

Title: Aggregation of Rankings Using Metaheuristics in Recommendation

Systems

Author: Michał Bałchanowski, Urszula Boryczka

Citation style: Bałchanowski Michał, Boryczka Urszula. (2022). Aggregation

of Rankings Using Metaheuristics in Recommendation Systems. „Electronics

(Basel)” (2022, iss. 3, s. 1-13), DOI:10.3390/electronics11030369

����������
�������

Citation: Bałchanowski, M.;

Boryczka, U. Aggregation of

Rankings Using Metaheuristics in

Recommendation Systems.

Electronics 2022, 11, 369.

https://doi.org/10.3390/

electronics11030369

Academic Editor: Stefano Ferilli

Received: 30 November 2021

Accepted: 22 January 2022

Published: 26 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Aggregation of Rankings Using Metaheuristics in
Recommendation Systems
Michał Bałchanowski *,† and Urszula Boryczka †

Institute of Computer Science, Faculty of Science and Technology, University of Silesia in Katowice, Będzińska 39,
41-200 Sosnowiec, Poland; urszula.boryczka@us.edu.pl
* Correspondence: michal.balchanowski@us.edu.pl
† These authors contributed equally to this work.

Abstract: Recommendation systems are a powerful tool that is an integral part of a great many
websites. Most often, recommendations are presented in the form of a list that is generated by using
various recommendation methods. Typically, however, these methods do not generate identical
recommendations, and their effectiveness varies between users. In order to solve this problem, the
application of aggregation techniques was suggested, the aim of which is to combine several lists
into one, which, in theory, should improve the overall quality of the generated recommendations.
For this reason, we suggest using the Differential Evolution algorithm, the aim of which will be to
aggregate individual lists generated by the recommendation algorithms and to create a single list
that will be fine-tuned to the user’s preferences. Additionally, based on our previous research, we
present suggestions to speed up this process.

Keywords: recommendation systems; rank aggregation; differential evolution; supervised learning;
matrix factorization; metaheuristic

1. Introduction

In today’s world where the amount of information available is overwhelming for
a common user, the use of systems designed to support the user in making decisions is
becoming more apparent. This role is taken on by recommendation systems, which are more
commonly used in various areas of our life. From buying items on auction sites through
selecting a movie to adding new friends on social networks. The growing popularity of
this type of website means that there is a real demand for recommendation systems that
work efficiently and not only increase the quality of the generated recommendations but
also ensure their novelty and diversity [1].

Within the recommendation systems, we can distinguish two main approaches to
creating a recommendation. They can be based on an attempt to predict what rating (e.g.,
on a scale from 1 to 5) the user would give to an item in the system. They can also attempt
to predict a certain set of items, most often presented in the form of a list that would
be recommended to the user [2] (this problem is also called the top-N recommendations
problem). Additionally, we can rely on data entered directly by the user or we can infer
their preferences by observing how they use the system.

This article will also discuss the problem of rank aggregation, which has been de-
scribed thoroughly in the literature, especially in the context of information retrieval
systems [3–5] and proven to be NP-hard [6] even for small collections of ranks (e.g., 4 or
more). However, according to some researchers [7], this topic has not yet been sufficiently
studied in the context of recommended systems. Depending on the dataset used, individual
recommendation algorithms can generate different recommendations, and choosing one
particular algorithm over others can decrease the quality of recommendations for some of
the users.

Electronics 2022, 11, 369. https://doi.org/10.3390/electronics11030369 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11030369
https://doi.org/10.3390/electronics11030369
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8200-6566
https://orcid.org/0000-0002-2698-6934
https://doi.org/10.3390/electronics11030369
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11030369?type=check_update&version=1

Electronics 2022, 11, 369 2 of 13

Therefore, the use of aggregation techniques has been proposed also in this context
where the aim is to combine the individual lists generated by different recommendation
techniques in order to create one “super” list.

Additionally, due to the fact that we will be optimizing the average precision (AP)
measure, the Differential Evolution (DE) algorithm will be used, which is a metaheuristic
that makes the direct optimization of this measure possible [8]. Our method is universal,
and thus any metaheuristic algorithm that is used for real-valued optimization can be used
here (e.g., PSO [9]). We chose the DE to conduct our research, due to the fact that it is
well-suited for this type of optimization [10–12]. DE is arguably one of the most versatile
and stable population-based search algorithms that exhibits robustness to many different
optimization problems [13]. Additionally, it is relatively simple to implement and has a
small number of control parameters, which makes this algorithm easy to tune.

The main contribution of this paper is to present how the DE algorithm can be applied
to the problem of rank aggregation in recommendation systems, which will be supported
by tests performed on the MovieLens 100k data set [14]. We will also present, based on
our previous work [15], how to accelerate this algorithm while generating ranking lists
of items using a dedicated fitness function. This function can also be successfully used in
other metaheuristics that use real-valued representations of individuals in a population. In
addition, we will present research that will show that the use of metaheuristic algorithms
in the context of the problem of rank aggregation can be additionally justified due to the
resistance of these techniques to algorithms that generate low-quality recommendations.

The article is divided into six chapters. Section 2 constitutes a literature review
with information about the current literature. Section 3 presents a formal definition of
a recommendation system, an explanation of the ranking aggregation problem and the
Differential Evolution algorithm. Section 4 presents a description of our algorithm along
with the system architecture and a figure showing a simple example regarding how the
matrix fitness function is calculated. Section 5 discusses how the test environment was
prepared for conducting the experiments and presents the results with commentary. The
final Section 6 discusses our conclusions and research proposals for the future.

2. Literature Overview

The problem of recommendations can be presented as the problem of predicting how a
user would rate a given item (e.g., on a scale from 1 to 5) [16], or as the problem of creating
a list of suggested items and is referred to as the Top-N recommendation problem [17]. In
fact, the latter is more similar to the real-life scenario when working with recommendation
systems [18], where the recommendations are most often presented in the form of a list of
suggested items in which the elements at the beginning are more important than the ones
at the end.

There have been many works describing this approach in the context of recommenda-
tion systems [2,17]. In order to evaluate the quality of such recommended lists, measures
that take into account the order in which the items appear on the list are used, e.g., Mean
Average Precision (MAP) and Normalized Discounted Cumulative Gain (NDCG). Due
to the fact that these measures are usually difficult to directly optimize, metaheuristic
algorithms can be applied here [8,19]. A good review of evolutionary algorithms in recom-
mendation systems is the paper [20], in which the authors presented an overview of the
current research in this area and suggestions for research in the future.

In this article, we also pay attention to the problem of rank aggregation. A great deal
of work has been done on this subject, especially in the context of information retrieval
systems [21]. We generally divide the algorithms used for rank aggregation into two cate-
gories: permutation-based and score-based. There are many suggested techniques in the
literature, for example: Borda Count [6], COMB* [22] (e.g., COMBSUM and COMBMNZ),
or OutRank [23]. Within the context of recommendation systems, there have also been
several works addressing this problem. In [24], a system for creating recommendations for
the entire group of users was suggested, instead of as usually done for one user only.

Electronics 2022, 11, 369 3 of 13

In the work [25], the authors suggested creating a multi-criteria recommendation
system, which, in addition to the quality of the generated recommendations, also took into
account measures, such as novelty and diversity. In [26], the authors used genetic program-
ming to create a recommendation system that generated recommendations by optimizing
the MAP measure. It is also worth paying attention to [7], in which the researchers asked
themselves whether the problem of rank aggregation in the context of recommendation
systems is worth looking into. They performed extensive experiments and suggested the
direction in which future work in this area should go.

3. Background of the Research

This chapter explains the basic information and the definitions used in this article. At
first, the definition of the recommendation system, methods of obtaining feedback from
users and the problem of matrix factorization will be discussed. Then, we will present the
problem of rank aggregation in the context of recommendation systems. Finally, we will
present a metaheuristic algorithm that will be used during our research.

3.1. Recommender System

In a recommendation system, we distinguish a certain set of users U = u1, . . . , u|U|
and a certain set of items I = i1, . . . , i|I|. Each of the users u ∈ U has interacted with some
of the items i ∈ I. The task of the recommendation system for the Top-N recommendation
problem is to, on the basis of the historical data collected in the system, predict the user’s
next choices and create a list of items that are likely to interest the user. High-quality
recommendations contribute to user satisfaction, which can translate into an overall good
impression when using the platform. Depending on what kind of feedback is obtained
from the user, recommendation techniques can be based on data from:

• Implicit feedback—This feedback is obtained by analyzing the user’s behavior in the
system, e.g., clicking on a specific product, page views and adding an item to the
basket [27]. This type of feedback is easier to obtain as there is no need to ask the user to
interact with the system (e.g., commenting and rating items). The main disadvantage
of this approach is the lack of information on whether the interaction with the object
was positive or negative [28]. For example, the user may have accidentally added
an item to the basket and later removed it, and the mere fact of opening a page does
not mean that the user likes the item. For this reason, the implementation of systems
based on this type of data is associated with a number of challenges and has been
described in many works [29,30].

• Explicit feedback—Feedback is obtained from the user in a direct way, for example
the system asks the user to rate a given item [31]. The main advantage of this type of
feedback is that it is easier to determine whether the interaction with the system was
positive or negative. For example, if the user can enter a rating on a scale from 1 to 5
and selects a rating of 5, then, with a high probability, it can be assumed that this is an
item that the user likes.

• Hybrid feedback—This is a combination of the two previously discussed techniques [32].

It should also be noted that recommendation systems often do not have good quality
features for users and items. For this reason, various methods of obtaining them have been
proposed, and one of the most popular techniques is to factorize the user–item matrix. With
this, we can obtain features that are also called latent features. More on the subject can be
found in [33].

3.2. Rank Aggregation Problem

This section describes the problem of rank aggregation in the context of recommenda-
tion systems. We define a ranking as an ordered list of items τ = [ij >= ih >= · · · >= iz],
where the items at the beginning of the list (first position) are more significant than those at
the end (last position). Item positions ij in ranking τ, we define as τ(ij). Two items ij ∈ τ

Electronics 2022, 11, 369 4 of 13

and ih ∈ τ can be compared by checking their position in the list τ. If the item ij is ranked
higher in the τ in comparison to the item ih, it is defined as τ(ij) > τ(ih).

In recommendation systems, aggregations are generated through various algorithms,
where a single algorithm will be defined as ah, and a set of n recommendation algorithms
will be defined as A = {a1, a2, . . . , an}. Each of the algorithms ah ∈ A generates a ranking
τ, and the set of all n created rankings is defined as T = {τ1, τ2, . . . , τn}. In addition, all
algorithms that generate recommendations take, as input, matrix Mm×n. Each row in this
matrix represents a user ui ∈ U, and each column represents an item ij ∈ I. The value of
this matrix Mi,j corresponds to the rating given by the user ui to the item ij. Note that users
rate only a small fraction of the items appearing in such a matrix; therefore, such a matrix
is very sparse.

The problem of rank aggregation can be defined as the problem of finding such a
combination of rankings in T generated by a set of recommendation algorithms A for each
user ui ∈ U, to create a single list (“super-list”) that will optimize a given criterion (in our
case, the average precision) to the greatest extent. Such a list should, in theory, be “better”
than individual lists.

3.3. Differential Evolution

In order to optimize the AP measure, the Differential Evolution algorithm was used,
which is a metaheuristic developed by K. Price and R. Storn [10]. It is based on individ-
uals, which are represented as vectors of real numbers. For this reason, it is primarily
suitable for the optimization of continuous functions, although there are papers that have
suggested modifications to the algorithm and its adaptation to the optimization of discrete
problems [30].

There is a population P of individuals, where each individual is a solution to an
optimization problem, often represented as a d dimensional vector of real-valued numbers.
The initial population P can be initialized randomly and should cover the entire search
space. In the classic version of the algorithm, this is assumed to have a uniform probability
distribution. In order to determine how good a given individual is in the population, it is
necessary to define the fitness function, which assigns a certain value to each individual in
the population.

This value is later used in the selection process, which is the process of choosing which
individuals should go to the next generation. With each iteration, the algorithm attempts
to improve the population of individuals until the stopping criterion is reached (e.g., a
certain number of iterations). Owing to the use of crossover and mutation operators [34],
the population of individuals changes and the algorithm attempts to find a better solution.
Mutation creates a new individual by combining three randomly selected individuals and
can be expressed with the following formula:

~vi = ~xr1 + F(~xr2 − ~xr3), (1)

where r1, r2 and r3 are random unique individuals (r1 6= r2 6= r3). The F parameter is
the parameter responsible for amplification and usually takes a value in the range [0, 1].
After creating a new individual ~vi using the mutation operator, we use the crossover
operator according to Formula (2). The CR parameter is the parameter that determines
the crossover probability. Additionally, there is a rand function that generates a random
number between [0, 1].

ui,j =

{
vi,j if (rand(j) ≤ CR or i = irand)
xi,j otherwise.

(2)

4. Suggested AggRankDE Method

Our AggRankDE method is designed based on the values issued by the individual
recommender algorithms for each item i in the set of all items I to find a vector of the
weight W that achieves the largest AP value on the training set TS. It should be noted

Electronics 2022, 11, 369 5 of 13

that this vector is created for each user ui ∈ U separately, since each user has their own
individual recommendation preferences. Additionally, based on our previous research,
we suggest a matrix representation for the scores given by individual algorithms and the
population of individuals of the DE algorithm.

Details of this representation can be found in our previous work [15], and a simple
example is presented in Figure 1. As a result it is easier to parallelize the process of learning
user preferences and, thus, to reduce the computation time that is needed to find the
particular preference vector W.

0.23 0.34 0.4

0.16 0.29 0.35

0.12 0.23 0.27

0.09 0.17 0.22

0.05 0.1 0.15

|items|

d

0.32 0.25 0.31 0.45 0.28

0.62 0.24 0.11 0.78 0.36

0.44 0.12 0.74 0.47 0.55

d

NP
0.4604 0.1871 0.4047 0.5567 0.4068

0.385 0.1516 0.3405 0.4627 0.3417

0.2998 0.1176 0.2623 0.3603 0.2649

0.231 0.0897 0.2094 0.2765 0.2074

0.144 0.0545 0.1375 0.171 0.1325

|items|

NP

· =

r1 r2 r3 r4 r5A (items ranking) B (Population P)

C

Figure 1. Toy example of the multiplication of two matrices. Matrix A represents scores assigned by
the recommendation algorithms to each item i ∈ I and some population P (real value vectors) of the
metaheuristic algorithm represented by matrix B. Matrix product C represents new scores for each
item i ∈ I, which, after sorting, create new rankings τn where n ∈ {1, 2, . . . , NP}.

The hybridization technique was taken from [25] and is based on assigning weights
W = {wa1 , wa2 , . . . , wan} for each algorithm ah, from the set of algorithms
A = {a1, a2, . . . , an}. The aggregated value for each item is calculated according to
the formula:

p̂(ij|ui) =
n

∑
h=1

p̂ah(ij|ui) wah (3)

where wah is the weight assigned to the algorithm ah ∈ A, with each algorithm assigning a
value of p̂ah(ij|ui) to each item ij, which determines the degree of potential interest of user
ui in this item. We should also remember to use the normalization technique so that all the
algorithms in A can operate on the same scale.

The use of the metaheuristic algorithm based on evolution is associated with the need
to define the fitness function so that, in subsequent iterations, the algorithm can reward
individuals who are better adapted, i.e., with a greater value of the fitness function. In
our case, this will be the average precision (AP) measure calculated for the active user uA
as follows:

Fitness = AP@k(R, S) (4)

where S is the set of items recommended by the system and R is the set of items that user
uA rated in TS. According to our experiments, the value of k in AP during the learning
process should be defined as the number of items that the user uA rated in his TS. In our
opinion, such a value is most appropriate due to the fact that it does not cause the algorithm
to overfit. The details for how to calculate AP, especially in the context of recommendation
systems, can be found in our paper [35]. The architecture of our system is presented below
Figure 2.

Electronics 2022, 11, 369 6 of 13

Recommendations

Fitness function

Training set

Create user-item rating matrix

Recommendation algorithms
(BPR, WARP, SVD etc.)

Generate recommendations for
user uA in form of ranking lists

Convert ranking lists to
matrix representation A

Metaheuristic algorithm

Convert population P to
matrix representation B

C = AB

For every item i ∈ I extract
ranking score from matrix C

Sort items according to
ranking score and calculate
average precision for user uA

Get all N items rated by
user uA from traning set

Select best individual w
from population P

Is termination
criteria met?

Select active user uA

Population P

C

No

Yes

Figure 2. System architecture. The recommendation process is divided into two phases. In the first
phase, recommendation algorithms generate recommendations in the form of lists, and active user uA

is selected with all his N items from the training set. In the second phase, a metaheuristic algorithm
works (in our case DE) with the dedicated fitness function, which allows for faster calculation of item
scores, on the basis of which, new rankings will be created.

5. Experimental Evaluation

Due to the fact that recommendations are most often presented to users in the form
of a list, in our experiments, we used the average precision measure (AP) and the mean
average precision measure (MAP). The AP measure is used in the context of a specific (one)
user, and, in our research, it was used to compare the list of items recommended to the user
with the list of items available in the test set for a given user. This allowed us to calculate
the quality of the generated recommendations.

In addition, it should be noted that this measure also takes into account where the
relevant items are located on the list. If the relevant items are higher (closer to the first
position), then the AP value is also higher. Due to the fact that metaheuristics are com-
putationally expensive, we chose only a certain subset of users for the experiments. We
randomly selected 50 users who rated at least 150 movies in the dataset. The experiments
carried out as part of this paper were performed using the popular MovieLens 100k dataset.
The AggRankDE algorithm adopts four algorithms as the input: SVD, WMF, BPR and
WARP. All of them are based on matrix factorization, and thus features are generated for
each item and for each user on the basis of the user–item matrix.

Electronics 2022, 11, 369 7 of 13

These features are called latent features due to the fact that their meaning cannot be
explained. In addition, these algorithms are considered to be the current state-of-the-art
and are often used to compare research results in recommendation systems for the Top-N
recommendation problem. The research environment was implemented in Python and C#,
and the research was carried out on a computer with an Intel Core i5-7600 (3.50 GHz) with
16 GB RAM.

5.1. Parameters Tuning

Before creating an aggregation, the parameters of the algorithms that are included
must be tuned. To this end, experiments were conducted to tune their values so that they
could achieve the best possible MAP measure on the set of users used for the experiments.
This is an important step, due to the fact that improper tuning of the parameters can result
in the generation of poor quality recommendations. Table 1, presented below, shows the
parameter values used during the tuning process.

This process consisted of first setting all parameters to the default values and then
changing only one parameter that was selected for the tuning. After the process was
completed, the best values were saved in the (“Best values” column in Table 1). The detailed
MAP@10 values obtained during this process for various parameters are presented in tables:
Table 2 (learning rate), Table 3 (regularization) and Table 4 (latent features).

The process of tuning the CR and F parameters for the DE algorithm was also per-
formed, and the results of these experiments are presented in Tables 5 and 6. In addition, in
article [10], the authors indicated that a good value for the parameter NP is a value between
5 · d and 10 · d, where d is the number of dimensions. The authors also point out that the
parameter F, equal to 0.5, is usually a good initial value and this parameter typically takes
a value in the range [0.4, 1]. The final values of the Differential Evolution algorithm that
were used during the experiments are presented in Table 7.

Table 1. The recommendation algorithms parameters that were used during the tuning process.

Algorithm Name Parameter Name Values Used in Tuning Process Default Values Best Values

BPR
Regularization
Learning rate
Latent factors

{0.0, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2}
{0.005, 0.01, 0.25, 0.5, 0.1, 0.15, 0.2, 0.25, 0.3}

{4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

0.0
0.05
10

0.0
0.025

10

WARP
Regularization
Learning rate
Latent factors

{0.0, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2}
{0.005, 0.01, 0.25, 0.5, 0.1, 0.15, 0.2, 0.25, 0.3}

{4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

0.0
0.05
10

0.0
0.15
50

WMF Latent factors {4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} 10 10

SVD Latent factors {4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} 10 6

Table 2. Learning rate parameter tuning. This table presents MAP@10 for different parameter values.
The remaining parameters are set to the default values according to Table 1.

Learning Rate BPR_MAP WARP_MAP

0.005 0.176 0.158
0.01 0.208 0.185
0.025 0.259 0.198
0.05 0.228 0.214
0.1 0.209 0.220

0.15 0.191 0.244
0.2 0.174 0.230

0.25 0.149 0.122
0.3 0.137 0.079

Electronics 2022, 11, 369 8 of 13

Table 3. Regularization parameter tuning. This table presents MAP@10 for different parameter
values. The remaining parameters are set to the default values according to Table 1.

Regularization BPR_MAP WARP_MAP

0 0.228 0.214
0.005 0.170 0.173
0.01 0.171 0.147
0.05 0.170 0.073
0.1 0.166 0.002

0.15 0.166 0.005
0.2 0.009 0.000

Table 4. Latent features (dimensions) parameter tuning. This table presents MAP@10 for different
parameter values. The remaining parameters are set to the default values according to Table 1.

Latent Features BPR_MAP WARP_MAP WMF_MAP SVD_MAP

4 0.20 0.21 0.19 0.18
5 0.18 0.21 0.15 0.20
6 0.17 0.21 0.20 0.21
7 0.17 0.20 0.20 0.21
8 0.19 0.21 0.20 0.19
9 0.20 0.20 0.20 0.20
10 0.23 0.21 0.22 0.19
20 0.22 0.21 0.21 0.13
30 0.21 0.25 0.18 0.08
40 0.23 0.24 0.17 0.07
50 0.22 0.27 0.17 0.06
60 0.21 0.26 0.16 0.05
70 0.21 0.25 0.13 0.06
80 0.21 0.23 0.15 0.05
90 0.21 0.24 0.14 0.04

100 0.20 0.22 0.13 0.05

Table 5. F parameter tuning. This table presents MAP@10 for different parameter values. The
remaining parameters are set to the default values according to Table 1.

Amplification Factor F DE_MAP

0.3 0.42
0.4 0.43
0.5 0.46
0.6 0.45
0.7 0.44
0.8 0.42
0.9 0.43
1 0.44

Table 6. CR parameter tuning. This table presents MAP@10 for different parameter values. The
remaining parameters are set to the default values according to Table 1.

Crossover‘s Probability CR DE_MAP

0.3 0.45
0.4 0.43
0.5 0.46
0.6 0.44
0.7 0.41
0.8 0.41
0.9 0.49
1 0.43

Electronics 2022, 11, 369 9 of 13

Table 7. The differential evolution parameters used in the experiments.

Parameter Name Value

Population 50
Number of Iterations 500

Crossover‘s Probability 0.9
Amplification Factor F 0.5

5.2. Experimental Setup

In order to prepare the environment for testing, first, the data was prepared in an
appropriate way. User ratings were sorted by the time in which a given rating was issued
and then divided into two sets: training (80%) and test (20%). Owing to this approach, our
algorithm attempts to predict the user’s future preferences based on the user’s previous
activity. The task is not trivial due to the number of items from which we can choose items
and which will later be presented to the user.

Fifty users were randomly selected for the study, where a recommendation was
generated for each user, and then the results of the suggested recommendations were
compared with the test sets of each user. The AP measure was used to calculate the quality
of the generated recommendations, and then its value was averaged for all users selected
for testing; thus, the tables show the results given using the MAP measure. In order to
show that our algorithm gives good results, we compared it with other algorithms used
for the rank aggregation problem, such as the Borda Count, Majority Judgement, Pairwise
Method (Copeland’s) and Score Voting (mean).

In the research, we additionally took into account the quality of recommendations that
was achieved through algorithms that participated in the creation of aggregation. These
included the Bayesian Personal Ranking (BPR) and Weighted Approximate-Rank Pairwise
(WARP) algorithms, the implementation of which is available in the LightFM library [36].
In addition, the usual SVD algorithm marked in the results as “SVD” and a weighted matrix
factorization (WMF) algorithm were implemented.

5.3. Results

In Section 5.1, we presented the process of tuning the parameters for the various
algorithms used to create aggregations. This is an important step, due to the fact that the
quality of the generated recommendations by the different recommendation techniques can
largely depend on the parameters that are set. For example, by analyzing Table 4, it can be
seen that the MAP value obtained was highly dependent on the number of latent features.
Additionally, the research presented in Table 2 showed that the parameter “Learning rate”,
which is characteristic for the BPR and WARP techniques, also required tuning as opposed
to the parameter “Regularization” (Table 3) where the default value (0) generated the best
quality of the recommendations.

While analyzing the results presented in Table 8, it can be seen that the AggRankDE
algorithm aggregated the recommendation algorithms and improved the overall quality of
the generated recommendations even compared to other aggregation techniques. This is an
important observation because it shows that one “super” list can be created from several
lists to improve the quality of recommendations, which is consistent with the experimental
results by [7].

Looking at the quality of the recommendations generated by the different recommenda-
tion algorithms, we can see that, depending on MAP@, the quality of the recommendations
varies. In general, as the number of items based on which the MAP@ measure is calculated
increases, it can be seen that the quality of the recommendations decreases, although the
AggRankDE algorithm improved the quality of the generated recommendations in all
cases.

Additionally, after the introduction of the “Random” method (Table 9), which pur-
posefully generated poor quality recommendations, in the case of the AggRankDE, this
did not significantly degrade the quality of the produced aggregation in contrast with, for

Electronics 2022, 11, 369 10 of 13

example, the Borda Count method. This indicates that the AggRankDE has some resistance
to weak algorithms that are used in the aggregation.

Table 10 presents the improvement in the speed (in seconds) of the generated recom-
mendations after implementing the matrix fitness function. Time is measured for a single
user in the system and depends on the number of iterations. Looking at this table, it can
be seen that the improvement in speed is significant, and this is due to the fact that the
operation on entire matrices can be easily parallelized. This is particularly important in the
context of metaheuristic algorithms due to the fact that computing the fitness function is
the most costly step in this type of algorithm.

Table 8. The quality of the generated recommendations (MAP) for different MAP@ values for the
best parameters presented in Table 1.

MAP@ Bpr Warp WMF SVD Borda Majority Pairwise Score AggRankDE

1 0.46 0.44 0.46 0.44 0.5 0.46 0.48 0.5 0.58
2 0.39 0.36 0.43 0.37 0.4 0.38 0.39 0.41 0.43
3 0.34 0.31 0.36 0.34 0.36 0.36 0.36 0.35 0.4
4 0.32 0.28 0.28 0.32 0.32 0.32 0.33 0.33 0.36
5 0.30 0.26 0.27 0.29 0.31 0.30 0.30 0.31 0.32
6 0.27 0.25 0.24 0.26 0.28 0.28 0.28 0.28 0.29
7 0.24 0.24 0.23 0.24 0.26 0.26 0.26 0.27 0.28
8 0.23 0.23 0.22 0.23 0.24 0.24 0.25 0.25 0.26
9 0.23 0.21 0.20 0.22 0.23 0.23 0.23 0.23 0.24
10 0.22 0.21 0.20 0.21 0.22 0.23 0.21 0.21 0.24

Table 9. The quality of the generated recommendations (MAP) for different MAP@ values for the
best parameters presented in Table 1 with the additional RANDOM algorithm.

MAP@ Bpr Warp WMF SVD Random Borda Majority Pairwise Score AggRankDE

1 0.46 0.44 0.46 0.44 0.04 0.26 0.42 0.5 0.2 0.56
2 0.39 0.36 0.38 0.37 0.06 0.22 0.39 0.39 0.16 0.48
3 0.34 0.31 0.34 0.34 0.01 0.19 0.34 0.36 0.13 0.42
4 0.32 0.28 0.30 0.32 0.02 0.16 0.30 0.32 0.10 0.35
5 0.30 0.26 0.29 0.29 0.02 0.15 0.28 0.29 0.09 0.32
6 0.27 0.25 0.24 0.26 0.02 0.14 0.26 0.28 0.08 0.28
7 0.24 0.24 0.24 0.24 0.02 0.14 0.23 0.26 0.07 0.27
8 0.23 0.23 0.22 0.23 0.01 0.13 0.22 0.24 0.06 0.25
9 0.23 0.21 0.21 0.22 0.01 0.12 0.21 0.23 0.06 0.24

10 0.22 0.21 0.21 0.21 0.01 0.12 0.20 0.21 0.05 0.23

Table 10. The average time (in seconds) depending on the number of iterations. The remaining
parameters are according to Table 7.

Iterations DE AggRankDE

100 0.89 s 0.45 s
200 1.59 s 0.83 s
300 2.28 s 1.2 s
400 3.0 s 1.51 s
500 3.72 s 1.87 s
600 4.46 s 2.28 s
700 5.19 s 2.66 s
800 5.92 s 3.01 s
900 7.03 s 3.45 s
1000 7.5 s 3.86 s

When analyzing the experimental results, the application of the DE algorithm with the
hybridization technique presented in [25] produced good results. However, in our paper,
we suggested how to improve it by using a dedicated fitness function to directly optimize
the average precision measure and to speed up its calculation process. By assigning
different weights to the different algorithms included in the aggregation, the DE algorithm

Electronics 2022, 11, 369 11 of 13

optimizes the average precision measure using a weighted hybridization technique in order
to obtain the highest possible value of the average precision measure on the training set.

During the testing phase, this translated into an increase in the quality of the generated
recommendations. However, this process is computationally very expensive; therefore,
we suggested using the matrix representation in the fitness function, which significantly
accelerated the process of calculating the values for each item by the hybridization technique
on the basis of which the ranking was created.

6. Conclusions

In this article, we presented how the Differential Evolution algorithm can be used to
optimize the problem of rank aggregation in recommendation systems. The experiments
were conducted on the database MovieLens 100k, and they showed that our algorithm
improved the quality of the recommendations expressed by the MAP measure by 5%
compared to other algorithms used for this purpose. Our research showed that, even
using simple aggregation techniques, we could improve the quality of the generated
recommendations.

In addition, in analyzing the research results, it can be seen that the AggRankDE
algorithm is resistant to algorithms that generate poor-quality recommendations. We
believe that this is due to the fact that, through the presence of a training phase in which
the DE algorithm optimizes the AP measure, it is able to detect algorithms that generate
low-quality recommendations and assign them correspondingly low weights, which results
in them participating least in the creation of the list of recommended items.

Based on our previous work, we also suggested the use of matrix representation for
the population of the DE algorithm and the values of coefficients calculated by individual
aggregation algorithms for each item in the system. Such a representation makes it much
easier to parallelize the process of calculating the values for individual items in the training
phase on the basis of which new rankings (recommendations) are created. The calculation
of the fitness function is the most expensive operation in the metaheuristic algorithms.
In the context of the recommendation systems, this is particularly important, due to the
relatively large data sets that are processed.

In following papers, we will increase the number of algorithms that are part of the
aggregation, add more aggregation techniques and increase the number of data sets on the
basis of which the research is carried out. We will also conduct a more detailed analysis of
the effectiveness of our algorithm, taking into account a larger number of users, and conduct
a more detailed analysis of how the parameters of the individual algorithms included in
the aggregation and the model itself affect the quality of the generated recommendations.

Another interesting direction of research would be to take a closer look at the quality
of the generated recommendations by particular algorithms in relation to individual users.
Although the AggRankDE algorithm is more robust to algorithms that generate poor recom-
mendations, the decrease in the quality is noticeable. Presumably, eliminating the weaker
quality algorithms would generally improve the quality of the aggregation produced. We
believe that the problem of rank aggregation within the context of the recommendation
systems has not yet been sufficiently studied, and this will likely be the direction of our
future work.

Author Contributions: Conceptualization, U.B. and M.B.; Formal analysis, U.B. and M.B.; Investiga-
tion, M.B.; Methodology, U.B. and M.B.; Project administration, M.B.; Software, M.B.; Validation, U.B.
and M.B.; Visualization, M.B.; Writing—original draft, U.B. and M.B.; Writing—review and editing,
U.B. and M.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Electronics 2022, 11, 369 12 of 13

Data Availability Statement: Data is available at https://grouplens.org/datasets/movielens/100k/
accessed on 29 November 2021.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

u Generic user
ui Specific user
uA Active user in system for which recommendations are generated
U The set of all users
i Generic item
ij Specific item
I Set of all items
ah Specific recommendation algorithm
A Set of n recommendation algorithms A = {a1, a2, . . . , an}
τ Generic ranking
τr

i Ranking recommended to user ui by algorithm ar where r ∈ {1, 2, . . . , n}
τ(ij) The position of item ij in ranking τ

T Set of n rankings T = {τ1, τ2, . . . , τn}
wah Weight assigned to recommendation algorithm ah where h ∈ {1, 2, . . . , n}
W Set of n weights W = {wa1 , wa2 , . . . , wan}
R Set of items that user uA rated in his training set
S Set of items recommended to user uA
P Population of metaheuristic algorithm
NP Number of individuals in population
TS Training set

References
1. Castells, P.; Hurley, N.; Vargas, S. Novelty and Diversity in Recommender Systems; Springer: Boston, MA, USA, 2015 ; pp. 881–918.

[CrossRef]
2. Cremonesi, P.; Koren, Y.; Turrin, R. Performance of recommender algorithms on top-N recommendation tasks. In Proceedings of

the Fourth ACM Conference on Recommender Systems, Barcelona, Spain, 26–30 September 2010; pp. 39–46. [CrossRef]
3. Dwork, C.; Naor, M.; Sivakumar, D. Rank Aggregation Revisited. 2003 . Available online: http://www.cse.msu.edu/~cse960

/Papers/games/rank.pdf (accessed on 29 November 2021).
4. Vanderpooten, D.; Farah, M. An Outranking Approach for Rank Aggregation in Information Retrieval. 2007 . Available online:

https://dl.acm.org/doi/10.1145/1277741.1277843 (accessed on 29 November 2021). [CrossRef]
5. Dourado, Í.C.; Pedronette, D.C.G.; da Silva Torres, R. Unsupervised Graph-based Rank Aggregation for Improved Retrieval.

CoRR 2019 , 56, 1260–1279. [CrossRef]
6. Dwork, C.; Kumar, R.; Naor, M.; Sivakumar, D. Rank Aggregation Methods for the Web. In Proceedings of the 10th International

Conference on World Wide Web WWW’01, Hong Kong, China, 1–5 May 2001; pp. 613–622. [CrossRef]
7. Oliveira, S.E.L.; Diniz, V.; Lacerda, A.; Merschmanm, L.; Pappa, G.L. Is Rank Aggregation Effective in Recommender Systems?

An Experimental Analysis. ACM Trans. Intell. Syst. Technol. (TIST) 2020, 11, 16. [CrossRef]
8. Bollegala, D.; Noman, N.; Iba, H. RankDE: Learning a ranking function for information retrieval using differential evolution.

In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, Dublin, Ireland, 12–16 July 2011;
pp. 1771–1778. [CrossRef]

9. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]

10. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J.
Glob. Optim. 1997, 11, 341–359. [CrossRef]

11. Bilal.; Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential Evolution: A review of more than two decades of
research. Eng. Appl. Artif. Intell. 2020, 90, 103479.

12. Ronkkonen, J.; Kukkonen, S.; Price, K. Real-parameter optimization with differential evolution. In Proceedings of the 2005 IEEE
Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; Volume 1, pp. 506–513. [CrossRef]

13. Feoktistov, V. Differential Evolution; Springer: Boston, MA, USA, 2006.
14. Harper, F.M.; Konstan, J.A. The MovieLens Datasets: History and Context. ACM Trans. Interact. Intell. Syst. 2015, 5, 19 .

[CrossRef]

https://grouplens.org/datasets/movielens/100k/
http://doi.org/10.1007/978-1-4899-7637-6_26
http://dx.doi.org/10.1145/1864708.1864721
http://www.cse.msu.edu/~cse960/Papers/games/rank.pdf
http://www.cse.msu.edu/~cse960/Papers/games/rank.pdf
https://dl.acm.org/doi/10.1145/1277741.1277843
http://dx.doi.org/10. 1145/1277741.1277843
http://dx.doi.org/10.1016/j.ipm.2019.03.008
http://dx.doi.org/10.1145/ 371920.372165
http://dx.doi.org/10.1145/3365375
http://dx.doi.org/10.1145/2001576.2001814
http://dx.doi.org/10.1109/ICNN. 1995.488968
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/CEC.2005.1554725
http://dx.doi.org/10.1145/2827872

Electronics 2022, 11, 369 13 of 13

15. Boryczka, U.; Bałchanowski, M. Speed up Differential Evolution for ranking of items in recommendation systems. Procedia
Comput. Sci. 2021, 192, 2229–2238. [CrossRef]

16. Bennett, J.; Lanning, S.; Netflix, N. The Netflix Prize. In KDD Cup and Workshop in Conjunction with KDD; 2007 . Available online:
https://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-description.pdf (accessed on 29 November 2021).

17. Deshpande, M.; Karypis, G. Item-Based Top-N Recommendation Algorithms. ACM Trans. Inf. Syst. 2004, 22, 143–177. [CrossRef]
18. Karatzoglou, A.; Baltrunas, L.; Shi, Y. Learning to rank for recommender systems. In Proceedings of the 7th ACM Conference on

Recommender Systems, Hong Kong, China, 12–16 October 2013; pp. 493–494. [CrossRef]
19. Diaz-Aviles, E.; Nejdl, W.; Schmidt-Thieme, L. Swarming to Rank for Information Retrieval. In Proceedings of the 11th Annual

Conference on Genetic and Evolutionary Computation GECCO’09, Montreal, QC, Canada, 8–12 July 2009; Association for
Computing Machinery: New York, NY, USA, 2009; pp. 9–16. [CrossRef]

20. Horvath, T.; de Carvalho, A. Evolutionary computing in recommender systems: A review of recent research. Nat. Comput. 2016 ,
16, 441–462. [CrossRef]

21. Klementiev, A.; Roth, D.; Small, K. Unsupervised Rank Aggregation with Distance-Based Models ICML’08; Association for Computing
Machinery: New York, NY, USA, 2008; pp. 472–479. [CrossRef]

22. Shaw, J.A.; Fox, E.A. Combination of Multiple Searches. In Proceedings of the Second Text Retrieval Conference (TREC-2),
Plainsboro, NJ, USA, 8–11 March 1994; pp. 243–252.

23. Farah, M.; Vanderpooten, D. An Outranking Approach for Rank Aggregation in Information Retrieval. In Proceedings of the
30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval SIGIR’07, Amsterdam,
The Netherlands, 23–27 July 2007; Association for Computing Machinery: New York, NY, USA, 2007; pp. 591–598. [CrossRef]

24. Baltrunas, L.; Makcinskas, T.; Ricci, F. Group Recommendations with Rank Aggregation and Collaborative Filtering. In
Proceedings of the Fourth ACM Conference on Recommender Systems RecSys’10, Barcelona, Spain, 26–30 September 2010;
Association for Computing Machinery: New York, NY, USA, 2010; pp. 119–126. [CrossRef]

25. Ribeiro, M.T.; Ziviani, N.; Moura, E.S.D.; Hata, I.; Lacerda, A.; Veloso, A. Multiobjective Pareto-Efficient Approaches for
Recommender Systems. ACM Trans. Intell. Syst. Technol. 2015, 5, 53 . [CrossRef]

26. Oliveira, S.; Diniz, V.; Lacerda, A.; Pappa, G.L. Evolutionary rank aggregation for recommender systems. In Proceedings of the
2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 255–262. [CrossRef]

27. Oard, D.; Kim, J. Implicit Feedback for Recommender System. In Proceedings of the AAAI Workshop on Recommender
Systems 2000 . Available online: https://www.aaai.org/Papers/Workshops/1998/WS-98-08/WS98-08-021.pdf (accessed on 29
November 2021).

28. Hu, Y.; Koren, Y.; Volinsky, C. Collaborative Filtering for Implicit Feedback Datasets. In Proceedings of the 2008 Eighth IEEE
International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 263–272. [CrossRef]

29. Rendle, S.; Freudenthaler, C.; Gantner, Z.; Schmidt-Thieme, L. BPR: Bayesian Personalized Ranking from Implicit Feedback. In
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence UAI’09, Montreal, QC, Canada, 18–21 June
2009; AUAI Press: Arlington, VA, USA, 2009; pp. 452–461.

30. Pan, R.; Zhou, Y.; Cao, B.; Liu, N.N.; Lukose, R.; Scholz, M.; Yang, Q. One-Class Collaborative Filtering. In Proceedings of the
2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 502–511. [CrossRef]

31. Jawaheer, G.; Szomszor, M.; Kostkova, P. Comparison of implicit and explicit feedback from an online music recommendation
service. In Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems,
Barcelona, Spain, 26–30 September 2010; [CrossRef]

32. Chou, C.L.; Lu, T.Y. A hybrid-feedback recommender system for employment websites. J. Ambient. Intell. Humaniz. Comput. 2020
. Available online: https://link.springer.com/article/10.1007/s12652-020-01772-y (accessed on 29 November 2021). [CrossRef]

33. Koren, Y.; Bell, R.; Volinsky, C. Matrix Factorization Techniques for Recommender Systems. Computer 2009, 42, 30–37. [CrossRef]
34. Boryczka, U.; Juszczuk, P.; Kłosowicz, L. A Comparative Study of Various Strategies in Differential Evolution. In Evolutionary

Computing and Global Optimization KAEiOG’09; 2009; pp. 19–26. Available online: https://www.researchgate.net/publication/23
0788075_A_Comparative_Study_of_Various_Strategies_in_Differential_Evolution (accessed on 29 November 2021).

35. Boryczka, U.; Bałchanowski, M. Using Differential Evolution in order to create a personalized list of recommended items. Procedia
Comput. Sci. 2020, 176, 1940–1949. [CrossRef]

36. Kula, M. Metadata Embeddings for User and Item Cold-start Recommendations. In Proceedings of the 2nd Workshop on New
Trends on Content-Based Recommender Systems Co-Located with 9th ACM Conference on Recommender Systems (RecSys 2015),
Vienna, Austria, 16–20 September 2015; Volume 1448, pp. 14–21.

http://dx.doi.org/10.1016/j.procs.2021.08.236
https://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-description.pdf
http://dx.doi.org/10.1145/963770.963776
http://dx.doi.org/10.1145/2507157.2508063
http://dx.doi.org/10.1145/1569901.1569904
http://dx.doi.org/10.1007/s11047-016-9540-y
http://dx.doi.org/10.1145/1390156.1390216
http://dx.doi.org/10.1145/1277741.1277843
http://dx.doi.org/10.1145/1864708.1864733
http://dx.doi.org/10.1145/2629350
http://dx.doi.org/10.1109/CEC.2016.7743803
https://www.aaai.org/Papers/Workshops/1998/WS-98-08/WS98-08-021.pdf
http://dx.doi.org/10.1109/ICDM.2008.22
http://dx.doi.org/10.1109/ICDM.2008.16
http://dx.doi.org/10.1145/1869446.1869453
https://link.springer.com/article/10.1007/s12652-020-01772-y
http://dx.doi.org/10.1007/s12652-020-01772-y
http://dx.doi.org/10.1109/MC.2009.263
https://www.researchgate.net/publication/230788075_A_Comparative_Study_of_Various_Strategies_in_Differential_Evolution
https://www.researchgate.net/publication/230788075_A_Comparative_Study_of_Various_Strategies_in_Differential_Evolution
http://dx.doi.org/10.1016/j.procs.2020.09.233

	Introduction
	Literature Overview
	Background of the Research
	Recommender System
	Rank Aggregation Problem
	Differential Evolution

	Suggested AggRankDE Method
	Experimental Evaluation
	Parameters Tuning
	Experimental Setup
	Results

	Conclusions
	References

