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Strong Law of Large Numbers for Iterates
of Some Random-Valued Functions

Karol Baron and Rafa�l Kapica

Abstract. Assume (Ω,A , P ) is a probability space, X is a compact met-
ric space with the σ-algebra B of all its Borel subsets and f : X ×
Ω → X is B ⊗ A -measurable and contractive in mean. We consider
the sequence of iterates of f defined on X × ΩN by f0(x, ω) = x and
fn(x, ω) = f

(
fn−1(x, ω), ωn

)
for n ∈ N, and its weak limit π. We show

that if ψ : X → R is continuous, then for every x ∈ X the sequence(
1
n

∑n
k=1 ψ

(
fk(x, ·)))

n∈N
converges almost surely to

∫
X

ψdπ. In fact, we

are focusing on the case where the metric space is complete and separable.

Mathematics Subject Classification. 37H12, 39B12, 60B12, 60F15.

Keywords. Random-valued functions, Iterates, Strong law of large num-
bers, Convergence in law, Almost sure convergence.

1. Introduction

Fix a probability space (Ω,A , P ) and a metric space X.
Let B denote the σ-algebra of all Borel subsets of X. We say that f :

X × Ω → X is a random-valued function (shortly: an rv-function) if it is
measurable with respect to the product σ-algebra B⊗A . The iterates of such
an rv-function are given by

f0(x, ω1, ω2, . . .) = x, fn(x, ω1, ω2, . . .) = f
(
fn−1(x, ω1, ω2, . . .), ωn

)

for n ∈ N, x ∈ X and (ω1, ω2, . . .) from Ω∞ defined as ΩN. Note that fn : X ×
Ω∞ → X is an rv-function on the product probability space (Ω∞,A ∞, P∞).
More exactly, for n ∈ N the n-th iterate fn is B ⊗ An-measurable, where An

denotes the σ-algebra of all sets of the form

{(ω1, ω2, . . .) ∈ Ω∞ : (ω1, . . . , ωn) ∈ A}
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with A from the product σ-algebra A n. See [10, Sec. 1.4], [8].
A result on a.s. convergence of

(
fn(x, ·))

n∈N
for X being the unit interval

can be found in [10, Sec. 1.4B]. The paper [7] brings theorems on the conver-
gence a.s. and in L1 of those sequences of iterates in the case where X is a
closed subset of a separable Banach lattice. A simple criterion for the conver-
gence in law of

(
fn(x, ·))

n∈N
to a random variable independent of x ∈ X was

proved in [1], assuming that X is complete and separable. In [2] it has been
strengthened and applied to obtain a weak law of large numbers for iterates
of random-valued functions. In the present paper we are interested in a strong
law of large numbers. We will be based on the following Brunk-Prokhorov-type
theorem, see [11, Theorem 3.3.1] and [6, Corollary 3.1].

(C) Let (Fn)n∈N be an increasing sequence of sub-σ-algebras of A and
(ξn)n∈N a sequence of random variables such that ξn is Fn-measurable and
E(ξn+1|Fn) = 0 for each n ∈ N. If (an)n∈N is an increasing and unbounded
sequence of positive reals and

∞∑

n=1

E
(|ξn|2)

a2
n

< ∞,

then

lim
n→∞

1
an

n∑

k=1

ξk = 0 a.s.

2. A Scheme

Assume X is a metric space and f : X × Ω → X an rv-function.

Lemma 1. If ϕ : X → R is Borel and ϕ◦ fn(x, ·) is integrable for P∞ for each
x ∈ X and n ∈ N, then the function α : X → R defined by

α(x) =
∫

Ω

ϕ
(
f(x, ω)

)
P (dω) (1)

is Borel and

E
(
ϕ ◦ fn+1(x, ·)|An

)
= α ◦ fn(x, ·) for x ∈ X and n ∈ N.

Proof. Since ϕ ◦ f is B ⊗ A -measurable, by Fubini’s theorem α is Borel.
Consequently, for every x ∈ X and n ∈ N the function α ◦ fn(x, ·) is An-
measurable and for each A ∈ A n we have

∫

{ω∈Ω∞: (ω1,...,ωn)∈A}
ϕ
(
fn+1(x, ω)

)
P∞(dω)

=
∫

{ω∈Ω∞: (ω1,...,ωn)∈A}
ϕ

(
f
(
fn(x, ω), ωn+1

))
P∞(dω)
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=
∫

{ω∈Ω∞: (ω1,...,ωn)∈A}

(∫

Ω

ϕ
(
f
(
fn(x, ω), ωn+1

))
P (dωn+1)

)
P∞(dω)

=
∫

{ω∈Ω∞: (ω1,...,ωn)∈A}
α
(
fn(x, ω)

)
P∞(dω).

�
The following theorem is in fact a scheme of proving a strong law of large

numbers for iterates of random-valued functions.
Proposition 1. Let ψ : X → R and assume that there exists a Borel and
bounded ϕ : X → R such that

ϕ(x) =
∫

Ω

ϕ
(
f(x, ω)

)
P (dω) + ψ(x) for x ∈ X. (2)

If (an)n∈N is an increasing and unbounded sequence of positive reals such that
∞∑

n=1

1
a2

n

< ∞,

then, for every x ∈ X,

lim
n→∞

1
an

n∑

k=1

ψ ◦ fk(x, ·) = 0 a.e. for P∞. (3)

Proof. Define α : X → R by (1). Since ϕ is bounded, |ϕ(x)| ≤ M for every
x ∈ X with an M ∈ (0,∞). Obviously also |α(x)| ≤ M for every x ∈ X. Fix
x ∈ X and put

ξn = ϕ ◦ fn(x, ·) − α ◦ fn−1(x, ·) for n ∈ N. (4)

Then |ξn| ≤ 2M and by Lemma 1, E(ξn+1|An) = 0 for each n ∈ N. It now
follows from Brunk-Prokhorov-type theorem (C) that

lim
n→∞

1
an

n∑

k=1

(
ϕ ◦ fk(x, ·) − α ◦ fk−1(x, ·)) = 0 a.e. for P∞. (5)

Since ψ = ϕ − α, for every n ∈ N we have
n∑

k=1

ψ ◦ fk(x, ·) =
n∑

k=1

(
ϕ ◦ fk(x, ·) − α ◦ fk−1(x, ·))

+
n∑

k=1

(
α ◦ fk−1(x, ·) − α ◦ fk(x, ·)),

i.e.,
n∑

k=1

ψ ◦ fk(x, ·) =
n∑

k=1

(
ϕ ◦ fk(x, ·) − α ◦ fk−1(x, ·)) + α(x) − α ◦ fn(x, ·)

(6)

for every n ∈ N. Moreover, |α ◦ fn(x, ·)| ≤ M . Consequently (3) holds. �



   50 Page 4 of 14 K. Baron and R. Kapica Results Math

3. The Weak Limit

Assume now the following hypothesis (H).
(H) (X, ρ) is a complete and separable metric space and f : X × Ω → X

is an rv-function such that∫

Ω

ρ
(
f(x, ω), f(z, ω)

)
P (dω) ≤ λρ(x, z) for x, z ∈ X (7)

with a λ ∈ (0, 1), and
∫

Ω

ρ
(
f(x, ω), x

)
P (dω) < ∞ for x ∈ X. (8)

Then (see [1, Theorem 3.1]) there exists a probability Borel measure πf on
X such that for every x ∈ X the sequence of distributions of fn(x, ·), n ∈ N,
converges weakly to πf . See also [3, Lemma 2.2] and [9, Corollary 5.6 and
Lemma 3.1].

This limit distribution πf plays an important role in solving functional
equations, in particular in the class of Hölder continuous functions. We call a
function ψ : X → R Hölder continuous with exponent δ ∈ (0, 1] if there is a
constant L ∈ [0,∞) such that

|ψ(x) − ψ(z)| ≤ Lρ(x, z)δ for x, z ∈ X.

Moreover we call a function Hölder continuous if it is Hölder continuous with
an exponent δ ∈ (0, 1]. The following theorem (see [3, Theorem 2.1] and [4,
Corollary 2.6]) will be useful to us.

(B) Assume (H). If ψ : X → R is Hölder continuous with exponent
δ ∈ (0, 1], then it is integrable for πf and if additionally

∫

X

ψ(x)πf (dx) = 0, (9)

then there exists a Hölder continuous with exponent δ function ϕ : X → R

such that (2) holds.

4. Main Results

In what follows (X, ρ) is a metric space and f : X × Ω → X is an rv-function.
We start with a simple consequence of Proposition 1 and (B). It is a spe-

cial case of Theorem 2 given below, but shows our approach without technical
details.

Theorem 1. If (X, ρ) is complete and separable with finite diameter and (7)
holds with a λ ∈ (0, 1), then for every Hölder continuous ψ : X → R and for
each x ∈ X,

lim
n→∞

1
n

n∑

k=1

ψ ◦ fk(x, ·) =
∫

X

ψdπf a.e. for P∞. (10)
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Proof. Fix a Hölder continuous ψ : X → R. Replacing ψ by ψ − ∫
X

ψdπf we
may assume that (9) holds. By (B) there is a Hölder continuous ϕ : X → R

satisfying (2). Since X is bounded, so is ϕ. Applying now Proposition 1 with
an = n for n ∈ N we obtain (3) which ends the proof. �

Since continuous real functions defined on a compact metric space can
be uniformly approximated by Lipschitz functions (see [5, 11.2.4]), Theorem 1
implies the following corollary.

Corollary 1. If (X, ρ) is compact and (7) holds with a λ ∈ (0, 1), then we have
(10) for every continuous ψ : X → R and for each x ∈ X.

Theorem 2. Assume (H). Let x ∈ X and

∞∑

n=1

∫
Ω∞ ρ

(
fn(x, ω), x

)2δ
P∞(dω)

a2
n

< ∞

with a δ ∈ (0, 1] and an increasing and unbounded sequence (an)n∈N of positive
reals. If ψ : X → R is Hölder continuous with exponent δ, then

lim
n→∞

1
an

n∑

k=1

(
ψ ◦ fk(x, ·) −

∫

X

ψdπf
)

= 0 a.e. for P∞. (11)

The proof will be based on three lemmas.
Assume that (X, ρ) is separable, (7) holds with a λ ∈ (0, 1), (8) is satisfied

and ϕ : X → R is Hölder continuous with exponent δ ∈ (0, 1], i.e.,

|ϕ(x) − ϕ(z)| ≤ Lρ(x, z)δ for x, z ∈ X (12)

with an L ∈ [0,∞).

Lemma 2. For every x ∈ X and n ∈ N we have
∫

Ω∞
ρ
(
fn(x, ω), x

)
P∞(dω) ≤ 1

1 − λ

∫

Ω

�
(
f(x, ω), x

)
P (dω),

∫

Ω∞
|ϕ(

fn(x, ω)
)|P∞(dω) ≤ L

(∫

Ω∞
ρ
(
fn(x, ω), x

)
P∞(dω)

)δ

+ |ϕ(x)|.

Proof. Fix x ∈ X, n ∈ N and assume for the inductive proof that

∫

Ω∞
ρ
(
fn(x, ω), x

)
P∞(dω) ≤

n−1∑

k=0

λk

∫

Ω

�
(
f(x, ω), x

)
P (dω).
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Then, applying Fubini’s theorem, (7) and the above inequality, we obtain
∫

Ω∞
ρ
(
fn+1(x, ω), x

)
P∞(dω)

≤
∫

Ω∞
ρ
(
f
(
fn(x, ω1, ω2, . . .), ωn+1

)
, f(x, ωn+1)

)
P∞(

d(ω1, ω2, . . .)
)

+
∫

Ω

ρ(f(x, ωn+1), x)P (dωn+1)

≤ λ

∫

Ω∞
ρ
(
fn(x, ω), x

)
P∞(dω) +

∫

Ω

�
(
f(x, ω), x

)
P (dω)

≤
n∑

k=0

λk

∫

Ω

�
(
f(x, ω), x

)
P (dω)

which ends the proof of the first part. To get the second one observe that by
(12) and Jensen’s inequality for every x ∈ X and n ∈ N we have

∫

Ω∞
|ϕ(

fn(x, ω)
)|P∞(dω) ≤ L

∫

Ω∞
ρ
(
fn(x, ω), x

)δ
P∞(dω) + |ϕ(x)|

≤ L

(∫

Ω∞
ρ
(
fn(x, ω), x

)
P∞(dω)

)δ

+ |ϕ(x)|.
�

Lemma 2 makes sense to define a Borel function α : X → R by (1).

Lemma 3. For every x ∈ X and n ∈ N we have
∫

Ω∞
|ϕ(

fn(x, ω)
) − α

(
fn−1(x, ω)

)|2P∞(dω)

≤ 8L2

∫

Ω∞
ρ
(
fn(x, ω), x

)2δ
P∞(dω).

Proof. Since, for every ω ∈ Ω∞ and ω′ ∈ Ω,

|ϕ(
fn(x, ω)

)−ϕ
(
f
(
fn−1(x, ω), ω′))| ≤ Lρ

(
fn(x, ω), f

(
fn−1(x, ω), ω′))δ

≤ L
(
ρ
(
fn(x, ω), x

)δ + ρ
(
f
(
fn−1(x, ω), ω′), x

)δ
)

,

for every ω ∈ Ω we have

|ϕ(
fn(x, ω)

) − α
(
fn−1(x, ω)

)|2

=
∣
∣
∣
∣

∫

Ω

(
ϕ
(
fn(x, ω)

) − ϕ
(
f
(
fn−1(x, ω), ω′))) P (dω′)

∣
∣
∣
∣

2

≤ L2

(
ρ
(
fn(x, ω), x

)δ +
∫

Ω

ρ
(
f
(
fn−1(x, ω), ω′), x

)δ
P (dω′)

)2

≤ 4L2

(

ρ
(
fn(x, ω), x

)2δ +
(∫

Ω

ρ
(
f
(
fn−1(x, ω), ω′), x

)δ
P (dω′)

)2
)

.
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Hence, applying Jensen’s inequality and Fubini’s theorem,
∫

Ω∞
|ϕ(

fn(x, ω)
) − α

(
fn−1(x, ω)

)|2P∞(dω)

≤ 4L2
(∫

Ω∞
ρ
(
fn(x, ω), x

)2δ
P∞(dω)

+
∫

Ω∞

(∫

Ω

ρ
(
f
(
fn−1(x, ω), ω′), x

)2δ
P (dω′)

)
P∞(dω)

)

= 8L2

∫

Ω∞
ρ
(
fn(x, ω), x

)2δ
P∞(dω).

�

Lemma 4. Let (bn)n∈N be a converging to zero sequence of positive reals. If
x ∈ X and there is a p ∈ (0,∞) such that

∞∑

n=1

bp
n

∫

Ω∞
ρ
(
fn(x, ω), x

)pδ
P∞(dω) < ∞,

then

lim
n→∞ bn α ◦ fn(x, ·) = 0 a.e. for P∞.

Proof. If n ∈ N and ω ∈ Ω, then by (1), (12), Jensen’s inequality and (7) we
have

|α(
fn(x, ω)

)| ≤
∫

Ω

|ϕ (
f
(
fn(x, ω), ω′)) |P (dω′)

≤ L

∫

Ω

ρ
(
f
(
fn(x, ω), ω′), f(x, ω′)

)δ
P (dω′)

+ L

∫

Ω

ρ
(
f(x, ω′), x

)δ
P (dω′) + |ϕ(x)|

≤ Lλδρ
(
fn(x, ω), x

)δ + L

(∫

Ω

ρ
(
f(x, ω), x

)
P (dω)

)δ

+ |ϕ(x)|.

Now to finish the proof it is enough to show that limn→∞ bnξn = 0 a.e. for P∞,
where ξn = ρ

(
fn(x, ·), x)δ for n ∈ N. To this end observe that by Markov’s

inequality for every n ∈ N and ε > 0 we have

P∞(bnξn ≥ ε) ≤ E(ξp
n)

( ε
bn

)p
=

1
εp

bp
nE(ξp

n).

Hence it follows from the assumption of the lemma that for every ε > 0 the
series

∑∞
n=1 P∞(bnξn ≥ ε) converges. Consequently, limn→∞ bnξn = 0 a.e. for

P∞. �

Proof of Theorem 2. Fix a Hölder continuous with exponent δ function
ψ : X → R. Replacing ψ by ψ−∫

X
ψdπf we may assume that (9) holds. By (B)

there is a Hölder continuous with exponent δ function ϕ : X → R satisfying
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(2). Now using Lemma 2 define a Borel function α : X → R by (1). Since
ψ = ϕ − α, (6) follows. Applying Lemmas 1 and 3, and the Brunk-Prokhorov-
type theorem (C) to the sequence of random variables (ξn)n∈N defined by (4),
we have (5). Finally, by Lemma 4 with bn = 1

an
, n ∈ N, and p = 2,

lim
n→∞

1
an

α ◦ fn(x, ·) = 0 a.e. for P∞.

This, (5), (6) and (9) give (11). �

Corollary 2. Assume (H). If ψ : X → R is Hölder continuous with an exponent
δ ≤ 1

2 , then we have (10) for each x ∈ X.

Proof. It is enough to observe that by Jensen’s inequality and Lemma 2 for
every x ∈ X we have

∫

Ω∞
ρ
(
fn(x, ω), x

)2δ
P∞(dω) ≤

(∫

Ω∞
ρ
(
fn(x, ω), x

)
P∞(dω)

)2δ

≤
(

1
1 − λ

∫

Ω

�
(
f(x, ω), x

)
P (dω)

)2δ

,

and then to apply Theorem 2 with an = n, n ∈ N. �

To get a result for exponents δ > 1
2 we accept the following hypothesis

(Hδ) with parameter δ ∈ (0,∞).
(Hδ) (X, ρ) is a complete and separable metric space, f : X × Ω → X is

an rv-function such that

ρ
(
f(x, ω), f(z, ω)

) ≤ ξ(ω)ρ(x, z) for ω ∈ Ω and x, z ∈ X, (13)

where ξ : Ω → [0,∞) is a random variable for which E(ξ2δ) < 1, and
∫

Ω

ρ
(
f(x0, ω), x0

)2δ
P (dω) < ∞

with an x0 ∈ X.

Remark 1. If δ ≥ 1
2 , then (Hδ) implies (H).

Proof. Assume (Hδ) with a δ ≥ 1
2 . By Jensen’s inequality

Eξ = E
(
(ξ2δ)

1
2δ

) ≤ (
E(ξ2δ)

) 1
2δ < 1

and
∫

Ω

ρ
(
f(x0, ω), x0

)
P (dω) ≤

(∫

Ω

ρ
(
f(x0, ω), x0

)2δ
P (dω)

) 1
2δ

.
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Moreover, for every x ∈ X,
∫

Ω

ρ
(
f(x, ω), x

)
P (dω) ≤

∫

Ω

ρ
(
f(x, ω), f(x0, ω)

)
P (dω)

+
∫

Ω

ρ
(
f(x0, ω), x0)

)
P (dω) + ρ(x0, x)

≤ (
Eξ + 1

)
ρ(x, x0) +

∫

Ω

ρ
(
f(x0, ω), x0)

)
P (dω).

�

Theorem 3. Assume (Hδ) with a δ ∈ [ 12 , 1]. If ψ : X → R is Hölder continuous
with exponent δ, then we have (10) for each x ∈ X.

Proof. By Remark 1 we have (H), and it follows from Theorem 2 that to finish
the proof it is enough to show that for every x ∈ X the sequence

( ∫

Ω∞
ρ
(
fn(x, ω), x

)2δ
P∞(dω)

)
n∈N

is bounded. This follows from the lemma that is stated below. �

Let

βp(x) =
∫

Ω

ρ
(
f(x, ω), x

)p
P (dω) for p ∈ (0,∞) and x ∈ X.

Lemma 5. Assume (13) holds with a random variable ξ : Ω → [0,∞) and let p
be a positive real. If E(ξp) < 1 and βp(x0) < ∞ for an x0 ∈ X, then βp(x) < ∞
for every x ∈ X and there exists a constant cp ∈ (0,∞) such that

∫

Ω∞
ρ
(
fn(x, ω), x

)p
P∞(dω) ≤ cpβp(x) for x ∈ X and n ∈ N.

Proof. Fix x ∈ X. By (13) for every ω ∈ Ω we have

ρ
(
f(x, ω), x

)p ≤ 3p
(
ξ(ω)pρ(x, x0)p + ρ

(
f(x0, ω), x0

)p + ρ(x0, x)p
)
,

whence
∫

Ω

ρ
(
f(x, ω), x

)p
P (dω)

≤ 3p

(
(
E(ξp) + 1

)
ρ(x, x0)p +

∫

Ω

ρ
(
f(x0, ω)x0

)p
P (dω)

)
< ∞.

Put now

η(ω) = ρ
(
f(x, ω), x

)
for ω ∈ Ω,

and

ξn(ω1, ω2, . . .) = ξ(ωn), ηn(ω1, ω2, . . .) = η(ωn)
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for n ∈ N and (ω1, ω2, . . .) ∈ Ω∞. Then, by induction and (13),

ρ
(
fn(x, ω), x

) ≤
n∑

k=1

ηk(ω)ξk+1(ω) · . . . · ξn(ω) for ω ∈ Ω∞ and n ∈ N,

where
∏n

j=n+1 ξj(ω) := 1. Consequently,

∫

Ω∞
ρ
(
fn(x, ω), x

)p
P∞(dω) ≤ E

(( n∑

k=1

ηk

n∏

j=k+1

ξj

)p) for n ∈ N.

Moreover, for every integer n ≥ 2 and k ∈ {1, . . . , n− 1} the random variables
ηk, ξk+1, . . . , ξn are independent. Hence, if p ∈ (0, 1), then for every n ∈ N we
have
∫

Ω∞
ρ
(
fn(x, ω), x

)p
P∞(dω) ≤ E

( n∑

k=1

ηp
k

n∏

j=k+1

ξp
j

)
=

n∑

k=1

E(ηp
k)

n∏

j=k+1

E(ξp
j )

=
n∑

k=1

E(ηp)
(
E(ξp)

)n−k = E(ηp)
1 − (

E(ξp)
)n

1 − E(ξp)

≤ E(ηp)
1

1 − E(ξp)
=

1
1 − E(ξp)

βp(x).

If p ∈ [1,∞), then by Minkowski’s inequality for every n ∈ N we have
(∫

Ω∞
ρ
(
fn(x, ω), x

)p
P∞(dω)

)1/p

≤
n∑

k=1

(
E

(
ηk

n∏

j=k+1

ξj

)p)1/p

=
n∑

k=1

(
E(ηp

k)
n∏

j=k+1

E(ξp
j )

)1/p ≤ 1

1 − (
E(ξp)

)1/p
βp(x)1/p.

�

Corollary 3. Assume that either

(i) (Hδ) holds with a δ ∈ [ 12 , 1] and ψ : X → R is Hölder continuous with
exponent δ,
or

(ii) (H 1
2
) is satisfied and ψ : X → R is Hölder continuous with an exponent

δ ≤ 1
2 .

Then for every bounded and nonempty A ⊂ X and for almost all ω ∈ Ω∞

with respect to P∞,

lim
n→∞ sup

{∣
∣ 1
n

n∑

k=1

ψ
(
fk(x, ω)

) −
∫

X

ψdπf
∣
∣ : x ∈ A

}
= 0.

Proof. It concerns both, (i) and (ii).



Strong Law of Large Numbers for Iterates Page 11 of 14    50 

By induction,

ρ
(
fn(x, ω), fn(z, ω)

) ≤
(

n∏

k=1

ξk(ω)

)

ρ(x, z)

for x, z ∈ X, ω ∈ Ω∞ and n ∈ N, with

ξn(ω1, ω2, . . .) = ξ(ωn) for (ω1, ω2, . . .) ∈ Ω∞ and n ∈ N.

Hence

|ψ(
fn(x, ω)

) − ψ
(
fn(z, ω)

)| ≤ L

(
n∏

k=1

ξk(ω)δ

)

ρ(x, z)δ

for x, z ∈ X, ω ∈ Ω∞ and n ∈ N, with an L ∈ (0,∞).
Fix z ∈ X. Since, for every x ∈ X, ω ∈ Ω∞ and n ∈ N,
∣
∣
∣
∣
∣
1
n

n∑

k=1

ψ
(
fk(x, ω)

) −
∫

X

ψdπf

∣
∣
∣
∣
∣
≤ 1

n

n∑

k=1

∣
∣ψ

(
fk(x, ω)

) − ψ
(
fk(z, ω)

)∣∣

+

∣
∣
∣
∣
∣
1
n

n∑

k=1

ψ
(
fk(z, ω)

) −
∫

X

ψdπf

∣
∣
∣
∣
∣

≤ L
1
n

n∑

k=1

( k∏

j=1

ξj(ω)δ
)
ρ(x, z)δ +

∣
∣
∣
∣
∣
1
n

n∑

k=1

ψ
(
fk(z, ω)

) −
∫

X

ψdπf

∣
∣
∣
∣
∣
,

for every r ∈ (0,∞) and for every nonempty subset A of the ball with center
at z and radius r, for every ω ∈ Ω∞ and n ∈ N we have

sup
{∣
∣ 1
n

n∑

k=1

ψ ◦ fk(x, ω) −
∫

X

ψdπf
∣
∣ : x ∈ A

}

≤ Lrδ 1
n

n∑

k=1

k∏

j=1

ξj(ω)δ +

∣
∣
∣
∣
∣
1
n

n∑

k=1

ψ
(
fk(z, ω)

) −
∫

X

ψdπf

∣
∣
∣
∣
∣
.

In view of Theorem 3 and Corollary 2, to finish the proof it is enough to show
that

lim
n→∞

1
n

n∑

k=1

k∏

j=1

ξδ
j = 0 a.e. for P∞. (14)

To this end observe that, by Jensen’s inequality, in the first case (i) we have

E(ξδ) = E
(
(ξ2δ)

1
2
) ≤ (

E(ξ2δ)
) 1

2 < 1,

and in the second one

E(ξδ) ≤ (Eξ)δ < 1.
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Therefore, applying the monotone convergence theorem and independence of
ξn, n ∈ N, we get

E

( ∞∑

n=1

n∏

k=1

ξδ
k

)

=
∞∑

n=1

E

(
n∏

k=1

ξδ
k

)

=
∞∑

n=1

n∏

k=1

E
(
ξδ
k

)
=

∞∑

n=1

(
E(ξδ)

)n
< ∞.

Consequently, the series
∑∞

n=1

∏n
k=1 ξδ

k converges a.e. for P∞ and (14) follows.

�

5. An Application to Random Affine Maps

Corollary 4. Assume X is a closed subset of a separable Banach space con-
taining the origin, ξ : Ω → R and η : Ω → X are random variables such that
ξ(ω)X + η(ω) ⊂ X for ω ∈ Ω, and

ζn(ω1, ω2, . . .) =
n∑

k=1

⎛

⎝
n∏

j=k+1

ξ(ωj)

⎞

⎠ η(ωk) for (ω1, ω2, . . .) ∈ Ω∞, n ∈ N.

If either δ ∈ (0, 1
2 ] and

E|ξ| < 1, E‖η‖ < ∞,

or δ ∈ [12 , 1] and

E(|ξ|2δ) < 1, E(‖η‖2δ) < ∞,

then there exists a probability Borel measure μ on X such that
∫

X

‖x‖μ(dx) < ∞

and for every Hölder continuous with exponent δ function ψ : X → R,

lim
n→∞

1
n

n∑

k=1

ψ ◦ ζk =
∫

X

ψdμ a.e. for P∞.

Proof. The function f : X × Ω → X defined by

f(x, ω) = ξ(ω)x + η(ω)

is an rv-function. It satisfies (H) in the first case, and (Hδ) in the second one.
By induction,

fn(x, ω1, ω2, . . .) =

(
n∏

k=1

ξ(ωk)

)

x +
n∑

k=1

⎛

⎝
n∏

j=k+1

ξ(ωj)

⎞

⎠ η(ωk)

for x ∈ X, (ω1, ω2, . . .) ∈ Ω∞ and n ∈ N. Hence, ζn = fn(0, ·) for n ∈ N, so an
application of Corollary 2 and Theorem 3 finishes the proof. �
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Remark 2. Let λ ∈ (0, 1) and let η : Ω → [0, 1 − λ] be a random variable. Put

ζn(ω1, ω2, . . .) =
n∑

k=1

λn−kη(ωk)

for (ω1, ω2, . . .) ∈ Ω∞ and n ∈ N. By Corollary 4 there exists a probability
Borel measure μ on [0, 1] such that for every Hölder continuous ψ : [0, 1] → R,

lim
n→∞

1
n

n∑

k=1

ψ ◦ ζk =
∫

[0,1]

ψdμ a.e. for P∞.

But, as observed in [2, Remark 4.3], if (ψ ◦ ζn)n∈N converges in probability for
a Borel ψ : [0, 1] → R such that

c|x − z| ≤ |ψ(x) − ψ(z)| for x, z ∈ [0, 1]

with a constant c ∈ (0,∞), then η is a.s. for P constant.
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