
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Title: Structure and Properties of Copper Pyrophosphate by First-Principle 

Calculations     

 

Author: Anna Majtyka-Piłat, Marcin Wojtyniak, Łukasz Laskowski, Dariusz 

Chrobak 

 

Citation style: Majtyka-Piłat Anna, Wojtyniak Marcin, Laskowski Łukasz, 

Chrobak Dariusz. (2022). Structure and Properties of Copper Pyrophosphate 

by First-Principle Calculations. „Materials” (2022, iss. 3, art. no. 842, s. 1-9), 

DOI: 10.3390/ma15030842 



����������
�������

Citation: Majtyka-Piłat, A.;

Wojtyniak, M.; Laskowski, Ł.;

Chrobak, D. Structure and Properties

of Copper Pyrophosphate by

First-Principle Calculations. Materials

2022, 15, 842. https://doi.org/

10.3390/ma15030842

Academic Editors: Tony Spassov and

Mateusz Dulski

Received: 31 December 2021

Accepted: 18 January 2022

Published: 22 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Structure and Properties of Copper Pyrophosphate by
First-Principle Calculations
Anna Majtyka-Piłat 1,* , Marcin Wojtyniak 2, Łukasz Laskowski 3 and Dariusz Chrobak 1

1 Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice,
75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; dariusz.chrobak@us.edu.pl

2 Institute of Physics—Center for Science and Education, Silesian University of Technology, Krasińskiego 8,
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Abstract: Investigated the structural, electronic, and magnetic properties of copper pyrophosphate
dihydrate (CuPPD) by the first-principle calculations based on the density functional theory (DFT).
Simulations were performed with the generalized gradient approximation (GGA) of the exchange-
correlation functional (Exc) supplemented by an on-site Coulomb self-interaction (U–Hubbard term).
It was confirmed that the GGA method did not provide a satisfactory result in predicting the electronic
energy band gap width (Eg) of the CuPPD crystals. Simultaneously, we measured the Eg of CuPPD
nanocrystal placed inside mesoporous silica using the ultraviolet–visible spectroscopy (UV–VIS)
technique. The proposed Hubbard correction for Cu-3d and O-2p states at U = 4.64 eV reproduces the
experimental value of Eg = 2.34 eV. The electronic properties presented in this study and the results of
UV–VIS investigations likely identify the semiconductor character of CuPPD crystal, which raises the
prospect of using it as a component determining functional properties of nanomaterials, including
quantum dots.

Keywords: nanocrystals; nanoreactors; DFT; electronic properties; magnetic properties

1. Introduction

In recent years, nanocrystalline materials, including quantum dots (QDs), have at-
tracted great interest in various scientific areas, such as nanophotonics, electronics, me-
chanics, catalysis, and medicine. Their unique properties, essentially broad excitation
spectra, narrow emission bandwidth, size-dependent tunable fluorescence, high quantum
yield, and high photostability, raise the prospect of using them as a critical component of
biosensors, chemical sensors [1,2], light-emitting diodes [3], or ultra-low lasing threshold
lasers [4]. Moreover, numerous kinds of nanoparticles (NPs) have been used extensively in
medicine as biocidal agents, disinfectants [5], or therapeutic and diagnostic purposes [6].
Although the electric and magnetic properties of many semiconductor QDs have been ex-
tensively studied and well recognized, the structure and properties of metal pyrophosphate
compounds existing in the nanocrystalline form are less explored and often much more
complex.

The pyrophosphate groups, also known as condensed phosphates, play numerous
essential roles in the biochemistry of living organisms [7]. Interestingly, phosphonate
nucleotide analogs can inhibit SARS-CoV-2 RNA polymerase, making them crucial antivi-
ral agents [8]. Furthermore, in addition to biomedical applications, phosphates, mainly
those containing metal, are widely used in many other areas, such as energy science [9],
sensors [10], or catalysis [11]. Such molecules can be separated and placed precisely inside
porous silica structures [12–14]. The materials obtained in such a way can be a starting
point for the fabrication of nanocomposites composed of copper pyrophosphate and silver
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oxide nanocrystals placed inside mesoporous silica of the SBA-15 type, as we showed in
our previous works [15].

Theoretical modeling provides an essential insight into the atomic structure and
nanoscale phenomena, which has become a significant means for complementing experi-
ments. Quantum mechanical calculations, such as density functional theory (DFT) [16,17],
are routinely used to investigate and understand the structural, magnetic, mechanic, optical,
and electronic properties of many different materials [18–20]. For structure property calcu-
lations of our CuPPD crystal, we selected the generalized gradient approximation (GGA)
correlation energy functionals (XC) in the form parameterized by Perdew–Burke–Ernzerhof
(PBE) [21], which remains the most satisfactory for solids containing 3d transition ele-
ments [22]. However, DFT based on GGA does not adequately describe the electronic and
magnetic structure of materials containing 3d or 4f states. Therefore, these characteristics
are studied based on DFT supplemented by strong Coulomb interaction via Hubbard-like
Hamiltonian (U) [23]. The above strategy is already recognized to be capable of minimiz-
ing a deficiency of the DFT calculation, which underestimates the semiconductor band
gap [23].This article reviews the theoretical investigation of the ground state (i.e., mag-
netic and electronic properties), as well as the value and character of the band gap of
semiconductor-like copper pyrophosphate material. Our spin-polarized DFT calculations
reveal the presence of a narrow peak in the spin-up and spin-down channels concentrated
around and slightly above the Fermi energy, which constitutes that nanocrystalline copper
pyrophosphate exhibits a semiconductor-like character and appears to be a good candidate
for QD material. Furthermore, we report the influence of the 3d states of copper metal on
the magnetic properties of CuPPD material. The DFT and DFT+U theoretical predictions
for the energy and character of the band gap were compared with experimental investi-
gation contributed by UV–VIS measurements. To the best of our knowledge, it is the first
time that the suitability of the DFT+U to investigate m-CuPPD nanocrystal and its bulk
counterpart was discussed and demonstrated. Therefore, our results propose an efficient
and beneficial scheme for promoting new practical knowledge in theoretical simulations of
similar compounds of technology relevance. Furthermore, our well-tuned DFT approaches
may be applied to many other specific nanocrystalline materials.

The following section describes the experimental and computational methods used in
the calculation. The main results are presented and discussed in Section 3. The paper ends
with a summary and some conclusions.

2. Experimental and Computational Details

The preparation of the nanocrystalline copper pyrophosphate in silica nanoreactors is
presented in our article [15]. The DFT studies were carried out using the Quantum Espresso
code [24]. The calculations were performed using the generalized gradient approximation
(GGA) correlation energy functionals (XC) in the form parameterized by Perdew–Burke–
Ernzerhof (PBE) [21]. The XC energy functional was supplemented by strong Coulomb
interaction via Hubbard-like Hamiltonian [23]. In the Hubbard model, the effective LDA+U
energy functional is written as:

ELDA+U[n] = ELDA[n] + EUnσ
i − Edcnσ

i (1)

where ELDA is the standard LDA(GGA) energy functional; EUni
σ denotes the Hubbard

interaction energy of the localized correlated orbitals (typically localized d or f orbitals);
Edcni

σ defines double counting term, which cancels the electron–electron interaction in the
localized shell within LDA/GGA; and ni

σ represents the particle density matrix.
A kinetic energy cutoff of 65 Ry and a charge density cutoff of 325 Ry were assumed

for PBE calculations. Similarly, values of 68 Ry and 325 Ry were used in the case of
PBE+U studies. Optimized crystal structures were obtained by relaxing atomic positions
and cell parameters under the Broyden–Fletcher–Goldfarb–Shanno (BFGS) minimization
scheme [25]. A 7 × 7 × 12 Monkhorst–Pack mesh [26] in reciprocal space enabled us to
achieve a well-converged total energy of the system as well as its atomic configurations.
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Electronic properties were calculated using a dense 12 × 12 × 20 Monkhorst–Pack grid. To
investigate the magnetic stability, we made calculations for the ferromagnetic (FM) and
antiferromagnetic (AFM) configuration. To account for the enhanced Coulomb correlation
for Cu-3d and O-2p electrons, we used the DFT+U formalism [23]. The Hubbard term
U(2–8 eV) was utilized to improve the interaction between electrons occupying the d and p
orbitals of Cu and O atoms, respectively.

The energy gap of copper pyrophosphate was investigated using the ultraviolet–visible
spectroscopy (UV–VIS) technique. We have used a microspectrophotometer from CRAIC
Technologies (San Dimas, CA 91773, USA) equipped with a standard halogen lamp and
Zeiss 15× objective. The sample was cold-pressed into a very thin pellet or a flake. The
experiments were performed at room temperature and ambient pressure. To estimate the
band gap width, we used the formula proposed by Wood and Tauc [27]:

hν × α ∼
(
hν − Eg

)n (2)

where α is the absorbance, h stands for the Planck constant, ν defines the photon’s frequency,
Eg denotes the optical band gap energy, and n is a constant related to different electronic
transitions. The n parameter equals 0.5, 2, 1.5, and 3 for direct, indirect, allowed, and
forbidden transitions, respectively.

3. Results and Discussion

According to the experimental results provided by Gras et al. [28], the structure of
Cu2P2O7*2H2O (m-CuPPD) crystallized in a P21/n space group includes pyrophosphate
ions and two water molecules (Figure 1). Each formula unit is repeated four times per cell.
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Figure 1. (a) Crystal structure of Cu2P2O7(H2O)2. The orange, blue, red, and navy blue spheres
denote copper, phosphorus, oxygen, and hydrogen atoms. Black and green arrows indicate the spin
magnetic moment direction of the Cu atoms. (b) CuPPD crystal structure viewed from the y-direction
showing the details of atomic arrangement.
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At first, the PBE method was used to calculate the relative stability of nonmagnetic
(NM), antiferromagnetic, and ferromagnetic states. From the total energy analysis as a
function of the volume cell (Figure 2), we found the AFM state energetically more favorable
than the FM and NM states by about 51.57 and 111.65 meV, respectively. Therefore, all
subsequent calculations are performed for the most stable AFM state.
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Figure 2. Variation in the total energy as a function of the cell volume calculated for the AFM, FM,
and NM states of the CuPPD structure with the PBE method.

The structural parameters of the relaxed CuPPD unit cell are presented in Table 1.
One can observe that lattice parameters significantly depend on the calculations’ details.
Interestingly, implementing the Hubbard terms U to the Cu d- and O p-orbitals in the
optimization process caused some characteristic changes to the lattice parameters. The
calculated lattice constants b and c decrease with the value of U, whereas a reverse trend
is observed for the a lattice parameter. It, at first, decreases as U increases, and when U
reaches a value close to 4 eV, the calculated a parameter increases. Moreover, the unit
cell volume decreases within the PBE+U as a function of U. Unfortunately, it should be
emphasized that there are no data available in the literature for possible comparison.

Table 1. Optimized lattice parameters and unit cell volume of monoclinic CuPPD estimated with
PBE and PBE+U for AFM configuration.

Structural
Parameters PBE PBE+U

U = 2 eV U = 4 eV U = 6 eV U = 8 eV

a (Å) 11.466 11.435 11.439 11.452 11.472
b (Å) 10.204 10.032 9.924 9.762 9.689
c (Å) 6.123 6.115 6.111 6.105 6.113

V (Å3)formula unit 196.054 170.605 168.790 166.107 165.118

The calculated average bond lengths between copper (Cu), phosphorus (P), oxygen (O),
and hydrogen (H) atoms of the Cu2P2O5*H2O structure are listed in Table 2. As can be
observed, the equilibrium bond length of CuPPD becomes essentially smaller by applying
the PBE+U method, from ~0.04% (U = 2 eV) to 2.54% (U = 8 eV), in comparison with the
PBE potential.
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Table 2. Selected average bond lengths (Å) of copper pyrophosphate dihydrate material calculated
with PBE and PBE+U.

Bonds
Interatomic Distances (A)

PBE U = 2 eV U = 4 eV U = 6 eV U = 8 eV

Cu1-P1 3.287 3.277 3.269 3.261 3.255
Cu1-O2 2.025 2.012 2.005 1.999 2.001
P1-O2 1.577 1.563 1.553 1.543 1.535
O8-H1 0.982 0.975 0.969 0.963 0.959

The electronic and magnetic properties are among the most studied features in novel
materials, especially in areas linked to nanocrystalline QDs and nanostructured technolo-
gies. Consequently, the energy band structure, energy gap, or details of CuPPD’s partial
density of states (PDOS) are of considerable interest. The electronic band structure of a
CuPPD monoclinic structure computed within the spin-polarized approaches using the
PBE and PBE+U methods is shown in Figure 3.
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Figure 3. The electronic band structure of copper pyrophosphate calculated using PBE and PBE+U.
The Fermi level (dashed line) was set to zero.

The results of PBE band calculations indicate the semiconductor-like character of
CuPPD with two indirect band gaps of 0.59 and 3.92. The highest valence band of CuPPD
is dominated by the transition metal Cu-3d and O-2p states, which show their strong
hybridization. Furthermore, the electronic band structure analysis exhibits significant
discrepancies above the Fermi energy, suggesting a strong correlation among electrons
in Cu and O ions, leading to the necessity of using the Hubbard approximation in such
systems. For this reason, we compared the effect of the U parameter value (0 < U < 8 eV)
within PBE+U on the calculated electronic and magnetic properties of monoclinic CuPPD
material. As shown in Figure 3 and Table 3, the PBE+U calculation improves the band gap
values to a greater extent, overcoming the hybridization between the oxygen 2p and the
transition metal copper 3d orbital. Furthermore, it is found that the calculated energy band
gaps increase by raising the U parameter, and when the U reaches a value close to 8 eV, the
second band gap value declines.
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Table 3. Hubbard U parameter values for Cu (d) and O (p) orbitals, energy gap value, and magnetic
moments, calculated by the DFT/PBE+U methodology in a spin-polarized case.

PBE+U µCu µO
µtot (Bohr
mag/Cell) Eg (eV)

U = 2 eV 5.45 0.48 7.65 1.18, 4.6
U = 4 eV 5.97 0.39 7.88 1.92, 4.93
U = 6 eV 6.46 0.29 8.00 2.79, 5.29
U = 8 eV 6.85 0.20 8.07 3.89, 4.04

The ultraviolet and visible (UV–VIS) absorption spectroscopy results were fitted,
assuming that the copper pyrophosphate is an indirect band gap material (Figure 4). Thus,
n = 2 was used for Equation (2). The fitting showed two band gaps with 0.09 eV and 2.34
eV. The first value is relatively small, and we believe it cannot be attributed to the copper
pyrophosphate. Most probably it originates from other components of the mixture. Due
to the sample preparation procedure, other ingredients (such as silver oxide) could not
be removed entirely, thus giving rise to the UV–VIS absorption. On the other hand, the
latter value of 2.34 eV fits our DFT/PBE+U calculations nicely. It is consistent with the DFT-
calculated first band for U equal to 4.64 eV (values were obtained from linear interpolation
of U from 2 to 8 eV). However, the results of our studies are based on a comparison of DFT
values computed at 0 K and experimental data received at room temperature, and it is not
evident whether temperature-induced changes might influence comparison.
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Figure 4. UV–VIS spectrum of monoclinic CuPPD and silver oxide nanocrystals restricted in SBA-15
mesoporous silica (black dots). According to Equation (2), linear fit indicates the energy gap width
Eg. The vertical axis is a square root of a product of absorption coefficient and the energy of radiation
(n = 2).
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Analysis of projected density of states (PDOS) (Figure 5) was performed to determine
the electronic band’s modification due to the addition of Hubbard terms. PBE calculations
in Figure 5a reveal that the electronic states near the top of the valence band are mainly
filled by Cu-d and O-p electrons. Therefore, for clarity, Figure 5b–e shows only mentioned
states. Closer inspection of PDOS spectra obtained by PBE and PBE+U methods also shows
an additional peak above the Fermi level in both spin channels, and this feature is formed
by the Cu-d and O-p states. Furthermore, PBE+U calculation results indicate that the
application of U shifted the electronic states of CuPPD and consequently extended both
energy gaps.
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In addition, to address the effect of the U correction on the description of the CuPPD
compound’s magnetic properties, we compare PBE and PBE+U methods and obtain mag-
netic moment for Cu and O elements, the total magnetic moment per cell, listed in Table 3.
The calculated total magnetic moment of copper pyrophosphate compound equals 6.91 µB
for the PBE method.

Our results indicate that the total magnetic moments generally originate from the Cu
ions with a small contribution of O ions. The PBE+U functional showed significant changes
in the magnetic properties of the compound. The magnetic moment on Cu ion changed
from 5.45 µB to 6.85 µB with the value of U, whereas a different trend was observed for
the O ion, where magnetic moments decreased from 0.48 µB to 0.20 µB. It was observed
that the PBE+U method predicts a larger value for the magnetic moment because Hubbard
formalism reduces the PBE delocalization error between Cu-3d and O-2p states.

4. Conclusions

To summarize, we used the DFT calculations within PBE and PBE+U schemes to char-
acterize the atomic structure and predict the electric and magnetic properties of monoclinic
CuPPD compounds restricted in SBA-15 mesoporous silica. We found the AFM phase to
be the most stable state compared with the FM and NM phases. Applying the Hubbard
correction for the Cu and O atoms provides essential changes in the magnetic and electronic
properties of CuPPD crystal. We found that variation of the magnetization of our material
increases with the value of U and mainly comes from Cu’s partially filled d orbitals. The
magnetic moments change from 6.91 µB (PBE) to 8.07 µB (PBE+U, U = 8 eV). Furthermore,
the DFT-calculated indirect band gap energy at Γ point of the first Brillouin zone changes
from 0.59 eV and 3.92 eV (PBE) to 3.89 eV and 4.04 eV (PBE+U, U = 8 eV). We found that
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PBE+U (U = 4.64 eV) obtained energy band gaps in good agreement with an experimental
optical energy band gap of 2.34 eV received by UV–VIS measurement. Interestingly, elec-
tronic structures indicated the presence of a narrow peak in the spin-up and spin-down
channels concentrated around the Fermi energy originated from the Cu-3d and O-2p bands,
suggesting that monoclinic CuPPD crystal exhibits semiconducting-like properties. We
conclude that our PBE+U method is appropriate to calculate the structural, electronic, and
magnetic properties of monoclinic CuPPD compounds. We hope that the result of our
calculations contains information important to modern semiconductor technology.
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