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Abstract

Numerical modeling of the migration of three-phase immiscible fluid flow in variably satu-

rated zones is challenging due to the different behavior of the system between unsaturated

and saturated zones. This behavior results in the use of different numerical methods for the

numerical simulation of the fluid flow depending on whether it is in the unsaturated or satu-

rated zones. This paper shows that using a high-resolution shock-capturing conservative

method to resolve the nonlinear governing coupled partial differential equations of a three-

phase immiscible fluid flow allows the numerical simulation of the system through both

zones providing a unitary vision (and resolution) of the migration of an immiscible contami-

nant problem within a porous medium. In particular, using different initial scenarios (includ-

ing impermeable “lenses” in heterogeneous aquifers), three-dimensional numerical

simulation results are presented on the temporal evolution of the contaminant migration fol-

lowing the saturation profiles of the three-phases fluids flow in variably saturated zones. It is

considered either light nonaqueous phase liquid with a density less than the water, or dense

nonaqueous phase liquid, which has densities greater than the water initially released in

unsaturated dry soil. Our study shows that the fate of the migration of immiscible contami-

nants in variably saturated zones can be accurately described, using a unique mathematical

conservative model, with different evolution depending on the value of the system’s physical

parameters, including the contaminant density, and accurately tracking the evolution of the

sharp (shock) contaminant front.

1. Introduction

Multiphase flow problems refer to the simultaneous flow of two or more fluids separated by

sharp interphases. They are observed in natural phenomena like multiphase flow within a

porous structure, blood flow, nuclear reactions, oil and gas industry applications, etc. For these

reasons, suitable numerical models are necessary to predict their physical behavior accurately.
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However, modeling multiphase fluid flow is challenging since a universally robust and accu-

rate solution methodology has not yet been identified. It is important to mention that this

work is only concerned with unsteady three-phase fluids flow in the variably saturated zone.

A multiphase fluid flow dynamics are governed by coupled conserved partial differential

equations for each fluid flow, based on the Darcy Law and the mass and momentum conserva-

tion principles. They are written as a function of saturation, capillary pressure, permeability,

porosity, density, and viscosity of each fluid flow. Since the capillary pressure and permeability

of each phase is a function of the saturation, these equations are highly nonlinear and, due to

the gravity and pressure gradients, are responsible for creating sharp (shocks) front and rare-

faction, which may introduce significant errors in the numerical simulations. For this reason,

it is not easy to obtain a numerical solution that converges to the physical solution, although

there is an increasing effort to construct conservative numerical solution methods. See, for

example, recent reviews for the numerical resolution of the Richards’ equation for variably sat-

urated flow [1, 2], immiscible fluid flow in unsaturated zones [3], transport modeling in the

heterogeneous porous medium [4, 5], including nonaqueous phase liquid (NAPL) [6, 7], and

variably saturated zones [8–10]. Several two-phase flow models exist in the literature that uses

high-resolution numerical schemes, such as high-resolution central upwind scheme [11]. They

have been used as a numerical approximation to solve the two-phase fluid flow model [12]. Or

the numerical solution of hyperbolic conservation laws such as a space-time Conservation Ele-

ment-Solution Element (CESE) high-resolution scheme for computing the transport of a dif-

fusing pollutant in shallow flows [13], using a Kinetic Flux Vector Splitting scheme [14], using

a fifth-order Weighted Essentially Non-Oscillatory (WENO) scheme [15]. Finite volume

WENO scheme and discontinuous Galerkin method have been used to solve multiphase flow

models [16–20], a second-order accurate difference method for nonlinear conservation laws in

three-dimensions [21], a shock-capturing numerical scheme for compressible multicompo-

nent problems [22] and multi-medium flows [23]. Other examples of two-phase fluid flow

applications for oil-water fluids flow can be found in [24, 25].

The method used in this paper has been introduced in Ref. [26]. It is based on the high-res-

olution shock-capturing flux (HRSC) conservative method [11, 27, 28] to follow sharp discon-

tinuities accurately and temporal dynamics of three-phase immiscible fluid flow in a porous

medium. Several validation tests were performed in [26] to verify the accuracy of the HRSC

method and the CactusHydro code. These tests include a comparison with an analytical model

such as the Burgers’ equation, the Buckley-Leverett model and a comparison with a two-

dimensional unsaturated-saturated water flow model [10], together with the sand tank experi-

mental data [29]. They show the absence of spurious oscillations in the solution and conver-

gence to the “weak” solution as the grid is refined. The time evolution is performed using a

forward in time explicit method rather than the most used, implicit one in which the discreti-

zation is based on a "backward in time" evolution. That requires the time step to be sufficiently

small since the method is “conditionally stable”. The implicit methods, in contrast, are “uncon-

ditionally stable” but very expensive from the computational point of view and may lead to

mass balance errors. See for example [30, 31] for two-phase flow using an implicit pressure

and explicit saturation schemes, three-phase fluid flow [32], finite element methods [33–36].

This work shows numerical results on the fate of either light NAPL or dense NAPL initially

released on a dry unsaturated zone that migrates, depending on its density to the saturated

aquifer one. In the literature, these scenarios are treated very differently. Here different initial

scenarios are investigated (including impermeable “lenses” in heterogeneous aquifers). It is

shown that using a unique mathematical model that uses an HRSC method, it is possible to

numerical simulate the system in both variable saturated zones, giving a unitary vision and

numerical resolution of the migration of immiscible contaminants in a porous medium. In
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particular, it follows the temporal (and three-dimensional spatial) evolution of the saturation

profile of the three-phases fluid along the variably saturated zone and their conservation law

all over the simulation.

2. Methods

2.1 Governing equations of three-phase immiscible fluid flow

This section briefly describes the numerical model introduced in Ref. [26]. Consider a three-

dimensional three-phase fluid flow in a porous medium composed of nonaqueous (n), water

(w), air (a), and a variably saturated zone. Using the conservation equation for the mass and

momentum for each fluid phase together with the Darcy’s velocity for each phase, we obtain

the governing coupled partial differential equations (PDEs) for each phase-fluid flow,
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where xi = (x, y, z) are the spatial cartesian coordinates, and t is the time coordinate, ρα is the

density M
L3

� �
of each phase, α = (w, n, a), μα is the dynamics viscosity M

LT

� �
of phase α, pα is the

phase pressure M
T2L

� �
, krα is the dimensionless relative permeability of phase α, kij is the absolute

permeability tensor [L2], g denotes the gravitational acceleration L
T2

� �
, z is the depth [L], qα is

the mass source/sink M
L

� �
, ϕ is the porosity, Sα is the dimensionless volumetric saturation of

phase α which satisfy the relation,

Sw þ Sn þ Sa ¼ 1: ð4Þ

In Eqs (1)–(3) it is used the pressure pa (that is the air pressure when Sa is different from

zero), and it is considered the capillary pressure for the air-water phase, pcaw = (pa − pw), and

the capillary pressure for the air-nonaqueous phase, pcan = (pa − pn), where it is substituted pw
= pa − pcaw, and pn = pa − pcan. The third capillary pressure, the nonaqueous-water phase can

be deduced from the other two, and is given by, pcnw = (pn − pw) = (pcaw − pcan) (in contrast to

Refs. [37, 38], where the air gradient pressure is assumed negligible). The relative permeabili-

ties krw, krn and kra and the capillary pressures are function of saturations, krα = krα(Sa, Sn, Sw),

pcan = pcan(Sa, Sn, Sw) and pcaw = pcaw(Sa, Sn, Sw). This paper uses the van Genuchten model [39,

40] for the air-water and the air-nonaqueous capillary pressure (see subsection 2.3). But it is

worth noticing that different solutions choices correspond to different porous mediums. The

numerical solution and the method applied here are not affected by any particular choice. The

absolute permeability kij depends on the properties of the porous medium. The porosity ϕ is a

function of pressure and can be linearly approximated to, ϕ = ϕ0[1 + cR(p − p0)], where cR is

the rock compressibility, ϕ0 is the porosity at p0, which is considered the atmospheric, and p is

the pressure (that will be associated with pa).
It is convenient to define the product of the porosity ϕ and the saturation for each phase as,

σw� ϕSw, σn� ϕSn, σa� ϕSa. Then, Eq (4) can be written as, σa + σn + σw = ϕ0[1 + cR(p − p0)].
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The left-hand side of (1)–(3), assuming constant density-viscosity for each phase, becomes
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do not depend on the spatial derivative of the saturation, while

Qi
að Þ
Sw; Sn; Sa; pð Þ ¼ �
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kij
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depends on the spatial derivative of the saturation. The PDEs system to be numerically

resolved is composed by Eqs (5) and (6) and the variables p, σw, σn, σa together with the func-

tional form of the relative permeabilities and capillary pressures, written in terms of the satura-

tions (see subsection 2.3).

2.2 High-resolution shock-capturing conservative numerical method

The system of PDEs (5) and (6) governing a three-phase immiscible fluid is naturally formu-

lated in terms of conservation laws. In this system, the dominant part (in the regime of inter-

est) is the hyperbolic one (Eq (7)) and is responsible for forming shocks and propagating the

density fronts. Indeed, to accurately reproduce the dynamics of the density discontinuity in

time, one needs to separate the methods used to discretize the propagation (hyperbolic) part

from the diffusive (parabolic) part (Eq (8)). This separation is of fundamental importance

since explicit methods in time evolution should be preferred when the propagation dominates

over the diffusion. In contrast, implicit (in time) methods should be preferred when diffusion

dominates over propagation. The importance of using conservative formulations, i.e., methods

based on conservation law, is due to two fundamental theorems. The first one is due to Lax

and Wendorff [27] and the second one by Hou and LeFloch [28]. Namely, conservative

numerical schemes, if convergent, do converge to the weak solution of the problem. The sec-

ond theorem states that non-conservative numerical schemes do not converge to the correct

solution if a shock wave (or discontinuity) is present in the flow. These two theorems state that

if a conservative formulation is used, then it is guaranteed that the numerical solution will con-

verge to the correct solution. On the contrary, if a conservative formulation is not used, the

numerical solution will converge to the incorrect solution when the flow develops a

discontinuity.

There is a vast literature on numerical methods that take advantage of the conservative

nature of the equation and are referred to as HRSC methods that accurately reproduce the dis-

continuous features of the solutions. For the system studied in this paper, information on the

characteristic is not explicitly available. Indeed, we are using a variant of the HRSC central

schemed discussed in Kurganov and Tadmor (KT) [11] that also has the advantage of dealing

with a diffusive part in the conservative equations that is usually assumed not present in other

schemes. A comprehensive and almost complete discussion of most of the possible HRSC

methods can be found in Ref. [41] dedicated, in a different context, to the study of Relativistic
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Hydrodynamics. Here is briefly described the details of the method in one spatial dimension

and one component fluid. Its extension to more components and three dimensions is straight-

forward. The equation to be solved is,

@

@t
u x; tð Þ ¼ �

@

@x
F u x; tð Þð Þ þ Q u x; tð Þ;

@u x; tð Þ

@x
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; ð9Þ

where F(u(x)) is the flux associated with the hyperbolic part, and Q(u(x), du(x)/dx) is the para-

bolic part of the flux. Notice that it is not explicitly written the dependence on t in all quanti-

ties. How this decomposition is achieved for the system in discussion is shown in (7, 8). The

variable is discretized assuming, at any time, a given value (ui) on each grid point (xi). For

intermediate points is assumed a piecewise-linear reconstruction inside each cell, ui(x) = ui +

si(x − xi), where si is the “slope” of the linear reconstruction, and they are constructed using

total-variation-diminishing (TVD) properties (needed for the theorem named above) and

based on the min-mod slope limiter [Kolgan 72, val Leer 79]. Indeed, the variable is assumed

to have a jump discontinuity at the cell border, i.e., different values on the right and the left at

the points xi+1/2 called uþi and u�iþ1
. This implies that the computed values of the flux F(u(x))

and Q(u(x), du(x)/dx) = Q(u(x), u0(x)) will be different at the cell boundary but these values

may be used to compute the effective flux at the cell boundary Hj+1/2 and Pj+1/2. Here Hj+1/2 is

a function of F uþjþ1=2

� �
and F u�jþ1=2

� �
while Pj+1/2 is constructed in terms of the values of Q(x,

u(x), u’(x)). Once a prescription to construct this flux is given, one has a conservative flux

method for the solution, namely one has just to numerical solve in time the ordinary differen-

tial equations (Methods of Lines) associated to each grid point:

d
dt
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The KT method amount to the following choice for the numerical fluxes:
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where the aj+1/2 depends on the explicit functional dependence of the flux F(x, u(x)) that, in

this case, is not explicitly known without assuming an explicit dependence on the permeabili-

ties and their derivatives. However, independently on the choice of the permeabilities, the flux

on the two sides always have the same sign and indeed, to use for the Hj+1/2 the values com-

puted on the “left” or on the “right” depend on the sign of F(x, u(x)) at the interface between

two adjacent cells, namely Hjþ1=2 ¼ � F uþjþ1=2

� �
if it is negative, while Hjþ1=2 ¼ F u�jþ1=2

� �
if it is

positive.

The Kurganov-Tadmor (KT) scheme avoids the local Riemann problem. The method

belongs to the Monotonic Upstream-centered Scheme for Conservation Law (MUSCL) class

suggested by van Leer in 1973. The KT scheme archives second-order accuracy in space using

analytical information on the flux form. However, the variation of the method used here that

uses the first-order upwind formula for the fluxes and the min-mod flux limiter avoids using

any analytical information (besides monotonicity) and, indeed, only the point values of the

flux are required. This is of great advantage since it can use tabulated values for permeabilities.

The only penalty is that it is a first-order accuracy at the discontinuities and over the whole
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simulation grid. This is not a big drawback since one must keep in mind that any method will

be first-order accuracy at the physical discontinuities, and the method is targeted to study and

follow the evolution of sharp discontinuity fronts.

This technique requires the time step size to be sufficiently small and thus the use of High-

Performance Computing (HPC). In Ref. [26], we implemented the innovative method in Cac-

tusHydro, based on the Cactus computational toolkit [42–44], an open-source software frame-

work for developing parallel HPC simulation codes where data are evolved on a cartesian

mesh with possible refinement levels using Carpet [45, 46]. See Refs. [47–49], PFLOTRAN, an

open source, massively parallel subsurface flow and reactive transport code [50–52], Parflow

Hydrologic model for surface and subsurface flow on HPC [53–55], RichardsFOAM [56, 57],

CATHY (CATchment HYdrology [58], for related examples in HPC.

2.3 Three permeabilities and capillary pressures model

The relative permeabilities for three phases are given in Ref. [39] and listed below,

krw ¼ S1=2

ew 1 � 1 � S1=m
ew

� �m� �2
; ð13Þ

kra ¼ 1 � Setð Þ
1=2

1 � S1=m
et

� �2m
; ð14Þ

krn ¼ Set � Sewð Þ
1=2

1 � S1=m
ew

� �m
� 1 � S1=m

et

� �m� �2
; ð15Þ

where Set is the total effective liquid saturation defined in terms of the irreducible wetting

phase saturation Swir. This paper uses the van Genuchten model [38] where the effective satu-

ration, Se, is given by, Se ¼ 1þ apnc
� � 1� 1

nð Þ, and α and n are model parameters. It can be solved

for pc,

pc ¼ � pc0 1 � S1=m
e

� �1� m
; ð16Þ

where n ¼ 1

1� m, and pc0 = α−1 is the capillary pressure at Se = 0. Since pcaw = pcan + pcnw, the cap-

illary pressures are given by,

pcan ¼ � pcan0 1 � S1=m
et

� �1� m
ð17Þ

pcaw ¼ � pcan0 1 � S1=m
et

� �1� m
� pcnw0 1 � S1=m

ew

� �1� m
: ð18Þ

3. Three-dimensional immiscible fluid flow numerical simulations

results

This section presents the results of seven different three-dimensional numerical simulations

“real” examples of an immiscible contaminant released to the environment in the unsaturated

zone that migrates toward the saturated (aquifer) under the effect of the gravity force; explor-

ing different scenarios in both homogeneous and heterogeneous aquifer systems. It is consid-

ered a three-phase fluid model composed of water, air, and nonaqueous phase liquid (light or

dense NAPL) and investigates the temporal evolution of the migration of the contaminant fol-

lowing the saturation profiles of each phase along the variably saturated zone. We assumed

constant density and constant viscosity for each phase. The effects of volatilization/biodegrada-

tion and dissolution are not considered.
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3.1 Migration and distribution of a continuous leak of NAPL

3.1.1 LNAPL numerical results. We first consider a continuous leak source (with a spill

rate of 1.15 kg/s) of immiscible LNAPL, placed on top of a parallelepiped at z = [8.0, 10.0] m, x
= [−5.0, 5.0]m, and y = [−5.0, 5.0]m, at t = 0 s, as shown in Fig 1 (red box). The variably satu-

rated zone grid geometry is assumed to be a parallelepiped of 80 m long from x = [−40, +40]m
(left-hand side), 32 m wide from y = [−16, +16]m (right-hand side), and 22 m depth, z = [+10,

−12]m, with a spatial resolution of dx = dy = dz = 0.50 m, and a time step dt = 0.025 s. The

dimension of the grid has been chosen to cover the minimum possible part of the aquifer but

big enough to avoid the boundaries effect (finite grid size) on the dynamics of the contami-

nant. The porous medium is composed of an unsaturated dry zone (air-NAPL) and a saturated

one (filled up with water, colored in blue) separated by the groundwater table located at z = 0.0

m. The numerical grid is oriented such that the gravity force is directed downwards and the y-

axis is horizontal (with respect to the gravity). At the same time, the x-axis forms an angle of

15 degrees with respect to the horizon, and indeed, the gravity force forms an angle of 15

degrees with respect to the z-axis. Consequently, that originates a pressure gradient, and the

flow goes toward the negative direction of the x-axis (see the blue arrows directed to the left-

hand side).

All boundary conditions are no-flow except for the infiltration zone on top of the parallele-

piped. A continuous source of contaminant indicates that the value of the saturation, σn = Sn
ϕ, remains constant on top of the grid along with the transient simulation. The legend at the

right-hand side of Fig 1 indicates the saturation contour values of the contaminant in color

bars.

Table 1 gives the material properties and parameter details used in the numerical simula-

tions performed with CactusHydro [26] all over this work. In particular, it shows the density

of the contaminant, which is 881kg/m3 for the LNAPL, and 1200kg/m3 for the DNAPL (see

next subsection). It is important to stress that the numerical simulations with LNAPL and

DNAPL differ only by their density values. The assigned input parameters used in the numeri-

cal simulations model have been taken from the Literature (not by conducting an experiment).

They have been chosen to be representative of an aquifer in a “Loamy Sand” geological struc-

ture. The value of the density of 881kg/m3 for the LNAPL corresponds to a value compatible

with Crude Oil, while 1200kg/m3 for the DNAPL was chosen in such a way to represent a

generic, not too dense, one.

The porous medium is fixed to a value of porosity of 0.3. The absolute permeability is

assumed to be k = 4.14 × 10−10m2 all over the grid, with kx = ky = kz. The relative permeabilities

and capillary pressure were obtained using Eqs (13)–(18). At zero saturation, the capillary

Fig 1. Three-dimensional numerical grid geometry. Example of the grid geometry used in the numerical simulation of a three-

phase fluid flow (water + LNAPL + air) with a spatial grid resolution of 0.50 m and a grid dimension of 80 m × 32 × 22 m, at the

initial time t = 0 s. The red box is the continuous source of an immiscible contaminant at the top of the parallelepiped in the z − x
plane (left-hand side) and the z − y plane (right-hand side), respectively.

https://doi.org/10.1371/journal.pone.0266486.g001
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pressure air-water is 793.80 Pa or, equivalently, 0.081 m, while the capillary pressure air-non-

aqueous at zero saturation is 556.66 Pa or, equivalently, 0.0566 m.

After being released into the environment, the LNAPL starts to migrate downward the

unsaturated zone under the influence of gravity (see Fig 2, the left-hand side, where the satura-

tion (σn) contours are shown for different times). It moves predominantly downward. Lateral

spreading may also occur due to the effect of the capillary pressures. Fig 2 second row, the left-

hand side, shows the impact of the contaminant after 5.7 hours. The contaminant arrives at

the groundwater table after two days and 8.9 hours (third row, the left-hand side), where a cap-

illary pressure between air-contaminant and contaminant-water is present. Since the contami-

nant has a density lighter than the water (ρn = 881kg/m3, see Table 1), it remains floating in the

groundwater table zone representing a physical barrier. Part of the contaminant remains in

the capillary fringe, part of it moves to the left direction due to a pressure gradient created by

the gravity force’s oblique position (see Fig 2 fourth row, left-hand side). Fig 2 also shows a few

streamlines (in blue). Initially, they move undisturbed toward the left direction (left-hand side

of Fig 2). They change their direction slightly under the contaminant’s presence, which initially

goes a bit down the groundwater table since the spill is sufficiently large, being a continuous

leak source. On the right-hand side of Fig 2, the saturation contours are viewed in the y − x
plane. The transient numerical simulation shows the behavior of this LNAPL after 9 days and

11.6 hours, although it is possible to go further in the numerical simulation. The first two rows

(on the right-hand side) show no contaminant since the plane is located at z = 0 m (groundwa-

ter table). Only when the contaminant reaches this level may it be noticed. See the third row

on the right-hand side how the contaminant arrives at the groundwater table, keeping its initial

square-like section. After a while, this becomes an oval-like shape (third and fourth row, right-

hand side).

Fig 3 shows three-dimensional numerical simulation results of the depth as a function of

the water saturation Sw (blue points), LNAPL saturation Sn (red points), and air saturation Sa
(green points), at various times, for the continuous leak of LNAPL shown in Fig 2. Initially, at

t = 0 s (left-hand side), there is a continuous source of LNAPL located at z = 8.0 m, whose

Table 1. List of parameters used for the three-dimensional numerical simulations of LNAPL and DNAPL in vari-

ably saturated zones.

Parameter Symbol Value

Absolute permeability, m2 k 4.14 × 10−10

Rock compressibility, Pa−1 cR 4.35 × 10−7

Porosity ϕ0 0.3

Water viscosity, kg/(ms) μw 10−3

Water density, kg/m3 ρw 103

Oil viscosity, kg/(ms) μn 10−1

Oil density (LNAPL), kg/m3 ρn 881

Oil density (DNAPL), kg/m3 ρn 1200

Air viscosity, kg/(ms) μa 0.000018

Air density, kg/m3 ρa 1.225

Van Genuchten parameters (n, m) (2,1/2)

Irreducible wetting phase saturation Swir 0.057

Capillary pressure air-water at zero saturation, m pcaw0 0.081

Capillary pressure air-nonaqueous at zero saturation, m pcan0 0.0566

Resolution, m Δx = Δy = Δz 0.5

https://doi.org/10.1371/journal.pone.0266486.t001
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saturation is Sn = 0.9 (red points). Below z = 8.0 m, this saturation goes abruptly to zero since

initially the contaminant is situated on top of the parallelepiped (see also Fig 2, top, left-hand

side). The water saturation (blue points), instead, is zero in the unsaturated zone (being

completely dry) and is equal to one from z = 0.0 m to bellow (saturated zone). The air satura-

tion (green points) equals 0.1 in the unsaturated region where there is also the contaminant,

increases to one between z< 8.0 m and the groundwater table, and goes to zero in the satu-

rated zone (below z = 0.0 m). Notice that the sum of the three phases’ saturation is always one

at any depth value.

After two days and 8.9 hours, the LNAPL continuous leak source arrives at the groundwater

table (see Fig 2 third row, left-hand side). See Fig 3 (middle), where the saturation of the

LNAPL is kept constant to 0.9 (being a constant leak). It then arrives at the groundwater table

Fig 2. Saturation contours of LNAPL (continuous source) at different times. Three-dimensional numerical results on the

saturation contours (σn = Snϕ) of a three-phase immiscible fluid flow (water + a continuous source of LNAPL + air) using a spatial

grid resolution of 0.50 m and a grid dimension of 80 m × 32 m × 22 m, at different times. Left-hand side shows the saturation

contours in the (z − x) plane. Right-hand side shows the saturation contours in the (y − x) one. Notice how the LNAPL moves in the

unsaturated zone, although initially, it goes a bit down with respect to the groundwater table (-5 m) being a continuous contaminant

spill. On the other hand, the first two rows show no contamination since the plane is located at the groundwater table.

https://doi.org/10.1371/journal.pone.0266486.g002
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(see red points), where it increases to 1.0 since the contaminant accumulates around z = 0.0 m
before starting to move to the left-hand side together with the flow, to finally decrease very rap-

idly after passing through to the saturated zone where the sharp front goes to zero. Notice that

the air saturation is now 0.1 above the groundwater table and zero in the saturated zone. After

nine days and 11.6 hours (Fig 3 right-hand side, together with Fig 2 fourth row, left-hand

side), the LNAPL remains partly in the capillary fringe with saturation one, partly goes into

the saturated zone, being a continuous leak source (red points).

Fig 4 shows three-dimensional numerical results on the pressure for the LNAPL (continu-

ous leak source) as a function of the depth at different times. Initially, at time equal to zero

(blue points), the pressure is equal to the atmospheric one (101325Pa), in the unsaturated zone

composed by air-contaminant. Then the pressure increases, when moving from the groundwa-

ter table to the bottom, up to a value of 220 KPa. Similar behavior can be observed after two

days and 8.9 hours and nine days and 11.6 hours (see the orange and green points, respec-

tively). It can be noticed that the green points correspond to the contaminant that has already

reached the groundwater table (see Fig 2). The pressure also increases slightly in the unsatu-

rated zone.

3.1.2 DNAPL numerical results. Fig 5 shows similar numerical simulation results using

the same set of values as the previous one (with LNAPL), except that the contaminant is a

DNAPL with a density of 1200kg/m3 (see Table 1 for details). Fig 5 shows results of the satura-

tion contours (σn = Snϕ) of a three-phase immiscible fluid flow (water + a continuous source

of DNAPL + air) using a spatial grid resolution of 0.50 m and a grid dimension of 80 m × 32 m
× 22 m, at different times. The left-hand side shows the saturation contours in the (z − x)

plane. The right-hand side shows the saturation contours in the (z − y) one. As in the previous

case, the DNAPL is constantly released with a spill rate of 2.14 kg/s in the unsaturated zone,

being a continuous leak source. It goes downward due to gravity, first in the unsaturated dry

zone (see Fig 5, first and second row, that show this movement at time zero, and after one day

and 4.4 hours). Notice how the fluid flows in the left direction (Fig 5 left-hand side) due to a

pressure gradient. Instead, the right-hand side shows the z–y plane with a zero-gravity compo-

nent effect and, thus, no privileged direction in the y − axis. That is the reason why the right-

hand side of Fig 5 is symmetric around the y − axis. When the contaminant arrives at the

Fig 3. Depth vs. saturation of LNAPL (continuous source) at different times. Three-dimensional numerical simulation results of

the depth as a function of the water saturation Sw (blue points), LNAPL saturation Sn (red points), and air saturation Sa (green points)

at various times for a continuous leak of LNAPL of Fig 2. Initially, at t = 0 s, there is a sharp front of contaminant saturation situated

on top of the grid, rapidly reaching zero when the height decreases. At the same time, it is filled by the air saturation (green point) in

the unsaturated zone and water saturation in the saturated zone. Notice that the sum of the three-phase saturations is always one. For

later times is being observed how the contaminant (red points) moves toward the saturated zone and remains floating while moving

with the direction of the groundwater flow.

https://doi.org/10.1371/journal.pone.0266486.g003
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groundwater table, which acts like a physical barrier created by the different phases, unlike the

previous case with an LNAPL, it keeps moving to the bottom (aquiclude) of the saturated zone

(due to its density) while moving in the left direction due to the pressure gradient. Notice how

the DNAPL arrives at −10 m depth after four days and a few hours and advances more rapidly

on the left-hand side to the previous LNAPL case (see Fig 5 the third and fourth row, left-hand

side).

Fig 6 shows the three-dimensional numerical simulation results on the depth as a function

of the water saturation Sw (blue points), DNAPL saturation Sn (red points), and air saturation

Sa (green points) at various times, for a continuous leak of DNAPL of Fig 5. The situation at

zero time shows essentially the same behavior as the previous example with LNAPL (Fig 3).

The contaminant saturation (red points) equals 0.9 for z greater than 8.0 m while it is zero in

the rest of the unsaturated/saturated zone. The water saturation is different from zero only in

the saturated zone, and the air saturation is 0.1 for z> 8.0 m, 1 for 0 m< z< 8.0 m, and zero

elsewhere. After being released, the contaminant starts to migrate downward. This is repre-

sented in the middlebox of Fig 6, where the red points indicate the sharp front of DNAPL satu-

ration moving along the vertical direction. The difference between this figure and the previous

example with LNAPL (Fig 3) is that when the contaminant arrives at the groundwater table

(see right-hand side of Fig 6), it keeps moving deeper into the saturated zone (that is why the

red points are more immersed into the saturated zone). Notice how the sum of the three-phase

saturations is always one (for a fixed depth value) and how the sharp contaminant front is

Fig 4. Pressure vs. Depth for LNAPL (continuous source) at different times. Three-dimensional numerical

simulation results of the pressure as a function of the depth for a constant leak of LNAP at different times. Initially, at a

time equal to zero (blue points), the pressure is equal to one atmosphere in the unsaturated zone composed by air-

contaminant. It increases up to 220 KPa in the saturated zone. For later times (green points), the pressure slightly

increases also in the unsaturated zone when the LNAPL arrives at the saturated zone.

https://doi.org/10.1371/journal.pone.0266486.g004
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immersed into the aquifer. Fig 7 shows three-dimensional numerical simulation results on the

pressure as a function of the depth at different times, which is essentially similar to the previ-

ous case (in Fig 4), except that the green points here deviate from the other two (orange and

blue) deeper than those in Fig 4.

3.2 Migration and distribution of a small leak of NAPL

3.2.1 DNAPL numerical results. Consider now a small volume of leak contaminant in

the unsaturated zone, a DNAPL, as is shown in Fig 8. The difference from the previous case is

that the contaminant is now a finite volume (the other parameters are the same, see Table 1).

Fig 8 shows three-dimensional numerical simulation results on the migration of the DNAPL

for several times up to eight days and 7.1 hours. Initially, the finite volume of DNAPL of

Fig 5. Saturation contours of DNAPL (continuous source) at different times. Three-dimensional numerical simulation results of

the saturation contours (σn = Snϕ) of a three-phase immiscible fluid flow (water + a continuous source of DNAPL + air) using a

spatial grid resolution of 0.50 m and a grid dimension of 80 m × 32 m × 22 m, at different times. The left-hand side shows the

saturation contours in the (z − x) plane. The right-hand side shows the saturation contours in the (z − y) one. Notice how the

DNAPL migrates through the saturated zone while moving in the left direction (where it is positioned a gravity at 15 degrees in the

z–x plane, left-hand side). The difference between the previous case (Fig 2) is that now the continuous leak of DNAPL keeps moving

to the bottom (aquiclude) of the saturated zone while moving in the left direction due to the pressure gradient.

https://doi.org/10.1371/journal.pone.0266486.g005
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density 1200kg/m3 is placed into the parallelepiped at z = [4.0, 7.0] m, x = [−5.0,5.0]m, and y =

[−5.0,5.0]m, as shown in Fig 8, first row. At later times, the contaminant moves downward

through the unsaturated zone (see the second row at 5.7 hours). Due to the pressure gradient,

the contaminant moves slightly to the left-hand side in the z–x plane while remaining

Fig 6. Depth vs. saturation of DNAPL (continuous source) at different times. Three-dimensional numerical simulation results of

the depth as a function of the water saturation Sw (blue points), DNAPL saturation Sn (red points), and air saturation Sa (green points)

at various times for a continuous leak of DNAPL in Fig 5. Initially, at t = 0 s, a front of contaminant saturation is situated on top of the

grid, which rapidly goes to zero. At the same time, it is filled by the air saturation (green point) in the unsaturated zone and water

saturation in the saturated one. Notice how the sum of the three-phase saturations is always one. For later times the contaminant (red

points) is immersed into the saturated zone.

https://doi.org/10.1371/journal.pone.0266486.g006

Fig 7. Pressure vs. Depth for DNAPL (continuous source) at different times. Three-dimensional numerical result

on the pressure as a function of the depth for a continuous leak of DNAPL at different times. Initially, at t = 0 s (blue

points), the pressure is equal to one atmosphere in the unsaturated zone composed of air and the contaminant. Then

the pressure increases as the contaminant goes downward the groundwater table to the bottom, up to a value of 220

KPa.

https://doi.org/10.1371/journal.pone.0266486.g007
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symmetric around the y − axis (right-hand side). Notice how the top of the contaminant begins

to empty (the DNAPL saturation contours start to change from red to blue). When it arrives at

the groundwater table, it keeps going to the bottom of the saturated zone since the DNAPL is

denser than the water. See the third row of Fig 8. Contextually, the top of the initial position of

the contaminant is almost empty, as can be seen from its saturation contour value. The differ-

ence between this situation and that of Fig 5 is that, although it arrives at a similar depth com-

pared with the previous case (around -10 m deep), it does not have enough inertia to move

quickly in the left direction. Indeed, it takes eight days and a few hours to displace about 20

meters.

Fig 9 shows three-dimensional numerical simulation results of the depth as a function of

the water saturation Sw (blue points), DNAPL saturation Sn (red points), and air saturation Sa

Fig 8. Saturation contours of DNAPL (small source) at different times. Three-dimensional numerical simulation results of the

saturation contours (σn = Snϕ) of a three-phase immiscible fluid flow (water + a small volume source of DNAPL + air) using a spatial

grid resolution of 0.50 m and a grid dimension of 80 m × 32 m × 22 m, at different times. Left-hand side shows the saturation

contours in the (z − x) plane. Right-hand side shows the saturation contours in the (z − y) one. Notice how the DNAPL migrates

through the saturated zone while moving in the left direction (where it is positioned a gravity at 15 degrees in the z–x plane, left-

hand side) at different times.

https://doi.org/10.1371/journal.pone.0266486.g008
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(green points) at various times for a small leak of DNAPL of Fig 8. At t = 0 s, there is a sharp

front of contaminant saturation (red points) situated in the unsaturated zone initially located

at z = [4.0,7.0] m, x = [−5.0,5.0]m, and y = [−5.0,5.0]m. The unsaturated zone comprises the

contaminant and air (green points). The saturated zone is filled up with water (blue points).

Notice how the air saturation is one where there is no contaminant. Later, the contaminant

moves downward, and the DNAPL saturation decreases (center). Contextually, the air phase

begins to occupy the space left by the contaminant (green points). Finally, (right-hand side),

the contaminant arrives at the groundwater table and enters into the saturated zone replacing

the water (see the last row of Fig 8, same time). Also, it can be observed (red points) how the

contaminant in the upper zone is emptied. It can be clearly seen the shock front and the rare-

faction of the DNAPL saturation in the unsaturated dry zone.

3.2.2 LNAPL numerical results. Consider now a small volume of contaminant, an

LNAPL, with a density of 881kg/m3 (see Table 1 for details). Compared to the previous case,

only the nonaqueous phase density changes. Fig 10 shows numerical simulation results of the

saturation contours (σn = Snϕ) of a three-phase immiscible fluid flow (water + a small volume

source of LNAPL + air) using a spatial grid resolution of 0.50 m and a grid dimension of 80 m
× 32 m × 22 m, at different times. As before, the small leak of contaminant is released in the

unsaturated zone initially located at z = [4.0,7.0] m. Fig 10 shows the situation up to nine days

and 4.6 hours in the z-x plane (left-hand side) and the z-y plane (right-hand side). The small

volume of LNAPL leaves the top zone entirely where it was released, being a finite amount of

contaminant, and migrates downward due to the effect of the gravity force (see second the

third row). When it arrives at the groundwater table (third row), it remains in it, and a few

parts of this contaminant interacts with the capillary fringe. Notice a difference to Fig 8, where

the inertia from a constant contaminant source extends in the capillary fringe zone. In this

case, a small volume of contaminant LNAPL floats on the groundwater table while slowly mov-

ing to the left-hand side. After nine days, has traveled for about 25 meters in the left direction

(fourth row, left-hand side). Also, notice how the flow lines in the saturated zone remain

almost undisturbed even by the presence of the LNAPL. Compared with Fig 8 (small volume

of DNAPL), the LNAPL arrives later at the groundwater table and empties first with respect to

the previous case.

Fig 9. Depth vs. saturation of DNAPL (small source) at different times. Three-dimensional numerical simulation results of a depth

as a function of the water saturation Sw (blue points), DNAPL saturation Sn (red points), and air saturation Sa (green points) (plane

x = 0) at various times for a small leak of DNAPL of Fig 8. Initially, at t = 0 s, there is a sharp front of contaminant saturation (red

points) situated in the unsaturated zone at z = [4.0, 7.0] m. The unsaturated zone comprises the contaminant and air (green points).

Later, the contaminant starts to move downward, and the saturation starts to decrease in the unsaturated zone (center). Contextually,

the air phase begins to occupy the space left by the contaminant (green points). Finally, (left-hand side) the contaminant arrives at the

groundwater table and enters the saturated zone (see also Fig 8, same time).

https://doi.org/10.1371/journal.pone.0266486.g009
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The same situation is corroborated in Fig 11, which shows numerical simulation results of

the depth as a function of the water saturation Sw (blue points), LNAPL saturation Sn (red

points), and air saturation Sa (green points) at various times for a small leak of LNAPL of Fig

10. Substantially, the principal difference between Figs 9 and 11 is that for the DNAPL, the

contaminant (red points) goes through the saturated zone (bellow the groundwater table) for

the LNAPL does not happen; therefore the saturation empties less.

3.3 Migration and distribution of a continuous leak of DNAPL in presence

of impermeable “lenses” in heterogeneous aquifers

3.3.1 Impermeable “lens” in the unsaturated zone. Consider now the case in Fig 12

where a continuous leak source of DNAPL (similar to the case represented in Fig 5) encoun-

ters an impermeable zone (such as a clay lens in heterogeneous aquifer media), here simplified

Fig 10. Saturation contours of LNAPL (small source) at different times. Three-dimensional numerical simulation results of the

saturation contours (σn = Snϕ) of a three-phase immiscible fluid flow (water + a small volume source of LNAPL + air) using a spatial

grid resolution of 0.50 m and a grid dimension of 80 m × 32 m × 22 m, at different times. Notice how the LNAPL migrates through

the saturated zone while moving in the left direction due to a pressure gradient and remains entirely on the capillary fringe zone.

https://doi.org/10.1371/journal.pone.0266486.g010
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as a parallelepiped with an absolute permeability of 4.14 × 10−14m2 (ten thousand smaller than

the value of the rest of the domain, see Table 1). The (green) impermeable parallelepiped is sit-

uated in the unsaturated zone, at z = [2.0,6.0]m, x = [−10.0, +10.0]m, y = [−10.0, +10.0]m. The

grid dimension and spatial grid are similar to the previous cases. Once the continuous source

of DNAPL, initially situated at z = 8.0 m, x = [−5.0,5.0]m, and y = [−5.0,5.0]m, is released, it

goes downward and encounters the impermeable zone after 5.7 hours. See Fig 12 first row,

where the three-dimensional numerical simulation results of the saturation contours (σn =

Snϕ) of a three-phase immiscible fluid flow (water + a continuous source of DNAPL + air) are

shown. Afterward, the DNAPL (left-hand side) moves around the impermeable zone and pref-

erably flows to the left side under the gravity’s action positioned 15 degrees left to the z-direc-

tion (second and third row, left-hand side). While flows symmetrically in the y-direction

(right-hand side). Since the DNAPL is much denser than the water, it goes downward through

the saturated zone (similar to Fig 5). Part of the mobile DNAPL arrives at the other side of the

parallelepiped, situated at x = 10 m. See fourth-row. The right-hand side of Fig 12 shows a sym-

metric behavior where the contaminant moves around the impermeable zone and finally arri-

ves at the saturated one. Instead, the left-hand side, shows the contaminant that reaches x =

−38 m and 10 m depth after seven days and 2.7 hours.

Fig 13 shows three-dimensional numerical simulation results of a depth as a function of the

water saturation Sw (blue points), DNAPL saturation Sn (red points), and air saturation Sa
(green points) at various times for a continuous leak of DNAPL of Fig 12 (at plane x = 0). The

continuous source of DNAPL leak encounters an impermeable obstacle (depicted in green in

Fig 12). Initially, a sharp front of contaminant saturation (red points) is situated in the unsatu-

rated zone at z = [8.0,10.0] m. See the left-hand side (similar to the previous case in Fig 5).

After two days and 8.9 hours, the contaminant moves downward, and its saturation (red

points) increases from 0.9 up to one, just above the impermeable at z = 6.0 m, as it accumulates

in that area (center figure). Then it saturation abruptly goes to zero since we are showing the

plane x = 0, and instead, the contaminant moves on the left-hand side (following the ground-

water flow). This situation remains almost invariable for later times (right-hand side).

Fig 14 shows a similar case to that of Fig 12, where the impermeable obstacle (depicted in

green) is a smaller one, and is situated at z = [2.0,4.0]m, x = [−5.0, +5.0]m, y = [−5.0, +5.0]m.

The three-dimensional numerical simulation results of the contour saturation in the planes z −

Fig 11. Depth vs. saturation of LNAPL (small source) at different times. Numerical simulation results of a depth as a function of

the water saturation Sw (blue points), LNAPL saturation Sn (red points), and air saturation Sa (green points) at various times for a

small leak of LNAPL of Fig 10. Initially, at t = 0 s, there is a sharp front of contaminant saturation (red points) situated in the

unsaturated zone at z = [4.0,7.0] m. Later, the contaminant moves downward, and the saturation decreases (center). On the right-

hand side, the contaminant reaches the groundwater table and does not enter the saturated zone except in a small quantity.

https://doi.org/10.1371/journal.pone.0266486.g011
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x and z − y are shown at different times. Since the impermeable parallelepiped is a smaller one,

with respect to the previous case, the continuous source of DNAPL has the opportunity to

reach the groundwater table zone faster than the previous case and also from the other side of

the parallelepiped situated at x = 5 m (see Fig 14, second row). Once arrived at the groundwa-

ter table/capillary fringe, the DNAPL keeps going downward and moving to the left direction

due to a pressure gradient, as in the previous cases (see the third row). The last row of Fig 14

shows the saturation contour of the contaminant after seven days and 2.7 hours. Both concen-

trations situated below the parallelepiped are moving together toward the left side.

Fig 15 shows the three-dimensional numerical simulation results of a depth as a function of

the water saturation Sw (blue points), DNAPL saturation Sn (red points), and air saturation Sa
(green points) at various times for a continuous leak of DNAPL of Fig 14 (plane x = 0). The

continuous source of DNAPL encounters an impermeable lens (depicted in green), as shown

Fig 12. Saturation contours of DNAPL (with an impermeable lens) at different times. Three-dimensional numerical simulation

results of the saturation contours (σn = Snϕ) of a three-phase immiscible fluid flow (water + a continuous source of DNAPL + air)

using a spatial grid resolution of 0.50 m and a grid dimension of 80 m × 32 m × 22 m, at different times. The DNAPL leak encounters

an impermeable obstacle (depicted in green) situated at z = [2.0,6.0]m, x = [−10.0, +10.0]m, y = [−10.0, +10.0]m. After seven days

and 2.7 hours the contaminant has reached the saturated (aquifer) zone at x = −10 m depth.

https://doi.org/10.1371/journal.pone.0266486.g012
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in Fig 14, smaller than the one in Fig 12. After 5.7 hours (left-hand side) there is a sharp front

of contaminant saturation (red points) situated in the unsaturated zone at z = [8.0,10.0] m.

The rest of the unsaturated zone is filled with air (green points), while the saturated zone is

filled with water (blue points). At later times, three days and 13.3 hours, the contaminant has

already arrived at the impermeable lens and accumulates on top of it (middle). That is why the

saturation sharp front increases from 0.9 to 1.0 (red points) and then goes abruptly to zero (in

the region where there is the impermeable). On the right-hand side, there is the DNAPL satu-

ration (red points) different from zero just below the groundwater table and is the DNAPL

that passes under the impermeable in the plane x = 0. See Fig 14 fourth-row.

Fig 16 shows the three-dimensional visualization of the numerical simulation results of the

saturation contaminant iso-surface of Fig 14, after 8.15 days (just a little further than the time

in the fourth column of Fig 14). The figure was generated using an open-source post-process-

ing named VisIt (https://wci.llnl.gov/simulation/computer-codes/visit). Notice how the con-

taminant moves on the impermeable parallelepiped zone and spills around the impermeable

zone. The figure shows the iso-surface of equal contaminant density distribution after 8.15

days of the evolution shown in Fig 14.

3.3.2 Impermeable “lens” in the saturated zone. Suppose that the impermeable obstacle

is situated in the saturated zone (instead of the unsaturated one). See Fig 17 where a continu-

ous source of DNAPL is released in the unsaturated zone, similar to Fig 12, but the imperme-

able “lens” (depicted in green) is located at the coordinates, z = [−5.0,−2.0]m, x = [−10.0,

+10.0]m, y = [−10.0, +10.0]m. Once the continuous source of DNAPL arrives at the saturated

zone encounters an impermeable obstacle, therefore it turns around and continues its direc-

tion toward the left-hand side. Fig 17 shows the numerical simulation results of the saturation

contours (σn = Snϕ) of a three-phase immiscible fluid flow (water + a continuous source of

DNAPL + air) using a spatial grid resolution of 0.50 m and a grid dimension of 80 m × 32 m ×
22 m, at different times. The DNAPL encounters an impermeable obstacle (depicted in green)

in the saturated zone (see the first row). After arriving at the groundwater table (see the second

row), the DNAPL keeps going downward and moving to the left direction, due to a pressure

gradient (see the third row), and eventually will reach the bottom zone being denser than the

water (fourth row).

Fig 13. Depth vs. saturation of DNAPL (with an impermeable lens) at different times. Three-dimensional numerical simulation

results of a depth as a function of the water saturation Sw (blue points), DNAPL saturation Sn (red points), and air saturation Sa (green

points) at various times for a continuous leak of DNAPL of Fig 12 (plane x = 0). The DNAPL leak encounters an impermeable

obstacle (depicted in green in Fig 12). The left-hand side shows a sharp front of contaminant saturation (red points) situated in the

unsaturated zone at z = [8.0,10.0] m. At later times, (center) after two days and 8.9 hours, the contaminant saturation increases to 1.0

due to an accumulation on top of the impermeable zone while part of it reaches the saturated zone. This situation remains almost

invariable for later times (right-hand side) since we plot the x = 0 plane.

https://doi.org/10.1371/journal.pone.0266486.g013
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Fig 18 shows the numerical simulation results of a depth as a function of the water satura-

tion Sw (blue points), DNAPL saturation Sn (red points), and air saturation Sa (green points) at

various times for a continuous leak source of DNAPL of Fig 17 (plane x = 0). The DNAPL

encounters an impermeable lens (depicted in green) in the saturated zone, as shown in Fig 17.

The left-hand side shows the situation after 5.7 hours where the continuous source of DNAPL

is situated on top of the parallelepiped, similar to Fig 15. After two days and 8.9 hours (mid-

dle), the contaminant arrives at the groundwater table (see Fig 17, second row). Its saturation

increases from 0.9 to 1.0 since it arrives at the saturated zone and tends to accumulate in that

region, but at the same time keeps moving to the bottom (see red points), being denser than

the water. Since the impermeable lens is situated just below the groundwater table, the contam-

inant saturation first decreases and then increases again. It finally goes to zero. This situation

is better represented on the right-hand side after seven days and 2.7 hours.

Fig 14. Saturation contours of DNAPL (with a smaller impermeable lens) at different times. Three-dimensional numerical

simulation results of the saturation contours (σn = Snϕ) of a three-phase immiscible fluid flow (water + a continuous source of

DNAPL + air) using a spatial grid resolution of 0.50 m and a grid dimension of 80 m × 32 m × 22 m, at different times (plane x = 0).

The continuous source of DNAPL encounters an impermeable obstacle (depicted in green), smaller than the one in Fig 12, situated

at z = [2.0,4.0]m, x = [−5.0, +5.0]m, y = [−5.0, +5.0]m. After arriving at the groundwater table, the continuous source of DNAPL

keeps going downward and moving to the left direction on both sides.

https://doi.org/10.1371/journal.pone.0266486.g014

PLOS ONE Investigating the migration of immiscible contaminant fluid flow with high-precision numerical simulations

PLOS ONE | https://doi.org/10.1371/journal.pone.0266486 April 25, 2022 20 / 26

https://doi.org/10.1371/journal.pone.0266486.g014
https://doi.org/10.1371/journal.pone.0266486


Fig 15. Depth vs. saturation of DNAPL (with a smaller impermeable lens) at different times. Three-dimensional numerical

simulation results of a depth as a function of the water saturation Sw (blue points), DNAPL saturation Sn (red points), and air

saturation Sa (green points) at various times for a continuous leak of DNAPL of Fig 14 (plane x = 0). The DNAPL leak encounters an

impermeable obstacle (depicted in green in Fig 14). After 5.7 hours, there is a sharp front of contaminant saturation (red points)

situated in the unsaturated zone at z = [8.0,10.0] m. The DNAPL saturation increases from 0.9 to one at later times since it

accumulates on top of the impermeable parallelepiped. Then abruptly goes to zero and finally increases in the saturated zone (right-

hand side). Notice that the DNAPL and water saturation sum is one for a fixed depth value.

https://doi.org/10.1371/journal.pone.0266486.g015

Fig 16. Saturation iso-surface of DNAPL (with an impermeable lens) at time 8.15 days. The three-dimensional visualization of

the numerical simulation results of the contaminant saturation iso-surface at time 8.15 days. Notice the impermeable parallelepiped

zone just below the contaminant released on top of the grid. This figure was generated using VisIt (an open-source post-processing)

and the three-dimensional saturation data of Fig 14.

https://doi.org/10.1371/journal.pone.0266486.g016
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4. Conclusions

In this work, we presented high-resolution three-dimensional numerical modeling investiga-

tion of the migration of three-phase immiscible fluid flow in variably saturated zones. We

investigate the temporal evolution of the migration of the immiscible contaminant problem in

a porous medium following the saturation contour profiles of the three-phases fluids flow. We

considered both light nonaqueous phase liquid and dense nonaqueous phase liquid, initially

released in unsaturated dry soil, and investigated several initial conditions, including imper-

meable parallelepipeds that mimic clay “lenses” in heterogeneous aquifer systems. The numeri-

cal simulations were obtained using CactusHydro code [18], based on the Cactus toolkit [36,

37], that uses a high-resolution shock-capturing conservative method that precisely follows the

advective part of the fluid flow. The results were validated through a classical convergence test

running the same code at different resolutions.

Fig 17. Saturation contours of DNAPL (with an impermeable in the groundwater) at different times. Three-dimensional

numerical simulation results of the saturation contours (σn = Snϕ) of a three-phase immiscible fluid flow (water + a continuous

source of DNAPL + air) using a spatial grid resolution of 0.50 m and a grid dimension of 80 m × 32 m × 22 m, at different times. The

DNAPL encounters an impermeable obstacle (depicted in green), situated at z = [−5.0, −2.0]m, x = [−10.0, +10.0]m, y = [−10.0,

+10.0]m.

https://doi.org/10.1371/journal.pone.0266486.g017
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We show that it is possible to follow with high precision the migration of a contaminant

sharp front (LNAPL or DNAPL, continuous or small volume source) in a variably saturated

zone as a whole using a unique mathematical model which includes the complete set of mathe-

matical equations expressed in terms of the saturation, permeability, capillary pressure, den-

sity, the viscosity of the three-phases. We show that the difference between the fate of a

DNAPL and LNAPL (when the other parameters are the same) is just the density of the con-

taminant. We also show the numerical results of the three-phase saturation very precisely as a

function of the depth. Next step of this research will be to compare numerical simulations

results with laboratory experimental results such as a contaminant leakage in a sand tank.
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