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ABSTRACT
Background: The Human Respiratory Tract (HRT) is colonized by various microbial taxa, 
known as HRT microbiota, in a manner that is indicative of mutualistic interaction between 
such microorganisms and their host.
Aim: To investigate the microbial composition of the HRT and its possible correlation with the 
different compartments of the respiratory tract.
Methods: In the current study, we performed an in-depth meta-analysis of 849 HRT samples 
from public shotgun metagenomic datasets obtained through several distinct collection 
methods.
Results: The statistical robustness provided by this meta-analysis allowed the identification of 
13 possible HRT-specific Community State Types (CSTs), which appear to be specific to each 
anatomical region of the respiratory tract. Furthermore, functional characterization of the 
metagenomic datasets revealed specific microbial metabolic features correlating with the 
different compartments of the respiratory tract.
Conclusion: The meta-analysis here performed suggested that the variable presence of 
certain bacterial species seems to be linked to a location-related abundance gradient in the 
HRT and seems to be characterized by a specific microbial metabolic capability.
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Introduction

The human body harbors a large number of micro
organisms that live in a close symbiotic relationship 
with their host, constituting a complex ecological 
community known as the microbiota [1]. An increas
ing number of studies have reported on the roles 
exerted by the human microbiota in maintaining 
physiological homeostasis of the host [2,3], modulat
ing immunological [4,5], metabolic [6,7], and nutri
tional [8–10] functionalities. Moreover, specific 
microbiota compositions have been identified for 
particular anatomical body sites, including the gastro
intestinal tract [11–13], the skin [14,15], vagina 
[16,17], and the respiratory tract [18,19]. 
Interestingly, for a long time, the Human 
Respiratory Tract (HRT) had erroneously been con
sidered microbiologically sterile; it was modern meta
genomic approaches through which in depth 
investigations of HRT’s microbial communities have 
been made possible [18,20].

The HRT can be divided into the Upper 
Respiratory Tract (URT), which includes the nasal 
cavity, pharynx, and larynx, and the Lower 

Respiratory Tract (LRT), which comprises the tra
chea, the primary bronchi, and lungs [18]. Many 
studies assessing the HRT microbiota have focused 
on specific regions, i.e. URT or LRT, with their asso
ciated microbiota composition being delineated using 
distinct sampling approaches, such as nasal [21–23] 
or lung lavage fluid [24,25], local swabs [26,27], biop
sies [26,28] or sputum [29–31].

Microbiota-based studies targeting healthy indivi
duals based on culture-independent methods has 
revealed that the LRT microbiota shares microbial 
colonizers with the URT microbiota [32,33] and 
that the oropharynx appeared to be the major bacter
ial source of the whole lung microbiota in adults 
[32,34]. Furthermore, culture-independent 
approaches, e.g. 16S rRNA gene sequencing, facili
tated disentanglement of the complexity of microbial 
communities at genus-level resolution, revealing that 
the HRT microbiota composition is dominated by 
members of the Prevotella, Streptococcus, Veillonella, 
Pseudomonas, Fusobacterium, Haemophilus, and 
Neisseria genera [20,35]. Besides, relationships 
between microbiota composition and respiratory dis
eases were investigated, disclosing a low load and 
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higher biodiversity of bacterial communities in 
healthy subjects when compared to those associated 
with certain diseases, some of which not being 
directly associated with bacterial infections, such as 
asthma [36], chronic obstructive pulmonary disease 
(COPD) [37] and cystic fibrosis [38,39].

Nevertheless, most of the currently available 
knowledge about the HRT microbiota is based 
on 16S rRNA gene sequencing analysis, thus 
restricting their taxonomic accuracy down to 
mostly genus level [40,41]. Moreover, currently 
published information pertaining to the HRT 
microbiota is generally aimed at identifying cor
relations between the HRT microbiota composi
tion and HRT-associated diseases, thus targeting 
specific compartments of the respiratory tract, 
such as nasal cavity, larynx, or lung [21,42–46]. 
HRT surrogates, such as induced sputum and 
sputum, were also used to evaluate the upper 
and/or lower respiratory tract microbiota 
[29,47,48]. However, profiling of the lower 
respiratory tract microbiota through sputum and 
induced sputum samples may lead to taxonomical 
bias due to contamination of bacteria from the 
upper respiratory tract [49].

In order to provide a comprehensive view of 
the taxonomic composition of the HRT micro
biota down to species level and to identify HRT- 
specific Community State Types (CSTs), we per
formed an in-depth meta-analysis of 16 publicly 
available shotgun metagenomic datasets corre
sponding to 849 samples obtained through differ
ent collection methods, i.e. lavage, swab, biopsy, 
and sputum, from healthy and diseased subjects 
[50–59]. Furthermore, the shotgun metagenomic 
data sets included in this study were further 
examined in order to dissect the genetic reper
toire and microbial metabolic potential associated 
with such predicted HRT-CSTs.

Materials and methods

Database selection

In this meta-analysis-based study, we retrieved 16 
publicly available data sets from studies involving 
the taxonomic determination of the human respira
tory tract microbiome, performed in accordance with 
the relevant guidelines and regulations. In order to 
reduce the variability of the input data, we selected 
shotgun metagenomic datasets obtained by an 
Illumina sequencing platform. In detail, we selected 
shotgun metagenomic data sets from 849 samples 
from healthy or diseased subjects covering eight geo
graphical regions (Table 1). The retrieved samples 
represented different collection methods, i.e. lavage, 
swabs, biopsies and sputum, from different HRT 
compartments (Supplementary Table S1).

Taxonomic classification of sequence reads

Taxonomic profiling of sequenced reads was per
formed employing the METAnnotatorX2 bioinfor
matics platform [60,61]. In detail, the downloaded 
fastq files were filtered to remove reads with 
a quality of <25, and to retain reads with a length 
of  >100 bp. Subsequently, a human host DNA filter
ing was performed through bowtie2 software [62,63], 
following the METAnnotatorX2 manual [61]. 
Afterwards, taxonomic classification of 100,000 
reads was achieved by means of MegaBLAST [64] 
employing a manually curated and pre-processed 
database of genomes retrieved from the National 
Center for Biotechnology Information (NCBI), fol
lowing the METAnnotatorX2 manual [61].

Functional prediction

Functional profiling of the sequenced reads was per
formed with the METAnnotatorX2 bioinformatics 

Table 1. Metadata of the samples included in the meta-analysis.

Bioproject PMID Nation
No. of 

samples
Nasal 

lavage
Nasopharynx 

swab Sputum
Cough 
swabs

Oropharynx 
swab

Lung 
lavage Biopsy

Undefined 
Swab

PRJEB28158 - Germany 207 86 - 55 66 - - - -
PRJEB9034 26,872,143 UK 18 - - 18 - - - - -
PRJNA71831 28,158,639 USA 4 - - 4 - - - - -
PRJNA644285 33,262,957 Brazil 3 - - 3 - - - - -
PRJNA655567 - China 61 - - - - - 53 - 8
PRJNA659860 - Russia 14 - - - - - 14 - -
PRJNA682527 - Russia 25 - - - - - - 25 -
PRJNA258008 - USA 14 - - - - - 13 1 -
PRJNA316056 28,758,937 Italy 12 - - 12 - - - - -
PRJNA316588 28,187,782 Switzerland 18 - - 18 - - - - -
PRJNA494034 32,580,896 USA 12 - - - - - 12 - -
PRJNA510441 - USA 1 - - 1 - - - - -
PRJNA413615 31,367,746 China 334 - 42 - - 246 46 - -
PRJNA516870 32,635,564 Italy 22 - - 22 - - - - -
PRJNA516442 30,784,601 USA 11 - - 11 - - - - -
PRJEB38221 33,319,812 Germany 93 - - - 93 - - - -
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platform [60,61]. Functional classification of reads 
was performed to reveal metabolic pathways based 
on the MetaCyc database (release 24.1) [65] through 
RAPSearch2 software [66,67].

Human respiratory tract Community State Type 
(HRT-CST) prediction

The HCL of samples was obtained using bacterial 
composition at species level and was calculated 
through ORIGIN 2021 (https://www.originlab.com/ 
2021) software using Pearson correlation as 
a distance metric based on information at species 
level. The data obtained was represented by 
a cladogram.

Statistical analysis

ORIGIN 2021 (https://www.originlab.com/2021) and 
SPSS software (www.ibm.com/software/it/analytics/ 
spss/) were used to compute statistical analyses, 
including HCL and Silhouette analyses. EMPeror 
tool was used to visualize PCoA analyses [68] calcu
lated through ORIGIN 2021. PERMANOVA analyses 
were performed using 1,000 permutations to estimate 
p-values for differences among populations in PCoA 
analyses. Furthermore, differential abundance of bac
terial genera was tested by t-test or Mann–Whitney 
U test analysis. Multiple comparison analyses were 
performed through Tukey’s HSD (honestly signifi
cant difference) test. Moreover, multivariate analyses 
were performed through MaAsLin2 software [69].

Results

Dataset selection

In order to retrieve all publicly available metage
nomic data sets concerning studies related to HRT 
microbiota, an extensive scientific literature search 
was performed (Figure S1). The scientific literature 
examination allowed us to collect HRT microbiota 
data from 16 publicly available data sets based on 
Illumina shotgun metagenomic methodologies, 
encompassing individuals from eight different coun
tries (Figure S1, Table 1, and Supplementary Table 
S1). In detail, the multi-population cohort meta- 
analysis presented in this study includes datasets cor
responding to a total of 849 samples from healthy or 
diseased subjects, obtained through different collec
tion methods, i.e. lavage, swab, biopsy, and sputum 
(Table S1).

Identification of human respiratory tract 
Community State Types (HRT-CSTs)

A total of 849 publicly available shotgun metage
nomic datasets representing the HRT microbiota, 
including upper and lower respiratory tract, were 
collected. As reported in previous studies regarding 
human-associated microbiota, we employed a large 
number of HRT samples to aim for robust statistical 
accuracy [17,70–72]. In detail, we focused on samples 
obtained through Illumina shotgun sequencing to 
accurately profile bacteria at species level through re- 
analysis with the METAnnotatorX2 platform [60,61].

Quality filtering and human DNA read-removal 
were performed starting from the collected fastq 
files and resulting in a total of 432,176 Mbp with an 
average of 1,002 ± 1,682 Mbp per sample (Table S1). 
The collected data sets were employed to predict the 
existence of common HRT-associated taxonomic 
profile patterns, leading to the identification of so- 
called HRT-CSTs. Identification of the minimal num
ber of clusters necessary to define such HRT-CSTs 
was achieved by an unsupervised Silhouette method, 
revealing an optimal number of seven clusters (Figure 
S2a). Subsequently, a supervised cluster analysis 
through Hierarchical CLustering (HCL), involving 
the microbial taxonomic profiles at species level of 
HRT samples (Figure 1(a)), was performed to imple
ment and biologically verify the results of the unsu
pervised approach, while also being supported by 3D 
Bray Curtis PCoA (Figure 1(b)). In detail, putative 
HRT-CSTs were defined by clusters represented by at 
least 1% of the total sample number, i.e. eight sam
ples, and by samples from at least two different data
sets to exclude possible biases related to a single 
study, as previously reported [73]. The validity of 
identified clusters was statistically confirmed by 
PERMANOVA (p-value < 0.05) based on PCoA ana
lysis (Figure 1(b)). Furthermore, in order to exclude 
possible extrinsic bias, PCoA analyses were per
formed to identify possible associations between 
microbiota composition of each sample and the cor
responding bioproject study or geographic origin 
(Figure S2a and b), revealing the absence of specific 
cluster and an heterogeneous distribution of samples.

The metagenomic meta-analysis of HRT samples 
allowed us to identify a total of 13 distinct CSTs 
(Figure 1(a) and Table 2), mainly characterized by 
species belonging to the Actinobacteria, 
Bacteroidetes, Firmicutes, and Proteobacteria phyla. 
Moreover, each identified CST was defined by the 
most abundant taxa with a prevalence > 85% 
(Table 2), while the remaining bacteria identified for 
each CST were considered accessory taxa. In detail, 
the meta-analysis revealed that the most prevalent 
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CST of the HRT was HRT-CST-Ss (represented by 
11% of the total number of samples) and HRT-CST- 
Rm (9% of the total sample number), which are 
dominated by Streptococcus salivarius and Rothia 
mucilaginosa, respectively (Table 2). Besides, five 
HRT-CSTs characterized by species belonging to the 
Staphylococcus and Prevotella genera were shown to 
be present at a prevalence ranging from 9% to 3%, 

and were defined as HRT-CST-Se, HRT-CST-Sa, 
HRT-CST-Pj, HRT-CST-Pm and HRT-CST-Ph, 
being characterized by a high relative abundance of 
Staphylococcus epidermidis, Staphylococcus aureus, 
P. jejuni, P. melaninogenica and P. histicola, respec
tively (Table 2). Furthermore, the meta-analysis 
allowed us to distinguish seven HRT-CSTs with 
a low prevalence (≤ 6% of the total sample) and 

Figure 1.Identification of HRT-CSTs. Panel a shows a circular cladogram of the HRT samples obtained by means of hierarchical 
clustering (HCL) analysis. The cladogram highlights the different CSTs identified by HCL analysis. Panel b reports the principal 
coordinate analysis (PCoA) of the HRT samples, subdivided by identified CSTs.
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typified by the presence of bacterial species consid
ered opportunistic pathogens (Table 2). In detail, the 
latter were characterized by Neisseria subflava (HRT- 
CST-Ns), Streptococcus mitis (HRT-CST-Sm), 
Haemophilus influenzae (HRT-CST-Hi), 
Tetrasphaera japonica (HRT-CST-Tj), Pseudomonas 
aeruginosa (HRT-CST-Pa), and Corynebacterium 
propinquum (HRT-CST-Cp) (Table 2). Additionally, 
the HCL analysis revealed two clusters representing 
putative CSTs characterized by an unknown species 
belonging to the Pasteurella genus (Cluster-P) or 
Schaalia genus (Cluster-S) (Figure 1(a)). The predo
minance of sequences not associated with defined 
bacterial species indicates a non-specific classification 
with the consequent definition of putative HRT- 
CSTs, which are not associated with the presence of 
particular species. In order to define possible repre
sentative species of these two putative clusters, de 
novo assemblies through METAnnotatorX2 platform 
[60,61] were performed. Nevertheless, the high con
tamination of eukaryotic DNA and the low amount 
of bacterial reads did not allow to obtain reliable 
results. Moreover, Cluster-S appears to be character
istic of only one specific bioproject, i.e. 
PRJNA413615. For these reasons, Cluster-P and 
Cluster-S were excluded from HRT-CSTs classifica
tion and subsequent analyses. In this context, the 
biopsy samples displayed the lowest number of 
microbial profiles at a taxonomic resolution down 
to species level, being mainly represented by 
unknown species of Pasteurella, Pseudomonas, and 
Tetrasphaera genera. Consequently, due to the low 
number of samples and being derived mainly from 
a single bioproject (Table 1), biopsy samples were 
excluded from further analyses regarding the correla
tion between microbiota composition and anatomical 
body sites. Indeed, further studies involving a higher 
number of biopsy samples are needed to extend our 
comprehension of the microbial communities that 
adhere to pulmonary tissues.

Correlation between HRT microbiota and human 
body-anatomical regions

The identification of specific HRT-CSTs representa
tive of the respiratory tract as a single compartment 
suggested to investigate possible correlations between 
the specific respiratory compartments, such as lung, 
throat and nasal cavity, and the HRT-CSTs. In detail, 
the high number of samples included in the meta- 
analysis allowed us to explore possible correlations 
between the HRT microbiota composition and differ
ent sampling methods, i.e. lavage, swab, and sputum.

Analysis of HRT-CSTs’ prevalence showed that all 
HRT-CSTs encompass samples of at least two differ
ent sampling methodologies and represent a common 
microbial community profile of distinct 

compartments of the respiratory tract (Figure 2(a)) 
[32,33]. Moreover, samples from the nasal cavity, i.e. 
nasal lavage and nasopharynx swab, were shown to 
exhibit a high prevalence of HRT-CST-Se (prevalence 
of 34% and 38%, respectively). Furthermore, the ana
lyzed oropharynx samples showed a high prevalence 
of HRT-CST-Pj (28%), while cough swabs were 
demonstrated to exhibit a high prevalence of HRT- 
CST-Rm (22%) and HRT-CST-Sm (22%) 
(Figure 2(a)). In contrast, sputum and lung lavage 
samples revealed a variable microbiota composition, 
showing the absence of any specific HRT-CST related 
to any of these two compartments (Figure 2(a)). 
Analysis of the beta-diversity represented through 
Bray Curtis 3D-PCoA (Figure 2(b)) revealed three 
specific clusters independent of the sampling meth
ods but related to particular respiratory tract com
partments, i.e. nasal cavity, throat, and lung, thus 
indicating taxonomic features specific to each of 
these anatomic regions PERMANOVA (p-value < 
0.05). Conversely, sputum samples elicited 
a heterogeneous microbial distribution and therefore 
a more variable sputum microbiota composition 
(Figure 2(b)).

Consequently, we decided to investigate the 
presence of specific bacterial communities asso
ciated with specific HRT compartments. In detail, 
we focused on 53 bacterial species with a relative 
abundance > 1% in at least one compartment 
group (Table S2). In detail, nasal cavity, throat, 
and lung compartments shared a total of 40 
microbial species (Table S2), highlighting common 
microbial community inhabitants of different 
compartments of the respiratory tract. Moreover, 
samples from the nasal cavity presented a high 
prevalence and relative abundance of 
Staphylococcus epidermidis (Table S2 and 
Figure 3(a)). It is possible that Staphylococcus epi
dermidis as a common component of the nasal 
microbiome plays a major role in promoting eco
logical competition between commensal bacteria 
and opportunistic pathogenic species, as reported 
previously [74,75]. Interestingly, the presence of 
skin-colonizing bacteria such as Staphylococcus 
epidermidis indicates a relationship between the 
microbiota of the nasal cavity and that of the 
skin, suggesting a bacterial transition between 
these ecological niches. Additionally, in the other 
assessed HRT compartments, i.e. throat and lung, 
Staphylococcus epidermidis is present at a lower 
relative abundance than the nasal cavity, probably 
reflecting a decreasing abundance gradient based 
on distance from the nasal cavity (Figure 3(b)). 
Besides, seven other species, including 
Haemophilus influenzae and Streptococcus pneu
moniae, are shared among the different body- 
compartments and were shown to be present at 
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a decreasing abundance gradient depending on the 
distance from the nasal cavity (Figure 3(b)). 
Intriguingly, a specific multivariate analysis 
through MaAslin2 software [69] and based on 
sampling methods, HRT-CSTs, bioproject, and 
geographical origin, revealed that among the taxa 
characterizing each CST, S. epidermidis, 

H. influenzae and Str. pneumoniae possessed the 
largest number of significant negative associations 
(all false discovery rate (FDR) < 0.05) with the 
HRT-CSTs (Figure 3(c) and Table S3). These 
results could suggest an high ability of these bac
terial species to compete for their specific ecolo
gical niche. Furthermore, throat, i.e. cough and 

Figure 2.Evaluation of HRT-CST distribution based on sampling methods. Panel a shows the correlations between HRT-CST and 
the different sampling methods. Prevalences > 15% were highlighted in red. Panel b displays the principal coordinate analysis 
(PCoA) of the HRT samples, subdivided by sampling methods.
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oropharynx swabs, sputum and lung lavage sam
ples were shown to exhibit heterogeneous micro
bial compositions, without a predominant taxon, 
perhaps representing a transitory microbiota. 
Intriguingly, the throat microbiota appears to be 
characterized by species belonging to the genera 
Streptococcus and Rothia [76], such as 
Streptococcus parasanguinis, Streptococcus salivar
ius and R. mucilaginosa, which are also represen
tatives of the sputum microbiota (Table S3), 
indicate a tight transition of bacteria between 
these two body-compartments. In accordance 
with these results, the multivariate analysis of 
these taxa revealed a limited number of significant 
associations, probably indicating these species as 
components of a transient microbiota (Table S3). 
In addition, sputum and lung lavage samples 
revealed a specific taxonomical gradient based on 
distance from each compartment (Figure 3b). In 
detail, lung lavage samples showed five bacterial 
species, such as Tetrasphaera japonica, with 
a higher relative abundance compared to other 
compartments, indicating a possible increasing 
gradient (Figure 3(b)). In contrast, sputum sam
ples revealed six species, represented by 
Pseudomonas aeruginosa, Streptococcus parasan
guinis, Streptococcus salivarius, Streptococcus ora
lis, Rothia dentocariosa, and Veillonella parvula, 
with a distance-dependent gradient from the oral 
cavity, possibly reflecting bacterial adaptation to 
a specific ecological niche.

Association between HRT-CSTs and respiratory 
tract disease

The samples involved in this meta-analysis include 
both healthy and diseased samples (Table S1). In 
fact, the main purpose of this study was to assess 
the HRT microbiota regardless of host health sta
tus. Nevertheless, we explored the statistical power 
of this meta-analysis to identify correlations 
between HRT-CSTs and respiratory tract disease. 
Unfortunately, the absence of comprehensive 
metadata regarding the classification of the pul
monary pathology prevented detailed comparisons 
between healthy and diseased samples and identi
fying the possible correlations between HRT 
microbiota composition and specific pulmonary 
diseases. In detail, this analysis highlighted that 
diseased samples appeared to be associated with 
five HRT-CSTs, i.e. HRT-CST-Hi, HRT-CST-Tj, 
HRT-CST-Se, HRT-CST-Pa, and HRT-CST-Sa, 
with a prevalence > 90% (Figure 4(a)). In contrast, 
only HRT-CST-Pj is associated with healthy sam
ples (prevalence = 93%) (Figure 4(a)). 
Furthermore, analysis of species richness revealed 
a lower complexity of the diseased samples 

(species richness of 31 ± 12) compared to samples 
obtained from healthy subjects (species richness of 
17 ± 12) (p-value < 0.05) (Figure 4(b)). These data 
indicate a correlation between simplification of the 
HRT microbiota and (the onset of) respiratory 
disorders, possibly due to the predominance of 
opportunistic bacteria, such as Haemophilus influ
enzae, Pseudomonas aeruginosa, and 
Staphylococcus aureus [77–79]. In contrast, healthy 
samples possess a more heterogeneous microbiota 
with higher microbial biodiversity, confirming the 
concept that healthy subjects possess a more 
diverse bacterial HRT community that is consid
ered to enjoy homeostasis [38]. Moreover, 
a specific multivariate analysis through MaAslin2 
software [69] based on sampling methods as well 
as HRT-CSTs as well as bioproject, and geogra
phical origin, revealed that the main significant 
correlations are positive and related to HRT- 
CSTs but with low model coefficient values 
(Figure 4(c) and Table S4), suggesting an absence 
of correlation with the HRT community state 
types. Notably, the multivariate analysis high
lighted the absence of correlations with the health 
status of the respiratory tract, but this result could 
be influenced by the type of distribution of the 
diseased samples (Figure 4(b)). Certainly, further 
analyses focused on the investigation of bacterial 
differences between different respiratory tract dis
eases and healthy individuals are necessary to elu
cidate the role and/or the association of the HRT 
with the onset of respiratory pathologies.

Functional capabilities based on anatomical 
human body regions

The specific microbial community profiles of differ
ent body compartments are assumed to correspond 
to specific microbiomes and genetic repertoires. In 
order to explore the genetic features characterizing 
each HRT compartment, we performed a screening of 
metabolic pathways based on the MetaCyc database 
[65]. This metabolic analysis included all HRT sam
ples except biopsy samples. In fact, biopsy samples 
after human-DNA filtering did produce enough 
microbial DNA data to perform the metabolic analy
sis. Therefore, evaluation of enzyme classes based on 
Enzyme Commission (EC) number revealed differ
ences in the relative abundance of predicted enzyme 
functions between different respiratory compart
ments. In detail, samples from the nasal cavity and 
lung lavage showed the highest abundance of oxidor
eductases (average abundance 19.60% ± 1.62% and 
17.43% ± 3.65%, respectively) when compared to 
other HRT compartments (ANOVA p-value < 0.01, 
Tukey’s HSD post-hoc test p-value < 0.01) 
(Figure 5(a)). Similarly, analysis based on HRT- 
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Figure 3.Representation of the main microbial taxa characterizing the different anatomical regions of HRT. Panel a indicates the 
most abundant bacterial species for each compartment of the human respiratory tract. Panel b reports the taxa showing 
a possible abundance gradient in relation to the distance from oral, lung and nasal compartments, respectively. Panel c shows 
an heatmap of the specific multivariate analysis through MaAslin2 software based on sampling methods as well as HRT-CSTs as 
well as bioproject, and geographical origin. Only the top 50 species with significant associations are reported. Significant 
positive correlations are reported in red, while Significant negative correlations are reported in blu.
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CSTs with a prevalence of > 3% revealed that HRT- 
CST-Se and HRT-CST-Sa, being the main represen
tatives of the nasal tract and lung lavage, respectively, 
reflected the enzyme class abundance-trend of the 
respiratory tract compartments (Figure 5(b)). These 
results highlight a metabolic adaptation by bacterial 

communities based on their ecological niche and/or 
type of sampling. In detail, nasal cavity and lung 
lavage samples revealed a total of 21 EC oxidoreduc
tase sub-classes with the highest significant relative 
abundance compared to other HRT compartments 
(Tukey’s HSD post-hoc test p-value < 0.01), including 

Figure 4.Evaluation of the correlations between HRT-CSTs and respiratory tract diseases. Panel a indicates possible correlations 
between HRT-CST and the disease, reporting the prevalence values of each HRT-CSTs. Panel b displays the Whiskers plot 
representing the species richness identified from healthy and disease-associated samples. The x-axis represents the different 
groups, while the y-axis indicates the number of species. The boxes are determined by the 25th and 75th percentiles. The 
whiskers are determined by 1.5 IQR (Interquartile range). The line in the boxes represented the median, while the square 
represents the average. Panel c reports the multivariate analysis calculated through MaAslin2 software and based on species 
richness, as well as HRT-CSTs, sampling methods, bioproject, and geographical origin.
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Figure 5.Evaluation of metabolic pathways of HRT samples. Panel a reports on the bar plot representing the EC class abundance 
based on HRT compartments. The x-axis represents the different HRT compartments, while the y-axis indicates the relative 
abundance of each EC class. The whiskers reported the standard deviation. Panel b shows the bar plot indicating the EC class 
abundance based on HRT-CSTs. The x-axis represents the different HRT compartments, while the y-axis indicates the relative 
abundance of each EC class. The whiskers report the standard deviation. Panel c reports the multivariate analysis calculated on 
the two enzyme classes EC 1.7.1.4 and EC 1.1.1.28 through MaAslin2 software and represented with bar plot. The MaAsLin2 
model are fitted with the enzyme classes, as well as HRT-CSTs, sampling methods as well as bioproject, and geographical origin.
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enzymes predicted to be responsible for formation of 
nitric oxide, e.g. nitrite reductase (EC 1.7.1.4) and 
nitric-oxide synthase (EC 1.14.13.39), and in the pro
duction of lactate, e.g. D- and L-lactate dehydrogen
ase (EC 1.1.1.28 and 1.1.1.27, respectively) (Table S5). 
These results are confirmed by the multivariate ana
lysis calculated through MaAslin2 software [69], 
which revealed a significant negative correlation 
between EC 1.7.1.4 and 1.1.1.28 with sputum and 
throat samples (Figure 5(c) and Table S6). In detail, 
nitric oxide is reported to exert an important physio
logical role in the regulation of pulmonary vasomotor 
tone [80,81] and an increase of enzymes involved in 
this metabolic pathway validates the mutualistic 
interaction between HRT microorganisms and their 
host. Moreover, the predicted higher abundance of 
enzymes involved in lactate production indicates the 
importance of certain bacteria in keeping the nasal 
environment at a relatively low pH, thereby support
ing antimicrobial effects [82]. Furthermore, focusing 
on EC sub-classes specific for each HRT compart
ment, lung lavage samples showed an increase of 
155% of Cd(2+)-exporting ATPase (EC 7.2.2.21) 
when compared to other HRT compartments 
(Tukey’s HSD post-hoc test p-value < 0.01) (Table 
S5). This enzyme is involved in heavy metal detox
ification [83], and its relatively high abundance in the 
lung suggests an ecological adaptation of bacteria to 
the pulmonary environment, perhaps due to the con
tinuous intake of air pollutants [84,85]. In addition, 
sputum and throat samples revealed a higher abun
dance of enzymes involved in carbohydrate metabo
lism, e.g. glycogen phosphorylase (EC 2.4.1.1), alpha- 
amylase (EC 3.2.1.1), pullulanase (EC 3.2.1.41), and 
dextranase (EC 3.2.1.11), compared to other com
partments, suggestive of an adaptation of bacterial 
communities to the oral environment that is involved 
in preliminary digestive processes [86,87]. The small 
presence of these enzymes in the others anatomic 
sites of lower respiratory tract could be explained by 
a partial contamination/transition of bacteria charac
terizing the oral microbiota to the sputum and throat 
compartments [43], but also could indicate a possible 
specific selective pressure from the specific respira
tory anatomic sites [88].

An extensive analysis based on metabolic pathways 
prediction confirmed possible differences in relation 
to the different HRT compartments. In detail, the 
sputum samples presented a higher number of 
unique pathways, i.e. 237 pathways, respect to the 
throat samples, nasal cavity, and lung lavage that 
displayed 101, 86, and 95 unique pathways, respec
tively. Similarly, focusing on the degradation and 
biosynthesis pathways, the throat, nasal cavity, and 
lung lavage samples highlighted a similar number of 
unique pathways respect to sputum samples showed 
the highest number of unique pathways (Table S7). 

These results could confirm the adaptation of micro
bial communities to different ecological niches, high
lighting the high metabolic commitment of the oral 
bacteria involved in several specific physiological 
activities, such as preliminary digestive processes, 
specific to HRT compartments.

Discussion

The HRT harbors a complex community of micro
organisms, that are believed to play a major role in 
preserving physiological homeostasis of the host 
[18,89]. However, in contrast to the gastrointestinal 
tract, which represents the most thoroughly investi
gated organ-microbiota niche, the human respiratory 
tract remains relatively poorly investigated [90,91]. 
Despite several studies based on culture- 
independent metagenomic analyses aimed at evaluat
ing the microbiota composition of different HRT 
sites, a comprehensive meta-analysis is still missing. 
Here, we collected a total of 849 HRT samples from 
publicly available shotgun metagenomic datasets, 
representing the respiratory tract as a single compart
ment and facilitating an in-depth meta-analysis. This 
statistically robust meta-analysis allowed us to iden
tify 13 possible HRT-specific Community State Types 
(CSTs), mainly characterized by species belonging to 
Streptococcus, Staphylococcus, Prevotella, Neisseria, 
and Rothia genera. Furthermore, analysis of the dis
tribution of each HRT-CSTs along the respiratory 
tract highlighted a possible specific microbial correla
tion with the different HRT compartments. In this 
context, our meta-analysis highlighted a location- 
specific abundance gradient in HRT of certain bac
terial species, such as Staphylococcus epidermidis, 
Streptococcus salivarius, and Pseudomonas aerugi
nosa, reinforcing the notion of a possible bacterial 
adaptation to a specific ecological niche within the 
HRT. Such findings were further corroborated by 
metabolic reconstruction of metagenomic datasets 
from different HRT regions. Intriguingly, samples 
from the nasal cavity and lung lavage compared to 
those obtained from other HRT compartments 
showed statistically significant differences in the pre
dicted microbial enzyme profiles, including metabolic 
pathways involved in nitric oxide and lactate produc
tion. These results suggest the existence of 
a correlation between the different compartments of 
the respiratory tract and highlight the important role 
that the HRT microbiota plays in maintaining host 
homeostasis. Conversely, sputum samples revealed 
a higher abundance of enzymes implicated in carbo
hydrate metabolism, revealing a possible metabolic 
adaptation of resident bacteria to specific ecological 
niches. Certainly, specific in vitro metabolism studies 
will be useful to provide further data on the effective 
metabolic capabilities of each HRT-CST.
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Moreover, the lack of complete public metadata, 
such as gender, age, and diet, did not allow us to 
perform in depth multiple correlations with the com
position of the HRT-CSTs microbiome. Remarkably, 
the predominance of data derived from samples asso
ciated with lung diseases when compared to healthy 
samples of certain HRT compartments, i.e. lavage 
samples, and the lack of in depth details on the type 
of pulmonary pathology, e.g. disease severity, very 
much limited our ability to perform meaningful com
parisons between healthy and diseased samples. In 
this context, specific studies assessing bacterial differ
ences between different lung diseases and healthy 
individuals using shotgun metagenomics approaches 
are expected to contribute to the identification of 
biomarkers that are involved in or associated with 
the onset of HRT pathologies.

Conclusion

In conclusion, our meta-analysis allowed the iden
tification of 13 putative Community State Types 
(CSTs), which appear to correlate with the differ
ent HRT compartments. Moreover, several bacter
ial species display a location-specific abundance 
gradient in HRT, suggesting a possible bacterial 
adaptation to a specific HRT compartment. 
Furthermore, the metabolic reconstruction of 
HRT metagenomic datasets revealed significant 
differences in the predicted enzyme profiles, sug
gesting a potential role of the HRT microbiota in 
maintaining host homeostasis and confirming 
a possible metabolic adaptation of resident bac
teria to specific ecological niches.
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