

University of Parma Research Repository

Detection of potential enteric pathogens in children with severe acute gastroenteritis using the filmarray: Results from a three - years hospital-based survey in Northern Italy

This is a pre print version of the following article:

Original

Detection of potential enteric pathogens in children with severe acute gastroenteritis using the filmarray: Results from a three - years hospital-based survey in Northern Italy / De Conto, F.; Di Stefano, S.; Buttrini, M.; Maccari, C.; Arcangeletti, M. C.; Chezzi, C.; Calderaro, A.. - In: DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE. - ISSN 0732-8893. - 102:3(2022), p. 115611.115611. [10.1016/j.diagmicrobio.2021.115611]

Availability: This version is available at: 11381/2919550 since: 2022-03-23T16:54:44Z

Publisher: Elsevier Inc.

Published DOI:10.1016/j.diagmicrobio.2021.115611

Terms of use: openAccess

Anyone can freely access the full text of works made available as "Open Access". Works made available

Publisher copyright

(Article begins on next page)

Diagnostic Microbiology & Infectious Disease DETECTION OF POTENTIAL ENTERIC PATHOGENS IN CHILDREN WITH SEVERE ACUTE GASTROENTERITIS USING THE FILMARRAY: RESULTS FROM A THREE-YEARS HOSPITAL-BASED SURVEY IN NORTHERN ITALY

--Manuscript Draft--

Manuscript Number:	
Article Type:	Original article
Keywords:	Acute gastroenteritis, childcare setting, multiplex PCR, filmarray, infectious disease control, rapid diagnostic assay.
Corresponding Author:	Flora De Conto University of Parma: Universita degli Studi di Parma Parma, ITALY
First Author:	Flora De Conto
Order of Authors:	Flora De Conto
	SHARON DI STEFANO
	MIRKO BUTTRINI
	CLARA MACCARI
	MARIA CRISTINA ARCANGELETTI
	CARLO CHEZZI
	ADRIANA CALDERARO
Abstract:	Acute gastroenteritis (AGE) are leading causes of morbidity and mortality in children. To control AGE, rapid identification of enteric pathogens is needed. The AGE aetiology was investigated from 2018 to 2020 in 2,066 children in Parma (Italy), using the filmarray. Pathogens were detected in 1,101 (53.3%) stool samples; 796 (72.3%) were single infections and 305 (27.7%) mixed infections (72.3% vs. 27.7%, P<0.0001). The highest infection incidence (68.2%) was assessed in children aged 0-5 years. Enteropathogenic Escherichia coli (EPEC) was the most frequently identified pathogen (21.14%), followed by Clostridioides difficile (11.5%), Norovirus (11.44%), and Campylobacter (10.17%). EPEC, Campylobacter, enteroaggregative Escherichia coli, Norovirus, and Rotavirus showed seasonality. The pathogen detection rate decreased between 2018 and 2020 (41.1% vs. 22%, P<0.0001), because of the preventive measures imposed by the severe acute respiratory syndrome coronavirus 2 pandemic. A putative aetiology in half the children examined and an estimate of enteric pathogens epidemiology were assessed.
Suggested Reviewers:	VITO MARTELLA Universita degli Studi di Bari Dipartimento di Medicina Veterinaria vito.martella@uniba.it
	ELEONORA PONTERIO Istituto Superiore di Sanità: Istituto Superiore Di Sanita eleonoraponterio@yahoo.it
	SARAH N. BUSS University of Nebraska Medical Center sarah.buss@wyo.gov
	MELISSA O'NEAL University of South Carolina College of Pharmacy mponeal@email.sc.edu
	JEREMY MEYER Geneva University Hospitals: Hopitaux Universitaires Geneve jeremy.meyer@hcuge.ch

Highlights

- FAGP assessed the putative aetiology in Italian children with AGE from 2018 to 2020
- Bacteria were the most common enteric pathogens and single infections predominated
- The detection rate of enteric pathogens was highest in young children (0-5 years)
- Infection incidence showed seasonal variations for some enteric pathogens
- Preventive measures against SARS-CoV-2 pandemic decreased pathogens detection

1	DETECTION OF POTENTIAL ENTERIC PATHOGENS IN CHILDREN WITH SEVERE
2	ACUTE GASTROENTERITIS USING THE FILMARRAY: RESULTS FROM A THREE-
3	YEARS HOSPITAL-BASED SURVEY IN NORTHERN ITALY
4	Flora De Conto*, Sharon Di Stefano, Mirko Buttrini, Clara Maccari, Maria Cristina Arcangeletti,
5	Carlo Chezzi, Adriana Calderaro
6	Department of Medicine and Surgery, University of Parma, Viale Antonio Gramsci 14, 43126
7	Parma, Italy
8	
9	
10	
11	* Author for correspondence:
12	E-mail: <u>flora.deconto@unipr.it</u> fax: +39 0521 993620
13	
14	Running title: AGE diagnosis in children in Italy
15	
16	
17	
18	
19	
20	
21	
22	
23	Conflict of Interest
24	Adriana Calderaro declares that she is an Editorial Member of Diagnostic Microbiology and
25	Infectious Disease.
26	

27 ABSTRACT

- Acute gastroenteritis (AGE) are leading causes of morbidity and mortality in children. To control
 AGE, rapid identification of enteric pathogens is needed.
- 30 The AGE aetiology was investigated from 2018 to 2020 in 2,066 children in Parma (Italy), using
- the filmarray. Pathogens were detected in 1,101 (53.3%) stool samples; 796 (72.3%) were single
- 32 infections and 305 (27.7%) mixed infections (72.3% vs. 27.7%, P<0.0001). The highest infection
- incidence (68.2%) was assessed in children aged 0-5 years.
- 34 Enteropathogenic *Escherichia coli* (EPEC) was the most frequently identified pathogen (21.14%),
- followed by *Clostridioides difficile* (11.5%), Norovirus (11.44%), and *Campylobacter* (10.17%).
- EPEC, *Campylobacter*, enteroaggregative *Escherichia coli*, Norovirus, and Rotavirus showed seasonality. The pathogen detection rate decreased between 2018 and 2020 (41.1% vs. 22%, P<0.0001), because of the preventive measures imposed by the severe acute respiratory syndrome coronavirus 2 pandemic. A putative aetiology in half the children examined and an estimate of enteric pathogens epidemiology were assessed.
- 41

42 **ABBREVIATIONS**

- 43 AdV: adenovirus
- 44 AGE: acute gastroenteritis
- 45 EAEC: enteroaggregative *Escherichia coli*
- 46 EIEC: Shigella/enteroinvasive Escherichia coli
- 47 EPEC: enteropathogenic *Escherichia coli*
- 48 ETEC: enterotoxigenic *Escherichia coli*
- 49 FAGP: FilmArray Gastrointestinal panel
- 50 GDH: glutamate dehydrogenase enzyme
- 51 IC: immunochromatographic assay
- 52 LAMP: Loop-mediated isothermal amplification
- 53 NoV: norovirus
- 54 PCR: polymerase-chain reaction
- 55 RV: rotavirus
- 56 SARS-CoV-2: severe acute respiratory syndrome coronavirus 2
- 57 SaV: sapovirus
- 58 STEC: *Shiga*-like toxin-producing *Escherichia coli*
- 59
- 60

61 **KEYWORDS**

- 62 Acute gastroenteritis, childcare setting, multiplex PCR, filmarray, infectious disease control, rapid
- 63 diagnostic assay.
- 64

65 1. INTRODUCTION

Acute gastroenteritis (AGE) are a leading cause of childhood morbidity and mortality with relevant 66 costs for societies. AGE with diarrhea and/or vomiting can last several days and be associated with 67 symptoms such as abdominal pain, cramping, fever, malaise, and anorexia. There are nearly 1.7 68 billion cases of childhood diarrheal disease worldwide every year, killing about 525,000 children 69 [1]. 70 71 The etiologic agents of childhood diarrheal disease include bacteria, parasites, and viruses [2]. Age, 72 social, and geographic factors modulate the incidence of enteric pathogens [3]. Most cases of childhood diarrheal disease are due to viral infections principally caused by Rotavirus 73 and Norovirus [4,5]. Despite the vaccine, Rotavirus still causes hospitalization [6]. Bacteria may 74 cause severe diarrhea (bloody stools), and high fever, needing hospital management. Moreover, 75 some enteric bacteria may spread systematically [7]. With enhanced globalization and immigration, 76 77 clinicians of developed countries diagnose several cases of diarrhea due to protozoa not habitually 78 circulating [7]. 79 Although the epidemiological/clinical evaluation of AGE not always allows differentiating among 80 bacterial, viral, and parasitological etiology, it guides the laboratory diagnosis. Prompt diagnosis optimizes the patient treatment, avoiding incorrect antibiotic use and reducing hospitalization. 81 82 Conventional methods are laborious, time-consuming, and costly. Multiplex molecular assays

considerably reduce the time to result, detecting a greater number of pathogens [8].

This large-scale hospital-based survey in Parma (Northern Italy) from 2018 to 2020 aims to assess

the epidemiology of AGE pathogens in children with a multiplex polymerase chain reaction (PCR)-

based platform. Moreover, the impact of the severe acute respiratory syndrome coronavirus 2

87 (SARS-CoV-2) pandemic on AGE dynamics was investigated.

88 2. MATERIALS AND METHODS

89 2.1 Study setting

90 This study was performed at the Microbiology and Virology Units of the University-Hospital of

91 Parma, a 1,044-bed tertiary care center with more than 50,000 admissions per year.

92 The inclusion criteria were subjects ≤ 14 years old and occurrence of AGE symptoms (diarrhea,

93 vomiting, abdominal pain, and fever).

From January 2, 2018 to December 31, 2020, 2,066 stool samples from as many children were

submitted to the laboratory for diagnostic purposes. Table 1 shows the demographic characteristics

of the examined children, whose age ranged from ≥ 13 days to 14 years and 3 months.

Laboratory diagnosis was performed upon medical order. The results were reported in the clinical
records of the patients as answer to a clinical suspicion. Patients' identity and medical information
were protected and remained anonymous.

100

101 *2.2 Molecular assays*

102 For the FilmArray gastrointestinal panel assay (FAGP, BioFire Diagnostics-bioMérieux, Italy), 200

103 µl of each stool sample in Cary-Blair transport medium (Faecal swab; Copan, Italy) were used. The

104 FAGP is a multiplexed PCR, revealing 22 pathogens: *Campylobacter (C. jejuni, C. coli, and C.*

105 upsaliensis), Clostridioides difficile (toxin A/B), Plesiomonas shigelloides, Salmonella, Yersinia

106 enterocolitica, Vibrio (V. parahaemolyticus, V. vulnificus, and V. cholerae, with specific detection

107 of V. cholerae), enteroaggregative Escherichia coli (EAEC), enteropathogenic Escherichia coli

- 108 (EPEC), enterotoxigenic Escherichia coli (ETEC), Shiga-like toxin-producing Escherichia coli
- 109 (STEC, with specific detection of *E. coli* O157), *Shigella*/enteroinvasive *Escherichia coli* (EIEC),
- 110 Cryptosporidium spp., Cyclospora cayetanensis, Entamoeba histolytica, Giardia lamblia,

adenovirus (AdV) F40/41, astrovirus, norovirus (NoV) genogroup GI/GII, rotavirus (RV) group A,

- and sapovirus (SaV) genogroups I, II, IV, and V. The assay lasting nearly 1 hour was performed in
- the FilmArray 2.0 platform.

114	In case of <i>Clostridioides difficile</i> detection by FAGP for a sample with a medical prescription
115	requiring this testing, a qualitative assay (Illumigen TM C.difficile, Meridian Bioscience, USA),
116	based on the Loop-mediated isothermal amplification (LAMP), was performed [9].
117	For viral diagnostic purpose, when an adequate aliquot of sample was available (2,023 cases,
118	97.9%), an Enterovirus-targeting real-time PCR (Enterovirus Q-PCR Alert kit, ElitechGroup, Italy)
119	was performed.
120	
121	2.3 Conventional diagnostics methods
122	In case of bacteria detection by FAGP, the sample was submitted to conventional methods for
123	isolation and/or identification purposes (data not shown) [10]. In case of Clostridioides difficile
124	revealing by FAGP and LAMP, the detection of glutamate dehydrogenase enzyme (GDH) and
125	toxins A/B by immunocromatographic assay (IC, C.difficile Quick check complete, Techlab, USA)
126	as well as culture were performed [9].
127	For virus detection, electron microscopy was also performed (data not included) [10].
128	In case of parasites detection by FAGP, the sample was submitted to microscopic examination,
129	Giardia intestinalis/Cryptosporidium IC, immunofluorescence, and cultures (data not shown) [10-
130	13].
131	
132	2.4 Statistical analysis
133	The chi-square test was performed by GraphPad Prism software. P<0.05 was considered

134 statistically significant.

135 **3. RESULTS**

- 136 *3.1 Prevalence of enteric pathogens in the study population*
- 137 A total of 2,066 samples were analyzed, as described in the Methods section. AGE was most
- 138 common in pediatrics aged 0-5 years (65.3%) and in males than in females, with a ratio of 10:8
- 139 (Table 1). The rate of hospitalized children was 62.7%, showing in 2020 a decrease of -21.5% vs.
- 140 2019 and of -33.8% vs. 2018.
- 141 The FAGP identified at least one etiologic agent in 1,101 samples (53.3%). Figure 1 shows the
- positivity rates of the pathogens detected; EPEC was the most frequent (21.14%), followed by

143 *Clostridioides difficile* (11.5%), NoV (11.44%), and *Campylobacter* (10.17%). *Cyclospora*

- 144 *cayetanensis, Vibrio cholerae* and *Entamoeba histolytica* were not detected.
- A total of 1,495 pathogens was revealed. Of these, 949 (63.5%) were bacteria, 476 (31.8%) viruses,
- and 70 (4.7%) parasites. Specifically, 615 pathogens (41.1%) were revealed in 2018, 551 (36.9%) in
- 147 2019, and 329 (22%) in 2020 (41.1% vs. 22%, *P*<0.0001, and 36.9% vs. 22%, *P*<0.0001).
- 148 Single infections were 796 (72.3%) and mixed infections 305 (27.7%) (72.3% vs. 27.7%;

149 *P*<0.0001).

- 150 Co-infections with two pathogens were detected in 227 (20.6%) of the 1,101 positive samples,
- 151 compared to 66(6%) with three and 12(1.1%) with more than three. The percentage difference in
- the number of co-infections with two (20.6%) and more than three pathogens (1.1%) was significant
- 153 (*P*<0.0001). Overall, 147 different co-infections combinations were found (Table 2). The most
- 154 common included either bacteria (*Campylobacter*, 7.8%, and *Clostridioides difficile*, 6.2%) or NoV
- 155 (5.2%) in association with EPEC.
- 156 Of the 172 samples positive for *Clostridioides difficile* by FAGP, 13 samples (7.6%) belonging to
- 157 children >2 years old hospitalized in oncologic wards had a medical order requiring *Clostridioides*
- 158 *difficile* testing. Of these, 12 cases (92.3%) resulted positive by LAMP. Among these, GDH was
- revealed in 11 cases (91.7%) and toxin A/B in 3 cases (25%). Finally, in 4 cases (33%)
- 160 *Clostridioides difficile* strains were isolated.

161 The RT-PCR assay for Enterovirus gave positive results in 156 (7.7%) of the examined samples; of
162 those, 63 (40.4%) were single infections.

- 163
- 164 *3.2 Age distribution of enteric pathogens*

165 Concerning the distribution of positive samples by age, 68.2% (751/1,101) were from children aged

166 0-5 years, 19.8% (218/1,101) from children aged 6-10 years, and 12% (135/1,101) from children

aged 11-14 years. Of the 1,495 pathogens revealed, 1,051 (70.4%) were detected in children aged 0-

168 5 years, 273 (18.2%) in children aged 6-10 years, and 171 (11.4%) in children aged 11-14 years

169 (70.4% vs. 11.4%, P < 0.0001). Of the pathogens revealed in children aged 0-5 years, 58.5% were

- 170 bacteria, 38% viruses, and 3.5% parasites.
- 171 Concerning the distribution of co-infections by age, 226 (74.1%) were detected in children aged 0-5

years, 51 (16.7%) in children aged 6-10 years, and 28 (9.2%) in children aged 11-14 years (Table

173 3). Co-infections between EPEC and either *Clostridioides difficile* (17 cases) or *Campylobacter* and

174 NoV (16 cases each) prevailed in children aged 0-5 years (Table 3). Co-infections between EPEC

and NoV (5 cases) predominated in children aged 6-10 years, while those between EPEC and

176 *Campylobacter* (8 cases) in children aged 11-14 years.

177

178 *3.3 Seasonality of enteric pathogens*

179 The number of positive samples decreased from 53.9% (445/825) in 2018 and 56.1% (408/727) in

180 2019 to 48.2% (248/514) in 2020 (53.9% vs. 48.2%, *P*=0.043).

181 Supplementary table 1 shows the monthly distribution of all pathogens revealed, while Figure 2 that182 of the most common pathogens.

183 EPEC (Fig. 2A) was systematically detected except in March 2019, predominating in summer and

early autumn. No seasonal trends were apparent for *Clostridioides difficile* (Fig. 2B), contrarily to

185 *Campylobacter* and EAEC, showing increased rates during summer (Fig. 2D and 2H). *Salmonella*

186 (Fig. 2G) increased its detection rate in summer of 2018 and 2020.

- 187 Seasonal prevalence was found for NoV in winter (Fig. 2C), while RV detection increased in spring
- 188 (Fig. 2E). AdV did not seem to vary hugely its percentage of positive cases during the study, but
- two peaks passing the median more than twice were found in December 2018 (18%) and April 2019
- 190 (27%) (Fig. 2F).
- 191 Different trends were observed in 2020 during the SARS-CoV-2 lockdown (from March 9 to May
- 192 18) when compared to previous years. The circulation of AdV and EAEC (Fig. 2F and 2H) was
- 193 interrupted, while for EPEC, *Clostridioides difficile*, NoV, *Campylobacter*, and *Salmonella* (Fig.
- 194 2A, 2B, 2C, 2D, 2G) the detection rate decreased considerably under the median.

195 **4. DISCUSSION**

This study reveals the epidemiology of AGE pathogens in 2,066 children who underwent stooltesting by FAGP from 2018 to 2020.

198 Molecular methods have greatly increased the sensitivity of pathogen detection expanding their

involvement as AGE etiologic agents [14], although they do not yield an isolate and might detect

200 nucleic acids from non-viable microorganisms unrelated to illness. Multiplex PCR assays may

201 present limitation in finding the true etiologic agent in case of multiple pathogens detection and

202 need to perform culture isolation and antibiotics sensitivity evaluation in case of bacterial

identification [14].

FAGP has been usefully included in our diagnostic algorithm [10], with the goal of limiting the use of conventional methods in light of its high sensitivity and reproducibility [15].

In the study population, 53.3% of the samples resulted positive in agreement with previous data

[10,15]. Of the positive samples, 68.2% were from children aged 0-5 years.

FAGP detected a higher frequency of single infections (72.3%) mostly caused by bacteria (59.2%),

also consistent with literature data [16]. The more prevalent pathogens were EPEC (21.14%),

210 *Clostridioides difficile* (11.5%), NoV (11.44%), and *Campylobacter* (10.17%).

211 *Clostridioides difficile* and *Campylobacter* showed higher rates than in our previous survey [10]. In

contrast, RV decreased its frequency, as a likely consequence of the vaccine administration [14,17].

213 Antithetical considerations apply to NoV, being the vaccine candidates under study.

Although EPEC and EAEC were frequently detected, their etiological role remains unclear [18,19].

215 Interestingly, AGE-related inflammation modulates the intestinal microbiota, favoring the unusual

216 growth of *Enterobacteriaceae* [20].

217 Clostridioides difficile was the second most common pathogen. This finding is difficult to interpret,

given the high rate of asymptomatic carriage in young infants (<12 months) and frequent co-

219 detection of other pathogens [21,22]. Therefore, testing should be performed when specifically

requested and consultation with the pediatrician is recommended [22]. In the study population, only

- 13 samples had appropriate clinical information (data not shown). Being *Clostridioides difficile*
- 222 more frequently detected in single infections, antibiotic treatments may have favored its

proliferation, also considering the low rate (25%) of toxigenic samples.

- 224 Campylobacteriosis shows high incidence in the study population, contrarily to previous results
- [23]. In this regard, Italian data are likely to be underestimated, being not a statutory notification
- 226 illness. Other Authors showed that *Campylobacteriosis* is increasing [24].
- Important, FAGP allowed detecting *Plesiomonas shigelloides*, which is frequently unnoticed byconventional methods [25].

A frequent co-detection of viruses and bacteria was assessed especially in young children, according to Park et al. [26]. Although co-infecting viral and bacterial pathogens cause more severe gastroenteritis with higher probability of hospitalization [27], the knowledge on their etiological role remains incomplete [28]. Overall, *Escherichia coli* was the most prevalent pathogen in coinfections, according to Vergadi et al. [28].

EPEC, *Campylobacter* and EAEC predominated in summer, NoV in winter, and RV in spring.

235 These seasonality differences confirm the need of continuous surveillance. These findings were in

agreement with previous studies [10,29,30], but conflicting results were reported [31,32].

237 During the lockdown imposed because of the SARS-CoV-2 pandemic, care for children in Italy

have been kept to minimal standards. Although gastrointestinal manifestations are observed during

SARS-CoV-2 infection [33], in 2020 diminished both hospitalizations (342 in 2020 vs. 517 in

240 2018) and pathogens detection rates (22% in 2020 vs. 41.1% in 2018, *P*<0.0001). Individual

241 protection measures and social distancing interrupted the circulation of AdV and EAEC, and

- 242 decreased that of EPEC, *Clostridioides difficile*, NoV, *Campylobacter*, and *Salmonella*.
- Accordingly, lower rates of infectious disease transmission and delay in attendances to pediatric
- departments, with the tendency to seek hospital care only in case of severe or unremitting symptoms
- were described [34].

246 The reported findings focused on severe AGE cases, causing a high percentage of hospitalizations.

247 The rapid diagnosis by FAGP helped the pediatricians in the management of patients, allowing a

248 faster decision on the need for hospitalization. Since self-limited and asymptomatic cases were not

examined, cautious epidemiological conclusions should be drawn.

250

251 Conclusions

252 Timely diagnosis improves the surveillance of the burden associated to AGE in children. Despite

the costs of FAGP, the reduction in workload, antibiotic use and hospitalization renders this assay

cost-effective. Our findings help to estimate the epidemiology of diarrhoea causative agents in

children. Moreover, we tracked pathogen seasonality, reinforcing the need for accurate surveillance

to control AGE.

257 **REFERENCES**

258	1.	World Health Organization. Diharroeal disease 2017. https://www.who.int/news-room/fact-
259		sheets/detail/diarrhoeal-disease

- Thielman NM, Guerrant RL. Clinical practice. Acute infectious diarrhea. The New England
 Journal of Medicine 2004;350:38–47. https://doi.org/10.1056/NEJMcp031534.
- Das JK, Salam RA, Bhutta ZA. Global burden of childhood diarrhea and interventions.
 Current Opinion in Infectious Diseases 2014;27.

264 <u>https://doi.org/10.1097/QCO.000000000000096</u>.

- 4. Medici MC, Martinelli M, Abelli LA, Ruggeri FM, di Bartolo I, Arcangeletti MC, et al.
 Molecular epidemiology of norovirus infections in sporadic cases of viral gastroenteritis
- among children in Northern Italy. Journal of Medical Virology 2006;78.

268 <u>https://doi.org/10.1002/jmv.20723</u>.

5. Medici MC, Martinelli M, Arcangeletti MC, Pinardi F, De Conto F, Dodi I, et al.

270 Epidemiological aspects of human rotavirus infection in children hospitalized with acute

gastroenteritis in an area of northern Italy. Acta Biomedica de l'Ateneo Parmense 2004;75.

- 6. Mattei A, Sbarbati M, Fiasca F, Angelone AM, Mazzei MC, di Orio F. Temporal trends in
- hospitalization for rotavirus gastroenteritis: A nationwide study in Italy, 2005–2012. Human

Vaccines and Immunotherapeutics 2016;12.

- 275 https://doi.org/10.1080/21645515.2015.1081726.
- 276 7. Elliott EJ. Acute gastroenteritis in children. British Medical Journal 2007;334.
 277 https://doi.org/10.1136/bmj.39036.406169.80.
- 8. Freeman K, Mistry H, Tsertsvadze A, Royle P, McCarthy N, Taylor-Phillips S, et al.
- 279 Multiplex tests to identify gastrointestinal bacteria, viruses and parasites in people with
- suspected infectious gastroenteritis: A systematic review and economic analysis. Health
- 281 Technology Assessment 2017;21. <u>https://doi.org/10.3310/hta21230</u>.

- Calderaro A, Buttrini M, Martinelli M, Farina B, Moro T, Montecchini S, et al. Rapid
 classification of Clostridioides difficile strains using maldi-tof ms peak-based assay in
 comparison with PCR-ribotyping. Microorganisms 2021;9.
- 285 https://doi.org/10.3390/microorganisms9030661.
- 10. Calderaro A, Martinelli M, Buttrini M, Montecchini S, Covan S, Rossi S, et al. Contribution
- 287 of the FilmArray® Gastrointestinal Panel in the laboratory diagnosis of gastroenteritis in a
- cohort of children: a two-year prospective study. International Journal of Medical

289 Microbiology 2018;308. <u>https://doi.org/10.1016/j.ijmm.2018.04.007</u>.

- 290 11. Calderaro A, Gorrini C, Montecchini S, Peruzzi S, Piccolo G, Rossi S, et al. Evaluation of a
- real-time polymerase chain reaction assay for the laboratory diagnosis of giardiasis.
- 292 Diagnostic Microbiology and Infectious Disease 2010;66.
- 293 <u>https://doi.org/10.1016/j.diagmicrobio.2009.10.004</u>.
- 12. Calderaro A, Montecchini S, Gorrini C, Dettori G, Chezzi C. Similar diagnostic
- 295 performances of antigen detection and nucleic acid detection of Cryptosporidium spp. in a
- low-prevalence setting. Diagnostic Microbiology and Infectious Disease 2011;70.
- 297 <u>https://doi.org/10.1016/j.diagmicrobio.2010.11.017</u>.
- 13. Calderaro A, Montecchini S, Rossi S, Gorrini C, De Conto F, Medici MC, et al. Intestinal
- parasitoses in a tertiary-care hospital located in a non-endemic setting during 2006-2010.
- 300 BMC Infectious Diseases 2014;14. <u>https://doi.org/10.1186/1471-2334-14-264</u>.
- 30114. Guarino A, Aguilar J, Berkley J, Broekaert I, Vazquez-Frias R, Holtz L, et al. Acute
- 302 Gastroenteritis in Children of the World: What Needs to Be Done? Journal of Pediatric
- 303 Gastroenterology and Nutrition 2020;70. <u>https://doi.org/10.1097/MPG.00000000002669</u>.
- 304 15. Piralla A, Lunghi G, Ardissino G, Girello A, Premoli M, Bava E, et al. FilmArrayTM GI
- panel performance for the diagnosis of acute gastroenteritis or hemorragic diarrhea. BMC
- 306 Microbiology 2017;17. <u>https://doi.org/10.1186/s12866-017-1018-2</u>.

307	16. O'Neal M, Murray H, Dash S, Al-Hasan MN, Justo JA, Bookstaver PB. Evaluating
308	appropriateness and diagnostic stewardship opportunities of multiplex polymerase chain
309	reaction gastrointestinal testing within a hospital system. Therapeutic Advances in
310	Infectious Disease 2020;7. https://doi.org/10.1177/2049936120959561.
311	17. Sabbatucci M, Odone A, Signorelli C, Siddu A, Maraglino F, Rezza G. Improved Temporal
312	Trends of Vaccination Coverage Rates in Childhood after the Mandatory Vaccination Act,
313	Italy 2014–2019. Journal of Clinical Medicine 2021;10.
314	https://doi.org/10.3390/jcm10122540.
315	18. Beczkiewicz A, Cebelinski E, Decuir M, Lappi V, Wang X, Smith K, et al. High Relative
316	Frequency of Enteroaggregative Escherichia coli among Patients with Reportable Enteric

Pathogens, Minnesota, 2016-2017. Clinical Infectious Diseases 2019;69.

318 <u>https://doi.org/10.1093/cid/ciy890</u>.

- 319 19. Hu J, Torres AG. Enteropathogenic Escherichia coli: Foe or innocent bystander? Clinical
 320 Microbiology and Infection 2015;21. https://doi.org/10.1016/j.cmi.2015.01.015.
- 321 20. Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, et al. Host-
- 322 Mediated Inflammation Disrupts the Intestinal Microbiota and Promotes the Overgrowth of
- Enterobacteriaceae. Cell Host and Microbe 2007;2.
- 324 <u>https://doi.org/10.1016/j.chom.2007.06.010</u>.
- 325 21. Furuya-Kanamori L, Marquess J, Yakob L, Riley T v., Paterson DL, Foster NF, et al.
- 326 Asymptomatic Clostridium difficile colonization: Epidemiology and clinical implications.
- 327 BMC Infectious Diseases 2015;15. <u>https://doi.org/10.1186/s12879-015-1258-4</u>.
- 328 22. Sammons JS, Toltzis P. Pitfalls in Diagnosis of Pediatric Clostridium difficile Infection.
- 329 Infectious Disease Clinics of North America 2015;29.
- 330 <u>https://doi.org/10.1016/j.idc.2015.05.010</u>.

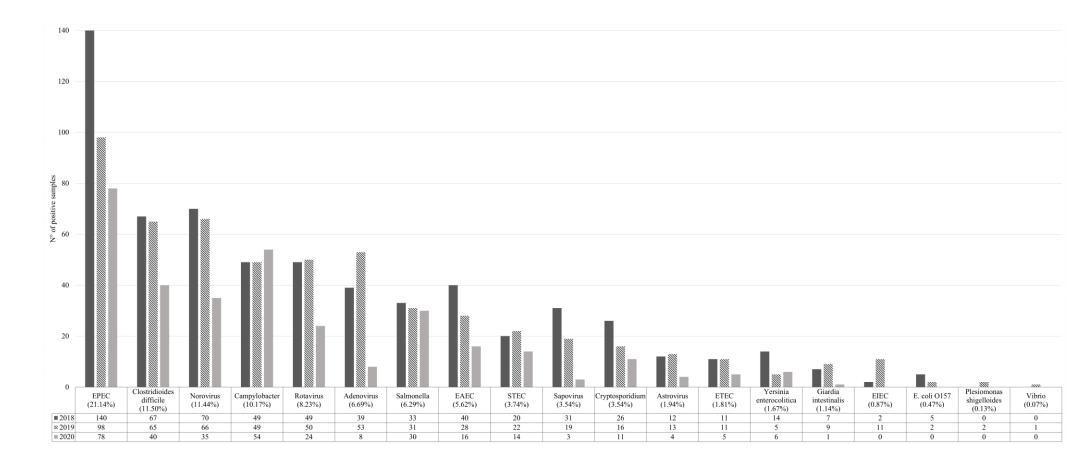
- 23. Lucarelli C, Dionisi AM, Trezzi L, Farina C, Passera M, Kärki T, et al. Molecular and
 epidemiological analysis of a campylobacter jejuni outbreak in Northern Italy in November
- 333 2013. Foodborne Pathogens and Disease 2016;13. <u>https://doi.org/10.1089/fpd.2015.2104</u>.
- 24. Platts-Mills JA, Kosek M. Update on the burden of Campylobacter in developing countries.
 Current Opinion in Infectious Diseases 2014;27.
- 336 <u>https://doi.org/10.1097/QCO.00000000000000</u>0091.
- 337 25. Michael Janda J, Abbott SL, McIver CJ. Plesiomonas shigelloides revisited. Clinical
 338 Microbiology Reviews 2016;29. <u>https://doi.org/10.1128/CMR.00103-15</u>.
- 26. Park S, Hitchcock MM, Gomez CA, Banaei N. Is follow-up testing with the filmarray
- 340 gastrointestinal multiplex PCR panel necessary? Journal of Clinical Microbiology 2017;55.
- 341 <u>https://doi.org/10.1128/JCM.02354-16</u>.
- 27. Valentini D, Vittucci AC, Grandin A, Tozzi AE, Russo C, Onori M, et al. Coinfection in
- 343 acute gastroenteritis predicts a more severe clinical course in children. European Journal of
- Clinical Microbiology and Infectious Diseases 2013;32. <u>https://doi.org/10.1007/s10096-013-</u>
- 345 <u>1825-9</u>.
- 28. Vergadi E, Maraki S, Dardamani E, Ladomenou F, Galanakis E. Polymicrobial
- 347 gastroenteritis in children. Acta Paediatrica, International Journal of Paediatrics 2021;110.
- 348 <u>https://doi.org/10.1111/apa.15854</u>.
- 29. Festini F, Cocchi P, Mambretti D, Tagliabue B, Carotti M, Ciofi D, et al. Nosocomial
- 350 Rotavirus Gastroenteritis in pediatric patients: A multi-center prospective cohort study.
- 351 BMC Infectious Diseases 2010;10. <u>https://doi.org/10.1186/1471-2334-10-235</u>.
- 352 30. Medici MC, Tummolo F, Martella V, De Conto F, Arcangeletti MC, Pinardi F, et al.
- Emergence of novel recombinant GII.P16_GII.2 and GII.P16_GII.4 Sydney 2012 norovirus
- strains in Italy, winter 2016/2017. New Microbiologica 2018;25.
- 355 <u>https://doi.org/10.1007/s12560-017-9278-4</u>.

356	31. Amisano G, Fornasero S, Migliaretti G, Caramello S, Tarasco V, Savino F. Diarrheagenic
357	escherichia coli in acute gastroenteritis in infants in north-west Italy. New Microbiologica
358	2011;34.
359	32. Iannetti S, Calistri P, Di Serafino G, Marotta F, Alessiani A, Antoci S, et al. Campylobacter
360	jejuni and Campylobacter coli: prevalence, contamination levels, genetic diversity and
361	antibiotic resistance in Italy. Veterinaria Italiana 2020;56.
362	https://doi.org/10.12834/VetIt.1819.9596.
363	33. Matthai J, Shanmugam N, Sobhan P. Coronavirus Disease (COVID-19) and the
364	Gastrointestinal System in Children. Indian Pediatrics 2020;57.
365	https://doi.org/10.1007/s13312-020-1851-5.
366	34. Rusconi F, Di Fabrizio V, Puglia M, Sica M, De Santis R, Masi S, et al. Delayed
367	presentation of children to the emergency department during the first wave of COVID-19
368	pandemic in Italy: Area-based cohort study. Acta Paediatrica 2021;110.
369	https://doi.org/10.1111/apa.16019.
370	
371	
372	
373	
374	
375	
515	

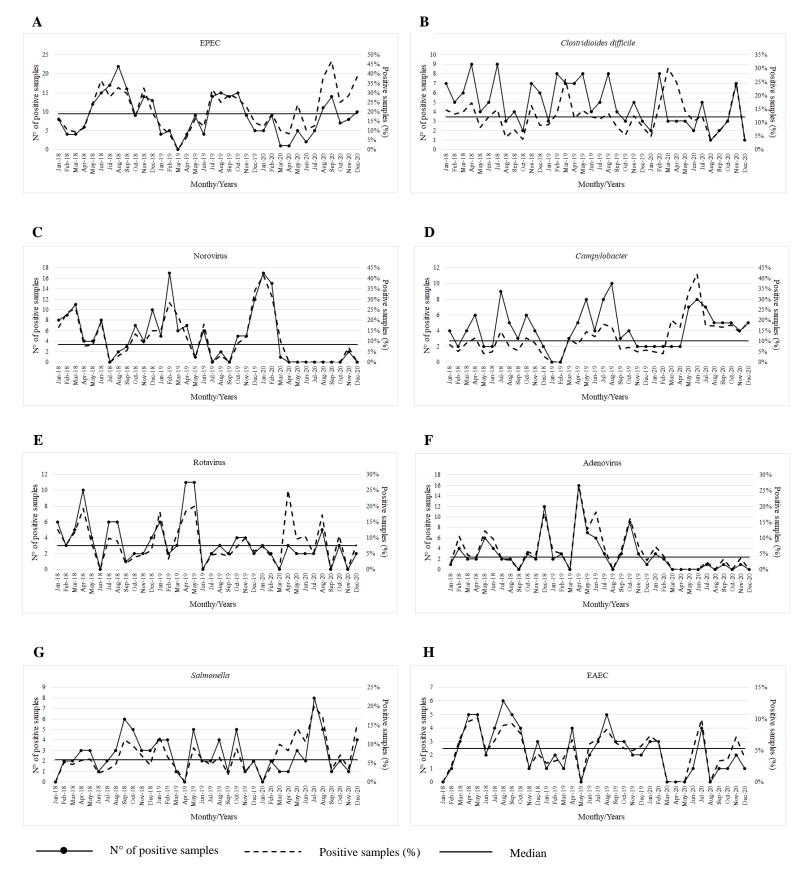
376 FIGURES AND TABLES LEGENDS

377

378	Figure 1. Distribution of enteric pathogens revealed by FAGP in stool samples from 2,066 children.
379	The number of pathogens detected per year is shown below the histograms. The prevalence of each
380	pathogen (%) was evaluated in reference to the total number of pathogens detected in the study
381	period.
382	
383	Figure 2. Monthly distribution of the most frequently detected pathogens in stool samples from
384	2,066 children. A: EPEC; B: Clostridioides difficile; C: Norovirus; D: Campylobacter; E:
385	Rotavirus; F: Adenovirus; G: Salmonella; H: EAEC.
386	
387	Table 1. Demographic data of the 2,066 children with AGE whose stool samples were analyzed
388	with FAGP from 2018 to 2020.
389	
390	Table 2. Different combinations of 305 co-infections detected in 1,101 positive stool samples.
391	
392	Table 3. Most frequent co-infections detected in 2,066 children divided by age.


393 Author's contributions

- Flora De Conto: Conceptualization, Methodology, Data acquisition, Writing, Editing, Validation,
- and Resource; Sharon Di Stefano: Investigation, Data curation and Visualization; Mirko Buttrini:
- 396 Data curation, Methodology, and Visualization; Clara Maccari: Data curation; Maria Cristina
- 397 Arcangeletti: Data acquisition and curation; Adriana Calderaro: Data acquisition, Reviewing, and
- 398 Validation; Carlo Chezzi: Reviewing and Validation.


399

400 Ethical approval

- 401 This article does not describe any studies with human participants or animals.
- 402 The samples were sent to the University-Hospital of Parma for diagnostic purposes. Ethical
- 403 approval at the University-Hospital of Parma is required when samples are used for applications
- 404 other than laboratory diagnosis.

Figure 1

Table 1

Features	Number (%)	
Males	1174 (56.8)	
Females	892 (43.2)	
Mean age (years) \pm SD	4.4 ± 4.2	
Median age (years)	2.9	
0-5 years	1350 (65.3)	
6-10 years	431 (20.9)	
11-14 years	285 (13.8)	
Inpatients	1295 (62.7)	
Outpatients	771 (37.3)	

SD - standard deviation

Table 2

wo pathogens	N°
<i>Campylobacter</i> + EPEC	24
Clostridioides difficile + EPEC	19
EPEC + NoV	16
EAEC + EPEC	11
Salmonella + STEC	11
AdV + EPEC	10
Cryptosporidium + EPEC	8
Clostridioides difficile + RV	8
AdV + NoV	7
AdV + RV	7
Campylobacter + Clostridioides difficile	7
	6
Clostridioides difficile + NoV	
Clostridioides difficile + SaV	6
EAEC + NoV	5
NoV + RV	5
EPEC + SaV	5
EPEC + Yersinia enterocolitica	5
<i>Campylobacter</i> + STEC	4
Less frequent infections with two pathogens	63
Total	81
hree pathogens	
<i>Campylobacter + Clostridioides difficile + EPEC</i>	4
AdV + Clostridioides difficile + EPEC	3
EAEC + ETEC + STEC	3
AdV + <i>Campylobacter</i> + EPEC	2
Campylobacter + EPEC + RV	$\frac{1}{2}$
<i>Clostridioides difficile</i> + EPEC + NoV	2
Cryptosporidium + ETEC + EPEC	2
EPEC + NoV + RV	2
	46
Less frequent infections with three pathogens	<u> </u>
Total	54
fore than three pathogens	
AdV + EAEC + EPEC + RV	1
AdV + EPEC + ETEC + SaV	1
<i>Campylobacter</i> + EAEC + EIEC + <i>Salmonella</i>	1
Campylobacter + EAEC + EPEC + NoV	1
Campylobacter + EAEC + EPEC + RV	1
<i>Clostridioides difficile</i> + EAEC + EPEC + RV	1
Cryptosporidium + EAEC + EIEC + Salmonella	1
Cryptosporidium + EAEC + EPEC + SaV	1
EAEC + EPEC + ETEC + NoV	1
EAEC + EPEC + ETEC + NoV + SaV	1
EAEC + EPEC + NoV + RV	1
EAEC + EFEC + NOV + RV EAEC + STEC + EIEC + Salmonella	1
	1
Total	12

Table 3

Co-infections	N°	Age group (years)
EPEC		
Clostridioides difficile	17	
Campylobacter	16	
NoV	16	
AdV	10	
EAEC	8	
Clostridioides difficile		
RV	8	
AdV	7	0.5
NoV	6	0-5
Campylobacter	6	
<i>Campylobacter</i> + EPEC	4	
NoV		
AdV	6	
Clostridioides difficile	6	
EPEC		
NoV	5	
EAEC	3	(10
Cryptosporidium	2	6-10
Clostridioides difficile	2	
EPEC		
Campylobacter	8	11-14
Total	130	

STEC

EIEC

ETEC

Vibrio

Total

Sapovirus

Astrovirus

E. coli O157

P. shigelloides

Cryptosporidium

Giardia intestinalis

Yersinia enterocolitica

2018	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	%
EPEC	8	4	4	6	12	15	17	22	16	9	14	13	140	23
Norovirus	8	9	11	4	4	8		2	3	7	4	10	70	11.3
Clostridioides difficile	7	5	6	9	4	5	9	3	4	2	7	6	67	11
Campylobacter	4	2	4	6	2	2	9	5	3	6	4	2	49	8
Rotavirus	6	3	5	10	4		6	6	1	2	2	4	49	8
Adenovirus	1	4	2	2	6	4	2	2		3	2	12	40	6.5
EAEC		1	3	5	5	2	4	6	5	4	1	3	39	6.3
Salmonella		2	2	3	3	1	2	3	6	5	3	3	33	5.3
Sapovirus	7	3	3	3	2				2	3	1	7	31	5
Cryptosporidium					1	2	5	8	3	3	3	1	26	4.2
STEC	3	1	1	1		2	2		4	6			20	3.2
Yersinia enterocolitica	1			2	3		2	3	1	1	1		14	2.2
Astrovirus	3	2	1	1	3							2	12	2
ETEC			1				1	3	3			3	11	1.8
Giardia intestinalis		1					1	1	2	1		1	7	1.1
E. coli O157		1					1	2	1				5	0.8
EIEC								1			1		2	0.3
Total													615	
2010		T				T	.		G	0.4	N		T ()	0/
2019	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	%
EPEC	4	5	6	4	9	4	14	15	14	15	9	5	98	18
Norovirus	5	17	6	7	1	6	-	2		5	5	12	66	12
Clostridioides difficile	3	8	7	7	8	4	5	8	4	3	5	3	65	11.8
Adenovirus	2	3		16	7	6	3		3	9	3	1	53	9.6
Rotavirus	6	2	3	11	11		2	3	2	4	4	2	50	9
Campylobacter			3	5	8	4	8	10	3	4	2	2	49	8.8
Salmonella	4	4	1		5	2	2	4	1	5	1	2	31	5.6
EAEC	1	2	1	4		2	3	5	3	3	2	2	28	5
ampa		•								-	-			

2 2

3.4

2.3

1.6

0.4

0.4

0.1

Supplementary table 1. Monthly distribution of pathogens detected by the FAGP in 2,066 children with AGE.

2020	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	%
EPEC	5	9	1	1	5	2	5	11	14	7	8	10	78	23.7
Campylobacter	2	2	2	2	7	8	7	5	5	5	4	5	54	16.4
Clostridioides difficile	2	8	3	3	3	2	5	1	2	3	7	1	40	12.1
Norovirus	17	15	1								2		35	10.6
Salmonella		2	1	1	3	2	8	5	1	2	1	4	30	9.1
Rotavirus	3	2		3	2	2	2	5		3		2	24	7.2
EAEC	3	3				1	4		1	1	2	1	16	5
STEC		1			1	1	4		2	3		2	14	4.2
Cryptosporidium						1	3	1	3	3			11	3.3
Adenovirus	3	2					1		1		1		8	2.4
Yersinia enterocolitica	1		1	2			1					1	6	2
ETEC	2	1							1	1			5	1.5
Astrovirus	2	1	1										4	1.2
Sapovirus	1	2											3	1
Giardia intestinalis								1					1	0.3
Total													329	