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Abstract: In the literature, we can find various methods for generating artistic patterns. One of the
methods is the orbit trap method. In this paper, we propose various modifications of a variant of the
orbit trap method that generates patterns with wallpaper symmetry. The first modification relies on
replacing the Picard iteration (used in the original method) with the S-iteration known from the fixed
point theory. Moreover, we extend the parameters in the S-iteration from scalar to vector ones. In
the second modification, we replace the Euclidean metric used in the orbit traps with other metrics.
Finally, we propose three new orbit traps. The presented examples show that using the proposed
method, we are able to obtain a great variety of interesting patterns. Moreover, we show that a proper
selection of the orbit traps and the mapping used by the method can lead to patterns that possess a
local fractal structure.

Keywords: orbit trap; S-iteration; artistic pattern; wallpaper symmetry

1. Introduction

A pattern is a generic term for any type of repeated, often regular, arrangement [1]. It
is also a design in which lines, shapes, forms, or colours are repeated. The repeated part
is called a motif. A motif can be repeated and arranged in many ways to create different
types of patterns. In regular patterns, the motif (or motifs) is repeated predictably [2]. It
could be the same each time, or it could change in regularly repeating ways. Motifs can be
arranged in many ways to create a regular pattern. An irregular pattern is one in which the
motif changes or the way it is repeated is unpredictable [3]. How complicated a pattern is
depends on what is repeated and the way in which it is repeated.

Before the invention of computers, patterns were generated by hand through drawings
and many other skills. It takes a very long time to generate a single pattern, and sometimes,
after all the labour, the pattern may not meet the requirements of the designer or the
consumers. With the use of computers, it is easy to generate millions of different patterns in
just a minute [4]. In a bid to satisfy human wants, researchers have found out that patterns
can be generated using mathematical equations or artificial intelligence methods.

In the literature, we can find various methods for generating patterns that use math-
ematical equations. Among the methods, a popular approach is the use of fractals, e.g.,
inversion fractals [5] and Mandelbox [6]. Furthermore, other non-Euclidean geometries
are used in the generation of patterns. For instance, in [7], the authors used spherical
geometry, whereas in [8], hyperbolic geometry was used. In the generation of patterns,
not only various types of non-Euclidean geometries are used. Mathematical objects such
as whirls [9] or spirals [10,11] are commonly used in obtaining artistic patterns. Another
group of methods are the methods that are based on the dynamics of discrete dynamical
systems [12–14]. Not only the dynamics but also the orbits of discrete dynamical systems
can generate aesthetic patterns [15]. Based on the results presented in [15] and the orbit
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trap method [16], Lu et al. in [17] introduced a method that is the main subject of this paper,
namely, the orbit trap method that generates patterns with wallpaper symmetry.

In this paper, we introduce modifications of the orbit trap method presented by Lu et al.
in [17]. The first modification relies on using the S-iteration [18] instead of the Picard one
that is used in the original algorithm. We also extend the parameters in the S-iteration from
scalar to vector ones. Moreover, we propose the use of various metrics for defining orbit
traps and introduce some new orbit traps. Additionally, we present examples showing that
we can obtain a local fractal structure in the generated pattern when using an appropriate
mapping and orbit traps.

The paper is organised as follows. In Section 2, we briefly present the orbit trap method.
Then, in Section 3, we introduce modifications to the orbit trap method from Section 2.
Some examples showing the potential of the proposed modifications are presented in
Section 4. Moreover, we present examples showing the local fractal structure of some of the
patterns. Finally, in Section 5, we provide some concluding remarks and the directions for
future work.

2. Orbit Trap Method

In [17], Lu et al. introduced a method for generating artistic images with wallpaper
symmetries. The method was based on the mappings for which the chaotic attractor
possesses a wallpaper symmetry [15] and the orbit trap method [16,19]. Moreover, they
proposed a method for generating colour maps using an exponential function. In this
section, we briefly present the method of Lu et al.

In general, in the method for each point in the considered area, we iterate a function
starting from the point and check whether the transformed point falls into one of the orbit
traps (orbit trap is a bounded area in the plane). When the point falls into one of the orbit
traps, the point is considered to be trapped, and we end the iteration process. Next, a colour
is assigned to the starting point based on the distance from the centre of the orbit trap to
the trapped point. If the point is not trapped in the given number of iterations, then it gets
a background colour.

To obtain images with wallpaper symmetry, we need to use a proper function that is
iterated and some orbit traps. Lu et al. based their method on the functions introduced
in [15]. Depending on the symmetry type, we need to use different functions.

For the symmetry type p2, pm, pg, cm, pmm, cmm, pmg, pgg, p4, p4m, and p4g, we
use function f : R2 → R2 of the following form [15]:

f
([

x
y

])
= [1, cos x, cos 2x, sin x, sin 2x]

P00 . . . P04
...

...
...

P40 . . . P44

 ·


1
cos y

cos 2y
sin y
sin 2y

 mod
[

2π
2π

]
, (1)

where P00, P01, . . . , P44 ∈ R2. In [15], Carter et al. derived conditions that the points
P00, P01, . . . , P44 must satisfy to obtain each of the symmetry type. For completeness, we
gather the conditions in Appendix A.

To define functions for the p3, p3m1, p31m, p6, and p6m symmetries, let us firstly
define the vectors [15]:

v0 =

[
1
− 1√

3

]
, v1 =

[
0
− 2√

3

]
, v2 = v0 + v1, (2)

and the following mappings:
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R3

([
x
y

])
=

[
− 1

2 −
√

3
2√

3
2 − 1

2

][
x
y

]
, (3)

R6

([
x
y

])
=

[
1
2 −

√
3

2√
3

2
1
2

][
x
y

]
. (4)

Let us note that R3 is a counter-clockwise rotation by 120◦, whereas R6 is a counter-
clockwise rotation by 60◦.

Moreover, for k ∈ {3, 6}, let us define [15]

gk(p, v, Gv) =
k−1

∑
i = 0

Ri
k(Gv) cos(Ri

k(v) · p), (5)

hk(p, v, Hv) =
k−1

∑
i = 0

Ri
k(Hv) sin(Ri

k(v) · p), (6)

where p, v, Gv, Hv ∈ R2, and · is the dot product.
For each of the v0, v1, v2 vectors, let us arbitrarily select Gv0 , Hv0 , Gv1 , Hv1 , Gv2 , Hv2 ∈ R2,

respectively. Now, for each of the p3, p3m1, p31m, p6, p6m symmetries, we define the
f : R2 → R2 function in the following way [15]:

• p3 symmetry (k = 3) and p6 symmetry (k = 6)

f (p) =
2

∑
j = 0

(
gk(p, vj, Gvj) + hk(p, vj, Hvj)

)
mod

[
2π
2π

]
, (7)

• p3m1 and p31m symmetries (k = 3), and p6m symmetry (k = 6)

f (p) =
2

∑
j = 0

(
gk(p, vj, Gvj) + gk(p, σ(vj), σ(Gvj))

+hk(p, vj, Hvj) + hk(p, σ(vj), σ(Hvj))
)

mod
[

2π
2π

]
,

(8)

where

σ

([
x
y

])
=



[
−x
y

]
for p3m1 symmetry,[

x
−y

]
for p31m, p6m symmetries.

(9)

The next thing that we need in the method are the orbit traps. Lu et al. in [17] defined
four orbit traps that were based on circles. We present them in Figure 1. The centres ci and
the radii ri for the circles in each case are the following:

(a) c0 = [0, 0]T , r0 = 3.5,
(b) c0 = [−3.5,−2]T , c1 = [3.5,−2]T , c2 = [0,−2 + 3.5

√
3]T , r0 = r1 = r2 = 3.5,

(c) c0 = [−3.5, 3.5]T , c1 = [3.5, 3.5]T , c2 = [−3.5,−3.5]T , c3 = [3.5,−3.5]T ,
r0 = r1 = r2 = r3 = 3.5,

(d) c0 = [0, 0]T , c1 = [0, 7]T , c2 = [−3.5
√

3, 3.5]T , c3 = [−3.5
√

3,−3.5]T , c4 = [0,−7]T ,
c5 = [3.5

√
3,−3.5]T , c6 = [3.5

√
3, 3.5]T , r0 = r1 = . . . = r6 = 3.5.
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Figure 1. Orbit traps used in [17]. (a) one orbit trap; (b) three orbit traps; (c) four orbit traps; and
(d) seven orbit traps.

The points in the orbit trap should be coloured according to some colour map. In [17], a
method for generating colour maps that is based on an exponential function was proposed.
In this method, we have a set of base colours {b0, b1, . . . , bN}, and for each of the base
colours we assign a colour ratio qi ∈ [0, 1] for i = 0, 1, . . . , N such that q0 < q1 < . . . < qN .
Moreover, we give the number of colours Nc in the colour map. The method for generating
the colour map is presented in Algorithm 1.

Algorithm 1: Colour map generation.

Input: {b0, b1, . . . , bN}—base colours; {q0, q1, . . . , qN}—colour ratios such that
q0 < q1 < . . . < qN ; Nc—the number of colours in the resulting colour map;
E—exponent.

Output: colourTable—colour map.

1 colourTable = empty array with Nc elements
2 k = 1
3 for i = 0, 1, . . . , Nc − 1 do

4 q =
(

i
1+i

)E

5 while q > qk do
6 k = k + 1

7 t = qk−q
qk−qk−1

8 colourTable[i] = tbk−1 + (1− t)bk

The pseudocode of the method introduced by Lu et al. in [17] is presented in
Algorithm 2. In this algorithm, the following notation pi,x and pi,y is used to denote
the x and y coordinates of a point pi. Moreover, f is one of the functions given by (1) or (7)
or (8). Lu et al. in their paper set xmin = ymin = − 2π, xmax = ymax = 2π for most of
their examples.

When using the orbit trap method from Algorithm 2 to generate patterns with wall-
paper symmetry, we need to point out one thing that was not mentioned in [17]. Namely,
the symmetry type of f does not implicate that the generated pattern will be of the same
symmetry type. We need to select a proper combination of the orbit traps and the type of
the function f to get a desired symmetry type. In Section 4, we will present an example
showing how the combination of the orbit traps and the function f affects the resulting
pattern and changes its symmetry type.
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Algorithm 2: Orbit trap method.

Input: f : R2 → R2—mapping with the desired symmetry type; C0 = (c0, r0),
C1 = (c1, r1), . . ., Cn = (cn, rn)—orbit traps, where ci is the centre and ri
is the radius of the ith circle; [xmin, xmax]× [ymin, ymax]—area that should be
drawn; colourTable—colour map with Nc colours generated using
Algorithm 1; M—the maximum number of iterations; W, H—the width
and height of the image; E—exponent.

Output: Image generated with the orbit trap method.

1 for x = 0, 1, . . . , W − 1 do
2 for y = 0, 1, . . . , H − 1 do
3 x0 = xmin + (xmax − xmin)

x
W−1

4 y0 = ymin + (ymax − ymin)(1−
y

H−1 )

5 p0 = [x0, y0]
T

6 trapped = f alse
7 for k = 0, 1, . . . , M− 1 do
8 pk+1 = f (pk)
9 for i = 0, 1, . . . , n do

10 d =
√
(pk+1,x − ci,x)2 + (pk+1,y − ci,y)2

11 if d < ri then
12 trapped = true
13 break

14 if trapped then

15 v = 10log10(
d
ri
)/E

16 index = min( v
1−v , Nc − 1)

17 colour (x, y) with colour colourTable[index]
18 break

19 if not trapped then
20 colour (x, y) with colour colourTable[Nc − 1]

3. Modifications of the Orbit Trap Method

When we look at Algorithm 2, we notice that it uses a feedback process of the follow-
ing form:

pk+1 = f (pk) for k = 0, 1, . . . , (10)

where p0 is a starting point. This type of feedback process is called the Picard iteration [20],
and it is used in various algorithms, e.g., polynomial root-finding using numerical algo-
rithms [21], generation of fractals [5,22], etc.

One of the most important applications of Picard’s iteration is finding the fixed points
of a contractive mapping using Banach Fixed Point Theorem [20]. For instance, this
application allows for the generation of fractals given by iterated function systems [23].
In fixed point theory, we can find many other iterations that are used to approximately
find fixed points not only for contractive mapping but also for pseudo-contractive or non-
expansive mappings [20]. We will modify the orbit trap method presented in Section 2
by replacing the Picard iteration with the so-called S-iteration, which was defined by
Agarwal et al. in 2007 [18].

Let (X, d) be a metric space, T : X → X be a mapping and p0 ∈ X be a starting point.
Then, the S-iteration is defined in the following way [18]:

pk+1 = (1− αk)T(pk) + αkT(uk),

uk = (1− βk)pk + βkT(pk),
(11)
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where αk ∈ (0, 1] and βk ∈ [0, 1] for all k ∈ N. Let us notice that the S-iteration reduces
to the Picard iteration if αk = 1 and βk = 0 for all k ∈ N. Moreover, it reduces to the
Picard–Mann iteration [24] if αk = 1 and βk 6= 0 for all k ∈ N.

To use (11) in the orbit trap method, we need to specify a metric space and the mapping
T. We take the metric space (R2, d), where d is any metric in R2, and as the mapping, we
take f : R2 → R2 given by the formulas introduced in Section 2. In (11), we use sequences
of parameters αk and βk, but for simplicity we will use constant sequences, i.e., αk = α
and βk = β. The conditions about the range of the parameters in (11) were introduced
in fixed point theory to obtain convergence to a fixed point of the mapping. In the orbit
trap method, we are not interested in finding fixed points. Instead, we are interested in
generating interesting artistic patterns, so we can omit these conditions and take any real
values. We can even go further and take α and β as two-dimensional points from R2, but in
such a case, we need to define multiplication in order to be able to perform calculations
in the S-iteration. Thus, we define the multiplication in a similar way as for complex
numbers, i.e., [

x1
y1

]
·
[

x2
y2

]
=

[
x1x2 − y1y2
x1y2 + y1x1

]
. (12)

The last thing that we need to consider—if we want to use S-iteration in the orbit
trap method—is the formula for pk+1. In the orbit trap method, we generate patterns with
wallpaper symmetry, so in each form of the f function, we calculate the final result modulo
2π. Therefore, in the formula for pk+1 in (11), we need to do the calculations modulo 2π.

The modified S-iteration that we will use in the orbit trap method has the follow-
ing form:

pk+1 = ([1, 0]T − α) · f (pk) + α · f (uk) mod [2π, 2π]T ,

uk = ([1, 0]T − β) · pk + β · f (pk),
(13)

where p0 ∈ R2 is a starting point; α, β ∈ R2 are parameters; and f : R2 → R2 is the
mapping introduced in Section 2. Let us notice that when the parameters α and β are of
the following form: α = [xα, 0]T , β = [xβ, 0]T , where xα, xβ ∈ R, then (13) reduces to
the S-iteration with scalar parameters α = xα, β = xβ. Therefore, for α = [1, 0]T and
β = [0, 0]T , iteration (13) reduces to the standard Picard iteration.

Looking again at Algorithm 2 and the orbit traps presented in Figure 1, we see that the
circles forming the orbit traps are defined in a metric space in which we use the Euclidean
metric. When introducing the S-iteration to the orbit trap method, we assumed that we take
the metric space (R2, d), where d is any metric in R2. Thus, the circles will have different
shapes for various metrics. In the rest of the paper, we will use three metrics defined in
R2 [25]:

• lp-metric, where p ∈ [1, ∞)

dp([x1, y1]
T , [x2, y2]

T) = (|x1 − x2|p + |y1 − y2|p)
1
p , (14)

• Chebyshev metric (or l∞-metric)

d∞([x1, y1]
T , [x2, y2]

T) = max{|x1 − x2|, |y1 − y2|}, (15)

• Rickman’s rug metric

dγ([x1, y1]
T , [x2, y2]

T) = |x1 − x2|+ |y1 − y2|γ, (16)

where γ ∈ (0, 1).

Examples of circles with centre [0, 0]T and radius 1 obtained with metrics (14)–(16) are
presented in Figure 2.
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Figure 2. Circles with centre [0, 0]T and radius 1 obtained with various metrics. (a) lp; (b) Chebyshev;
and (c) Rickman.

Besides the use of the S-iteration and various metrics for orbit traps, we also introduce
three new orbit traps:

(a) c0 = [0, 3.5]T , c1 = [0,−3.5]T , r0 = r1 = 3.5,
(b) c0 = [4, 0]T , c1 = [−4, 0]T , c2 = [0, 4]T , c3 = [0,−4]T , r0 = r1 = r2 = r3 = 2

√
2,

(c) c0 = [0, 0]T , c1 = [−6, 0]T , c2 = [6, 0]T , c3 = [0,−6]T , c4 = [0, 6]T , r0 = r1 = . . .
= r4 = 3.

Figure 3 presents the new orbit traps obtained with the Euclidean metric.
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Figure 3. New orbit traps obtained with the Euclidean metric. (a) two orbit traps; (b) four orbit traps;
and (c) five orbit traps.

In Algorithm 3, we present the pseudocode for the modified version of the orbit trap
method. We can implement this algorithm on the GPU (graphics processing unit) using
shaders instead of the CPU (central processing unit) implementation presented in [17]. In
the implementation, we render a quad that occupies the whole space in the window. Then,
in the vertex shader, we calculate the coordinates of area corners and let the rasterizer
calculate the coordinates of the starting point p0, which will be an input variable for the
fragment shader. In the fragment shader, we make all the calculations that start from line
6 in the algorithm. Moreover, to enhance the quality of the generated pattern, we can
use multisampling to perform the anti-aliasing that was not used in the original method
presented in [17].
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Algorithm 3: Modified orbit trap method.

Input: f : R2 → R2—mapping with the desired symmetry type; C0 = (c0, r0),
C1 = (c1, r1), . . ., Cn = (cn, rn)—orbit traps, where ci is the centre and ri
is the radius of the ith circle; [xmin, xmax]× [ymin, ymax]—area which should
be drawn; colourTable—colour map with Nc colours generated using
Algorithm 1; M—the maximum number of iterations; W, H—the width
and height of the image; E—exponent; d : R2 ×R2 → [0, ∞)—metric;
α, β ∈ R2—parameters for the S-iteration.

Output: Image generated with the modified orbit trap method.

1 for x = 0, 1, . . . , W − 1 do
2 for y = 0, 1, . . . , H − 1 do
3 x0 = xmin + (xmax − xmin)

x
W−1

4 y0 = ymin + (ymax − ymin)(1−
y

H−1 )

5 p0 = [x0, y0]
T

6 trapped = f alse
7 for k = 0, 1, . . . , M− 1 do
8 uk = ([1, 0]T − β) · pk + β · f (pk)

9 pk+1 = ([1, 0]T − α) · f (pk) + α · f (uk) mod [2π, 2π]T

10 for i = 0, 1, . . . , n do
11 d = d(pk+1, ci)
12 if d < ri then
13 trapped = true
14 break

15 if trapped then

16 v = 10log10(
d
ri
)/E

17 index = min( v
1−v , Nc − 1)

18 colour (x, y) with colour colourTable[index]
19 break

20 if not trapped then
21 colour (x, y) with colour colourTable[Nc − 1]

4. Examples

In this section, we present some examples of patterns obtained using the modified
orbit trap method presented in Section 3. In all examples, we use multisampling with
eight samples per pixel to perform anti-alising for enhancing the quality of the generated
patterns. The algorithm for generating the patterns was written in OpenGL Shading
Language (GLSL).

In the examples, we use four colour maps generated using Algorithm 1. The maps
are presented in Figure 4, and the parameters used to generate them were the following:
E = 16, Nc = 3000, and the base colours together with the colour ratios are gathered in
Table 1.

(a) (b)

(c) (d)

Figure 4. Colour maps used in the examples.
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Table 1. Base colours and colour ratios used to generate colour maps in Figure 4.

Base Colour Colour Ratio

(a)

(0, 0, 0) 0.0
(255, 0, 0) 0.7
(255, 128, 0) 0.75
(0, 0, 0) 0.8

(255, 128, 0) 0.85
(255, 255, 255) 0.9

(26, 0, 0) 1.0

(b)

(0, 0, 0) 0.0
(0, 0, 150) 0.5

(161, 202, 241) 0.7
(243, 195, 0) 0.75
(0, 0, 0) 0.8

(243, 195, 0) 0.85
(255, 255, 255) 0.9

(26, 0, 0) 1.0

(c)

(0, 0, 0) 0.0
(6, 204, 2) 0.6
(0, 0, 0) 0.8

(19, 158, 245) 0.85
(200, 200, 200) 0.9
(115, 106, 55) 1.0

(d)

(0, 0, 0) 0.0
(254, 0, 0) 0.25
(0, 255, 0) 0.3

(255, 255, 127) 0.47
(25, 0, 0) 0.6
(255, 52, 0) 0.7
(0, 128, 255) 0.85
(25, 0, 0) 1.0

In Section 2, we mentioned about the proper combination of the orbit traps and the type
of the function f in order to get the desired type of wallpaper symmetry. Thus, the first example
presents this property. In the example, we generate patterns using the same function f but with
various orbit traps that we introduced in Figures 1 and 3. The obtained patterns are presented
in Figure 5, and the parameters used to generate them were the following: colour map from
Figure 4b, area [−2π, 2π]2, M = 100, Picard iteration (i.e., α = [1, 0]T, β = [0, 0]T), Euclidean
metric, function f given by (8) with p3m1 symmetry and Gv0 = [0.343244, 0.711418]T, Gv1 =
[−0.671499,−0.289951]T, Gv2 = [−0.959405,−0.868905]T, Hv0 = [−0.224996, 0.0844803]T,
Hv1 = [−0.0571376, 0.0250126]T, and Hv2 = [0.0250892, 0.553883]T. From the images in
Figure 5, we see that only Figure 5a,c,g have the same symmetry type as f , namely the p3m1
symmetry. All the other images have another type of symmetry, namely, the cm symmetry.
When we look at the orbit traps used to obtain the patterns with p3m1 symmetry, then we notice
that they have the same rotational symmetries and reflections as the p3m1 symmetry. Thus,
to generate a pattern with a given symmetry type, the function f and the orbit traps should
satisfy similar symmetry conditions. Moreover, from this example, we can observe one more
interesting thing. When we look at the orbit traps in Figures 1c and 3b, we see that they are the
same circles but rotated by 45◦. However, if we look at the patterns generated using them with
the same other parameters (see Figure 5d,e), then we notice that the patterns are completely
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different. Thus, a modification of the orbit traps obtained by rotation could lead to a significant
shape change of the resulting pattern.

(a) (b) (c) (d)

(e) (f) (g)

Figure 5. Patterns generated with function f with p3m1 symmetry and various orbit traps from
Figures 1 and 3. (a) 1 orbit trap from Figure 1a; (b) 2 orbit traps from Figure 3a; (c) 3 orbit traps from
Figure 1b; (d) 4 orbit traps from Figure 1c; (e) 4 orbit traps from Figure 3b; (f) 5 orbit traps from
Figure 3c; and (g) 7 orbit traps from Figure 1d.

In the next example, we present the effect of changing the metric used in the definition
of the orbit traps. To show this, we fix orbit traps and change the metric and its parameter,
i.e., p for the lp metric and γ for the Rickman’s rug metric. In the example, we use orbit
traps from Figure 3a, and the other parameters defining the pattern were the following:
area [−2π, 2π]2, M = 100, E = 16, Picard iteration (α = 1, β = 0 in the S-iteration),
colour map from Figure 4c, and function f given by (1) with the cmm symmetry defined
by the coefficients (we give only the non-zero elements of the matrix that defines (1))
P04 = [0,−0.890893]T , P13 = [0, 0.594811]T , P24 = [0, 0.166299]T , P31 = [2.33836, 0]T ,
P40 = [−1.53665, 0]T , and P42 = [0.149503, 0]T . In Figure 6, we show patterns obtained
with the lp metric with the following values of p: (a) 1.0, (b) 1.5, (c) 2.0, (d) 2.5, (e) 3.0, and
(f) ∞, whereas in Figure 7, we see patterns generated using Rickman’s rug metric with the
following values of γ: (a) 0.9, (b) 0.7, (c) 0.5, and (d) 0.1. The image from Figure 6c was
obtained with the Euclidean metric that was used in the original method presented in [17].
It will serve as a reference point. When we increase the value of p over 2.0 (Figure 6d–f),
we see that some of the areas of the pattern are gradually smooth out. This change is
continuous, and the smoothing becomes bigger with the increase of the p value, obtaining
in the limit the pattern presented in Figure 6f. When we decrease p below 2.0 and tend to
1.0 (Figure 6a,b), we see that more details appear in the pattern compared to the pattern
obtained with the original method. If we look at the images obtained with the Rickman’s
rug metric, then we can also notice a smoothing effect with the decrease of the γ value.
However, some other details are smoothed out compared to the lp metric. Therefore, we
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see that with the use of various metrics, we can obtain very interesting patterns that were
not possible to obtain with the Euclidean metric.

(a) (b) (c)

(d) (e) (f)

Figure 6. Patterns generated with function f with cmm symmetry and orbit traps from Figure 3a
with various values of p in the lp metric. (a) l1.0; (b) l1.5; (c) l2.0; (d) l2.5; (e) l3.0; and (f) l∞.

(a) (b) (c) (d)

Figure 7. Patterns generated with function f with cmm symmetry and orbit traps from Figure 3a
with various values of γ in the Rickman’s rug metric. (a) γ = 0.9; (b) γ = 0.7; (c) γ = 0.5; and
(d) γ = 0.1.

The next two examples show the use of the S-iteration. In the first example, we use
S-iteration with scalar parameters α and β, which corresponds to the case in which we
vary the x coordinate and take y = 0 of the parameters. In the second example, we use
S-iteration, in which the β parameter is fixed and the α parameter has fixed x coordinate
and varying y coordinate.

In the first example with the S-iteration, we generate patterns for scalar values of the
iteration’s parameters, i.e., the parameters are of the form α = [xα, 0]T , β = [xβ, 0]T , where
xα, xβ ∈ R. The generated patterns are presented in Figure 8, where the following parame-
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ters were used in the generation process: orbit traps from Figure 3b with Euclidean metric,
area [−2π, 2π]2, M = 100, E = 16, colour map from Figure 4a, and function f given by (1)
with the p4m symmetry defined by the coefficients (again we give only the non-zero ele-
ments of the matrix) P03 = [0,−0.234602]T , P04 = [0,−0.231376]T , P13 = [0,−0.931333]T ,
P14 = [0,−0.982975]T , P23 = [0, 0.429163]T , P24 = [0, 0.363704]T , P30 = [−0.234602, 0]T ,
P31 = [−0.931333, 0]T , P32 = [0.422963, 0]T , P40 = [−0.231376, 0]T , P41 = [−0.982975, 0]T ,
and P42 = [0.363704, 0]T . From the images, we see that by changing the scalar values of the
α and β parameters in the S-iteration, we are able to generate a great variety of patterns. The
shapes of the patterns can be very simple, as in Figure 8a, or very complex, as in Figure 8d.

(a) (b) (c) (d)

Figure 8. Patterns generated with function f with p4m symmetry, orbit traps from Figure 3b, and
S-iteration with varying scalar α and β parameters. (a) α = [1.1, 0]T , β = [1.1, 0]T ; (b) α = [1.5, 0]T ,
β = [1, 0]T ; (c) α = [−1.5, 0]T , β = [1.3, 0]T ; and (d) α = [2, 0]T , β = [−1.1, 0]T .

In the second example, with the S-iteration, we generate patterns in which we vary the
y coordinate of the α parameter, and the other parameters are fixed. In this way, we show
that not only scalar parameters generate interesting patterns but also the vector parameters. In
the example, we used the following parameters: β = [0.5, 0]T in the S-iteration, orbit traps
from Figure 1c with Euclidean metric, area [−2π, 2π]2, M = 100, E = 16, colour map
from Figure 4d, and function f given by (1) with the p4 symmetry defined by the coefficients
(again we give only the non-zero elements of the matrix) P03 = [0.215989,−0.150289]T,
P04 = [0.0748772, 0.670663]T, P13 = [0.741719, 0.543639]T, P14 = [0.709028,−0.822211]T,
P23 = [0.708072,−0.814562]T, P24 = [0.100835, 0.40511]T, P30 = [−0.150289,−0.215989]T,
P31 = [0.543639,−0.741719]T, P32 = [−0.814562,−0.708072]T, P40 = [0.670663,−0.0748772]T,
P41 = [−0.822211,−0.709028]T, and P42 = [0.40511,−0.100835]T. In Figure 9, we see
patterns generated with the following values of the α parameter: (a) [1.1, 0.5]T, (b) [1.1, 0.8]T,
(c) [1.1,−0.8]T, and (d) [1.1, 4]T. Similar to the scalar case, when varying the y coordinate of
the α parameter, we are able to obtain a great variety of patterns. The generated patterns vary
not only in shape but also in colouring. In Figure 9, we see a greater variety of colours than in
Figure 8.

In the end, we present an interesting observation. When using orbit traps in which we
have an empty space in the neighbourhood of the origin that is surrounded by the orbit
traps (see orbit traps in Figures 1b,c and 3b) and function f with compatible symmetry type,
then in the area near the origin of the generated pattern, we find self-similar structures.
Thus, the patterns have a local fractal structure. To observe this, in Figure 10, we present
magnification of the central part of the patterns from Figures 5c, 8c and 9a. If we magnify
these areas further, then we get the same images repeatedly, so we clearly see the local
self-similarity property.
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(a) (b) (c) (d)

Figure 9. Patterns generated with function f with p4 symmetry, orbit traps from Figure 1c, and
S-iteration with β = [0.5, 0]T and varying α parameter. (a) α = [1.1, 0.5]T ; (b) α = [1.1, 0.8]T ;
(c) α = [1.1,−0.8]T ; and (d) α = [1.1, 4]T .

(a) (b) (c)

Figure 10. Magnifications of the areas near the origin of patterns from Figures 5c, 8c and 9a. These
magnifications show the local self-similarity property of the patterns. (a) Figure 5c; (b) Figure 8c; and
(c) Figure 9a.

5. Conclusions

In this paper, we proposed extensions of the orbit trap method introduced in [17]. The
extensions rely on the use of (1) new orbit traps, (2) various metrics instead of the Euclidean
one, and (3) the S-iteration. Moreover, we extended the S-iteration from scalar to vector
parameters. The presented examples showed that we are able to generate patterns, which
we had not been able to obtain previously.

In our extensions, we used only the S-iteration. In the literature, there are many other
iteration methods. For example, in [26], we can find a review of 17 different iterations and
their dependencies. Moreover, there are iteration methods that use several mappings [14].
Thus, an interesting direction for further study would be the use of other iteration methods.

Not all values of the parameters defining the f function that satisfy the appropriate
symmetry condition give rise to interesting and artistic patterns [15]. To find the values
that will give artistic patterns, Carter et al. in [15] used a simple Monte Carlo method, so
the evaluation of the pattern was made by the authors. Therefore, another direction for
future studies would be developing an automatic method for finding patterns with artistic
features. For instance, we could try to use genetic algorithms for this task because this type
of method has proven itself in various methods that generate artistic images [27–29].

Author Contributions: Conceptualization, K.G. and H.A.; methodology, K.G.; software, K.G.; inves-
tigation, K.G.; writing—original draft preparation, K.G.; writing—review and editing, K.G. and H.A.;
visualization, K.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Natural Science Foundation of China grant number 62062042.



Appl. Sci. 2022, 12, 2923 14 of 16

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Appendix A. Symmetry Conditions

In this appendix, we gathered the conditions that function f given by (1) must satisfy
to generate a pattern with one of the symmetry types: p2, pm, pg, cm, cmm, pmm, pmg,
pgg, p4, p4m, and p4g.

The symmetry of the considered function f depends on the matrix:

P =

P00 . . . P04
...

...
...

P40 . . . P44

,

where P00, P01, . . . , P44 ∈ R2. For simplicity, we present the conditions in the form of a
matrix M (a mask) that has the same dimensions as P. To obtain a matrix P′ that will define
f with symmetry type given by the mask M, we need to calculate P′ = P ◦M, where ◦ is
element-wise product of matrices and vectors.

Let us introduce the following notation:

0 =

[
0
0

]
, 1 =

[
1
1

]
, ↑=

[
1
0

]
, ↓=

[
0
1

]
.

The masks for the p2, pm, pg, cm, cmm, pmm, pmg, and pgg symmetries are the
following [15]:

Mp2 =


0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 0 0
1 1 1 0 0

, Mpm =


↑ ↑ ↑ ↓ ↓
↑ ↑ ↑ ↓ ↓
↑ ↑ ↑ ↓ ↓
↑ ↑ ↑ ↓ ↓
↑ ↑ ↑ ↓ ↓

, Mpg =


↑ ↑ ↑ ↓ ↓
↓ ↓ ↓ ↑ ↑
↑ ↑ ↑ ↓ ↓
↓ ↓ ↓ ↑ ↑
↑ ↑ ↑ ↓ ↓



Mcm =


↑ 0 ↑ 0 ↓
0 ↑ 0 ↓ 0
↑ 0 ↑ 0 ↓
0 ↑ 0 ↓ 0
↑ 0 ↑ 0 ↓

, Mcmm =


0 0 0 0 ↓
0 0 0 ↓ 0
0 0 0 0 ↓
0 ↑ 0 0 0
↑ 0 ↑ 0 0

, Mpmm =


0 0 0 ↓ ↓
0 0 0 ↓ ↓
0 0 0 ↓ ↓
↑ ↑ ↑ 0 0
↑ ↑ ↑ 0 0



Mpmg =


0 ↑ 0 0 ↓
0 ↑ 0 0 ↓
0 ↑ 0 0 ↓
↑ 0 ↑ ↓ 0
↑ 0 ↑ ↓ 0

, Mpgg =


0 ↑ 0 0 ↓
↓ 0 ↓ ↑ 0
0 ↑ 0 0 ↓
0 ↓ 0 0 ↑
↑ 0 ↑ ↓ 0


In the case of the p4, p4m, and p4g symmetries, we cannot give the conditions in the

form of masks because the coefficients of P must satisfy some symmetry conditions that
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cannot be placed in the mask. Therefore, for these three symmetry types, we directly give
the form of the matrix P [15]:

Pp4 =



0 0 0
[

m00
m01

] [
m10
m11

]
0 0 0

[
m20
m21

] [
m30
m31

]
0 0 0

[
m40
m41

] [
m50
m51

]
[

m01
−m00

] [
m21
−m20

] [
m41
−m40

]
0 0[

m11
−m10

] [
m31
−m30

] [
m51
−m50

]
0 0


,

Pp4m =



0 0 0
[

0
m01

] [
0

m11

]
0 0 0

[
0

m21

] [
0

m31

]
0 0 0

[
0

m41

] [
0

m51

]
[

m01
0

] [
m21

0

] [
m41

0

]
0 0[

m11
0

] [
m31

0

] [
m51

0

]
0 0


,

Pp4g =



0 0 0 0
[

0
m11

]
0 0 0

[
m20

0

]
0

0 0 0 0
[

0
m51

]
0

[
0
−m20

]
0 0 0[

m11
0

]
0

[
m51

0

]
0 0


,

where m00, m01, m10, m11, . . . , m50, m51 ∈ R.
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