

Title: Databases and SQL

Author: Pavel Turčínek, Martin Drlík, Ján Skalka, Beata Zielosko, Zenón
José Hernández-Figueroa, José Daniel González-Domínguez, Juan Carlos
Rodríguez-del-Pino, Jaroslav Reichel

Citation style: Turčínek Pavel, Drlík Martin, Skalka Ján, Zielosko Beata,
Hernández-Figueroa Zenón José, González-Domínguez José Daniel,
Rodríguez-del-Pino Juan Carlos, Reichel Jaroslav. (2021). Databases and
SQL. Nitra : Constantine the Philosopher University in Nitra.

Databases and SQL

Published on

November 2021

Authors

Pavel Turčínek | Mendel University in Brno, Czech Republic

Martin Drlík | Constantine the Philosopher University in Nitra, Slovakia

Ján Skalka | Constantine the Philosopher University in Nitra, Slovakia

Beata Zielosko | University of Silesia in Katowice, Poland

Zenón José Hernández-Figueroa | University of Las Palmas de Gran Canaria, Spain

José Daniel González-Domínguez | University of Las Palmas de Gran Canaria, Spain

Juan Carlos Rodríguez-del-Pino | University of Las Palmas de Gran Canaria, Spain

Jaroslav Reichel | Constantine the Philosopher University in Nitra, Slovakia

Reviewers

Jozef Kapusta | Pedagogical University of Cracow, Poland

Piet Kommers | Helix5, Netherland

Eugenia Smyrnova-Trybulska | University of Silesia in Katowice, Poland

Peter Švec | Teacher.sk, Slovakia

Graphics

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

David Sabol | Constantine the Philosopher University in Nitra, Slovakia

Erasmus+ FITPED

Work-Based Learning in Future IT Professionals Education

Project 2018-1-SK01-KA203-046382

The European Commission support for the production of this publication does not
constitute an endorsement of the contents which reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2021 Constantine the Philosopher University in Nitra

ISBN 978-80-558-1782-8

Table of Contents

1 Basic Terminology ... 5

1.1 Basic terminology ... 6

2 Data Modelling ... 12

2.1 Entities ... 13

2.2 Relationships ... 20

2.3 Normal forms .. 32

2.4 Physical model .. 40

3 Structured Query Language .. 45

3.1 SQL ... 46

3.2 DDL ... 48

4 Select Command ... 57

4.1 SELECT Statement - The Basics .. 58

4.2 SELECT Statement - ORDER BY Clause .. 60

4.3 SELECT Basics (execises) ... 61

4.4 SELECT Statement - Functions .. 73

4.5 SELECT Statement - WHERE Clause ... 79

4.6 SELECT - WHERE clause (exercises) .. 82

5 Group by ... 87

5.1 SELECT Statement - Aggregates ... 88

5.2 SELECT Statement - Grouping ... 92

5.3 SELECT Statement - HAVING Clause .. 94

5.4 Aggregation and grouping (exercises) ... 95

6 Join ... 99

6.1 Multi-table Queries.. 100

6.2 Simple Join Using WHERE Clause .. 102

6.3 Preferred Approaches to Join Tables based on JOIN Clause 104

6.4 JOIN (exercises) ... 108

7 Insert ... 115

7.1 INSERT INTO statement ... 116

7.2 INSERT exercise I.. 119

7.3 INSERT exercise II. ... 132

8 Update .. 149

8.1 UPDATE statement ... 150

8.2 UPDATE exercise I. ... 152

8.3 UPDATE exercise II. .. 165

9 Delete .. 184

9.1 DELETE statement .. 185

9.2 DELETE exercises ... 187

Basic Terminology

Chapter 1

Basic Terminology | FITPED

6

1.1 Basic terminology

🕮 1.1.1

Data

Data are properties of objects typically obtained by measurement or observation. In
order for data to be processed, they must be expressed. Data can be expressed by
text, speech, image (graphically), electronically, etc. When we simplify it, we can say
that the data are expressed using signs or signals.

🕮 1.1.2

Data record / data sentence

In order to work with the data, the data is put together into higher logical units, and
these are called records (sentences). The record is marked as a logical data unit.
However, a record is not the smallest data element. Record (sentence) can be
decomposed. As in everyday life, the sentence consists of words and the issue
of data will divide the sentence (a record) into attributes. The attribute is the least
addressable part of the sentence. Just as the word is decomposable to individual
letters, in some cases it is possible to divide an attribute. However, as with words,
they would lose their meaning.

🕮 1.1.3

Attributes

Attributes may be atomic or structured. An example of a structured attribute can be
an address (street, house number, city, zip code, …). Such attributes are good to
avoid and divide into atomic attributes. Attributes have a certain position in the
sentence (a record), they have their meaning. In order for an attribute to play its role
properly, the values it will acquire must be meaningful. The set of allowable values
that an attribute can acquire is called a domain.

🕮 1.1.4

Domain

The domain does not just specify that the attribute NAME OF A PERSON is a string
of characters. This is the determination of the data type (it will be explained later in

Basic Terminology | FITPED

7

more detail). The domain is more specific. It represents all meaningful values for
the given attribute. Into the domain of the attribute NAME OF A PERSON can be
included a value "Pavel", but the value of "x7br_15" does not fall into the domain of
this attribute, even if it is a text string.

📝 1.1.5

Which of the following values are suitable for the domain of the attribute SPORT.

• swimming
• reading
• programming
• football
• curling

🕮 1.1.6

Type of record (sentence)

The type of record determines which attributes (including domains) the record
has. The order of individual attributes also plays an important role. The type of
record (sentence) is specified by its attributes for example NAME OF A PERSON,
ACTIVITY, OBJECT. The sentence of this type can then be: "John drives a car."

📝 1.1.7

Let us suppose, there is a type of record described by these attributes: ANIMAL,
ACTIVITY, PLACE. Chose which of the following sentences can be described by this
type.

• A cow eats grass.
• A wolf runs in a forest.
• A car stands in a parking place.
• A ladybird flies over a meadow.

🕮 1.1.8

Information

Basic Terminology | FITPED

8

Information is intangible. Information is data that has meaning. Information is,
therefore, a subset of data. Information can respond to questions, thus reducing
ignorance (uncertainty). The information may be contained in both the signs (or
signals) themselves and also in their arrangement. Physical appearance may vary
(text, image, signals, etc.). Data provide information only to those who understand
them, who are able to recognize their syntax and understand semantics. What is
information for someone, can be only data for another.

📝 1.1.9

Choose the definition that suits the best to term "data".

• All data can be described as information stored on some media.
• Data are properties of objects which you can get by observation or

measurement.
• Data brings you a new view of an already known fact.
• Data can never decrease your uncertainty.

🕮 1.1.10

Identification of records (sentences)

Records of the same type are grouped into data files. In order to work with them (eg
search, delete, edit), each record must be clearly distinguished from others.
Therefore, each record must be identified by the file key. A key is a set of attributes
that uniquely identify a record. The number of attributes belonging to the key is
called k. The total number of attributes of the sentence is denoted as n. Always
apply k ≤ n. The goal is to keep it as small as possible. All minimum keys create
space K*. One of the keys is marked as the primary key.

🕮 1.1.11

The architecture of the Database System

Basic Terminology | FITPED

9

As can be seen from the picture, the database system consists of two basic
components:

• database,
• a database management system.

🕮 1.1.12

Database

The database is a set of structured homogeneous files. These are data that are
intended for further processing. They are meaningfully divided into individual files.
All data within a single file has the same structure.

🕮 1.1.13

Database management system

In order to access the database, there is a tool called a database management
system. Often, the DBMS abbreviation is also used. A Database management
system is an integrated software tool that allows to define, create, and manage
access to the database and work with it. Typically, this is a collection of programs
that make up the interface between application programs and stored data.

The database management system has many features. Above all, it allows you to
manipulate data. It ensures that only authorized users can access the data. It also
allows concurrent access for multiple users. It provides transaction management.
Depending on the model used, it creates a database and defines its schema
(structure). In case of failure, it allows recovery. It checks data integrity and
provides many other tasks.

🕮 1.1.14

Benefits of DBMS

The benefits that the DBMS brings to direct access to data are indisputable. The
main ones include:

• Abstraction of data - the user does not work directly with the source files, but
with formalized structures at the higher logical level of abstraction.

Basic Terminology | FITPED

10

• Independence of data - if physical data changes, it does not affect the work
of application programs. The data interface will still look the same on the
outside.

• Centralized data administration - all data is in one place. Everything is
treated in a similar way. It is possible to display a description of the data
structure.

• The ability to formulate ad-hoc queries outside of application programs -
users can randomly query queries on a database through the DBMS. They do
not need other programs to do so.

📝 1.1.15

Choose features that are allowed thanks to DBMS:

• access to data only through other applications
• concurrent access
• data manipulation
• recovery
• unauthorized access

📝 1.1.16

Match together the following terms and sentences about DBMS.

The user does not work directly with the source files, but with formalized
structures. _____

If physical data changes, it does not affect the work of application programs. The
data interface will still look the same on the outside._____

All data is in one place. Everything is treated in a similar way. It is possible to
display a description of the data structure._____

Users can randomly query queries on a database through the DBMS. They do not
need other programs to do so. _____

• Abstraction of data
• Centralized data administration
• Independence of data
• The ability to formulate ad-hoc queries outside of application programs

Basic Terminology | FITPED

11

📝 1.1.17

To sentences (characteristics) assign the words (terms) that match them best.

Set of structured homogeneous files. _____

The set of allowable values that an attribute can acquire. _____

Logical units of data. _____

Properties of objects. _____

Data that reduce uncertainty. _____

A software that allows to define, create, and manage access to the database and
work with it. _____

• Data record
• Data
• Database management system
• Domain
• Information
• Database

Data Modelling

Chapter 2

Data Modelling | FITPED

13

2.1 Entities

🕮 2.1.1

Data modelling is a process that aims to create a data model. The data model
describes the data and its structure. Data can be viewed from three views.

The first is an outside view. Sometimes it is referred to as an application or a user
view of the data. It's the view of a regular user who is not interested in deeper
connections between the data. It's usually just their consumer.

The second view is called logical or conceptual. In both cases, it is about identifying
important objects of interest and relationships between them. It does not solve the
way of implementation. It covers current needs with the potential for further
development.

The third view is a physical view. This view looks at how data is stored. It is a
custom implementation proposal in a particular database (or other) system.
Contains tables, object structures, and integrity constraints.

🕮 2.1.2

Conceptual vs logical model

Different authors have a little bit different explanations. Most of them can be
summed up in two opinions:

• The conceptual model contains only entity names and links between them.
Logic contains keys and attributes.

• Conceptual contains entity names, attributes, and links between them. In a
logical view, it further solves the decay of the M:N relationship and the
division of attributes into atomic attributes.

Some of the terms, you don't know will be explained in the next texts. For now, try to
remember at least that the logical model is a little more specific than the
conceptual one.

🕮 2.1.3

The goal of conceptual modelling is to accurately describe the data storage needs.
Conceptual modelling supports discussion. It allows you to communicate with non-
technical language, which prevents mistakes and misunderstandings. It defines the

Data Modelling | FITPED

14

initial "ideal system" documentation. In fact, the standard for creating a conceptual
model is the relational diagram (ERD).

ERD consists of entities and relations between them.

📝 2.1.4

Choose the right term for the following descriptions.

_____ identifies important objects of interest and relationships between them.

The view of a regular user who is not interested in deeper connections between the
data is called _____.

_____ is a custom implementation proposal in a particular database (or other)
system.

• Conceptual view
• Outside view
• Physical view

📝 2.1.5

Which of following sentences are true about a conceptual modelling?

• It covers current needs with the potential for further development.
• It identifies important objects of interest and relationships between them.
• It defines the initial "ideal system" documentation.
• It supports discussion.
• It allows you to communicate with the non-technical language.
• It contains tables, object structures, and integrity constraints.
• It is a custom implementation proposal in a particular database (or other)

system.

🕮 2.1.6

Entities are objects, persons, things for which is important to keep data about them.
It is a naming of a set of similar objects. An entity can be compared to a type of
record you've read about earlier. Examples of entities can be:

CAR, MOVIE, PERSON, PRODUCT, ANIMAL.

Data Modelling | FITPED

15

One particular occurrence of an entity is called an instance.

🕮 2.1.7

Entity or instance?

Is DOG an entity or an instance?

The data model is usually created based on a scenario from the client. The first
task is to identify entities. They can be found as nouns. However, not all nouns are
entities. It always depends on the context of the given assignment, so without this
assignment, it is not possible to determine whether a dog is an entity or an
instance.

In case you are creating a data model for a dog shelter, it is very likely that the dog
will be an entity and will have its instances (specific dogs in the shelter). In the
other case, the dog may be an instance of an animal entity in some other model. It
is, therefore, necessary to look at the problem in its complexity.

📝 2.1.8

Choose the appropriate instance for each entity.

SPORT _____

COUNTRY _____

MOVIE _____

DRINK _____

PERSON _____

ANIMAL _____

• Beer
• Bear
• Czech Republic
• Ice hockey
• Edgar Frank Codd
• Schindler's List

Data Modelling | FITPED

16

🕮 2.1.9

Attributes

As with the record type, entities are also characterized by their attributes. These
allow you to distinguish individual instances of the entity from each other.
Attributes describe entity characteristics. Individual attributes describe, quantify,
qualify, classify, or specify the entity.

The attribute acquires just one value (number, character string, date, image, sound,
...) of its domain (a subset of values of a particular data type) - eg age is an integer
from 0 to 120. However, the conceptual model does not address the domain too
much. Attributes may also include an integrity constraint. These are additional
policies that ensure that the model matches the reality. More about integrity
constraints will be written later.

🕮 2.1.10

Characteristics of attributes

Attributes, however, do not only distinguish a domain but also whether each
instance of an entity must have a value for that attribute. It is discussed whether
the attribute is mandatory or optional (optional). The obligation of the individual
attributes depends again on the scenario.

Some attributes (such as age) have values that constantly change. These are called
volatile attributes. Other attributes (such as order date) will change rarely, if ever.
These are nonvolatile attributes. If there is a choice between attributes, use the
nonvolatile one. For example, use birth date instead of age.

When looking for attributes in the problem description, again, you need to choose
between nouns. For nouns, the decision will be made whether this is an entity or an
attribute. However, some nouns may also represent instances, or they may not play
a role in the model at all.

📝 2.1.11

Choose suitable attributes for an entity PERSON.

• first name
• date of birth
• price
• country of origin
• order date

Data Modelling | FITPED

17

• last name
• sex

📝 2.1.12

Choose suitable attributes for an entity PRODUCT.

• name
• date of birth
• price
• country of origin
• description
• password
• sex

📝 2.1.13

When you will create a model based on a given scenario, entities, instances, and
attributes can be found among nouns. True or false?

• True
• False

🕮 2.1.14

In modelling, it is necessary to agree on the rules of how the model will look, so
everyone can understand its meaning. The way of how it is written is called a
notation. There are multiple notations for creating data models and one can not say
which notation is most used. Here, Baker's notation will be used.

In Baker's notation, entities are marked as rectangles. The first line shows the name
of the entity. It is usually written in capital letters and is singular. The other rows
describe the attributes, including their optionality. If the attribute is mandatory, it
has an asterisk before it. If it is optional, it has a circle. You can see the example in
the picture.

Data Modelling | FITPED

18

🕮 2.1.15

An identifier is an attribute or combination of attributes that uniquely distinguish
one instance from the other. It is a unique identifier of just one instance. It is often
possible to meet the UID abbreviation.

If the identifier is composed, it is a combination of multiple attributes. This is the
case when one attribute for identification is not enough. For example, the street
name does not uniquely identify a particular street because streets with the same
name can be in two different cities. Street + City has definite information.

🕮 2.1.16

In some cases, it is not possible to build an identifier even with a combination of all
entity attributes. You can see the example in the picture. In such cases, an artificial
identifier will come in. As an artificial identifier, a numeric attribute (integer) is
usually selected. This attribute is most commonly called id.

Data Modelling | FITPED

19

📝 2.1.17

Choose if an attribute or a combination of attributes could be an identifier for the
entity in the picture.

• user_id
• login
• password
• first name
• last name
• sex
• email
• first name, last name
• password, sex

🕮 2.1.18

There are also cases where the entity has more identifiers. One is elected as
primary. The others are referred to as candidate (secondary) identifiers. An artificial
identifier is created even when there is another identifier, but for some reason, it is
not suitable as a primary identifier.

When an entity is created, it must always have a specified primary identifier. You
must be able to clearly distinguish one instance from another so that you can work
with that instance (select, edit, delete). The primary identifier must, therefore, be a
mandatory attribute. If it is composed of multiple attributes, all must be mandatory.
Secondary attributes can also be marked as optional.

The primary identifier is indicated by the hash sign (#). Secondly, use a large U, as
shown in the picture.

Data Modelling | FITPED

20

📝 2.1.19

Out of these three entities chose which of them has not correctly chosen the
primary identifier.

• Employee
• Product
• Theater ticket

2.2 Relationships

🕮 2.2.1

Relationships are the connections between entities. They carry important
information. Relationships exist always between two entities or entities can have a
relationship with themselves. Relationships are always named on both sides. An
example of a relationship can be:

STUDENT (entity) STUDIES (relation) COURSE (entity).

COURSE (entity) IS STUDIED BY (relationship) STUDENT (entity).

Data Modelling | FITPED

21

In that scenario, relationships act as verbs. When identifying them, you need to
focus on them.

🕮 2.2.2

As with attributes, for relationships is important to state their optionality. However,
it's a bit different. The optionality applies to instances of entities. The point is
whether the instance of an entity must or may be in relation to the instance of
another entity. The optionality is determined on the basis of appropriate questions.
For example:

• MUST the student study the subject?
• MUST the subject be studied by a student?

Based on the answers to the previous questions, it is possible to modify the
previous sentences:

The student MUST study the course.

Course MAY be studied by a student.

When you determine the optionality it always depends on the context of the
assignment. In some cases, the relationship is mandatory where else the
participation of instances in a relationship is optional.

📝 2.2.3

Select the optionality which suites the best the relationship between two persons
which represents the relation between the biological mother and her child.

• A person MUST be the biological mother of a child. A person MUST be the
child of a biological mother.

• A person MAY be the biological mother of a child. A person MAY be the child
of a biological mother.

• A person MAY be the biological mother of a child. A person MUST be the
child of a biological mother.

• A person MUST be the biological mother of a child. A person MAY be the
child of a biological mother.

Data Modelling | FITPED

22

📝 2.2.4

Select the optionality which suites the best relationship between receipt and
product.

• A receipt MUST contain a product. A product MUST be an item of a receipt.
• A receipt MAY contain for a product. A product MAY be an item of a receipt.
• A receipt MAY contain for a product. A product MUST be an item of a receipt.
• A receipt MUST contain for a product. A product MAY be an item of a receipt.

🕮 2.2.5

Cardinality describes how many times each instance of an entity can participate in
a given relationship. To determine cardinality, it is advisable to ask questions such
as:

• HOW MANY courses can one student study? One or more?
• HOW MANY students can study one course? One or more?

By answering the previous questions, it is possible to add the cardinality to the
sentences in such a way that the optionality and cardinality will be clear:

The student must study ONE OR MORE courses.

The course can be studied by ONE OR MORE students.

Again, it is important to think that it always depends on the particular case. For
different assignments, both cardinality and optionality may differ for the same
entities.

🕮 2.2.6

You have certainly noticed that the relationship has two ends. For each end, there is
optionality, but also cardinality. There are three types of cardinality:

• 1:1 - the instances of both entities enter the relationship at most one at a
time,

• 1:N - an instance of one entity enters into a relationship at most once,
whereas an instance of the other entity can enter the relationship multiple
times,

• M:N - Instances of both entities can enter the relationship multiple times.

Data Modelling | FITPED

23

📝 2.2.7

Select the cardinality which suites the best relationship between two persons which
represents the relation between the biological mother and her child.

• 1:1
• 1:N (one biological mother to more children)
• 1:N (one child to more biological mothers)
• M:N

📝 2.2.8

Select the cardinality which suites the best relationship between receipt and
product.

• 1:1
• 1:N (one receipt to more products)
• 1:N (one product to more receipts)
• M:N

🕮 2.2.9

As with entities and their attributes, there are rules for displaying relationships
between them. Baker's notation will still be used.

Relationships appear as lines between entities. The optionality is either a solid line,
which means the relationship is mandatory for an instance of the entity, or a
dashed line, which determines that the relationship is optional for an instance of
the entity.

Cardinality is then determined by a fork at the end of the line. If the line is ended by
a "Crow’s Foot" (fork), it means that multiple instances of the entity can enter the
relationship. If the line terminates in a "single toe" (simple line), then the instance of
the relationship can only participate once.

Data Modelling | FITPED

24

🕮 2.2.10

ERDish is a language that describes relationships between entities in verbal terms.
It helps to understand the modelling problem even for non-IT people. It serves as a
prevention to avoid errors. With incomplete ERDish sentences, you have already
met in the previous text. So how is an ERDish sentence formed?

1. EACH
2. Entity A
3. OPTIONALITY (must/may)
4. relationship name
5. CARDINALITY (one/one or more)
6. Entity B.

Remember, the relationship has two entities, so it will also need two ERDish
sentences. Modifying the previous sentences into the desired form will create the
following sentences:

Each student must study one or more courses.

Each course may be studied by one or more students.

These two sentences then perfectly and unequivocally describe the relationship
between course and student entities. The sentences thus formulated will be
understood by everyone. They are understandable by anybody, no IT education is
needed. Using these sentences, it is possible to clarify problems with the non-
technical language.

🕮 2.2.11

Whether an instance of an entity can or must participate in a given relationship is
displayed at the end of a line that touches the entity. Cardinality is displayed at the
far end of the line.

For a better understanding, the relationship between the employee and the
department in which he/she works is analysed. The relationship is described by two
ERDish sentences, and you should understand how the notation is properly drawn.

Data Modelling | FITPED

25

📝 2.2.12

Choose ERDish sentences which suit the best to the relation in the following
picture.

• Each category may describe one or more products. Each product must be
described by one and only one category.

• Each category must describe one or more products. Each product may be
described by one and only one category.

• Each category may describe one or more products. Each product must be
described by one or more category.

• Each category may be described by one or more products. Each product
must describe one and only one category.

📝 2.2.13

Choose ERDish sentences which suit the best to the relation in the following
picture.

Data Modelling | FITPED

26

• Each student must study one or more courses. Each course may be studied
by one or more students.

• Each student must study one or more courses. Each course may be studied
by one and only one student.

• Each student may study one and only one course. Each course must be
studied by one or more students.

• Each student may study one or more courses. Each course may be studied
by one or more students.

📝 2.2.14

Choos ERDish sentences which suit the best to the relation in the following picture.

• Each ingredient may be part of one or more meals. Each meal must consist
of one or more ingredients.

• Each ingredient must be part of one or more meals. Each meal may consist
of one or more ingredients.

• Each ingredient may be part of one and only one meal. Each meal must
consist of one and only one ingredient.

• Each ingredient must be part of one and only one meal. Each meal may
consist of one and only one ingredient.

📝 2.2.15

Choose a picture that suits the best to following ERDish sentences:

Each invoice must belong to one and only one customer.

Each customer may have one or more invoices.

Data Modelling | FITPED

27

• a.
• b.
• c.
• d.

📝 2.2.16

Choose a picture that suits the best to following ERDish sentences:

Each traveller may have visited one or more countries.

Each country may have been visited by one or more customers.

Select one:

Data Modelling | FITPED

28

• a.
• b.
• c.
• d.

📝 2.2.17

Choose a picture that suits the best to following ERDish sentences:

Each person may own one or more cars.

Each car must be the property of one and only one person.

Select one:

Data Modelling | FITPED

29

• a.
• b.
• c.
• d.

🕮 2.2.18

Decomposition of M:N relationship is a decomposition of this relation to two
relations 1:N. This brings also a new so-called associative entity. It is not always
necessary to perform decomposition within a conceptual model. You may
remember that it can be solved by a logical model or even a physical model. When
decomposition is good, it will be explained later. How decomposition is processed,
will be illustrated in the relationship described by the following ERDish sentences:

Each student must study one or more courses.

Each course may be studied by one or more students.

You have already encountered this relationship in one of the questions. However, to
be sure, once again it is illustrated in the following figure.

Data Modelling | FITPED

30

A newly created entity STUDY is referred to as an associated entity. As you can see,
two new ones have emerged from one relationship. For an association entity, both
relationships are mandatory. Without these relationships, it would lack its meaning.
The optionality of the relationship remains the same for the original entities. With
regard to cardinality, it is apparent that the Crow’s Feet are in the newly formed
association entity.

The attributes and primary identifiers are not addressed here. An association entity
is also an entity, and so it must have its primary identifier. This usually consists of
transmitted (foreign) identifiers.

🕮 2.2.19

Let's now face the question of when to perform decomposition and when not? If
you will do it always, you won't make a mistake. However, this is necessary if the
associative entity has more attributes than just identifiers from the source entities.
There is no need for decomposition if the purpose of the study is to just cover the
fact that a specific course way studied by a specific student. However, if you want
to include a grade student received for an exam, decomposition is necessary. An
example of the necessary decomposition is shown in the following figure.

Data Modelling | FITPED

31

🕮 2.2.20

Let’s have a look at the previous picture one more time.

Relationships always have two entities. However, these entities are not entirely
equal. One is in the source position and the other in the target position. This means
that the so-called foreign identifier is transferred from the source entity into the
target entity. In the figure, the source entity is the STUDENT entity and the target the
entity STUDY. STUDY is the target entity even for the second relationship.

That means that the primary identifiers of the source entities are transferred to the
target entity. However, they will be called foreign identifiers within the STUDY entity
because they will identify the instance of another (foreign) entity. These attributes
are no longer written into the rectangle because they are represented by a relation.

For 1:N relationships, the source, and target entities can be recognized easily. The
source does not carry a fork while the target has it. At 1:1 relationship it is not
visible at first glance, but you will soon recognize it by gaining experience. With the
relation M:N, it is no longer meaningful to talk about the source and target entities,
because this relationship breaks down into two relationships 1:N.

🕮 2.2.21

Another problem is that the STUDY entity doesn't seem to have a primary identifier.

Data Modelling | FITPED

32

But even this is marked in the diagram. The primary identifier will be composed of
two attributes. It will be just the two that don't appear (student id and course id).
The fact that these foreign identifiers become part of the primary identifier can be
identified by the bars in front of the fork.

📝 2.2.22

Which entity in the figure doesn't have a correctly marked primary identifier?

• DEPARTMENT
• EMPLOYEE
• JOB
• JOB ASSIGNMENT

2.3 Normal forms

🕮 2.3.1

Normal forms are a set of rules that help ensure the correct structure of a data
model. The goal is to reduce redundancy and data dependencies, which makes it
easier to modify, for example. The process of modifying the data model according
to these rules is called normalization. Usually, normalization takes place up to the
third normal form. However, there are more normal forms and the most important
ones will be described here.

🕮 2.3.2

Data Modelling | FITPED

33

The data model is in the first normal form (1NF) if all attributes are atomic
(indivisible). What is indivisible is probably best understood in the following
example.

Imagine that you are the owner of the store and want to register the products sold.
The easiest way to do this would be to create a sale entity in the form you see in the
following figure.

At first glance, there is no problem to see. Violation of normal forms is evident only
on the specific values of attributes that instances of this entity acquire. Let the
following table be an example.

From this table, it is quite clear that the attribute products are not atomic and
therefore the 1st normal form is violated. This imperfection needs to be removed.

🕮 2.3.3

In this figure, you see the modified entity sale so that all attributes remain atomic.

Data Modelling | FITPED

34

If this model is used, the table of the entity is transformed into the following form.

Although all attributes are in this case atomic, it is certainly not the correct solution.
How many such attributes will be needed? Will you limit customers by purchasing a
maximum of three (ten, a hundred,…) products? A repeatable attribute is a totally
unsuitable way to deal with the 1 st normal form. According to some authors, this is
also understood as a violation of the 1NF.

🕮 2.3.4

The following figure will present the correct solution. Even though it is not how you
would model this in reality, it fulfils the first normal form.

Sale can have as many products as needed. The product has a primary identifier
composed of sale id and name. An even better solution could be seen in the next
figure.

Data Modelling | FITPED

35

The total cost can be calculated based on the price of a product and its quantity.

📝 2.3.5

Which attribute is the reason that this entity is not in 1st normal form?

• id
• number of floors
• rooms
• There is no attribute that breaks the 1st normal form.

📝 2.3.6

Which attribute is the reason that this entity is not in 1st normal form?

• id
• first name
• last name
• birth date
• address

Data Modelling | FITPED

36

• job
• children

📝 2.3.7

Which attribute is the reason that this entity is not in 1st normal form?

• id
• home team
• away team
• game date
• score
• referees

🕮 2.3.8

The second normal form

To meet the second normal form (2NF), the first normal form needs to be met.
Furthermore, each non-key attribute (not part of the identifier) must be fully
dependent on an identifier. The model must contain no partial dependencies of
non-key attributes on the key (each non-key value must depend on the entire key).
This is best understood in the following example.

The bank name attribute is not dependent on the entire primary identifier, but only
on the bank code. This is what violates 2NF.

Data Modelling | FITPED

37

🕮 2.3.9

The second normal form can be easily achieved by fulfilling 1NF and introducing
simple identifiers. To see how to resolve your bank account problem, see the
following figure.

📝 2.3.10

Select one or more attributes that violate the second normal form in the following
figure.

• name
• description
• duration
• date of event
• title
• artist

📝 2.3.11

Select one or more attributes that violate the second normal form in the following
figure.

Data Modelling | FITPED

38

• product name
• description
• bill to
• issue date
• quantity
• unit price

🕮 2.3.12

To ensure the third normal form the second normal form must be fulfilled. Third
Normal Form prohibits transitive dependencies. A transitive dependency exists
when any attribute in an entity is dependent on any other non-UID attribute in that
entity. For clarity, everything will be explained in the following example. You have
the task of registering orders and at the same time needing information about the
warehouse that handles the order, so you create the following entity.

But this proposal is not right. It could be argued that the address is not atomic, so it
does not meet even 1NF. But this is not a problem that should bother you now.

Think about what if a phone number changes, for example? Then you have to
change this information everywhere. The violation of the third normal form is due to
the attribute dependency of the warehouse address and the warehouse telephone

Data Modelling | FITPED

39

number on the warehouse code, which is dependent on the order number.
Dependence between address (phone number) is not directly on the order number
(non-sensitive). This is a problem that needs to be eliminated.

🕮 2.3.13

The solution will surely come to your mind. By creating a separate entity
(warehouse) transitive dependency will disappear, as shown in the following figure.

📝 2.3.14

Choose all entities which break the third normal form.

• CD
• DVD BORROWING
• PRODUCT

📝 2.3.15

In the previous question, the entity DVD BORROWING did not fulfil the third normal
form.

Data Modelling | FITPED

40

Is this solution correct, so there is no violation of 3NF?

• True
• False

🕮 2.3.16

There are other levels of normalization, but this study material will not include
them. If you are interested in this topic you must search for it yourself.

2.4 Physical model

🕮 2.4.1

The physical model determines how data will be stored in a relational database.
The conceptual and physical models are very similar. In many cases, the
terminology used in the conceptual and physical models is often confused. The
following table may be understood as a dictionary between models.

Data Modelling | FITPED

41

🕮 2.4.2

Within the relational database, all data will be stored in tables. Each table is
horizontally divided into rows and vertically on columns. The columns are named
and the column name must be unique within the same table. Certain rules apply to
name tables and columns. These may vary across database systems. Usually, you
can use letters, numbers, and some special characters such as _ (underscore). The
name should begin with a letter. The maximum name length is also limited.

🕮 2.4.3

The notation of the physical model is logical. The first line is the name of the table.
Surely you have noticed that entities are usually used the singular nouns. For table
names, it is customary to use plural nouns.

Data Modelling | FITPED

42

The table itself describing the table contains three columns: key type (pk, uk, fk),
optionality (*, o), column name. In some cases (one in the picture), a fourth column
is added to specify the data type. The data type specifies what values a given
column can hold. Data type names vary by database system. Column names remain
in most cases. Spaces are traditionally replaced by an underscore.

🕮 2.4.4

From relationships modelled in ERD, the physical model becomes foreign keys that
must be entered as columns (sometimes multiple columns) of the table.

Depending on the optionality of the relationship, the optionality of the relevant
column is given.

The optionality of relationship in a relational database can only be enforced on one
side of the constraint (the one that is projected as a new column).

📝 2.4.5

Match the terms between conceptual and physical models.

primary identifier _____

instance _____

Data Modelling | FITPED

43

relationship _____

secondary identifier _____

attribute _____

entity _____

• row
• foreign key
• secondary key
• table
• column
• primary key

📝 2.4.6

The name of any column:

• must be unique within the whole database.
• must be unique within the table where it belongs.
• can be used many times even within the same table.

📝 2.4.7

Each table is horizontally divided into

📝 2.4.8

Each table is vertically divided into

📝 2.4.9

The optionality of the relationship in a relational database:

• can only be enforced on one side of the constraint.
• can be enforced on both sides of the constraint.
• cannot be enforced on either side of the constraint.

Data Modelling | FITPED

44

📝 2.4.10

To uniquely identify each row from others the table should have:

📝 2.4.11

If a column is marked as a unique key, it must be mandatory.

• True
• False

📝 2.4.12

For each table, there can be only one primary key.

• True
• False

Structured Query Language

Chapter 3

Structured Query Language | FITPED

46

3.1 SQL

🕮 3.1.1

Structured Query Language (SQL) is a declarative language. It is also referred to as
a non-procedural language. It is, therefore, a different type of language than Java,
C++, Pascal and others, which are referred to as procedural. For declarative
languages, the programmer describes what he/she wants to achieve, but he/she
does not care how this will be achieved. SQL allows to define data structures,
insert, delete, edit, read data, or assign access permissions.

In many database systems, there is also a procedural SQL extension that allows
you to use elements such as conditions, cycles, and so on. However, this is not part
of SQL.

🕮 3.1.2

Individual data processing operations can be divided into related areas. These
areas correspond to the SQL language, which is further divided into:

• Data Definition Language (DDL),
• Data Manipulation Language (DML),
• Data Query Language (DQL),
• Data Control Language (DCL).

🕮 3.1.3

Data Definition Language (DDL) - a language used to work with data structures.
Allows you to create, edit, and delete them. This category includes CREATE, ALTER,
and DROP.

🕮 3.1.4

Data Manipulation Language (DML) - This language is used to edit data content.
Allows you to insert, edit, and delete data. Includes INSERT, UPDATE, DELETE or
MERGE statements.

Structured Query Language | FITPED

47

🕮 3.1.5

Data Query Language (DQL) - many authors do not see this naming convention.
Usually, this part is included in the DML because data acquisition is part of the
manipulation. However, this section is specific to other DML operations in that it
does not affect data content but only allows data to be read. The most important
command is SELECT. It also includes SHOW and EXPLAIN commands.

🕮 3.1.6

Data Control Language (DCL) - This part of the SQL is used to control the database.
On the contrary, some authors this part of SQL into smaller units. These are
transaction management issues and access privileges specifications. Commands
included in this category are GRANT, REVOKE, COMMIT, or ROLLBACK.

📝 3.1.7

SQL is a typical representative of procedural programming language.

• False
• True

📝 3.1.8

DML stands for:

• Data Manipulation Language
• Data Modification Language
• Data Markup Language
• Data Movement Language

📝 3.1.9

The MERGE statement belongs to:

• DDL
• DML
• DQL
• DCL

Structured Query Language | FITPED

48

📝 3.1.10

Choose statements that belong to DCL.

• REVOKE
• EXPLAIN
• COMMIT
• ALTER
• INSERT

📝 3.1.11

Match categories of SQL and their statements.

DCL _____

DDL _____

DQL _____

DML _____

• DROP
• GRANT
• PUSH
• TAKE
• SELECT
• DELETE

3.2 DDL

🕮 3.2.1

Each column within a relational database must be specified by a certain data type.
It is then limited by the range of valid values and the set of operations that can be
performed. When creating a table, you must always specify a data type for each
column.

The names of specific data types may vary by name for each relational database
system. In principle, they can be divided into the following groups:

Structured Query Language | FITPED

49

• character,
• numeric,
• time,
• binary,
• others.

In almost all, you can use integer (int) for integers, text for character strings, and
date for date. There are many data types, but for now, these are enough.

🕮 3.2.2

Creating a table is quite easy. The only problem in different database systems may
be different names of data types that need to be specified when creating. The table
creation command looks like this:

CREATE TABLE table_name (specification of columns)

The column specification is as follows:

column_name data_type [DEFAULT default_value] [constraint]

The default value is defined by the DEFAULT keyword followed by the value
(expression, function) that is inserted when no other specific value is specified
when inserting. The default value doesn’t have to be specified.

🕮 3.2.3

Five different types of restrictions are commonly used:

NOT NULL indicates that the column must not contain empty values. There must
always be value.

PRIMARY KEY is used to define the primary table key. The table can have a
maximum of one primary key. Although this is not required by the database, each
table should have its primary key.

UNIQUE is a constraint that requires uniqueness. Can be used on one or more
columns. This restriction can be used even if the column is not required. Two empty
(undefined) values are not considered the same.

FOREIGN KEY is designed to determine referential integrity. When creating a foreign
key, you must specify the name of the table and the column on which it is
dependent.

Structured Query Language | FITPED

50

REFERENCES referenced_table (referenced_column)

CHECK this constraint can control specific values. E.g. the age must be between 0
and 130 years. The restriction is defined by the logical expression (condition) that
must be met.

Restrictions may apply to individual columns, but some may be applied over
multiple columns. If a constraint is defined over multiple columns, it must be
specified separately after the column enumeration.

🕮 3.2.4

CREATE TABLE addresses (

 addresses_id int NOT NULL PRIMARY KEY,

 street text NOT NULL,

 number int NOT NULL,

 city text NOT NULL,

 zip text NOT NULL

);

CREATE TABLE persons (

 persons_id int NOT NULL PRIMARY KEY,

 first_name text NOT NULL,

 last_name text NOT NULL,

 birth_day date NOT NULL,

 sex text NOT NULL,

 email text UNIQUE,

 addresses_id int NOT NULL REFERENCES addresses (addresses_id)

);

Structured Query Language | FITPED

51

🕮 3.2.5

If you would copy the previous commands, they would probably end up with an
error. In some database systems, the "number" is a name of data type, and so
cannot be used for the name of the column. The use of a unique key in combination
with a "text" data type could also cause a problem.

📝 3.2.6

Based on the model in the picture, you need to ensure that the column that the
name of any department will differ from any other departments' name.

Which type of constraint has to be used?

• NOT NULL
• UNIQUE
• CHECK
• FOREIGN KEY

📝 3.2.7

Based on the model in the picture, you need to ensure that the column dept_id will
contain only values which are stored as primary keys of the table departments.

Structured Query Language | FITPED

52

Which type of constraint has to be used?

• NOT NULL
• UNIQUE
• CHECK
• FOREIGN KEY

📝 3.2.8

Based on the model in the picture, you need to ensure that the column hire_date is
mandatory.

Which type of constraint has to be used?

• NOT NULL
• UNIQUE
• CHECK
• FOREIGN KEY
• REFERENCES
• PRIMARY KEY

📝 3.2.9

The implicit value is defined by a keyword followed by the value (expression,
function) that is inserted when no other specific value is specified when inserting.
Which keyword it is?

• IMPLICIT
• DEFAULT
• REQUIRE
• REFERENCES
• IS

Structured Query Language | FITPED

53

🕮 3.2.10

When the change of table structure is needed the ALTER statement has to be used.
By using this statement, it is possible to:

• add a new column,
• modify a column,
• define the implicit value to a column,
• drop a column,
• add integrity constraint.

🕮 3.2.11

Adding a new column

ALTER TABLE table_name

 ADD (column_name data_type

 [default_value][constraint])

It is possible to add more than one column by one ALTER statement. Between each
column definition, a comma needs to be used.

🕮 3.2.12

When modifying a column, it is possible to do the following:

• Extend the length or precision of a numeric type.
• Increase the maximum length for string types.
• The maximum length can be reduced depending on the data stored. If the

table already contains some records, it is not possible to modify the data
types so that existing records do not meet them.

• Change the data type if there are no values other than NULL in the column.
• Change the default value. However, this only affects newly inserted records.

ALTER TABLE table_name

 MODIFY (column_name new_definition)

🕮 3.2.13

Drop a column:

Structured Query Language | FITPED

54

ALTER TABLE table_name DROP COLUMN column_name;

It is possible to drop columns with or without values. Only one column can be
deleted during one operation. At least one column must always remain in the table.
You cannot retrieve dropped data when the column is dropped.

🕮 3.2.14

The restrictions that can be added in this way are PRIMARY KEY, UNIQUE, FOREIGN
KEY, and CHECK. To add NOT NULL constraints, you need to modify the column as
already mentioned.

ALTER TABLE table_name

 ADD CONSTRAINT constraint_name

 constraint_type(column);

For some constraints, there can be more than one column.

🕮 3.2.15

Removing a constraint is similar to removing a column.

ALTER TABLE table_name DROP CONSTRAINT constraint_name;

🕮 3.2.16

If you need to change the name of a table, it is necessary to use the RENAME
statement.

RENAME old_name TO new_name;

🕮 3.2.17

To get rid of the whole table there is the statement DROP.

DROP TABLE table_name

If there are some dependencies (FOREIGN KEY) between tables it might be not
possible to drop a particular table. If you would want to drop the table together with
all tables which depends on the dropped table you can use the keyword CASCADE.

Structured Query Language | FITPED

55

DROP TABLE table_name CASCADE

In some database systems, it can be a little bit different. You may need to use
CASCADE CONSTRAINTS. If any problem arises, see the documentation.

📝 3.2.18

You need to add a FOREIGN KEY between tables employees and departments.

Which of the following possibilities make sense the most?

• ALTER TABLE departments ADD CONSTRAINT dept_FK FOREIGN KEY
(departments_id) REFERENCES employees(dept_id)

• ALTER TABLE employees ADD CONSTRAINT dept_FK FOREIGN KEY
(dept_id) REFERENCES departments (departments_id)

• ALTER TABLE employees ADD CONSTRAINT dept_FK FOREIGN KEY
(employees_id) REFERENCES departments (departments_id)

• ALTER TABLE departments ADD CONSTRAINT dept_FK FOREIGN KEY
(departments_id) REFERENCES employees (employees_id)

📝 3.2.19

If you need to add a new mandatory column gender to the table employees, which
of the following possibilities make sense the most?

Structured Query Language | FITPED

56

Suppose that the table employee is empty.

• ALTER TABLE employees ADD (gender text NOT NULL)
• ALTER TABLE departments ADD (gender text NOT NULL)
• ALTER TABLE employees ADD gender text
• ALTER TABLE employees ADD gender date NOT NULL

📝 3.2.20

To change a column name of a table a RENAME statement must be used.

• False
• True

📝 3.2.21

Statement:

DROP TABLE employees

will always remove the table employees from the database independently of other
circumstances.

• False
• True

Select Command

Chapter 4

Select Command | FITPED

58

4.1 SELECT Statement - The Basics

🕮 4.1.1

SELECT Statement

The SELECT statement is the most common SQL statement. It searches for records
that meet the conditions that we define. The SELECT statement belongs to a DML
group. It does not change the data stored in the tables. It only shows the data that
met the conditions.

🕮 4.1.2

SELECT Statement - The Simplest Form

The SQL SELECT statement must always contain the SELECT and FROM clauses.
Their order cannot be changed. Other clauses of the SQL command are optional
and will be introduced later. The simplest SQL statement that returns all records
from a single table is then as follows

SELECT * FROM employees;

📝 4.1.3

Each SQL SELECT statement must contain the following keywords:

• SELECT
• FROM
• ORDER BY
• DISTINCT
• TABLE

🕮 4.1.4

SELECT Statement - Columns Selection

The list of table columns, which should be displayed in the query result, must be
written between the SELECT and FROM statements. The following rules should be
followed:

Select Command | FITPED

59

• if there are only some columns in the result, they should be listed
sequentially and separated by a comma, without a comma after the last
column name,

• if all columns of the table are to be included in the result, simply sign * can
be used instead of listing them.

The order in which the columns appear in the query will match the order in which
the columns appear. The following query returns the firstname, lastname and salary
of the employees.

SELECT firstname, lastname, salary FROM employees;

Columns can be combined using operators. E.g. add two numeric columns or
concatenate text columns. You can use the AS keyword to rename the column. On
some database systems, the AS keyword is optional. It is also possible to use
parentheses in expressions.

SELECT salary + bonus AS together FROM employees;

📝 4.1.5

Mark the correct answer about the right order of keywords in the SELECT query.

• The keyword SELECT must appear before keyword FROM.
• The keyword FROM must appear before keyword SELECT.
• The order of the keywords is not important.

🕮 4.1.6

Statement SELECT DISTINCT

The requirements to show only unique values as well as to remove duplicates are
very often in practice. It can be easily realized by the SELECT DISTINCT statement.
The following example shows how to use this statement.

SELECT DISTINCT column FROM table

However, it is important to know, that the statement SELECT DISTINCT is not a
function. Therefore, it does not require to enclose attributes in brackets.

Select Command | FITPED

60

📝 4.1.7

Which keyword can be used to remove duplicate entries from the selected
attributes?

• CONSTRAINT
• DISTINCT
• DIFFERENT
• ONLY

4.2 SELECT Statement - ORDER BY Clause

🕮 4.2.1

ORDER BY Clause - Single Column Ordering

The records that return a SQL SELECT query can be ordered by the values of any
column using the ORDER BY clause. Therefore, the ORDER BY clause is always at
the end of the query.

SELECT * FROM employees ORDER BY firstname;

Unless otherwise specified, the values in the column in this clause are sorted in
ascending order (A-Z), more precisely:

• numeric values are ordered from smallest to largest,
• date values are ordered from oldest to newest,
• text values are ordered in alphabetical order.

📝 4.2.2

The result of the query can be ordered only by the columns, which are written in the
SELECT clause. True or false?

• FALSE
• TRUE

🕮 4.2.3

ORDER BY Clause - Ordering Direction

Select Command | FITPED

61

The predefined direction for ordering the column values specified in the ORDER BY
clause is the ascending direction. Therefore, there is no need to specify the ASC
operator after the column that provides this direction in SQL.

SELECT firstname, lastname, salary FROM employees ORDER BY

lastname;

However, if it is necessary to order the values in descending order (Z-A), it is
necessary to enter the DESC operator after the column name.

SELECT firstname, lastname, salary FROM employees ORDER BY

lastname DESC;

📝 4.2.4

Create the correct query by reordering the clauses below. The query should return
all employees who work in Bratislava ordered by their salaries from the highest to
the lowest.

• FROM employees
• WHERE city = 'Bratislava'
• SELECT firstname, lastname, salary
• ORDER BY salary DESC;

🕮 4.2.5

ORDER BY Clause - Multiple Column Ordering

The SQL query result can be ordered by multiple columns. Each column can be
ordered in ascending or descending order using the ASC and DESC operators. The
order of the columns in the ORDER BY clause determines the order in which the
records will be ordered in the result.

SELECT firstname, lastname, salary FROM employees ORDER BY

salary DESC, lastname ASC;

4.3 SELECT Basics (execises)

⌨ 4.3.1 Get all data from countries

Select all fields from the table Countries

Data Set 1

Select Command | FITPED

62

Countries

Id Country Capital

Data Set 2

Countries

Id Country Capital

1 Portugal Lisbon

2 Belgium Brussels

3 Spain Madrid

4 Hungary Budapest

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

Data Set 3

Countries

Id Country Capital

3 Spain Madrid

4 Hungary Budapest

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

11 Italy Rome

Data Set 4

Countries

Id Country Capital

3 Spain Madrid

5 Poland Warsaw

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

Data Set 5

Countries

Select Command | FITPED

63

Id Country Capital

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

⌨ 4.3.2 List of countries

Select country and capital from the table Countries

Data Set 1

Countries

Id Country Capital

Data Set 2

Countries

Id Country Capital

1 Portugal Lisbon

2 Belgium Brussels

3 Spain Madrid

4 Hungary Budapest

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

Data Set 3

Countries

Id Country Capital

3 Spain Madrid

4 Hungary Budapest

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

11 Italy Rome

Data Set 4

Select Command | FITPED

64

Countries

Id Country Capital

3 Spain Madrid

5 Poland Warsaw

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

Data Set 5

Countries

Id Country Capital

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

⌨ 4.3.3 Get all data from employees

Select all fields from the table Employees

Data Set 1

Employees

Id Name Surname JobTitleCode

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

Data Set 3

Employees

Id Name Surname JobTitleCode

Select Command | FITPED

65

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

Data Set 5

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

⌨ 4.3.4 List of employees

Select Name and Surname from the table Employees

Data Set 1

Employees

Id Name Surname JobTitleCode

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

Data Set 3

Select Command | FITPED

66

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

Data Set 5

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

⌨ 4.3.5 Countries - ordered

Select all fields from countries ordered by Country

Data Set 1

Countries

Id Country Capital

Data Set 2

Countries

Id Country Capital

1 Portugal Lisbon

2 Belgium Brussels

3 Spain Madrid

4 Hungary Budapest

Select Command | FITPED

67

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

Data Set 3

Countries

Id Country Capital

3 Spain Madrid

4 Hungary Budapest

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

11 Italy Rome

Data Set 4

Countries

Id Country Capital

3 Spain Madrid

5 Poland Warsaw

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

Data Set 5

Countries

Id Country Capital

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

⌨ 4.3.6 Employees - ordered

Select the name and surname of employees and order them by name.

Data Set 1

Select Command | FITPED

68

Employees

Id Name Surname JobTitleCode

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

Data Set 5

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

Select Command | FITPED

69

⌨ 4.3.7 Unique countries

Select unique names of countries (every country should be on the list once).

Data Set 1

Countries

Id Country City

Data Set 2

Countries

Id Country City

1 Portugal Lisbon

2 Belgium Brussels

3 Spain Madrid

4 Croatia Zadar

8 Croatia Zagreb

9 Greece Athens

10 Croatia Split

Data Set 3

Countries

Id Country City

3 Spain Madrid

4 Italy Milan

6 Slovakia Bratislava

7 Norway Oslo

8 Slovakia Nitra

9 Greece Athens

10 Italy Turin

11 Italy Rome

Data Set 4

Countries

Id Country City

3 Spain Madrid

5 Spain Barcelona

8 Spain Sevilla

10 Malta Valletta

Select Command | FITPED

70

11 Italy Rome

Data Set 5

Countries

Id Country City

6 Slovakia Bratislava

7 Slovakia Nitra

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

⌨ 4.3.8 Unique names ordered by alphabet

Select Names from the table Employees to avoid repeating them. Order them by
alphabet.

Data Set 1

Employees

Id Name Surname JobTitleCode

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Jan Wilgo RKB002

Data Set 4

Select Command | FITPED

71

Employees

Id Name Surname JobTitleCode

1 Paco Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Paco Santana RKB002

Data Set 5

Employees

Id Name Surname JobTitleCode

1 Joahim Mesina RKB001

2 Marta Frantisek RKB002

3 Jan Matalau RKB001

7 Joahim Mesana RKB001

8 Marta Frantis RKB002

9 Jan Matal RKB001

⌨ 4.3.9 Sum of tickets

Calculate and display the number of tickets for each theatre show if data about
online and cash sales are stored in the table Shows. Set the name of the new
column to "together".

Choose data about the name, count of tickets bought online, cash and the new
column.

Data Set 1

Shows

Id Name Online Cash

Data Set 2

Shows

Id Name Online Cash

1 Mackbeth 100 20

2 Hamlet 53 48

3 Romeo and Julia 22 158

4 War and Piece 200 68

5 Evgenij Onegin 120 140

Select Command | FITPED

72

Data Set 3

Shows

Id Name Online Cash

1 Mackbeth 1003 3510

2 Hamlet 538 9871

3 Romeo and Julia 220 897

Data Set 4

Shows

Id Name Online Cash

1 Mackbeth 333 950

2 Hamlet 253 418

6 Romeo and Julia 122 158

4 War and Piece 222 1068

5 Evgenij Onegin 120 140

3 Janosik 303 698

Data Set 5

Shows

Id Name Online Cash

1 Mackbeth 2502 103

2 Hamlet 2503 4108

6 Romeo and Julia 1202 1508

5 Evgenij Onegin 1200 1040

3 Janosik 3003 1698

⌨ 4.3.10 Actors ordered by the year of birth

Show all columns of actors ordered by the year of birth from the oldest to the
youngest.

actors

aID firstname lastname year_of_birth income

1 Woody Hopkins 1975 1995

2 Sandra Tandy 1965 2001

3 John Torn 1994 2015

4 Natalie Hunt 1957 2002

5 Juan Pitt 1978 1999

Select Command | FITPED

73

6 Henry Nolte 1968 2005

7 Woody Harris 1945 1984

⌨ 4.3.11 Incomming actors

Show firstname, lastname and income of all actors ordered by the income in
descending order.

actors

aID firstname lastname year_of_birth income

1 Woody Hopkins 1975 1995

2 Sandra Tandy 1965 2001

3 John Torn 1994 2015

4 Natalie Hunt 1957 2002

5 Juan Pitt 1978 1999

6 Henry Nolte 1968 2005

7 Woody Harris 1945 1984

⌨ 4.3.12 Unique countries of actors

Show the list of unique countries from which the actors come.

actors

aID firstname lastname year_of_birth income country

1 Woody Hopkins 1975 1995 Australia

2 Sandra Tandy 1965 2001 France

3 John Torn 1994 2015 Spain

4 Natalie Hunt 1957 2002 France

5 Juan Pitt 1978 1999 Australia

6 Henry Nolte 1968 2005 United

Kingdom

7 Woody Harris 1945 1984 Australia

4.4 SELECT Statement - Functions

🕮 4.4.1

Calculated columns

In addition to table attributes, a SELECT statement can return other columns that
are not included in the original table. These columns are called calculated

Select Command | FITPED

74

columns/fields. Various calculations can be performed directly in the SQL
command to get a different view of the data stored in the tables. The calculation
does not only allow basic arithmetic operations, but also the use of functions and
formulas. Expressions can be constants or values stored in columns. It may happen
that an undefined/unknown value (NULL) appears in the expressions. If this
unknown value is not the expected input of a specific function that works with an
undefined value, then the result of the entire expression is NULL. The same rules as
in other applications for writing formulas and functions must be applied in this
case.

🕮 4.4.2

Alias

All columns used in the SELECT query must have a unique name. The same must
be also applied to all kinds of calculated columns. The SQL keyword AS allows
giving the unique and eloquent name to the newly created columns.

The following query shows how to rename the columns easily.

SELECT firstname AS forename, lastname AS surname FROM

employees;

The alias can be also used for renaming the tables. This approach will be shown
later in the chapter, which deals with multi-table queries. The keyword AS can be
omitted in this case. The alias is written after the name of the table. The example
shows how to rename the table employees to our_company.

SELECT firstname, lastname FROM employees our_company;

🕮 4.4.3

Types of SQL Row Functions

The SELECT clause can contain different kinds of calculated columns. As was
mentioned earlier, besides these columns can besides the arithmetic operations
contain also functions, which can preprocess the raw data stored in the data tables
to the expected or more suitable form. These functions are called row-functions
because they are applied gradually to all individual rows of the tables included in
the query. The functions can be divided into the following groups based on the data
type of their argument:

• Numeric Functions
• String Functions
• Temporal Functions

Select Command | FITPED

75

• Flow Control Functions
• NULL-related Functions

The complete list of the functions exceeds the possibilities of this course but can
be easily found on the websites of the vendors of the database systems.

The parenthesis follows the name of the function without any space. For example,
the query

SELECT ROUND(salary) FROM employees;

returns the salary of all employees rounded to zero decimal places.

📝 4.4.4

If any of the values in the arithmetic expression contains NULL, then

• the result will be NULL.
• SQL will not be able to process the query.
• the system will return error message.
• the result will be equal to zero.

🕮 4.4.5

Numeric Functions

The SQL provides a lot of standard numeric functions, which works in the same way
as in other math applications. The following functions belong to the most
frequently used numeric functions:

• ROUND() rounds the argument to the required decimal places or tens
• FLOOR() returns the largest integer value not greater than the argument
• CEIL() returns the smallest integer value not less than the argument
• MOD() returns the remainder
• ABS() returns the absolute value

For example, the following query returns the salary rounded on the thousands

SELECT firstname, lastname, ROUND(salary, -3) AS

rounded_salary FROM employees;

Select Command | FITPED

76

📝 4.4.6

What will be the result of the following query, if the value of the argument will be
Null?

SELECT ROUND(salary,2) FROM employees;

• NULL
• 0
• NaN
• 0.00

🕮 4.4.7

String Functions

This group of functions perform operations on strings. They allow

• calculating string lengths - LENGTH(),
• finding the occurrence of a string in another string – INSTR(), LOCATE(),

POSITION(),
• getting a part of a string – SUBSTR(), LEFT(), RIGHT(),
• combining strings to a new string – CONCAT(),
• changing the letter case of a string – LOWER(), LCASE(), UPPER(), UCASE(),
• trimming or padding strings – TRIM(), LPAD(), RPAD().

For example, the following query returns the full name of the employees with the
lastname in uppercase.

SELECT CONCAT(firstname, ‘ ‘, UCASE(lastname)) AS full_name

FROM employees;

📝 4.4.8

Mark the function which removes the spaces from the values of the column used
as the argument.

• TRIM()
• LTRIM()
• LEFT()
• SUBSTR()
• LOCATE()

Select Command | FITPED

77

🕮 4.4.9

Temporal Functions

Temporal functions closely relate to the date and time data types. These functions
can be used for

• providing information about the current date and time – CURDATE(), NOW(),
SYSDATE(),

• extracting part of the date – DAY(), MONTH(), YEAR(), EXTRACT(),
• formating date and time DATE(), DATE_FORMAT(),
• calculating with dates – ADDDATE(), DATEDIFF().

The names of the temporal functions can partially differ in different database
systems, but they provide the same functionality.

The following query returns the year and the month of the birthday for all
employees

SELECT fistname, lastname, YEAR(birthday) AS year_birthday,

MONTH(birthday) AS month_birthday FROM employees;

📝 4.4.10

Create a query, which returns the year from the current date.

__________(_____()) __________;

• FROM
• NOW
• SELECT
• TODAY
• YEAR
• employees
• DATE

🕮 4.4.11

Control Flow Functions

The following special functions provide an option to make assign a new value to a
column based on the evaluation of the logical expression and current value in the
column, which is taken as the argument of the function.

Select Command | FITPED

78

• IF() for the decision based on the simple logical expression, which can be
fulfiled or not,

• CASE for more complex cases.

The following query returns information if the employee has more than three
children and is, therefore, qualified for the bonus

SELECT firstname, lastname, IF(children_count > 3, 'yes',

'no') AS bonus FROM employees;

The next query divides the employees into three groups based on the number of
years spent on the position

SELECT firstname, lastname,

CASE

 WHEN years_in_position < 3 THEN 'level 1'

 WHEN years_in_position < 10 THEN 'level 2'

 ELSE 'level 3'

END AS level FROM employees;

🕮 4.4.12

NULL-related Functions

Sometimes can be useful to replace the null value with a more suitable value, for
example with zero in calculations, and vice versa. The following two null-related
functions can be used in these cases:

• IFNULL()
• NULLIF()

The first query replaces the null value with zero in the column year_in_position.

SELECT firstname, last name, IFNULL(years_in_position, 0) AS

years_on_position FROM employees;

The NULLIF() returns NULL if the compared expressions are equal otherwise
returns the first expression. The query returns null if the two email contacts are
equal. Otherwise, it returns the first one.

 SELECT firstname, lastname, NULLIF(email1, email2) AS

contact_email FROM employees;

Select Command | FITPED

79

📝 4.4.13

Which function will be evaluated first in the following query?

SELECT CONCAT(lastname, (SUBSTR(LOWER(firstname),4))) FROM

employees;

• LOWER
• CONCAT
• SUBSTR
• Functions can not be combined in such a way.

4.5 SELECT Statement - WHERE Clause

🕮 4.5.1

WHERE Clause - Search Conditions

The SELECT statement is often used to determine which records meet the specified
conditions. The WHERE clause is the part of the SQL query that is used to specify
these conditions. The condition most often contains the following parts:

• The name of the column whose values should meet the condition,
• comparison operator (<, <=, =,> =,>, =!),
• the value to compare the values in the column with.

The query returns all employees with a salary of less than 1000 Euro.

SELECT * FROM employees WHERE salary < 1000;

🕮 4.5.2

WHERE Clause - Multiple Condition

Simple conditions can be combined into multiple conditions using logical operators
AND, OR, NOT, XOR. Their use has the same rules as in mathematics. For the sake
of clarity, it is recommended to enclose the conditions in parentheses, so that their
order of execution is clear. Multiple conditions may refer to the same column or
multiple columns.

For example, the following query returns all employees, who work in Prague or
Bratislava and work for the company for more than 5 years.

Select Command | FITPED

80

SELECT * FROM employees WHERE (city = 'Prague' OR city =

'Bratislava') AND year_in_company > 5;

📝 4.5.3

The number of conditions in the WHERE clause is limited to:

• There is no limit except the querytext limit
• 5
• 100
• 1000

🕮 4.5.4

WHERE Clause - Range Search Condition

If the SQL query should return rows whose value in the selected column is from the
searched interval/range, a combination of logical operator and limit values can be
used

SELECT firstname, lastname FROM employees WHERE salary >= 500

AND salary <= 1000;

or BETWEEN ... AND

SELECT firstname, lastname FROM employees WHERE salary BETWEEN

500 AND 1000;

Note: The BETWEEN .. AND operator always considers the interval/range border
values.

📝 4.5.5

The following two queries are equivalent, they return the same rows. True or False?

SELECT * FROM employees WHERE salary > 800 AND salary < 900;

SELECT * FROM employees WHERE salary BETWEEN 800 AND 900;

• FALSE
• TRUE

Select Command | FITPED

81

🕮 4.5.6

WHERE Clause - Set Membership

It is often necessary to list all the values that an attribute can take in multiple
conditions. Reuse of a condition requires repeating logical operators and can
become confusing. Therefore, SQL provides an option to replace it with IN operator.
A SQL query with an IN operator will not be more efficient in terms of performance
but will be clearer for the human.

WHERE year_of_birth IN (1986, 1988, 1990, 1996)

📝 4.5.7

Mark correct queries that return the employees who work in Krakow, Katowice or
Warsaw.

• SELECT * FROM employees WHERE city = 'Krakow' OR city = 'Katowice' OR
city = 'Warsaw';

• SELECT * FROM employees WHERE city IN ('Krakow', 'Katowice', 'Warsaw');
• SELECT * FROM employees WHERE city = 'Krakow' AND city = 'Katowice'

AND city = 'Warsaw';
• SELECT * FROM employees WHERE city = 'Krakow' OR 'Katowice' OR

'Warsaw';

🕮 4.5.8

WHERE Clause - Pattern Matching

If the column has the data type text, it is necessary to specify exactly what the text
value looks like in that column. For example, if the text value differs in only one
character, the operator "=" does not find the value. An operator LIKE was added to
SQL for these cases. It allows to enter into the searching condition only part of the
text and the rest of the text replace with the following wildcard symbols:

• %: sequence of zero or more characters,
• _ (underscore): any single character.

If you are looking for a percent character or an underscore, you must override
wildcard characters. It is done by the \ (backslash) character.

Example of use:

WHERE name LIKE '_a%'

Select Command | FITPED

82

The example given would be the names of what they have as the second letter a,
such as Martin, Jana, Carolina etc.

📝 4.5.9

Which from the following query returns the employees, whose lastname begins with
the letter S?

• SELECT firstname, lastname FROM employees WHERE lastname LIKE 'S%';
• SELECT firstname, lastname FROM employees WHERE firstname LIKE 'S%';
• SELECT firstname, lastname FROM employees WHERE lastname LIKE '%S%';
• SELECT firstname, lastname FROM employees WHERE lastname = 'S%';
• SELECT firstname, lastname FROM employees WHERE lastname LIKE '%S';

🕮 4.5.10

WHERE Clause - Searching for Null

Null represents an unknown or nonexistent value. Because its value is not exactly
known, common operators of comparison can not be applied. For example, if it is
necessary to determine which rows do not contain a value, the operator "=" returns
a query with zero rows as a result. Therefore, it is necessary to use IS NULL
operator.

Example:

WHERE email IS NULL

condition selects those records where no email was specified.

However, it is often necessary to find out whether a value in a given column is not
empty, so the IS operator is combined with a negation of NOT.

WHERE email IS NOT NULL

4.6 SELECT - WHERE clause (exercises)

⌨ 4.6.1 Employees named Jan

Select Name and JobTitleCode of employees with the name Jan

Employees

Select Command | FITPED

83

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

⌨ 4.6.2 Movies created at 1990

Find all movies created in 1990.

Movies

mID title length year

1 Catch me, please 86 2017

2 A Touching Saga of a Hunter 126 2013

3 Agent Truman 143 1990

4 Tomatoes antitrust 203 2003

5 Savannah 160 1990

6 Armageddon again 106 2002

7 Happy people 217 1987

⌨ 4.6.3 Movies created at ‘80s

Find all movies created in the ‘80s.

Movies

mID title length year

1 Catch me, please 86 2017

2 A Touching Saga of a Hunter 126 2013

3 Agent Truman 143 1990

4 Tomatoes antitrust 203 2003

5 Savannah 160 1990

6 Armageddon again 106 1986

7 Happy people 217 1987

⌨ 4.6.4 Movies with length greather than 110 minutes

List all movies with a length greater than 110 minutes

Movies

Select Command | FITPED

84

mID title length year

1 Catch me, please 86 2017

2 A Touching Saga of a Hunter 126 2013

3 Agent Truman 143 1990

4 Tomatoes antitrust 203 2003

5 Savannah 160 1990

6 Armageddon again 106 1986

7 Happy people 217 1987

⌨ 4.6.5 Movies with length 100 - 140 minutes

List all movies with a length between 100 and 140 minutes

Movies

mID title length year

1 Catch me, please 86 2017

2 A Touching Saga of a Hunter 126 2013

3 Agent Truman 143 1990

4 Tomatoes antitrust 203 2003

5 Savannah 160 1990

6 Armageddon again 106 1986

7 Happy people 217 1987

⌨ 4.6.6 Movies length in seconds

Show movie titles and the length expressed in seconds named seclength.

Movies

mID title length year

1 Catch me, please 86 2017

2 A Touching Saga of a Hunter 126 2013

3 Agent Truman 143 1990

4 Tomatoes antitrust 203 2003

5 Savannah 160 1990

6 Armageddon again 106 1986

7 Happy people 217 1987

⌨ 4.6.7 Movies begun with A

Show all columns of all movies, which title begins with A.

Select Command | FITPED

85

Movies

mID title length year

1 Catch me, please 86 2017

2 A Touching Saga of a Hunter 126 2013

3 Agent Truman 143 1990

4 Tomatoes antitrust 203 2003

5 Savannah 160 1990

6 Armageddon again 106 1986

7 Happy people 217 1987

⌨ 4.6.8 T - actors

Show all the data of all actors whose last name begins with T.

actors

aID firstname lastname year_of_birth income

1 Woody Hopkins 1975 1995

2 Sandra Tandy 1965 2001

3 John Torn 1994 2015

4 Natalie Hunt 1957 2002

5 Juan Pitt 1978 1999

6 Henry Nolte 1968 2005

7 Woody Harris 1945 1984

⌨ 4.6.9 S, T - actors

Show all the data of all actors whose last name begins with S or T.

actors

aID firstname lastname year_of_birth income

1 Woody Hopkins 1975 1995

2 Sandra Tandy 1965 2001

3 John Torn 1994 2015

4 Natalie Hunt 1957 2002

5 Juan Stock 1978 1999

6 Henry Nolte 1968 2005

7 Woody Seller 1945 1984

Select Command | FITPED

86

⌨ 4.6.10 TT - actors

Show all the data of all actors whose last name and the first name begins with T.

actors

aID firstname lastname year_of_birth income

1 Woody Hopkins 1975 1995

2 Tibor Tandy 1965 2001

3 John Torn 1994 2015

4 Natalie Hunt 1957 2002

5 Juan Stock 1978 1999

6 Henry Nolte 1968 2005

7 Woody Seller 1945 1984

Group by

Chapter 5

Group by | FITPED

88

5.1 SELECT Statement - Aggregates

🕮 5.1.1

SELECT Statement – Aggregates

We often need to know basic common characteristics of the values in the selected
column, like sum, average, minimum or maximum value. SQL provides a set of
functions, called aggregate functions, which do not operate on each row separately,
like single-row functions, but on a single column of the table. They always return a
single value as a result. There are five aggregate functions:

• COUNT returns the number of values in the specified column.
• SUM returns the sum of values in the specified column.
• AVG returns the average of values in the specified column.
• MIN returns the smallest value in the specified column.
• MAX returns the largest value in the specified column.

There are several other aggregate functions, which are used very rarely, like STDEV,
VAR.

📝 5.1.2

Which functions belong to the most common aggregation functions?

• MIN
• AVG
• SUM
• ROUND
• DISTINCT
• AVERAGE

🕮 5.1.3

SELECT Statement – Characteristics of Aggregates

The aggregate functions have the following important features, which should be
always considered.

• COUNT, MIN, and MAX can be applied to numeric and non-numeric fields.
• On the other hand, SUM and AVG may be used on numeric fields only.

Group by | FITPED

89

• All functions can use DISTINCT before column name to eliminate duplicates.
However, DISTINCT has no effect with MIN/MAX but may have with
SUM/AVG.

• Apart from a special case of function COUNT - COUNT(*) - each function
eliminates nulls first and operates only on remaining non-null values.

• Aggregate functions can be used only in the SELECT clause and in the
HAVING clause which will be introduced later.

📝 5.1.4

Which of the following aggregate functions can be applied to numeric and non-
numeric columns?

• MAX
• MIN
• COUNT
• SUM
• AVG

🕮 5.1.5

COUNT

COUNT is a function that allows to count the number of records in a selected
column or a number of rows in one table or joined tables. The following query
returns the number of employees.

SELECT COUNT(ID) AS number_of_employees FROM employees;

COUNT expects only one argument, which can be mainly a column name but can
also contain constant or any kind of combination of arithmetic operations and
functions, which returns one value. The next query counts the number of unique
cities, in which the employees work.

SELECT COUNT(DISTINCT city) AS number_of_unique_cities FROM

employees;

COUNT applied on a primary key column of the table returns the number of rows in
the table. The same result can be obtained using COUNT(*). The symbol asterisk (*)
represents again all columns of the table. COUNT(*) counts all rows of a table,
regardless of whether nulls or duplicate values occur.

SELECT COUNT(*) AS number_of_employees FROM employees;

Group by | FITPED

90

📝 5.1.6

What is the result of the following query, if the ID is the primary key of the table
employees?

SELECT COUNT(*) - COUNT(ID) FROM employees;

• 0
• NULL
• If the ID contains null, the result will be greater than 0.
• 1

🕮 5.1.7

SUM and AVG

SUM and AVG functions ignore the null values and can not be applied to string and
date data types.

SELECT COUNT(ID) AS number_of_employees, AVG(salary) AS

average_salary FROM employees;

The query returns the number of employees and the average salary in the company.
Both aggregate functions can be used in one query as other calculated columns.

If DISTINCT is applied to the argument of SUM and AVG functions, the result can be
different, because the duplicates are eliminated before the calculation occurs.

📝 5.1.8

Which of the following queries return the average number of years, which the
employees spent in the company?

• SELECT AVG(years_in_company) AS average_years FROM employees;
• SELECT SUM(years_in_company)/COUNT(ID) AS average_years FROM

employees;
• SELECT AVERAGE(years_in_company) AS average_years FROM employees;
• SELECT MEAN(years_in_company) AS mean_years FROM employees;

Group by | FITPED

91

🕮 5.1.9

MIN and MAX

MIN and MAX can be applied to the columns of the following generic data types

• Integer or Float numbers – return the highest or the lowest value
• Date – return the oldest or the newest date
• String – return the string, which appears as the first in the list of values

considering the alphabet order and vice versa.

The following query returns the lowest and the highest salary stored in the table
employees.

SELECT MIN(salary) AS minimum, MAX(salary) AS maximum FROM

employees;

📝 5.1.10

What is the result of the following query?

SELECT MAX(firstname) FROM employees;

• The firstname of the employee, which begins with the last letter of the
alphabet.

• The firstname of the employee, which begins with the first letter of the
alphabet.

• The shortest firstname of the employee.
• The firstname of the employee with the lowest salary.

🕮 5.1.11

Aggregate Functions in the SELECT statement

Aggregate functions can be used in the SELECT statement in the following
situations:

• A SELECT clause can contain several aggregate functions in one query but
the SELECT clause can not reference a column without an aggregate
function in this case.

• If the SELECT clause contains aggregate function and references columns,
on which an aggregate function is not applied, the query must contain
GROUP BY clause.

Group by | FITPED

92

For example, the following is illegal

SELECT firstname, lastname, MAX(salary) FROM employees;

5.2 SELECT Statement - Grouping

🕮 5.2.1

SELECT Statement – Grouping

Sometimes it is useful to calculate the average or sum from the subset of data
stored in the table or find the minimum or maximum values within the values with
the same characteristics. The aggregate functions can be used in these cases,
together with the clause GROUP BY. Clause GROUP BY allows to define of the
groups, which will be created before the given aggregate function is applied.

SELECT and GROUP BY clauses are closely integrated. Each item in the SELECT
clause must be single-valued per group, and the SELECT clause may only contain:

• column names,
• aggregate functions,
• constants,
• an expression involving combinations of the above.

The following query counts the number of employees, who work in the different
cities:

SELECT city, COUNT(ID) AS number_of_employees_in_city

FROM employees

GROUP BY city;

The order of the columns in the SELECT clause will be shown also in the result. It is
recommended to always also show column, which defines the groups for easier
understanding of the result.

📝 5.2.2

If the list of columns in the SELECT clause contains column names as well as any
of the aggregate functions, which additional clause must still be included in the
query?

• GROUP BY
• HAVING
• ORDER BY

Group by | FITPED

93

• WHERE
• DISTINCT

🕮 5.2.3

SELECT Statement – Grouping

All column names in the SELECT clause must appear in the GROUP BY clause
unless the name is used only in an aggregate function.

If the WHERE clause is used with GROUP BY, WHERE must be applied first, then
groups are formed from remaining rows satisfying the condition defined in the
WHERE clause. The following query returns the number of employees who earn less
than 1000 Euro grouped by the cities,

SELECT city, COUNT(ID) AS number_of_employees_in_city

FROM employees

WHERE salary < 1000

GROUP BY city;

In contrast to other situations, where the null value appears, two nulls are
considered equal for purposes of the GROUP BY clause.

📝 5.2.4

Create a query, which returns the average salaries of employees, who work in
different cities in the position of Sales Representative. Order the result from the
highest to the lowest value of the average salary.

• WHERE position = 'Sales Representative'
• ORDER BY AVG(salary)
• SELECT city, AVG(salary) AS average_salary

Group by | FITPED

94

• ORDER BY AVG(salary) DESC
• FROM employees
• GROUP BY salary
• GROUP BY city

5.3 SELECT Statement - HAVING Clause

🕮 5.3.1

HAVING Clause - Restricting Groupings

HAVING clause is designed for use with GROUP BY to restrict groups that appear in
the result table.

HAVING filters groups whereas WHERE clause filters individual rows. WHERE
clause must forego the HAVING clause in the SQL query.

Column names in the HAVING clause must also appear in the GROUP BY clause or
must be included within an aggregate function.

📝 5.3.2

The HAVING clause performs in an aggregate query a similar function to the clause
WHERE.

• WHERE
• ORDER BY
• GROUP BY
• SELECT
• JOIN

📝 5.3.3

Write the right keyword to finish the following sentence correctly.

The HAVING clause performs in an aggregate query a similar function to the clause
..... .

Group by | FITPED

95

5.4 Aggregation and grouping (exercises)

⌨ 5.4.1 Average length of the movies

What is the average length of the movies stored in the database?

Movies

mID title length year

1 Catch me, please 86 2017

2 A Touching Saga of a Hunter 126 2013

3 Agent Truman 143 1990

4 Tomatoes antitrust 203 2003

5 Savannah 160 1990

6 Armageddon again 106 1986

7 Happy people 217 1987

⌨ 5.4.2 The longest movie

How long does the longest movie take?

Movies

mID title length year

1 Catch me, please 86 2017

2 A Touching Saga of a Hunter 126 2013

3 Agent Truman 143 1990

4 Tomatoes antitrust 203 2003

5 Savannah 160 1990

6 Armageddon again 106 1986

7 Happy people 217 1987

⌨ 5.4.3 Money for actors

How much the actors have been earned together.

actors

aID firstname lastname year_of_birth income earned

1 Woody Hopkins 1975 1995 100000

2 Tibor Tandy 1965 2001 2458771

3 John Torn 1994 2015 7778852

4 Natalie Hunt 1957 2002 15000001

Group by | FITPED

96

5 Juan Stock 1978 1999 154557

6 Henry Nolte 1968 2005 1154775

7 Woody Seller 1945 1984 8425771

⌨ 5.4.4 Average profit of actors

How much the actors have been earned on average?

actors

aID firstname lastname year_of_birth income earned

1 Woody Hopkins 1975 1995 100000

2 Tibor Tandy 1965 2001 2458771

3 John Torn 1994 2015 7778852

4 Natalie Hunt 1957 2002 15000001

5 Juan Stock 1978 1999 154557

6 Henry Nolte 1968 2005 1154775

7 Woody Seller 1945 1984 8425771

⌨ 5.4.5 The longest and the shortest movie

How long do the longest and the shortest movies stored in the database take?
Show the answer in one record.

Movies

mID title length year

1 Catch me, please 86 2017

2 A Touching Saga of a Hunter 126 2013

3 Agent Truman 143 1990

4 Tomatoes antitrust 203 2003

5 Savannah 160 1990

6 Armageddon again 106 1986

7 Happy people 217 1987

⌨ 5.4.6 The oldest and the youngest movie

How many years have passed between the oldest and newest movie stored in the
database? Show the answer in one record.

Movies

mID title length year

Group by | FITPED

97

1 Catch me, please 86 2017

2 A Touching Saga of a Hunter 126 2013

3 Agent Truman 143 1990

4 Tomatoes antitrust 203 2003

5 Savannah 160 1990

6 Armageddon again 106 1986

7 Happy people 217 1987

⌨ 5.4.7 Movies in countries

How many movies were created in each country? Show name of country and count
of movies.

Movies

mID title length year country

1 Catch me, please 86 2017 Australia

2 A Touching Saga of a Hunter 126 2013 France

3 Agent Truman 143 1990 USA

4 Tomatoes antitrust 203 2003 USA

5 Savannah 160 1990 Australia

6 Armageddon again 106 1986 France

7 Happy people 217 1987 France

⌨ 5.4.8 Actors from countries

How many actors come from the countries? Show country and count of actors from
the country.

actors

aID firstname lastname year_of_birth income earned country

1 Woody Hopkins 1975 1995 100000 Australia

2 Tibor Tandy 1965 2001 2458771 France

3 John Torn 1994 2015 7778852 USA

4 Natalie Hunt 1957 2002 15000001 USA

5 Juan Stock 1978 1999 154557 Australia

6 Henry Nolte 1968 2005 1154775 France

7 Woody Seller 1945 1984 8425771 Australia

⌨ 5.4.9 Countries with more than 3 actors

Show the list of countries with more than 3 actors. Show the name of the country
and count of actors.

Group by | FITPED

98

actors

aID firstname lastname year_of_birth income earned country

1 Woody Hopkins 1975 1995 100000 Australia

2 Tibor Tandy 1965 2001 2458771 France

3 John Torn 1994 2015 7778852 USA

4 Natalie Hunt 1957 2002 15000001 USA

5 Juan Stock 1978 1999 154557 Australia

6 Henry Nolte 1968 2005 1154775 France

7 Woody Seller 1945 1984 8425771 Australia

8 Hypolia Genders 1995 2002 333345 Australia

Join

Chapter 6

Join | FITPED

100

6.1 Multi-table Queries

🕮 6.1.1

Multi-Table Queries

As a result of the database design and normalisation process, almost all databases
contain many tables. This approach minimises data redundancy. Simultaneously, it
ensures data consistency and integrity. The relationship between the data stored in
different tables is expressed by the primary and foreign keys between the related
tables. However, there are plenty of situations, in which the information collected
from different tables is required. Therefore, SQL provides several options, how to
join tables.

🕮 6.1.2

Computing a Join

The general procedure for generating results of a join of Table1 and Table2 is as
follows:

1. Cartesian product of the tables named in FROM clause is formed.
2. If there is a WHERE clause, the search condition is applied to each row of the

product table, retaining those rows that satisfy the condition.
3. For each remaining row, the value of each item in the SELECT clause is

determined to produce a single row in the result table.
4. If DISTINCT has been specified, any duplicate rows are eliminated from the

result table.
5. If there is an ORDER BY clause, the rows of the result table are ordered as

required.

SELECT Table1.*, Table2.*

FROM Table1, Table2

WHERE Table1.Table1ID = Table2.Table1ID

ORDER BY Table1ID;

The query shows all columns from joined tables ordered by the primary key of
Table1. The FROM clause must list the names of all tables used in the query. The
WHERE clause is used for joining the primary key of Table1 with the corresponding
foreign key in Table2.

Join | FITPED

101

📝 6.1.3

The result of omitting the join between the tables in the query is

• Cartesian product
• outer join
• inner join
• NULL

🕮 6.1.4

Sorting the Result of Joined Tables

No matter how many tables will be joined in the query and which SQL joining clause
will be used, the ORDER BY clause can be used only once as the last clause of the
SQL query. The rules, which define the final order of the values in the result table,
are the same as in the case of one simple table.

SELECT a.full_name, b.title, b.pages

FROM authors a

INNER JOIN authors_books ab ON a.authorID = ab.authorID

INNER JOIN books b ON ab.bookID = b.bookID

ORDER BY pages DESC;

The query returns the list of authors, their books ordered by the number of pages in
descending order. The query simultaneously shows how to effectively use aliases
to name tables. The ORDER BY clause at the end of the query is used for ordering
the result.

📝 6.1.5

Mark all true statements.

• The multi-table query can contain only one WHERE clause.
• The FROM clause must list all tables used in query separated by space.
• The number of tables, which can be joined in multi-table query is limited to

10.
• The alias can be used for renaming the tables in the multi-table query.

Join | FITPED

102

📝 6.1.6

The number of tables, which can be joined in SQL query, is theoretically unlimited.

• TRUE
• FALSE

🕮 6.1.7

Aggregate Functions in Multi-Table Queries

All aggregate functions can be also used without any limits in the multi-table
queries. The same set of rules for their writing must be followed. The GROUP BY
clause is used only once in the query after all tables are joined. The same is true
also for the HAVING clause.

Assume, the database contains two tables offices, employees with relation 1:N. The
query counts the number of employees at the different offices of the company.

SELECT offices.name, COUNT(employeeID) AS number_of_employees

FROM offices

INNER JOIN employees ON offices.officeID = employees.officeID

GROUP BY offices.name;

6.2 Simple Join Using WHERE Clause

🕮 6.2.1

Simple Join

If the columns required in the result come from more than one table, a join between
the tables must be defined. The simplest way is to use the WHERE clause and write
an SQL query considering the following steps:

• The relationship between tables in the form of related primary and foreign
keys must exist.

• Tables, which contain the required columns, must be named in the FROM
clause, separated by a comma.

• The aliases can be assigned to the tables in the FROM clause to ensure
simplicity. Alias is a unique short name of the table, separated from the table
name with space.

• If the tables contain columns with the same names, and these columns will
be used in the query, the alias must be assigned to each of them to avoid
ambiguity.

Join | FITPED

103

• WHERE clause must define the condition based on which the data from the
tables is joined. Primary and foreign keys are often used in this condition.

As a result, only those rows from both tables that have identical values in the
condition defined in the WHERE clause is included in the result.

For example, the following query shows the employees' names, city and the name
of the office, where they work.

SELECT firstname, lastname, city, office_name

FROM employees, offices

WHERE employees.officeID = offices.officeID

While the names of the columns are different, it is not necessary to use aliases to
rename them.

🕮 6.2.2

Joining More Tables

The same approach can be applied to joining more tables. Between all tables must
exist a relationship based on the comparison of related primary and foreign keys.

Therefore, for example, in the case of joining three tables, two conditions, which
define the relationship, must be defined in minimum, for four tables three
conditions, etc. In the opposite case, the result will contain an unexpected number
of rows, because the Cartesian product occurred.

The number of tables, which can be joined using the WHERE clause is not limited in
general. However, there are some practical and technical limitations, which should
be considered to ensure the highest performance of the database system.

📝 6.2.3

What is the minimum number of uses of the JOIN clause we need to prevent the
Cartesian product from joining four tables?

• 3
• 2
• 0
• 4
• 1

Join | FITPED

104

📝 6.2.4

Two tables are given:

• countries (countryID, country_name, continentID, population)
• continents (continentID, continent_name)

Create a query, which returns the list of countries and related continents ordered by
the population from the largest to the lowest.

• FROM countries, continents
• SELECT country_name, continent_name, population
• ORDER BY population DESC;
• WHERE countries.continentID = continents.continentID

6.3 Preferred Approaches to Join Tables based on
JOIN Clause

🕮 6.3.1

Preferred Approaches to Join Tables based on JOIN Clause

The requirement to join many tables in one query is very often in practice. The
WHERE clause becomes disarranged. The SQL provides the following constructs
based on the new clause JOIN, which allow solving this situation:

• INNER JOIN - allows joining tables similarly to WHERE clause, only the rows,
which fulfil the joining condition will be included in the result,

• OUTER JOIN – allows joining tables based on the defined joining condition,
while the result will contain not only data, which fulfilled the defined
condition but also data, which does not have a corresponding value in the
joined table,

• NATURAL JOIN and JOIN USING allow joining tables based on the same
names of the table columns,

• CROSS JOIN allows the creation of a Cartesian product explicitly.

These clauses differ in the way, how they identify the columns, which define the
relationship between tables and how they work with the null values.

🕮 6.3.2

INNER JOIN Clause

Join | FITPED

105

The INNER JOIN clause represents the equivalent to the cases, in which the WHERE
clause can be used for joining the tables. It joins two tables based on the quality of
the values in the columns, which represent the relationship between tables, mostly
between primary and foreign keys. If one row of a joined table is unmatched, a row
is also omitted from the result table. The following example shows how to join two
tables using the JOIN clause instead of the WHERE clause.

The query, which uses the WHERE clause, seems like this

SELECT firstname, lastname, city, office_name

FROM employees, offices

WHERE employees.officeID = offices.officeID

It can be rewritten using the INNER JOIN clause.

SELECT firstname, lastname, city, office_name

FROM employees

INNER JOIN offices ON employees.officeID = offices.officeID

The relation between the joined tables is written in the ON part of the INNER JOIN
clause.

The keyword INNER can be omitted. However, it is recommended to use it
consistently.

📝 6.3.3

Create a query, which shows the genre of all movies from the table movies together
with the title of the movie.

_____ _____

• JOIN INNER movies
• FROM genres, movies
• SELECT genre, title
• ON genres.genreID = movies.genreID
• INNER JOIN movies
• FROM genres

Join | FITPED

106

🕮 6.3.4

INNER JOIN Clause in Queries with Many Tables

The INNER JOIN clause can be used for joining many tables. In comparison to other
SQL clauses, the INNER JOIN clause must be repeated for each statement, which
represents the relation between tables.

SELECT a.full_name, b.title, b.pages

FROM authors a

INNER JOIN authors_books ab ON a.authorID = ab.authorID

INNER JOIN books b ON ab.bookID = b.bookID

ORDER BY pages DESC;

The query above joins three tables. Therefore, the SQL query must have two INNER
JOIN clauses. The order, in which the tables will be joined, does not matter.
However, it is important to write all relations between the tables correctly using the
right columns.

📝 6.3.5

Create a query, which shows the orderdate, the name of the product and the
quantity of product items, if the quantity is greater than 10.

• INNER JOIN products ON products.productnumber =
orderdetails.productnumber

• INNER JOIN orderdetails ON orders.ordernumber = orderdetails.ordernumber
• FROM orders
• SELECT orderdate, producttitle, quantity
• WHERE quantity > 10;

🕮 6.3.6

OUTER JOIN

There are some specific situations, which require showing the values from the first
table included in the join, which do have not the corresponding values in the second
table. The clause OUTER JOIN was added to the SQL for that reason. It retains rows
that do not satisfy the join condition in the result. The following three types of outer
join can be used based on the requirements, which table’s data has to be included
in the query result:

Join | FITPED

107

LEFT OUTER JOIN – the result will contain all data from the left table (the first table
in the query) and corresponding data from the right table (the second one in the
query). If there is not a corresponding value in the second table, the null value will
be used instead of it.

RIGHT OUTER JOIN - the result will contain all data from the right table (the second
table in the query) and corresponding data from the left table (the first one in the
query). If there is not a corresponding value in the left table, the null value will be
used instead of it.

FULL OUTER JOIN - the result will contain all data from the left and right table, in
which the joining condition is true. Moreover, it will add all other rows from both
tables, in which the corresponding value in the joined table is missing. The null
value will be used in all these cases.

It is evident that each RIGHT OUTER JOIN can be easily rewritten to the LEFT
OUTER JOIN. Therefore, several database systems support only LEFT OUTER JOIN.

📝 6.3.7

What kind of join is required to show all continents regardless, there is not any
country on them?

SELECT continent, country

FROM continents

_____ JOIN countries ON

continents.continentID = countries.continentID

• INNER
• RIGHT
• LEFT

🕮 6.3.8

Other types of JOIN Clause

There are several other SQL keywords, which allow joining tables in a special
situation.

NATURAL JOIN allows joining tables based on the columns with the same names.
For example, if the names of the primary and foreign keys are used consistently

Join | FITPED

108

throughout the data model, it is not necessary to write the INNER JOIN ON clause.
The NATURAL JOIN clause can be used instead of it. On the other hand, it is
necessary to bear in mind that all table columns with the same names will be
included in the joining condition, which may not be expected behaviour.

SELECT firstname, lastname, office FROM employees NATURAL JOIN

offices

Therefore, it is recommended to use the JOIN USING clause instead of the
NATURAL JOIN. The columns with the same name, which will define the relation,
are explicitly defined in this case in the USING clause.

SELECT firstname, lastname, office FROM employees JOIN offices

USING (officeID)

Finally, the CROSS JOIN clause should be mention for completeness sake. It allows
for creating the Cartesian product explicitly. The result will have the same
characteristics, as in the case of omitting joining conditions between the tables in
the query.

For example, if the table employees (20 rows) will be joined with the table offices (5
rows) using CROSS JOIN, the resulting table will contain 100 rows (20x5). The
query seems as follows

SELECT * FROM employees CROSS JOIN offices

6.4 JOIN (exercises)

⌨ 6.4.1 Movies and genres

List genres for all movies. Use tables genres and movies.

Movies

mID title length year gID

1 Catch me, please 86 2017 2

2 A Touching Saga of a Hunter 126 2013 2

3 Agent Truman 143 1990 1

4 Tomatoes antitrust 203 2003 3

5 Savannah 160 1990 4

6 Armageddon again 106 1986 1

7 Happy people 217 1987 4

Genres

gID genre

Join | FITPED

109

1 comedy

2 drama

3 thriller

4 documentary

⌨ 6.4.2 Actors from countries

List the actor and the country, from which she comes. Show the first name, last
name and country.

Actors

aID firstname lastname year_of_birth income earned cID

1 Woody Hopkins 1975 1995 100000 1

2 Tibor Tandy 1965 2001 2458771 1

3 John Torn 1994 2015 7778852 3

4 Natalie Hunt 1957 2002 15000001 2

5 Juan Stock 1978 1999 154557 1

6 Henry Nolte 1968 2005 1154775 7

7 Woody Seller 1945 1984 8425771 1

Countries

cID country

1 Australia

2 France

3 Spain

4 Russia

5 USA

6 United Kingdom

7 Italia

⌨ 6.4.3 Movies and genres II.

List genres for all movies using the INNER JOIN clause. Use tables genres and
movies.

Movies

mID title length year gID

1 Catch me, please 86 2017 2

2 A Touching Saga of a Hunter 126 2013 2

3 Agent Truman 143 1990 1

4 Tomatoes antitrust 203 2003 3

5 Savannah 160 1990 4

Join | FITPED

110

6 Armageddon again 106 1986 1

7 Happy people 217 1987 4

Genres

gID genre

1 comedy

2 drama

3 thriller

4 documentary

⌨ 6.4.4 Movies in 1990

List genres for all movies created in 1990. Show the title, genre and year.

Movies

mID title length cr_year gID

1 Catch me, please 86 2017 2

2 A Touching Saga of a Hunter 126 2013 2

3 Agent Truman 143 1990 1

4 Tomatoes antitrust 203 2003 3

5 Savannah 160 1990 4

6 Armageddon again 106 1986 1

7 Happy people 217 1987 4

Genres

gID genre

1 comedy

2 drama

3 thriller

4 documentary

⌨ 6.4.5 Movie genres

Count the number of movies in different genres. Show the genre and count of
movies.

Movies

mID title length cr_year gID

1 Catch me, please 86 2017 2

Join | FITPED

111

2 A Touching Saga of a Hunter 126 2013 2

3 Agent Truman 143 1990 1

4 Tomatoes antitrust 203 2003 3

5 Savannah 160 1990 4

6 Armageddon again 106 1986 1

7 Happy people 217 1987 4

Genres

gID genre

1 comedy

2 drama

3 thriller

4 documentary

⌨ 6.4.6 Actors in movies

List actors’ first name and last name, movie title and the name of the role the actor
played in the movie.

Actors

aID firstname lastname year_of_birth income earned cID

1 Woody Hopkins 1975 1995 100000 1

2 Tibor Tandy 1965 2001 2458771 1

3 John Torn 1994 2015 7778852 3

4 Natalie Hunt 1957 2002 15000001 2

5 Juan Stock 1978 1999 154557 1

6 Henry Nolte 1968 2005 1154775 7

7 Woody Seller 1945 1984 8425771 1

Movies

mID title length cr_year gID

1 Catch me, please 86 2017 2

2 A Touching Saga of a Hunter 126 2013 2

3 Agent Truman 143 1990 1

4 Tomatoes antitrust 203 2003 3

5 Savannah 160 1990 4

6 Armageddon again 106 1986 1

7 Happy people 217 1987 4

Casting

cid aID mID role

1 4 2 mother

Join | FITPED

112

2 7 4 father

3 5 2 Luis

4 5 6 child

5 8 4 child

6 6 2 hunter

7 9 2 wizard

⌨ 6.4.7 Actors with more than 2 movies

Show the list of actors, who played in more than 2 movies. Show the first name, last
name and count of movies.

Actors

aID firstname lastname year_of_birth income earned cID

1 Woody Hopkins 1975 1995 100000 1

2 Tibor Tandy 1965 2001 2458771 1

3 John Torn 1994 2015 7778852 3

4 Natalie Hunt 1957 2002 15000001 2

5 Juan Stock 1978 1999 154557 1

6 Henry Nolte 1968 2005 1154775 7

7 Woody Seller 1945 1984 8425771 1

Movies

mID title length cr_year gID

1 Catch me, please 86 2017 2

2 A Touching Saga of a Hunter 126 2013 2

3 Agent Truman 143 1990 1

4 Tomatoes antitrust 203 2003 3

5 Savannah 160 1990 4

6 Armageddon again 106 1986 1

7 Happy people 217 1987 4

Casting

cid aID mID role

1 4 2 mother

2 7 4 father

3 5 2 Luis

4 5 6 child

5 8 4 child

6 6 2 hunter

7 9 2 wizard

Join | FITPED

113

⌨ 6.4.8 All genres

Show genres and movie titles. Include a genre even if it does not include any
movies. Order the result by genre name. Use LEFT JOIN

Movies

mID title length cr_year gID

1 Catch me, please 86 2017 2

2 A Touching Saga of a Hunter 126 2013 2

3 Agent Truman 143 1990 1

4 Tomatoes antitrust 203 2003 2

5 Savannah 160 1990 4

6 Armageddon again 106 1986 1

7 Happy people 217 1987 4

Genres

gID genre

1 comedy

2 drama

3 thriller

4 documentary

5 romance

⌨ 6.4.9 All movies

Show movie titles and genres. Include a movie even if it does not have a registered
genre. Order the result by movie title. Use LEFT JOIN

Movies

mID title length cr_year gID

1 Catch me, please 86 2017 2

2 A Touching Saga of a Hunter 126 2013 7

3 Agent Truman 143 1990 1

4 Tomatoes antitrust 203 2003 2

5 Savannah 160 1990 4

6 Armageddon again 106 1986 1

7 Happy people 217 1987 8

Genres

gID genre

1 comedy

Join | FITPED

114

2 drama

3 thriller

4 documentary

5 romance

Insert

Chapter 7

Insert | FITPED

116

7.1 INSERT INTO statement

🕮 7.1.1

The INSERT INTO statement is used to insert a new row (tuple) into the table
(relation).

In the following statement, you need to specify both the column (attribute) names
and the corresponding values.

INSERT INTO table_name (column1, column2, ... , columnN)

VALUES (value1, value2, ... , valueN);

Using this form of INSERT INTO statement it is possible to insert values into
selected columns only. However, it is necessary to include all NOT NULL columns
(and corresponding values) if they don’t have set up the default value.

🕮 7.1.2

It is possible to not specify the column names in the INSERT INTO query if you are
adding values for all the columns of the table. In this case, the order of the values
has to be the same as the order of the columns in the table. The syntax is as
follows:

INSERT INTO table_name

 VALUES (value1, value2, ... , valueN);

🕮 7.1.3

When you create a new table it is possible to define DEFAULT values for a column
or specify that column can be empty (a NULL value). Using the INSERT INTO
statement it is possible to insert a new row with DEFAULT or NULL values.
However, in this case, all the columns should have a default or null value set. If a
single column doesn’t fulfil this requirement you cannot use this possibility.

The syntax is as follows:

INSERT INTO table_name DEFAULT VALUES;

Please remember that this statement doesn’t work in all database systems.

Insert | FITPED

117

📝 7.1.4

Which of the INSERT INTO statements is incorrect if you want to insert data into the
table with the schema defined in SQLite DBMS:

Products (ProductID INTEGER PRIMARY KEY AUTOINCREMENT NOT

NULL,

ProductName VARCHAR (100), ProductDescription TEXT,

ProductPrice NUMERIC)

SQLite is one of the relational database systems.

• INSERT INTO Products DEFAULT VALUES;
• INSERT INTO Products (ProductID, ProductName, ProductDescription,

ProductPrice) VALUES (27,'Onkyo TX','Amplituner', 2000.00);
• INSERT INTO Products (ProductID,ProductName) VALUES (30,'Yamaha RX');
• all of them
• none of them

🕮 7.1.5

Some database systems allow inserting multiple rows into a table, by one
command. In this case, you will use the following form:

INSERT INTO table_name

VALUES (valueA1, valueA2, … , valueAN),

 (valueB1, valueB2, … , valueBN),

 (valueC1, valueC2, … , valueCN);

📝 7.1.6

You want to insert three rows into empty table Customers with the following
schema:

Customers (CustomerID INTEGER PRIMARY KEY,

CustomerName VARCHAR (50), CustomerSurname VARCHAR (50));

Is the INSERT INTO statement correct?

INSERT INTO Customers

VALUES (1,'Sofia','Bednar'),

 (2,'Jan','Zachar'),

 (3,'Nela','Walach');

Insert | FITPED

118

• True
• False

🕮 7.1.7

The INSERT INTO statement can be combined with a SELECT statement to insert
rows into a table. The SELECT statement allows selecting data from a different
table.

The following syntax copy rows from different tables and inserts them into the
table.

INSERT INTO table_name SELECT * FROM different_table;

The syntax may slightly vary between database systems.

The SELECT statement is a way how to get data from a database table. It is
described in detail in the SELECT statement topic.

📝 7.1.8

You want to copy capital cities from table Countries to table Cities column
CityName. Use the appropriate statement. The schema of the tables are as follows:

Countries (CountryID INTEGER PRIMARY KEY, CountryName CHAR

(40), CountryCapital VARCHAR (50))

Cities (CityID INTEGER PRIMARY KEY AUTOINCREMENT, CityName

VARCHAR (50))

INSERT INTO _____ _____ SELECT _____ FROM _____ ;

• Cities
• CountryCapital
• Countries
• Cities
• (CityName)
• CityName
• CountryCapital
• Countries

Insert | FITPED

119

7.2 INSERT exercise I.

⌨ 7.2.1 INSERT 01

Write a query that inserts a new employee Anna Kowalska into the Employees table
with the following data: Id equals 10, JobTitleCode is RKB011.

Data Set 1

Employees

Id Name Surname JobTitleCode

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

Data Set 5

Insert | FITPED

120

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

⌨ 7.2.2 INSERT 02

Write a query that inserts into the Employees table a new employee Barbara Nowak,
her Id equals 100 and she is working as a Shop Director - JobTitleCode is RKB100.

Data Set 1

Employees

Id Name Surname JobTitleCode

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

Insert | FITPED

121

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

Data Set 5

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

⌨ 7.2.3 INSERT 03

Write a query that using insert into statement copies all rows from the Countries
table into the CountriesCopy table.

Data Set 1

Countries

Id Country Capital

CountriesCopy

Id Country Capital

Data Set 2

Countries

Id Country Capital

1 Portugal Lisbon

2 Belgium Brussels

3 Spain Madrit

4 Hungary Budapest

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

CountriesCopy

Id Country Capital

Data Set 3

Insert | FITPED

122

Countries

Id Country Capital

3 Spain Madrit

4 Hungary Budapest

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

11 Italy Rome

CountriesCopy

Id Country Capital

Data Set 4

Countries

Id Country Capital

3 Spain Madrit

5 Poland Warsaw

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

CountriesCopy

Id Country Capital

Data Set 5

Countries

Id Country Capital

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

CountriesCopy

Id Country Capital

Insert | FITPED

123

⌨ 7.2.4 INSERT 04

Write a query that using insert into statement copies a row from the Cities table into
the CitiesCopy table where city Id is equal to 2.

Data Set 1

Cities

Id Name

CitiesCopy

Id Name

Data Set 2

Cities

Id Name

1 Bratislava

2 Nitra

3 Trnava

4 Katowice

5 Telde

6 Paris

8 Galdar

10 Krakow

CitiesCopy

Id Name

Data Set 3

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

8 Galdar

CitiesCopy

Id Name

Insert | FITPED

124

Data Set 4

Cities

Id Name

2 Nitra

3 Vienna

4 Katowice

5 Sevilla

8 Galdar

CitiesCopy

Id Name

Data Set 5

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

7 Madrit

9 Brussels

CitiesCopy

Id Name

⌨ 7.2.5 INSERT 05

Write a query that inserts into the Countries table a new row with default values, the
column Id has the autoincrement option set.

Data Set 1

Countries

Id Country Capital

Data Set 2

Countries

Id Country Capital

Insert | FITPED

125

1 Portugal Lisbon

2 Belgium Brussels

3 Spain Madrit

4 Hungary Budapest

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

Data Set 3

Countries

Id Country Capital

3 Spain Madrit

4 Hungary Budapest

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

11 Italy Rome

Data Set 4

Countries

Id Country Capital

3 Spain Madrit

5 Poland Warsaw

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

Data Set 5

Countries

Id Country Capital

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

Insert | FITPED

126

⌨ 7.2.6 INSERT 06

Write a query that inserts into the Employees table a new employee Martin Socha
with employee Id equals 12 and who has no JobTitleCode.

Data Set 1

Employees

Id Name Surname JobTitleCode

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

Data Set 5

Employees

Id Name Surname JobTitleCode

Insert | FITPED

127

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

⌨ 7.2.7 INSERT 07

Write a query that inserts into the Countries table the following countries with
capitals:

Ireland, Dublin

Bulgaria, Sofia

The column Id has the autoincrement option set.

Data Set 1

Countries

Id Country Capital

Data Set 2

Countries

Id Country Capital

1 Portugal Lisbon

2 Belgium Brussels

3 Spain Madrit

4 Hungary Budapest

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

Data Set 3

Countries

Id Country Capital

3 Spain Madrit

4 Hungary Budapest

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

Insert | FITPED

128

11 Italy Rome

Data Set 4

Countries

Id Country Capital

3 Spain Madrit

5 Poland Warsaw

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

Data Set 5

Countries

Id Country Capital

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

⌨ 7.2.8 INSERT 08

Write a query that inserts into the JobTitles table a new job title Seller Assistant
with the JobTitleCode RKB115.

Data Set 1

JobTitles

JobTitleCode JobTitle

Data Set 2

JobTitles

JobTitleCode JobTitle

RKB012 Seller

RKB100 Shop Director

RKB001 Worker

RKB011 Manager

RKB002 Cashier

RKB003 Technician

Insert | FITPED

129

Data Set 3

JobTitles

JobTitleCode JobTitle

RKB001 Worker

RKB011 Manager

RKB002 Cashier

Data Set 4

JobTitles

JobTitleCode JobTitle

RKB012 Seller

RKB100 Shop Director

RKB002 Cashier

RKB003 Technician

Data Set 5

JobTitles

JobTitleCode JobTitle

RKB001 Worker

RKB011 Manager

RKB002 Cashier

RKB003 Technician

⌨ 7.2.9 INSERT 09

Write a query that inserts into the EmployeesCopy table all rows from the
Employees table without the position (JobTitleCode).

Data Set 1

Employees

Id Name Surname JobTitleCode

EmployeesCopy

Id Name Surname JobTitleCode

Data Set 2

Insert | FITPED

130

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

EmployeesCopy

Id Name Surname JobTitleCode

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

EmployeesCopy

Id Name Surname JobTitleCode

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

EmployeesCopy

Id Name Surname JobTitleCode

Data Set 5

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

Insert | FITPED

131

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

EmployeesCopy

Id Name Surname JobTitleCode

⌨ 7.2.10 INSERT 10

Write a query that inserts into the Countries table a new country Latvia with the
capital Riga. The column Id has the autoincrement option set.

Data Set 1

Countries

Id Country Capital

Data Set 2

Countries

Id Country Capital

1 Portugal Lisbon

2 Belgium Brussels

3 Spain Madrit

4 Hungary Budapest

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

Data Set 3

Countries

Id Country Capital

3 Spain Madrit

4 Hungary Budapest

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

11 Italy Rome

Insert | FITPED

132

Data Set 4

Countries

Id Country Capital

3 Spain Madrit

5 Poland Warsaw

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

Data Set 5

Countries

Id Country Capital

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

7.3 INSERT exercise II.

⌨ 7.3.1 INSERT 11

Write a query that inserts into the Countries table all cities from the Cities table. The
column Id in the Countries table has an autoincrement option set.

Data Set 1

Countries

Id Country Capital

Cities

Id Name

Data Set 2

Countries

Id Country Capital

1 Portugal Lisbon

2 Belgium Brussels

Insert | FITPED

133

3 Spain Madrit

4 Hungary Budapest

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

Cities

Id Name

1 Bratislava

2 Nitra

3 Trnava

4 Katowice

5 Telde

6 Paris

8 Galdar

10 Krakow

Data Set 3

Countries

Id Country Capital

3 Spain Madrit

4 Hungary Budapest

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

11 Italy Rome

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

8 Galdar

Data Set 4

Countries

Id Country Capital

3 Spain Madrit

Insert | FITPED

134

5 Poland Warsaw

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

Cities

Id Name

2 Nitra

3 Vienna

4 Katowice

5 Sevilla

8 Galdar

Data Set 5

Countries

Id Country Capital

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

7 Madrit

9 Brussels

⌨ 7.3.2 INSERT 12

Write a query that inserts into the JobTitles table two rows with JobTitleCodes:
AKB500, AKB300.

Data Set 1

JobTitles

JobTitleCode JobTitle

Insert | FITPED

135

Data Set 2

JobTitles

JobTitleCode JobTitle

RKB012 Seller

RKB100 Shop Director

RKB001 Worker

RKB011 Manager

RKB002 Cashier

RKB003 Technician

Data Set 3

JobTitles

JobTitleCode JobTitle

RKB001 Worker

RKB011 Manager

RKB002 Cashier

Data Set 4

JobTitles

JobTitleCode JobTitle

RKB012 Seller

RKB100 Shop Director

RKB002 Cashier

RKB003 Technician

Data Set 5

JobTitles

JobTitleCode JobTitle

RKB001 Worker

RKB011 Manager

RKB002 Cashier

RKB003 Technician

⌨ 7.3.3 INSERT 13

Write a query that inserts into the Customers table two customers Anna Nowak,
Jan Nowak with Id equals 10 and 11 respectively and City_Id equals 2.

Insert | FITPED

136

Data Set 1

Customers

Id Name Surname City_Id

Data Set 2

Customers

Id Name Surname City_Id

1 Sofia Bednar 10

2 Jan Zachar 1

3 Nela Walach 1

4 Witold Nowak 5

5 Katarzyna Kowalska 6

6 Iwona Bednarz 8

Data Set 3

Customers

Id Name Surname City_Id

2 Jan Zachar 2

4 Katarzyna Kowalska 6

5 Witold Nowak 4

6 Iwona Bednarz 8

7 Katy Bernard 8

Data Set 4

Customers

Id Name Surname City_Id

2 Jan Zachar 2

3 Jose Sanchez 2

4 Witold Nowak 3

5 Iwona Bednarz 8

6 Katarzyna Kowalska 5

Data Set 5

Customers

Id Name Surname City_Id

8 Magdalena Meredit 6

9 Mateus Vettel 7

Insert | FITPED

137

10 Fryderyk Hanke 9

⌨ 7.3.4 INSERT 14

Write a query that inserts into the Employees table a new employee Martin Nowak
with JobTitleCode RKB012 and Id equals 11.

Data Set 1

Employees

Id Name Surname JobTitleCode

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

Data Set 5

Insert | FITPED

138

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

⌨ 7.3.5 INSERT 15

Write a query that inserts into the Customers table a new customer Ala Nowak from
city name Nitra (which corresponds to City_Id value equals 2) and customer Id is
equal to 15.

Data Set 1

Customers

Id Name Surname City_Id

Cities

Id Name

2 Nitra

Data Set 2

Customers

Id Name Surname City_Id

1 Sofia Bednar 10

2 Jan Zachar 1

3 Nela Walach 1

4 Witold Nowak 5

5 Katarzyna Kowalska 6

6 Iwona Bednarz 8

Cities

Id Name

1 Bratislava

2 Nitra

3 Trnava

4 Katowice

5 Telde

6 Paris

Insert | FITPED

139

8 Galdar

10 Krakow

Data Set 3

Customers

Id Name Surname City_Id

2 Jan Zachar 2

4 Katarzyna Kowalska 6

5 Witold Nowak 4

6 Iwona Bednarz 8

7 Bernard Katy 8

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

8 Galdar

Data Set 4

Customers

Id Name Surname City_Id

2 Jan Zachar 2

3 Jose Sanchez 2

4 Witold Nowak 3

5 Iwona Bednarz 8

6 Katarzyna Kowalska 5

Cities

Id Name

2 Nitra

3 Vienna

4 Katowice

5 Sevilla

8 Galdar

Data Set 5

Customers

Insert | FITPED

140

Id Name Surname City_Id

8 Magdalena Meredit 6

9 Mateus Vettel 7

10 Fryderyk Hanke 9

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

8 Galdar

⌨ 7.3.6 INSERT 16

Write a query that inserts into the Countries table (column Capital) the following
cities: Frankfurt, Porto. The column Id has an autoincrement option set.

Data Set 1

Countries

Id Country Capital

Data Set 2

Countries

Id Country Capital

1 Portugal Lisbon

2 Belgium Brussels

3 Spain Madrit

4 Hungary Budapest

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

Data Set 3

Countries

Id Country Capital

3 Spain Madrit

4 Hungary Budapest

6 Slovakia Bratislava

Insert | FITPED

141

7 Norway Oslo

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

11 Italy Rome

Data Set 4

Countries

Id Country Capital

3 Spain Madrit

5 Poland Warsaw

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

Data Set 5

Countries

Id Country Capital

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

⌨ 7.3.7 INSERT 17

Write a query that inserts into the CustomersCopy table all customers from the
Customers table which are from city name Galdar (which corresponds to City_Id
equals 8).

Data Set 1

Customers

Id Name Surname City_Id

Cities

Id Name

CustomersCopy

Insert | FITPED

142

Id Name Surname City_Id

Data Set 2

Customers

Id Name Surname City_Id

1 Sofia Bednar 10

2 Jan Zachar 1

3 Nela Walach 1

4 Witold Nowak 5

5 Katarzyna Kowalska 6

6 Iwona Bednarz 8

Cities

Id Name

1 Bratislava

2 Nitra

3 Trnava

4 Katowice

5 Telde

6 Paris

8 Galdar

10 Krakow

CustomersCopy

Id Name Surname City_Id

Data Set 3

Customers

Id Name Surname City_Id

2 Jan Zachar 2

4 Katarzyna Kowalska 6

5 Witold Nowak 4

6 Iwona Bednarz 8

7 Bernard Katy 8

Cities

Id Name

2 Nitra

4 Katowice

Insert | FITPED

143

6 Paris

8 Galdar

CustomersCopy

Id Name Surname City_Id

Data Set 4

Customers

Id Name Surname City_Id

2 Jan Zachar 2

3 Jose Sanchez 2

4 Witold Nowak 3

5 Iwona Bednarz 8

6 Katarzyna Kowalska 5

Cities

Id Name

2 Nitra

3 Vienna

4 Katowice

5 Sevilla

8 Galdar

CustomersCopy

Id Name Surname City_Id

Data Set 5

Customers

Id Name Surname City_Id

8 Magdalena Meredit 6

9 Mateus Vettel 7

10 Fryderyk Hanke 9

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

7 Madrit

Insert | FITPED

144

9 Brussels

CustomersCopy

Id Name Surname City_Id

⌨ 7.3.8 INSERT 18

Write a query that inserts into the EmployeesCopy table all employees from the
Employees table whose Name begins with the letter J.

Data Set 1

Employees

Id Name Surname JobTitleCode

EmployeesCopy

Id Name Surname JobTitleCode

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

EmployeesCopy

Id Name Surname JobTitleCode

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

EmployeesCopy

Insert | FITPED

145

Id Name Surname JobTitleCode

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

EmployeesCopy

Id Name Surname JobTitleCode

Data Set 5

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

EmployeesCopy

Id Name Surname JobTitleCode

⌨ 7.3.9 INSERT 19

Write a query that inserts into the EmployeesCopy table all employees from the
Employees table whose Name ends with the letter a.

Data Set 1

Employees

Id Name Surname JobTitleCode

EmployeesCopy

Id Name Surname JobTitleCode

Insert | FITPED

146

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

EmployeesCopy

Id Name Surname JobTitleCode

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

EmployeesCopy

Id Name Surname JobTitleCode

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

EmployeesCopy

Id Name Surname JobTitleCode

Data Set 5

Employees

Insert | FITPED

147

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

EmployeesCopy

Id Name Surname JobTitleCode

⌨ 7.3.10 INSERT 20

Write a query that using insert into statement copies all rows from the Cities
table into the CitiesCopy table where city Name begins with the letter N.

Data Set 1

Cities

Id Name

CitiesCopy

Id Name

Data Set 2

Cities

Id Name

1 Bratislava

2 Nitra

3 Trnava

4 Katowice

5 Telde

6 Paris

8 Galdar

10 Krakow

CitiesCopy

Id Name

Data Set 3

Cities

Insert | FITPED

148

Id Name

2 Nitra

4 Katowice

6 Paris

8 Galdar

CitiesCopy

Id Name

Data Set 4

Cities

Id Name

2 Nitra

3 Vienna

4 Katowice

5 Sevilla

8 Galdar

CitiesCopy

Id Name

Data Set 5

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

7 Madrit

9 Brussels

CitiesCopy

Id Name

Update

Chapter 8

Update | FITPED

150

8.1 UPDATE statement

🕮 8.1.1

The UPDATE statement is used to modify (update) the data contained in a
table. The basic form of this statement is the following:

UPDATE table_name

SET column_name=value;

It will set new values to the particular column. It is possible to update values in
more than one column. The statement is the following:

UPDATE table_name

SET column1_name=value1, column2_name=value2, …,

columnN_name=valueN;

🕮 8.1.2

The UPDATE statement can be combined with the WHERE clause which contains a
condition to select rows for which the values of columns needs to be updated. It is
possible to combine many conditions using, for example, the AND or the OR
operators.

UPDATE table_name

SET column1_name=value1, column2_name=value2

WHERE condition;

📝 8.1.3

Which statement will you use to obtain the result presented in a picture - Countries
table:

• UPDATE Countries SET CountryCapital = 'London';
• UPDATE Countries SET CountryCapital = 'London' where

CountryName='Spain';
• UPDATE Countries SET CountryName='Poland', CountryCapital = 'London';

Update | FITPED

151

📝 8.1.4

You want to update data in the Countries table with the following schema:

Countries (CountryID INTEGER PRIMARY, CountryName VARCHAR

(50), CountryCapital VARCHAR (50))

Set the value Krakow in the CountryCapital column where CountryName is Poland.
Create an appropriate statement.

_____ Countries SET _____='Krakow' _____ CountryName='Poland';

• CountryCapital
• WHERE
• UPDATE

📝 8.1.5

You want to update data in the Products table with the following schema:

Products (ProductID INTEGER PRIMARY KEY, ProductName VARCHAR

(50), Category VARCHAR (50))

Set the value Car in the ProductName column for all rows where the Category is
Toy. Which of the following statements is incorrect?

• UPDATE Products SET ProductName='Car' where Category='Toy';
• UPDATE Products SET ProductName=’Car’;
• UPDATE Products SET Category=’Car’;
• Update Products;

📝 8.1.6

You want to update data in the Customers table with the following schema:

Customers (CustomerID INTEGER PRIMARY KEY, CustomerName

VARCHAR (50), CustomerSurname VARCHAR (50), CustomerSex

BOOLEAN);

Is the UPDATE statement correct?

UPDATE Customers SET Name='Ala' WHERE CustomerSurname

='Nowak';

Update | FITPED

152

• False
• True

📝 8.1.7

Update data values in the Countries table. Set, for all rows, value to Slovakia in the
CountryName column.

 _____ _____ SET CountryName=' _____ ';

• Slovakia
• Countries
• INSERT
• UPDATE

8.2 UPDATE exercise I.

⌨ 8.2.1 UPDATE 01

Write a query that modifies a city name to Gdansk, from the Cities table, where city
Id is equal to 4.

Data Set 1

Cities

Id Name

Data Set 2

Cities

Id Name

1 Bratislava

2 Nitra

3 Trnava

4 Katowice

5 Telde

6 Paris

8 Galdar

10 Krakow

Data Set 3

Update | FITPED

153

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

8 Galdar

Data Set 4

Cities

Id Name

2 Nitra

3 Vienna

4 Katowice

5 Sevilla

8 Galdar

Data Set 5

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

7 Madrit

9 Brussels

⌨ 8.2.2 UPDATE 02

Write a query that modifies a city name Nitra to Porto from the Cities table.

Data Set 1

Cities

Id Name

Data Set 2

Cities

Id Name

1 Bratislava

Update | FITPED

154

2 Nitra

3 Trnava

4 Katowice

5 Telde

6 Paris

8 Galdar

10 Krakow

Data Set 3

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

8 Galdar

Data Set 4

Cities

Id Name

2 Nitra

3 Vienna

4 Katowice

5 Sevilla

8 Galdar

Data Set 5

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

7 Madrit

9 Brussels

⌨ 8.2.3 UPDATE 03

Write a query that modifies a Country name to Austria and a Capital name to
Vienna, from the Countries table, where country Id equals 9.

Update | FITPED

155

Data Set 1

Countries

Id Country Capital

Data Set 2

Countries

Id Country Capital

1 Portugal Lisbon

2 Belgium Brussels

3 Spain Madrit

4 Hungary Budapest

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

Data Set 3

Countries

Id Country Capital

3 Spain Madrit

4 Hungary Budapest

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

11 Italy Rome

Data Set 4

Countries

Id Country Capital

3 Spain Madrit

5 Poland Warsaw

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

Data Set 5

Update | FITPED

156

Countries

Id Country Capital

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

⌨ 8.2.4 UPDATE 04

Write a query that modifies a Capital name to Krakow, from the Countries table,
where the Country name is Poland.

Data Set 1

Countries

Id Country Capital

Data Set 2

Countries

Id Country Capital

1 Portugal Lisbon

2 Belgium Brussels

3 Spain Madrit

4 Hungary Budapest

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

Data Set 3

Countries

Id Country Capital

3 Spain Madrit

4 Hungary Budapest

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

Update | FITPED

157

11 Italy Rome

Data Set 4

Countries

Id Country Capital

3 Spain Madrit

5 Poland Warsaw

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

Data Set 5

Countries

Id Country Capital

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

⌨ 8.2.5 UPDATE 05

Write a query that modifies the JobTitleCode to RKB002, from the Employees table,
all employees whose Surname ends with the letter a.

Data Set 1

Employees

Id Name

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

Update | FITPED

158

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

Data Set 5

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalu RKB001

⌨ 8.2.6 UPDATE 06

Write a query that modifies a JobTitle to Manager Assistant, from the JobTitles
table, where JobTitleCode is RKB001.

Data Set 1

JobTitles

JobTitleCode JobTitle

Data Set 2

JobTitles

JobTitleCode JobTitle

RKB012 Seller

Update | FITPED

159

RKB100 Shop Director

RKB001 Worker

RKB011 Manager

RKB002 Cashier

RKB003 Technician

Data Set 3

JobTitles

JobTitleCode JobTitle

RKB001 Worker

RKB011 Manager

RKB002 Cashier

Data Set 4

JobTitles

JobTitleCode JobTitle

RKB012 Seller

RKB100 Shop Director

RKB002 Cashier

RKB003 Technician

Data Set 5

JobTitles

JobTitleCode JobTitle

RKB001 Worker

RKB011 Manager

RKB002 Cashier

RKB003 Technician

⌨ 8.2.7 UPDATE 07

Write a query that modifies JobTitleCode to RKB011 for all Employees who are
working as Sellers.

Data Set 1

Employees

Id Name Surname JobTitleCode

Update | FITPED

160

JobTitles

JobTitleCode JobTitle

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

JobTitles

JobTitleCode JobTitle

RKB012 Seller

RKB100 Shop Director

RKB001 Worker

RKB011 Manager

RKB002 Cashier

RKB003 Technician

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

JobTitles

JobTitleCode JobTitle

RKB001 Worker

RKB012 Seller

RKB011 Manager

RKB002 Cashier

Data Set 4

Employees

Update | FITPED

161

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

JobTitles

JobTitleCode JobTitle

RKB012 Seller

RKB100 Shop Director

RKB002 Cashier

RKB003 Technician

RKB011 Manager

Data Set 5

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

JobTitles

JobTitleCode JobTitle

RKB001 Worker

RKB011 Manager

RKB002 Cashier

RKB003 Technician

⌨ 8.2.8 UPDATE 08

Write a query that modifies data all employees whose Name is Jan to Joahim, from
the Employees table.

Data Set 1

Employees

Id Name

Data Set 2

Update | FITPED

162

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

Data Set 5

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalu RKB001

⌨ 8.2.9 UPDATE 09

Write a query that modifies an employee Name to Ola all employees who are
working as a Cashier.

Data Set 1

Update | FITPED

163

Employees

Id Name Surname JobTitleCode

JobTitles

JobTitleCode JobTitle

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

JobTitles

JobTitleCode JobTitle

RKB012 Seller

RKB100 Shop Director

RKB001 Worker

RKB011 Manager

RKB002 Cashier

RKB003 Technician

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

JobTitleCode JobTitle

RKB001 Worker

RKB012 Seller

RKB011 Manager

RKB002 Cashier

Data Set 4

Employees

Update | FITPED

164

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

JobTitles

JobTitleCode JobTitle

RKB012 Seller

RKB100 Shop Director

RKB002 Cashier

RKB003 Technician

RKB011 Manager

Data Set 5

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

JobTitles

JobTitleCode JobTitle

RKB001 Worker

RKB011 Manager

RKB002 Cashier

RKB003 Technician

⌨ 8.2.10 UPDATE 10

Write a query that modifies data of an employee Jan Kowalski, from the Employees
table to Janina Kowalska and JobTitleCode to RKB011.

Data Set 1

Employees

Id Name

Data Set 2

Update | FITPED

165

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

Data Set 5

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalu RKB001

8.3 UPDATE exercise II.

⌨ 8.3.1 UPDATE 11

Write a query that modifies country name to Estonia and capital to Tallinn from the
Countries table.

Update | FITPED

166

Data Set 1

Countries

Id Country Capital

Data Set 2

Countries

Id Country Capital

1 Portugal Lisbon

2 Belgium Brussels

3 Spain Madrit

4 Hungary Budapest

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

Data Set 3

Countries

Id Country Capital

3 Spain Madrit

4 Hungary Budapest

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

11 Italy Rome

Data Set 4

Countries

Id Country Capital

3 Spain Madrit

5 Poland Warsaw

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

Data Set 5

Update | FITPED

167

Countries

Id Country Capital

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

⌨ 8.3.2 UPDATE 12

Write a query that modifies a city Name to London, from the Cities table, where city
Names begins with the letter N.

Data Set 1

Cities

Id Name

Data Set 2

Cities

Id Name

1 Bratislava

2 Nitra

3 Trnava

4 Katowice

5 Telde

8 Galdar

Data Set 3

Cities

Id Name

2 Nitra

4 Katowice

8 Galdar

Data Set 4

Cities

Id Name

Update | FITPED

168

2 Nitra

3 Vienna

4 Katowice

5 Sevilla

8 Galdar

Data Set 5

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

7 Madrit

9 Brussels

⌨ 8.3.3 UPDATE 13

Write a query that modifies City_Id to 4 from the Customers table, all customers
from the Nitra city. Write a query using SQL subquery.

Data Set 1

Customers

Id Name Surname City_Id

Cities

Id Name

Data Set 2

Customers

Id Name Surname City_Id

1 Sofia Bednar 10

2 Jan Zachar 1

3 Nela Walach 1

4 Witold Nowak 5

5 Katarzyna Kowalska 6

6 Iwona Bednarz 8

Cities

Update | FITPED

169

Id Name

1 Bratislava

2 Nitra

3 Trnava

4 Katowice

5 Telde

6 Paris

8 Galdar

10 Krakow

Data Set 3

Customers

Id Name Surname City_Id

2 Jan Zachar 2

4 Katarzyna Kowalska 6

5 Witold Nowak 4

6 Iwona Bednarz 8

7 Katy Bernard 8

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

8 Galdar

Data Set 4

Customers

Id Name Surname City_Id

2 Jan Zachar 2

3 Jose Sanchez 2

4 Witold Nowak 3

5 Iwona Bednarz 8

6 Katarzyna Kowalska 5

Cities

Id Name

2 Nitra

3 Vienna

4 Katowice

Update | FITPED

170

5 Sevilla

8 Galdar

Data Set 5

Customers

Id Name Surname City_Id

8 Magdalena Meredit 6

9 Mateus Vettel 7

10 Fryderyk Hanke 9

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

7 Madrit

9 Brussels

⌨ 8.3.4 UPDATE 14

Write a query that modifies the customer Name to Ola, all customers from the city
which ends with the letter s. Write a query using SQL subquery.

Data Set 1

Customers

Id Name Surname City_Id

Cities

Id Name

Data Set 2

Customers

Id Name Surname City_Id

1 Sofia Bednar 10

2 Jan Zachar 1

3 Nela Walach 1

4 Witold Nowak 5

5 Katarzyna Kowalska 6

Update | FITPED

171

6 Iwona Bednarz 8

Cities

Id Name

1 Bratislava

2 Nitra

3 Trnava

4 Katowice

5 Telde

6 Paris

8 Galdar

10 Krakow

Data Set 3

Customers

Id Name Surname City_Id

2 Jan Zachar 2

4 Katarzyna Kowalska 6

5 Witold Nowak 4

6 Iwona Bednarz 8

7 Katy Bernard 8

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

8 Galdar

Data Set 4

Customers

Id Name Surname City_Id

2 Jan Zachar 2

3 Jose Sanchez 2

4 Witold Nowak 3

5 Iwona Bednarz 8

6 Katarzyna Kowalska 5

Cities

Update | FITPED

172

Id Name

2 Nitra

3 Vienna

4 Katowice

5 Sevilla

8 Galdar

Data Set 5

Customers

Id Name Surname City_Id

8 Magdalena Meredit 6

9 Mateus Vettel 7

10 Fryderyk Hanke 9

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

7 Madrit

9 Brussels

⌨ 8.3.5 UPDATE 15

Write a query that modifies a customer City_Id to 2, from the Customers table,
where customer Name begins with the letter K.

Data Set 1

Customers

Id Name Surname City_Id

Data Set 2

Customers

Id Name Surname City_Id

1 Sofia Bednar 10

2 Jan Zachar 1

3 Nela Walach 1

4 Witold Nowak 5

Update | FITPED

173

5 Katarzyna Kowalska 6

6 Iwona Bednarz 8

Data Set 3

Customers

Id Name Surname City_Id

2 Jan Zachar 2

4 Katarzyna Kowalska 6

5 Witold Nowak 4

6 Iwona Bednarz 8

7 Katy Bernard 8

Data Set 4

Customers

Id Name Surname City_Id

2 Jan Zachar 2

3 Jose Sanchez 2

4 Witold Nowak 3

5 Iwona Bednarz 8

6 Katarzyna Kowalska 5

Data Set 5

Customers

Id Name Surname City_Id

8 Magdalena Meredit 6

9 Mateus Vettel 7

10 Fryderyk Hanke 9

⌨ 8.3.6 UPDATE 16

Write a query that modifies customers Names to Anna, from the Customers table,
where customers are from the city which begins with the letter G. Write a query
using SQL subquery.

Data Set 1

Customers

Id Name Surname City_Id

Update | FITPED

174

Cities

Id Name

Data Set 2

Customers

Id Name Surname City_Id

1 Sofia Bednar 10

2 Jan Zachar 1

3 Nela Walach 1

4 Witold Nowak 5

5 Katarzyna Kowalska 6

6 Iwona Bednarz 8

Cities

Id Name

1 Bratislava

2 Nitra

3 Trnava

4 Katowice

5 Telde

6 Paris

8 Galdar

10 Krakow

Data Set 3

Customers

Id Name Surname City_Id

2 Jan Zachar 2

4 Katarzyna Kowalska 6

5 Witold Nowak 4

6 Iwona Bednarz 8

7 Bernard Katy 8

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

8 Galdar

Update | FITPED

175

Data Set 4

Customers

Id Name Surname City_Id

2 Jan Zachar 2

3 Jose Sanchez 2

4 Witold Nowak 3

5 Iwona Bednarz 8

6 Katarzyna Kowalska 5

Cities

Id Name

2 Nitra

3 Vienna

4 Katowice

5 Sevilla

8 Galdar

Data Set 5

Customers

Id Name Surname City_Id

8 Magdalena Meredit 6

9 Mateus Vettel 7

10 Fryderyk Hanke 9

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

7 Madrit

9 Brussels

⌨ 8.3.7 UPDATE 17

Write a query that modifies an employee Surname to Wieluch, from the Employees
table, where employee JobTitle is Seller. Write a query using SQL subquery.

Data Set 1

Update | FITPED

176

Employees

Id Name Surname JobTitleCode

JobTitles

JobTitleCode JobTitle

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

JobTitles

JobTitleCode JobTitle

RKB012 Seller

RKB100 Shop Director

RKB001 Worker

RKB011 Manager

RKB002 Cashier

RKB003 Technician

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

JobTitles

JobTitleCode JobTitle

RKB001 Worker

RKB012 Seller

RKB011 Manager

RKB002 Cashier

Update | FITPED

177

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

JobTitles

JobTitleCode JobTitle

RKB012 Seller

RKB100 Shop Director

RKB002 Cashier

RKB003 Technician

RKB011 Manager

Data Set 5

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

JobTitles

JobTitleCode JobTitle

RKB001 Worker

RKB011 Manager

RKB002 Cashier

RKB003 Technician

⌨ 8.3.8 UPDATE 18

Write a query that modifies a JobTitleCode to RKB011 for all employees whose Id is
less than 2.

Update | FITPED

178

Employees

Id Name Surname JobTitleCode

JobTitles

JobTitleCode JobTitle

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

JobTitles

JobTitleCode JobTitle

RKB012 Seller

RKB100 Shop Director

RKB001 Worker

RKB011 Manager

RKB002 Cashier

RKB003 Technician

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

JobTitles

JobTitleCode JobTitle

RKB001 Worker

RKB012 Seller

RKB011 Manager

RKB002 Cashier

Update | FITPED

179

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

JobTitles

JobTitleCode JobTitle

RKB012 Seller

RKB100 Shop Director

RKB002 Cashier

RKB003 Technician

RKB011 Manager

Data Set 5

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

JobTitles

JobTitleCode JobTitle

RKB001 Worker

RKB011 Manager

RKB002 Cashier

RKB003 Technician

⌨ 8.3.9 UPDATE 19

Write a query that modifies a customer Name to Jose all customers from
Nitra. Write a query using SQL subquery.

Data Set 1

Customers

Update | FITPED

180

Id Name Surname City_Id

Cities

Id Name

Data Set 2

Customers

Id Name Surname City_Id

1 Sofia Bednar 10

2 Jan Zachar 1

3 Nela Walach 1

4 Witold Nowak 5

5 Katarzyna Kowalska 6

6 Iwona Bednarz 8

Cities

Id Name

1 Bratislava

2 Nitra

3 Trnava

4 Katowice

5 Telde

6 Paris

8 Galdar

10 Krakow

Data Set 3

Customers

Id Name Surname City_Id

2 Jan Zachar 2

4 Katarzyna Kowalska 6

5 Witold Nowak 4

6 Iwona Bednarz 8

7 Katy Bernard 8

Cities

Id Name

2 Nitra

4 Katowice

Update | FITPED

181

6 Paris

8 Galdar

Data Set 4

Customers

Id Name Surname City_Id

2 Jan Zachar 2

3 Jose Sanchez 2

4 Witold Nowak 3

5 Iwona Bednarz 8

6 Katarzyna Kowalska 5

Cities

Id Name

2 Nitra

3 Vienna

4 Katowice

5 Sevilla

8 Galdar

Data Set 5

Customers

Id Name Surname City_Id

8 Magdalena Meredit 6

9 Mateus Vettel 7

10 Fryderyk Hanke 9

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

7 Madrit

9 Brussels

Update | FITPED

182

⌨ 8.3.10 UPDATE 20

Write a query that modifies the employee JobTitleCode to RKB011, from the
Employees table, all employees where employee Id is between 8 and 10.

Data Set 1

Employees

Id Name

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

Data Set 5

Employees

Id Name Surname JobTitleCode

Update | FITPED

183

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalu RKB001

Delete

Chapter 9

Delete | FITPED

185

9.1 DELETE statement

🕮 9.1.1

The DELETE statement is used to delete rows from a table.

It allows deleting single as well as multiple rows depending on the condition
provided in the WHERE clause.

DELETE FROM table_name

WHERE condition;

🕮 9.1.2

It is possible to omit the WHERE clause. In this case, the DELETE query deletes all
rows from a table. The syntax is as follows:

 DELETE FROM table_name;

📝 9.1.3

You want to delete all rows from table Products with the following schema:

Products (ProductID INTEGER PRIMARY KEY, ProductName VARCHAR

(100), ProductDescription TEXT, ProductPrice NUMERIC).

Which of the DELETE statements will you use?

• DELETE FROM Products ALL VALUES;
• DELETE FROM Products (ProductID, ProductName, ProductDescription,

ProductPrice) VALUES =ALL;
• DELETE FROM Products;
• DELETE FROM Products WHERE ProductID=1 OR ProductID=2;

📝 9.1.4

Table Employees contains data presented in a picture.

Delete | FITPED

186

Which of the following statements is correct if you want to delete all employees
whose name is Jan?

• DELETE FROM Employees;
• DELETE FROM Employees WHERE EmployeeName = 'Jan';
• DELETE FROM Employees WHERE EmployeeName = 'Jan' AND

EmployeeSurname='Kowalski';
• DELETE FROM Employees WHERE EmployeeSurname = 'Kowalski' OR

EmployeeSurname='Nowak';
• DELETE FROM Employees WHERE EmployeeSurname = 'Kowalski' AND

EmployeeSurname='Nowak';

📝 9.1.5

Which of the following statements delete all rows from the table Countries
presented in a picture?

• DELETE FROM Countries;
• DELETE from Countries WHERE CountryCapital='London';
• DELETE FROM Countries WHERE CountryName='Poland' OR

CountryName='Slovakia' OR CountryName='Belgium' OR
CountryName='Spain';

• DELETE FROM Countries WHERE CountryCapital='London' OR
CountryName='Slovakia' OR CountryName='Spain' OR
CountryName='Belgium';

Delete | FITPED

187

9.2 DELETE exercises

⌨ 9.2.1 DELETE 01

Write a query that deletes city from the Cities table where city Id is equal to 2.

Data Set 1

Cities

Id Name

Data Set 2

Cities

Id Name

1 Bratislava

2 Nitra

3 Trnava

4 Katowice

5 Telde

6 Paris

8 Galdar

10 Krakow

Data Set 3

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

8 Galdar

Data Set 4

Cities

Id Name

2 Nitra

3 Vienna

4 Katowice

5 Sevilla

8 Galdar

Delete | FITPED

188

Data Set 5

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

7 Madrit

9 Brussels

⌨ 9.2.2 DELETE 02

Write a query that deletes all rows from the Countries table.

Data Set 1

Countries

Id Country Capital

Data Set 2

Countries

Id Country Capital

1 Portugal Lisbon

2 Belgium Brussels

3 Spain Madrit

4 Hungary Budapest

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

Data Set 3

Countries

Id Country Capital

3 Spain Madrit

4 Hungary Budapest

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

9 Greece Athens

Delete | FITPED

189

10 Malta Valletta

11 Italy Rome

Data Set 4

Countries

Id Country Capital

3 Spain Madrit

5 Poland Warsaw

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

Data Set 5

Countries

Id Country Capital

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

⌨ 9.2.3 DELETE 03

Write a query that deletes from the Employees table an employee Jan Kowalski.

Data Set 1

Employees

Id Name Surname JobTitleCode

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

Delete | FITPED

190

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

Data Set 5

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

⌨ 9.2.4 DELETE 04

Write a query that deletes from the Customers table all customers whose Id is
greater than 2.

Data Set 1

Customers

Id Name Surname City_Id

Data Set 2

Customers

Id Name Surname City_Id

1 Sofia Bednar 10

Delete | FITPED

191

2 Jan Zachar 1

3 Nela Walach 1

4 Witold Nowak 5

5 Katarzyna Kowalska 6

6 Iwona Bednarz 8

Data Set 3

Customers

Id Name Surname City_Id

2 Jan Zachar 2

4 Katarzyna Kowalska 6

5 Witold Nowak 4

6 Iwona Bednarz 8

7 Katy Bernard 8

Data Set 4

Customers

Id Name Surname City_Id

2 Jan Zachar 2

3 Jose Sanchez 2

4 Witold Nowak 3

5 Iwona Bednarz 8

6 Katarzyna Kowalska 5

Data Set 5

Customers

Id Name Surname City_Id

8 Magdalena Meredit 6

9 Mateus Vettel 7

10 Fryderyk Hanke 9

⌨ 9.2.5 DELETE 05

Write a query that deletes from the Employees table all employees whose Name is
Jan or Joahim.

Data Set 1

Employees

Delete | FITPED

192

Id Name Surname JobTitleCode

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

Data Set 5

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

Delete | FITPED

193

⌨ 9.2.6 DELETE 06

Write a query that deletes from the Employees table all employees who are working
as Cashier.

Data Set 1

Employees

Id Name Surname JobTitleCode

JobTitles

JobTitleCode JobTitle

Data Set 2

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

2 Jan Nowak RKB003

3 Kamil Wilmowski RKB011

4 Olga Milenka RKB003

5 Angela Wilga RKB002

JobTitles

JobTitleCode JobTitle

RKB012 Seller

RKB100 Shop Director

RKB001 Worker

RKB011 Manager

RKB002 Cashier

RKB003 Technician

Data Set 3

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

5 Angela Wilga RKB002

JobTitles

Delete | FITPED

194

JobTitleCode JobTitle

RKB001 Worker

RKB012 Seller

RKB011 Manager

RKB002 Cashier

Data Set 4

Employees

Id Name Surname JobTitleCode

1 Jan Kowalski RKB012

3 Kamil Wilmowski RKB011

4 Paco Ramirez RKB011

5 Angela Wilga RKB002

6 Beatriz Santana RKB002

JobTitles

JobTitleCode JobTitle

RKB012 Seller

RKB100 Shop Director

RKB002 Cashier

RKB003 Technician

RKB011 Manager

Data Set 5

Employees

Id Name Surname JobTitleCode

7 Joahim Mesina RKB001

8 Marta Frantisek RKB002

9 Jan Matalau RKB001

JobTitles

JobTitleCode JobTitle

RKB001 Worker

RKB011 Manager

RKB002 Cashier

RKB003 Technician

Delete | FITPED

195

⌨ 9.2.7 DELETE 07

Write a query that deletes from the Customers table all customers from the Galdar
city.

Data Set 1

Customers

Id Name Surname City_Id

Cities

Id Name

Data Set 2

Customers

Id Name Surname City_Id

1 Sofia Bednar 10

2 Jan Zachar 1

3 Nela Walach 1

4 Witold Nowak 5

5 Katarzyna Kowalska 6

6 Iwona Bednarz 8

Cities

Id Name

1 Bratislava

2 Nitra

3 Trnava

4 Katowice

5 Telde

6 Paris

8 Galdar

10 Krakow

Data Set 3

Customers

Id Name Surname City_Id

2 Jan Zachar 2

4 Katarzyna Kowalska 6

5 Witold Nowak 4

Delete | FITPED

196

6 Iwona Bednarz 8

7 Katy Bernard 8

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

8 Galdar

Data Set 4

Customers

Id Name Surname City_Id

2 Jan Zachar 2

3 Jose Sanchez 2

4 Witold Nowak 3

5 Iwona Bednarz 8

6 Katarzyna Kowalska 5

Cities

Id Name

2 Nitra

3 Vienna

4 Katowice

5 Sevilla

8 Galdar

Data Set 5

Customers

Id Name Surname City_Id

8 Magdalena Meredit 6

9 Mateus Vettel 7

10 Fryderyk Hanke 9

Cities

Id Name

2 Nitra

4 Katowice

6 Paris

Delete | FITPED

197

7 Madrit

9 Brussels

⌨ 9.2.8 DELETE 08

Write a query that deletes from the Customers table all customers where City_Id is
equal to 8.

Data Set 1

Customers

Id Name Surname City_Id

Data Set 2

Customers

Id Name Surname City_Id

1 Sofia Bednar 10

2 Jan Zachar 1

3 Nela Walach 1

4 Witold Nowak 5

5 Katarzyna Kowalska 6

6 Iwona Bednarz 8

Data Set 3

Customers

Id Name Surname City_Id

2 Jan Zachar 2

4 Katarzyna Kowalska 6

5 Witold Nowak 4

6 Iwona Bednarz 8

7 Katy Bernard 8

Data Set 4

Customers

Id Name Surname City_Id

2 Jan Zachar 2

3 Jose Sanchez 2

4 Witold Nowak 3

5 Iwona Bednarz 8

Delete | FITPED

198

6 Katarzyna Kowalska 5

Data Set 5

Customers

Id Name Surname City_Id

8 Magdalena Meredit 6

9 Mateus Vettel 7

10 Fryderyk Hanke 9

⌨ 9.2.9 DELETE 09

Write a query that deletes from the Countries table all countries which names begin
with the letter S.

Data Set 1

Countries

Id Country Capital

Data Set 2

Countries

Id Country Capital

1 Portugal Lisbon

2 Belgium Brussels

3 Spain Madrit

4 Hungary Budapest

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

Data Set 3

Countries

Id Country Capital

3 Spain Madrit

4 Hungary Budapest

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

9 Greece Athens

Delete | FITPED

199

10 Malta Valletta

11 Italy Rome

Data Set 4

Countries

Id Country Capital

3 Spain Madrit

5 Poland Warsaw

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

Data Set 5

Countries

Id Country Capital

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

⌨ 9.2.10 DELETE 10

Write a query that deletes all rows from the Countries table where Country has
value NULL.

Data Set 1

Countries

Id Country Capital

Data Set 2

Countries

Id Country Capital

1 Portugal Lisbon

2 Belgium Brussels

3 Spain Madrit

4 Hungary Budapest

8 Croatia Zagreb

Delete | FITPED

200

9 Greece Athens

10 Malta Valletta

Data Set 3

Countries

Id Country Capital

3 Spain Madrit

4 Hungary Budapest

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

9 Greece Athens

10 Malta Valletta

11 Italy Rome

Data Set 4

Countries

Id Country Capital

3 Spain Madrit

5 Poland Warsaw

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

Data Set 5

Countries

Id Country Capital

6 Slovakia Bratislava

7 Norway Oslo

8 Croatia Zagreb

10 Malta Valletta

11 Italy Rome

