in the xy direction, but there is no
difference in the structure of the clusters in the three dimensions. Moreover,
second order analysis of the first branching points patterns suggests that they
are less clustered than the base points, indicating some repulsion between
different endpoint clusters. In Paper I, we investigated the distributional
properties of the nerve tree segments as well as competition between the nerve
trees. Further, we developed a three dimensional point process model for
the nerve tree structure. The two dimensional version of the model had a
good fit, but the three-dimensional version failed to capture the ENF structure,
indicating potential interactive behaviour between the ENFs. For this purpose
in Paper II, a model allowing end points to interact in a cylindrical region was
developed. Even though the methods and models have been developed having
the ENF data in mind, they can be used for point pattern data in general.

As the primary goal of this thesis is to improve our understanding of the under-
lying biological mechanism that causes physiological changes in the structure
of nerve fibers as a result of neuropathy, there are several potential future
research topics to investigate. Diabetic nerve fiber patterns, for instance, can
be considered as spatial thinnings of healthy nerve fiber patterns. Preliminary
analysis on this topic revealed that independent random thinning is insuffi-
cient to describe this biological process, and hence more sophisticated thinning
strategies must be investigated. However, thinning operations alone may not
be sufficient, thus more complex models that allow for point addition and
movement might have to be considered.

29
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