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1 Introduction and summary

The discovery of the Seiberg-Witten solution a little over a quarter century ago [1, 2] ignited
an explosion of research in the study of four-dimensional N = 2 supersymmetric quantum
field theories. This burst of activity was motivated in large part by the realization that the
extended supersymmetry of these models makes feasible a reliable analysis of nonpertur-
bative effects in gauge theories. Indeed, over the years a rich assortment of tools has been
developed to compute exactly their observables. What’s more, their investigation has led to
the discovery of intrinsically strongly-coupled superconformal field theories (SCFTs)1 such

1For foundational work on superconformal field theories see [3, 4].
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as Argyres-Douglas models [5] and theories of class S [6]. By now a stupendous number of
N = 2 theories has been found, throwing into sharp relief the need to define an organizing
principle to sort this plethora of models. The constraints following from the rigid special
Kähler structure of the Coulomb branch of vacua constitute one such classifying princi-
ple, most successfully implemented for theories with one-complex-dimensional Coulomb
branch. See [7–10]. Similarly, the stratified, hyperkähler structure of the Higgs branch of
vacua, in combination with the correspondence between N = 2 SCFTs and vertex operator
algebras [11], provides another one [12]. In this paper, we will focus on a class of theories
organized according to a third principle, namely their admitting of a uniform geometric
realization in string theory.

We will consider four-dimensional superconformal field theories residing on the world-
volume of a stack of D3-branes probing an F-theory singularity. Since the rank of the
SCFT equals the number of D3-branes, this setup has the immediate advantage that it
facilitates a detailed understanding of the properties of these theories at all ranks. For
example, rank-r instanton SCFTs are described as a stack of r D3-branes probing a flat
seven-brane with constant axio-dilaton [13–15]. At rank one, this set includes in particu-
lar the Minahan-Nemeschansky theories with exceptional global symmetry [16, 17] and a
number of Argyres-Douglas theories discovered by means of Seiberg-Witten theory in the
nineties.2 Moreover, the first examples of N = 3 supersymmetric quantum field theories in
four dimensions were constructed using an F-theory setup, with D3-branes probing fourfold
terminal singularities called S-folds [19, 20].

Recently, in [21], it was shown that one can combine the N = 3 terminal singularities
with seven-branes. Probing the resulting N = 2 S-folds with a single D3-brane provides
an F-theoretical realization of all (but one) rank-one SCFTs that are not discrete gaugings.
Increasing the number of probe-branes generalizes these models to arbitrary higher rank.
We denote these theories S(r)

G,`, indicating their rank r, the Z` S-fold, and the gauge group
G supported on the worldvolume of the seven-brane. In [21], various properties of these
models were extracted from the geometric description, including their Coulomb branch
spectrum and a and c conformal anomaly coefficients. We extend this F-theoretical analysis
of N = 2 S-folds by calculating the flavor central charges of the simple factors of the global
symmetry group. Table 1 summarizes these properties.

The geometric description is not omniscient. For example, the F-theory realization
indicates that the flavor symmetry of the superconformal field theory on the stack of r probe
branes does not depend on the rank r of the theory, but comparison with the classification
of rank-one theories shows that an enhancement must occur when r = 1 [21]. The geometric
construction is also blind to the full structure of the enhanced Coulomb branch (ECB) of
theN = 2 S-fold SCFTs.3 The F-theory setup only makes visible that part of the ECB that

2Their higher-rank analogues were recently revisited from the point of view of their associated vertex
operator algebra in [18].

3Recall that the existence of an enhanced Coulomb branch indicates that the low-energy effective theory
in a generic point of the Coulomb branch includes a collection of free hypermultiplets. An immediate
consequence is that the Higgs branch of vacua of the theory contains a rank-preserving singular subvariety,
namely the locus where the enhanced Coulomb branch intersects the Higgs branch: if we activate vacuum
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` G Di a c h Flavor Symmetry

2 E6 6, 12, . . . , 6r 36r2+42r+4
24

36r2+54r+8
24 4 + r Sp(4)6r+1 × SU(2)6r2+r

2 D4 4, 8, . . . , 4r 24r2+24r+2
24

24r2+30r+4
24 2 + r Sp(2)4r+1 × SU(2)8r × SU(2)4r2+r

2 A2 3, 6, . . . , 3r 18r2+15r+1
24

18r2+18r+2
24 1 + r Sp(1)3r+1 × U(1)× SU(2)3r2+r

3 D4 6, 12, . . . , 6r 36r2+36r+3
24

36r2+42r+6
24 3 + r SU(3)12r+2 × U(1)

3 A1 4, 8, . . . , 4r 24r2+20r+1
24

24r2+22r+2
24 1 + r U(1)× U(1)

4 A2 6, 12, . . . , 6r 36r2+33r+2
24

36r2+36r+4
24 2 + r SU(2)12r+2 × U(1)

Table 1. Properties of rank-r N = 2 S-fold theories S(r)
G,` specified by their Z` S-fold and a choice

of gauge group G supported on the worldvolume of the seven-brane. We list the Coulomb branch
spectrum Di, i = 1, . . . , r, the a and c Weyl anomaly coefficients, the quaternionic dimension h of
the enhanced Coulomb branch fiber, and the flavor symmetry. We have indicated the flavor central
charges as subscripts. For r = 1 the flavor symmetry enhances.

is captured by the position of the D3-branes along the transverse directions. At the origin
of the Coulomb branch, the Higgsing associated to this motion triggers a renormalization
group flow whose endpoint is easy to predict from the geometric picture: it involves the
superconformal field theories described by D3-branes probing flat seven-branes, i.e., the
instanton-SCFTs, and possibly lower-rank N = 2 S-fold SCFTs. We will show that,
besides this geometrically visible part, the ECB includes another inequivalent locus not
captured by the motion of D3-branes and thus inaccessible in F-theory. What’s more, we
will argue that the enhancement of the flavor symmetry of rank-one S-folds goes hand in
hand with the renormalization group flow triggered by Higgsings along any direction inside
the intersection of the ECB and the Higgs branch being equivalent to the flow described
above. For higher-rank theories, however, we will see that the infrared fixed point of the
renormalization group flow initiated by a partial Higgsing along the inequivalent locus
defines a novel, infinite family of SCFTs. They are in one-to-one correspondence with
N = 2 S-fold models S(r)

G,` — we denote them as T (r)
G,` — and have similar properties.4

For example, they all have an ECB and their flavor symmetry does not depend on the
rank except for an enhancement in the rank-two case. Table 2 summarizes some of their
properties as derived in this work.

In this paper, we bring to bear an array of purely field-theoretical constructions and
techniques to further our understanding of N = 2 S-fold SCFTs and their partial Higgsings,
and, in particular, to elucidate the above-mentioned features invisible via F-theory. We
propose a universally valid formula for the enhanced Coulomb branch of four-dimensional
N = 2 superconformal field theories. Specializing to N = 2 S-fold theories, we make
a uniform proposal for their ECB, and leverage that description to derive the properties

expectation values for local operators in such a way that we move along this subvariety, the low-energy
effective theory has the same rank as the parent UV SCFT.

4After the submission of our manuscript to JHEP, a stringy realization of S-fold type was found for T (r)
G,`

theories as well in [22, 23].
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` G Di a c h Flavor Symmetry

2 E6 6, 12, . . . , 6(r − 1), 3r 6r2+r
4

6r2+3r
4 r (F4)6r × SU(2)6r2−5r

2 D4 4, 8, . . . , 4(r − 1), 2r r2 4r2+r
4 r SO(7)4r × SU(2)4r2−3r

2 A2 3, 6, . . . , 3(r − 1), 3
2r

6r2−r
8

3r2

4 r SU(3)3r × SU(2)3r2−2r

3 D4 6, 12, . . . , 6(r − 1), 2r 3r2−r
2

6r2−r
4 r (G2)4r × U(1)

3 A1 4, 8, . . . , 4(r − 1), 4
3r

2r2−r
2

12r2−5r
12 r SU(2) 8

3 r × U(1)

4 A2 6, 12, . . . , 6(r − 1), 3
2r

12r2−7r
8

6r2−3r
4 r SU(2)3r × U(1)

Table 2. Properties of T (r)
G,` specified by the same data as the N = 2 S-fold theory from which they

can be obtained via partial Higgsing. We list the Coulomb branch spectrum Di, i = 1, . . . , r, the
a and c Weyl anomaly coefficients, the quaternionic dimension h of the enhanced Coulomb branch
fiber, and the flavor symmetry. We have indicated the flavor central charges as subscripts. For r = 2
the flavor symmetry enhances: the SU(2)k factors of the global symmetry of the ` = 2 theories
enhance to SU(2) k

2
× SU(2) k

2
, the U(1) factor of the flavor symmetry of the ` = 3 cases enlarges

to SU(2)14 and SU(2)10 for G = D4 and A1 respectively, and the U(1) factor of the symmetry of
the ` = 4 theory enhances to SU(2)14.

of the T (r)
G,` theories, which arise as a partial Higgsing along the intersection of the ECB

and the Higgs branch, presented in table 2. In the process, we find a uniform expression
for the enhanced Coulomb branch of the theories T (r)

G,` as well. Using the VOA/SCFT
correspondence of [11], and more specifically, the technology developed in [18, 24], we
analyze and construct the Higgs branches of vacua of both S(r)

G,` and T
(r)
G,` .

We present a uniform realization of these models as torus-compactifications of six-di-
mensional N = (1, 0) SCFTs [25–27] in the presence of almost commuting holonomies for
the flavor symmetry along the two nontrivial cycles of the torus. For the N = 2 S-fold
SCFTs, the relevant six-dimensional theories are realized by placing r M5-branes on an
M9-wall which wraps a C2/Z` singularity and turning on a suitable holonomy at infinity
for E8 — see section 4 for more details. The effective Lagrangian theory at a generic point
of the tensor branch is described by the quiver gauge theory

8 SU(`) SU(`) . . . SU(`) `

r

1 (1.1)

where the leftmost gauge group has eight fundamental and one antisymmetric hypermul-
tiplets. Notice that for r = 1 the fundamental hypermultiplets on the left and on the
right are charged under the same gauge group in perfect harmony with the expected flavor
symmetry enhancement. Our torus-compactifications with almost-commuting holonomies
generalize the rank-one results of [28] and provide an alternative, purely field-theoretical
definition of all N = 2 S-fold theories. Using this construction, we rederive the theory’s
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Weyl anomaly coefficients, flavor central charges and Coulomb branch spectrum. We find
perfect agreement with the geometric computation from F-theory, which can be considered
as a highly nontrivial consistency check on the N = 2 S-fold construction. Furthermore,
since the relevant six-dimensional theories can all be embedded in M-theory as M5-branes
wrapping the torus, this construction sheds light on how the M-theory/F-theory duality
works in the case of N = 2 S-folds.

Similarly, the theories T (r)
G,` have a construction in terms of a torus reduction with

almost commuting holonomies turned on. The class of relevant theories are obtained from
the same M-theory setup but with a different choice of E8 holonomy. On a codimension-one
submanifold of the tensor branch the effective six-dimensional theory to obtain T (r)

G,` after
torus-compactification is

E-string SU(`) SU(`) . . . SU(`) `

r − 1

` (1.2)

where the SU(`) gauge group on the left is coupled to the rank-one E-string theory. We
observe that for r = 2 the ` flavors on the left and on the right are charged under the
same gauge group indicating the above-mentioned flavor symmetry enhancement. These
six-dimensional constructions allow us to rederive all data of table 2.

We have also performed a systematic scan through theories of class S, and conclude
that, except for rank-two instances, the theories under consideration here do not seem to
have a class S description. Nevertheless, these sporadic cases are useful as they provide
easy access to spectral data of the theories in the form of their superconformal indices.

This paper is organized as follows. In section 2, we study the geometric realization of
four-dimensional SCFTs in F-theory. In particular, subsection 2.1 briefly reviews the N = 2
S-fold construction of [21] and the properties of the corresponding superconformal theories.
Then in subsection 2.2 we compute the flavor central charges of these theories, recovering
as a special case the known central charges of rank-one theories. Section 3 studies in detail
the moduli space of vacua of N = 2 S-fold SCFTs. In particular, it introduces the infinite
class of novel models, which we call T (r)

G,` , via a partial Higgsing invisible from the F-theory
point of view. In section 4, we describe in detail the construction of N = 2 S-fold theories
and the related models T (r)

G,` via T 2 compactification of six-dimensional N = (1, 0) SCFTs.
Finally, in section 5 we discuss class S realizations of S(r)

G,` and T
(r)
G,` .

2 Four-dimensional SCFTs from D3-branes probing N = 2 S-folds

In this section, we start by briefly reviewing the main properties of the N = 2 S-fold SCFTs
constructed in F-theory in [21]. Then we extend the geometric analysis of these models by
computing the flavor central charges of the simple factors of their global symmetry group.

– 5 –
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G A1 A2 D4 E6 E7 E8

∆7
4
3

3
2 2 3 4 6

Table 3. Deficit angle ∆7 = h∨
G+6
6 of seven-branes labeled by the gauge group G supported on

their worldvolume.

2.1 Brief review of S-fold SCFTs from F-theory

The N = 2 S-fold SCFTs S(r)
G,` arise as the worldvolume theory of a stack of r D3-branes

probing a generalized S-fold, i.e., an F-theory singularity that combines S-folds, labeled by
Z` with ` = 2, 3, 4, or 6, and seven-branes with constant axio-dilaton, which we specify by
the gauge symmetry G they carry: G = A1, A2, D4, E6, E7, or E8. The seven-brane’s most
relevant property for us is its deficit angle, usually denoted as ∆7. This quantity can be
written as ∆7 = h∨G+6

6 , in terms of the dual Coxeter number of G. Table 3 tabulates ∆7.
The rank-one N = 2 S-fold SCFTs are well-known models. Indeed, when we probe a

seven-brane by a single D3-brane in the absence of S-folds, the four-dimensional worldvol-
ume theory is the rank-one G-instanton SCFT whose single Coulomb branch chiral ring
generator has scaling dimension equal to the deficit angle, while in the presence of S-folds
one finds the following identifications

S(1)
E6,2 ←→ [II∗, C5] , S(1)

D4,2 ←→ [III∗, C3C1] , S(1)
A2,2 ←→ [IV ∗, C2U1] ,

S(1)
D4,3 ←→ [II∗, A3oZ2] , S(1)

A1,3 ←→ [III∗, A1U1oZ2] ,

S(1)
A2,4 ←→ [II∗, A2oZ2] . (2.1)

Here we used the notations of [29]: the first entry within the square brackets indicates the
Kodaira type of the Coulomb branch singularity, while the second one denotes the flavor
symmetry of the theory. The scaling dimension of the unique Coulomb branch chiral ring
generator equals `∆7. All in all, we recover all (but one) rank-one models that are not
discrete gaugings.

Theories with r > 1 constitute a higher rank generalization of these models. Their r
Coulomb branch chiral ring generators have scaling dimensions

Di = `∆7, 2`∆7, . . . , r`∆7. (2.2)

When there is no seven-brane (i.e., ∆7 = 1) the theory has enhanced N ≥ 3 super-
symmetry. The central charges were determined in [21]. The theories S(r)

G,` satisfy the
Shapere-Tachikawa relation 8a− 4c =

∑
i(2Di − 1) [30], hence from (2.2) one confirms

4(2a− c) = r(r + 1)`∆7 − r . (2.3)

The combination c− a can be computed to be

24(c− a) = (6r + `)(∆7 − 1) , (2.4)

and we should notice that (2.4) holds only for ` > 1. In the absence of S-folds, namely
in the case of instanton theories (which we denote as I(r)

G ), the formula actually reads

– 6 –
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6r(∆7 − 1). We would also like to remark that (2.4) is the quaternionic dimension of
the Higgs branch.5 Finally, the quaternionic dimension of the enhanced Coulomb Branch
(ECB) fiber can be determined to be [21]6

h = `(∆7 − 1) + r . (2.5)

This expression can be understood as capturing two distinct contributions. Indeed, by
moving all the D3-branes away from the seven-brane and the S-fold singularity (i.e., going
to a generic point on the Coulomb branch), each D3-brane carries a single hypermultiplet
(so we have r of them) and the generalized S-fold contributes `(∆7 − 1) extra hypermulti-
plets. In the case of instanton theories instead, the number of extra hypermultiplets is of
course zero.

The F-theory description of the N = 2 S-fold SCFTs makes manifest two distinct
contributions to their global symmetry: one from isometries of the background and another
one from the gauge symmetry supported on the seven-brane. Let’s start by discussing the
former. The obvious U(1) isometry rotating the complex plane transverse to the seven-
brane worldvolume is identified with the U(1)r symmetry of the superconformal algebra
(we will denote by r the corresponding generator). The directions of the seven-brane
worldvolume transverse to the D3-branes is C2/Z`, which has U(2) symmetry for ` > 2
and SO(4) for ` = 2. An SU(2) subgroup is identified with the SU(2)R symmetry of the
superconformal algebra (we will denote the Cartan generator by R) and the commutant
becomes a global symmetry of the SCFT. We therefore find a U(1) global symmetry for
` > 2 and SU(2) for ` = 2. As for the contribution from the seven-brane gauge symmetry
G, it was found in [21] that the Z` acts nontrivially on G and the resulting flavor symmetry
of the four-dimensional theory is the Z`-invariant subgroupH. Table 4 presents the relevant
invariant subgroups and summarizes the total flavor symmetry of the models S(r)

G,` made
manifest in their geometric realization. We claim that the flavor symmetry groups thus
obtained represent the full global symmetry of the SCFT for r > 1, but the symmetry
enhances for r = 1 as in (2.1).

2.2 Geometric derivation of flavor central charges

To compute the flavor central charges of the simple factors of the global symmetry GF of
the theories S(r)

G,`, see table 4, it will be helpful to first review the derivation of the a and c
central charges of [21]. That analysis combined techniques developed in [31] and [20] and,
as we will show, can be generalized to the computation of flavor central charges as well.

We make use of the well-known formulae

Tr rR2 = 2(2a− c) , Tr r3 = Tr r = 48(a− c) , kGF = −2Tr rG2
F , (2.6)

and of the D3-brane charge ε of the generalized S-fold [21]

ε = `− 1
2` . (2.7)

5This follows from ’t Hooft anomaly matching provided the theory can be Higgsed to free hypers. We
know this is the case for S-fold theories since they can be Higgsed to the corresponding instanton theories
(D3-branes probing a flat seven-brane) [21] and these models in turn can be Higgsed to free hypermultiplets.

6See footnote 3 for the definition of an enhanced Coulomb branch.
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G Z` H IH↪→G Flavor symmetry of S(r)
G,`

E6 Z2 Sp(4) 1 Sp(4)× SU(2)

D4 Z2 Sp(2)× SU(2) ISp(2) = 1; ISU(2) = 2 Sp(2)× SU(2)× SU(2)

D4 Z3 SU(3) 3 SU(3)× U(1)

A2 Z2 SU(2)× U(1) ISU(2) = 1 SU(2)× U(1)× SU(2)

A2 Z4 SU(2) 4 SU(2)× U(1)

A1 Z3 U(1) U(1)× U(1)

Table 4. For each seven-brane of type G, the table lists the relevant Z`-invariant subgroup H and
its embedding index into the gauge group G, denoted as IH↪→G. Including also the contribution
from the isometries of the background, the geometric description of the model S(r)

G,` makes manifest
the flavor symmetry indicated in the last column. For r = 1 an enhancement occurs.

The total D3-brane charge is thus r + ε. The a and c central charges can be parametrized
as follows:

2(2a− c) = αr2 + βr + γ , 48(c− a) = δr + µ . (2.8)

Our task is to determine the coefficients α, β, γ, δ, and µ. One can do so from the F-theory
description via a holographic computation. The holographic description of the theories
S(r)
G,` was determined in [21]: it is given by Type IIB string theory on AdS5 ×M5, where
M5 = S̃5/Z` and S̃5 is a five-sphere in which the angular coordinate around the seven-brane
has periodicity 2π/∆7. Locally M5 is the same as S5/Z`. Also note that in (2.8) we have
a priori discarded a contribution of order r2 to c− a because in the large r limit a = c at
leading order.

The leading contribution is proportional to the square of the total D3-brane charge,
i.e., (r+ ε)2, divided by the volume of M5 appearing in the holographic description. More
precisely, if we normalize the radius of curvature of M5 to one, we have the formula [31]

a
∣∣
leading = c

∣∣
leading = (r + ε)2π3

4Vol(M5) . (2.9)

In the case at hand, since Vol(M5) is the volume of the round five-sphere divided by `∆7,
we find

a
∣∣
leading = c

∣∣
leading = `∆7

(r + ε)2

4 . (2.10)

Notice that this contribution fixes the value of α but also contributes to the other coeffi-
cients.

Next, we take into account a subleading contribution of the seven-branes. Because
the seven-brane action is linear in r, seven-branes do not contribute at order r2. The
contribution to the ’t Hooft anomalies for r and R turns out to be proportional to the
D3-brane charge times the volume of the three-manifold (inside M5) wrapped by the seven-
brane and divided by the volume of M5. This quantity was computed for ` = 1 in [31].
Since in our case the volume of both the three- and five-manifolds is divided by ` with

– 8 –
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Theory S(r)
E6,2 S(r)

D4,2 S(r)
A2,2 S(r)

D4,3 S(r)
A2,4

Value of µ′ 1 (1,0) 1 2 2

Table 5. The values of µ′ which appear in the flavor central charge formula (2.12) of the flavor
symmetry H. For S(r)

D4,2 the notation (1, 0) means that µ′ is one for the Sp(2)-factor and zero for
the Sp(1)-factor of H.

respect to the ` = 1 case, we can simply use the formula found in [31] with the replacement
N → r + ε. We thus have

2(2a−c)
∣∣
subleading = (r + ε)(∆7 − 1)

2 , 48(a−c)
∣∣
subleading = −12(r+ε)(∆7−1) . (2.11)

Combining (2.7), (2.10) and (2.11) we can determine all the coefficients in (2.8) except γ
and µ which are harder to evaluate holographically. However, we can bypass this difficulty
by exploiting the fact that γ and µ are the only surviving contributions for r = 0 and
we know that when there are no D3-branes the four-dimensional theory is a collection
of `(∆7 − 1) hypermultiplets. These do not contribute to 2a − c (therefore γ = 0) and
contribute 2`(∆7 − 1) to 48(c− a). In this way we reproduce (2.3) and (2.4).

We perform a similar analysis to determine holographically the flavor central charges.
We will focus on nonabelian factors of GF : the SU(2) factor that is always present for
models with ` = 2 — we call the corresponding central charge k2 — and the nonabelian
factors of the invariant subgroup H of the seven-brane gauge symmetry G, whose central
charge will be denoted as kH . In [31, 32] it was argued that in the holographic setup ’t
Hooft anomalies depend (at most) quadratically on the D3-brane charge, therefore we can
parametrize flavor central charges similarly to (2.8):

k2 = α′r2 + β′r + γ′ , kH = δ′r + µ′ . (2.12)

In the above formula we did not include an order r2 term for kH because this quantity
comes from seven-branes and, as mentioned before, the seven-brane action is linear in r.
Let’s start with the order r0 contribution. To determine it, we use that the `(∆7 − 1)
hypermultiplets transform as

for ` = 2 : (1,4∆7 − 4) of Sp(1)× Sp(2∆7 − 2) (2.13)
for G = D4, ` = 3 : 3+ of SU(3)× U(1) (2.14)
for G = A2, ` = 4 : 2+ of SU(2)× U(1) (2.15)

These transformation rules will be derived independently in sections 3 and 4. Note that
they are obviously compatible with the enhanced flavor symmetry of the rank-one models.
Also note that we cannot make any statements for S(r)

A1,3 theories since the global symmetry
is U(1)2 and does not include nonabelian factors. Overall, for ` = 2 we conclude that γ′ = 0
since the bulk hypermultiplets are not charged under SU(2). The values of µ′ are given in
table 5.
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Let us now consider the other coefficients for k2. The leading term is not affected by
the presence of the seven-brane and therefore we can exploit the fact that for ` = 2 and
∆7 = 1 the theory has enhanced N = 4 supersymmetry. The relevant ’t Hooft anomaly
can therefore be determined, as in the ` = 1 case discussed in [31], by decomposing the
SU(4)3

R Chern-Simons interactions of Type IIB on AdS5 × S5/Z2 since, as was mentioned
before, M5 is locally the same as S5/Z`. The decomposition includes the Tr(rSU(2)2)
anomaly, which has a fixed ratio relative to the strength of the R-symmetry Chern-Simons
term. We therefore conclude that the relation between k2

∣∣
leading and a

∣∣
leading is the same

as for N = 4 theories: k2
∣∣
leading = 4a

∣∣
leading. From (2.10) we get

k2
∣∣
leading = 2∆7(r + ε)2. (2.16)

The subleading O(r) contribution to k2 comes entirely from the Chern-Simons terms on
the seven-brane, since there are no bulk contributions at this order. This term can be de-
termined by noticing that the SU(2) flavor symmetry factor arises from an SO(4) isometry,
with the other SU(2) being part of the R-symmetry of the theory. Since the two SU(2)
groups are on equal footing we conclude that Tr(rR2) = (4a−2c))

∣∣
subleading, which we have

already computed, is equal to Tr(rSU(2)2) = −k2
∣∣
subleading/2. From (2.16) and (2.11) we

therefore conclude that
k2 = 2∆7r

2 + r , (2.17)
where we have used γ′ = 0.

The computation of kH can be done as in [31]: the contribution originates entirely
from the Chern-Simons interaction C4 ∧Tr(FG ∧ FG) on the seven-brane, where FG is the
field-strength of the gauge symmetry supported on the seven-brane. This is due to the
decomposition C4 ' Ar ∧ ω, where Ar is the U(1)r gauge field and ω is the volume form of
the three-manifoldM3 wrapped by the seven-brane so, upon integrating overM3, we get the
desired Chern-Simons interaction in the bulk. As explained above, the overall coefficient
is proportional to the ratio between the volume of M3 and the volume of the compact
five-manifold M5. Furthermore, as was noticed before, this quantity does not depend on
the parameter ` and therefore the result is the same as in [31] (namely kG = 2N∆7), with
the usual replacement N → r + ε. The only difference is that now only the subgroup H is
present and therefore we should multiply the expression reported in [31] by the embedding
index of H in G. These embedding indices were reported in table 4. They effectively
reintroduce a dependence on Z`. We therefore find

kH = 2∆7rIH↪→G + µ′ . (2.18)

Table 6 presents the result of the flavor symmetry central charge computations (2.17)
and (2.18).7

Let us conclude by remarking that for r = 1 and ` = 2, we reproduce the known flavor
central charges computed in [10] for the enhanced flavor symmetry. Indeed, the nonabelian
factors in the flavor symmetry group have embedding index one into the enhanced global
symmetry group and they have equal central charges as required by the enhancement.

7The flavor central charges of rank-two models with ` = 2 have recently also been computed with a
different method in [33].
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Theory Flavor symmetry

S(r)
E6,2 Sp(4)6r+1 × SU(2)6r2+r

S(r)
D4,2 Sp(2)4r+1 × SU(2)8r × SU(2)4r2+r

S(r)
A2,2 Sp(1)3r+1 × U(1)× SU(2)3r2+r

S(r)
D4,3 SU(3)12r+2 × U(1)

S(r)
A2,4 SU(2)12r+2 × U(1)

Table 6. Flavor symmetry groups and their flavor central charges of S(r)
G,` theories.

3 Moduli space of vacua of N = 2 S-fold SCFTs and partial Higgsings

In this section, we set out to analyze in detail the moduli space of vacua of N = 2 S-
fold theories S(r)

G,` and to scrutinize their partial Higgsings. We start by discussing general
aspects of enhanced Coulomb branches of four-dimensional N = 2 superconformal field
theories, including a universal proposal for their structure and an examination of rank-
preserving partial Higgsings triggered by vacuum expectation values along the intersection
of the Higgs branch and the enhanced Coulomb branch. Upon specializing to S(r)

G,`, we
present their enhanced Coulomb branch and discern a partial Higgsing to a novel, infinite
class of theories, which we denote T (r)

G,` . These partial Higgsings are invisible in F-theory:
they roughly correspond to turning on a vacuum expectation value for the `(∆7 − 1)
hypermultiplets localized at the S-fold singularity.8 The construction of T (r)

G,` as partial
Higgsings of S(r)

G,` allow us to derive all their properties summarized in table 2. Next, we
turn attention to the Higgs branches of the models S(r)

G,` and T
(r)
G,` . Exploiting the ideas put

forward in [18, 24], we construct these varieties via a chain of “unHiggsings.”

3.1 Structure of enhanced Coulomb branches of four-dimensional N = 2 SCFTs

A four-dimensional N = 2 superconformal field theory possesses an enhanced Coulomb
branch (ECB) if its low-energy effective field theory in a Coulomb branch vacuum includes
neutral, massless hypermultiplets.9 This condition implies that the moduli space of vacua
of the SCFT contains a branch, the ECB, that is locally a product of the Coulomb branch
(CB) and a number of copies of C2 capturing the moduli of the hypermultiplets. In other
words, locally the enhanced Coulomb branch takes the form CB× C2h for some integer h.
Globally, we propose that

ECB = C2h × C̃B
Γ , (3.1)

8Naturally, the rank-preserving partial Higgsings corresponding to the motion of D3-branes in transverse
directions are also faithfully captured by the structure of the ECB.

9The terminology enhanced Coulomb branch was introduced in [10]
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where Γ is a crystallographic complex reflection group and C̃B ' Cr.10 We will further
specify the action of Γ on each factor momentarily. Note that an expression of the form (3.1)
captures the ECBs of all Lagrangian theories, all currently known N ≥ 3 theories,11 many,
and quite possibly all, class S theories, and all rank-one theories (see [12]), instanton
SCFTs, and more generally theories that arise from probe branes in F-theory (as our S-
folds).

Both the U(1)r and SU(2)R R-symmetry groups act on the ECB. The loci of the ECB
where respectively SU(2)R and U(1)r remain unbroken are

ECB ⊃ CB = C̃B
Γ , ECB ⊃ W := C2h

Γ ⊂MHiggs . (3.2)

The action of Γ on C̃B ' Cr is constrained by the requirement that it commute with U(1)r.
If the scaling weights of C̃B are ∆̃k with multiplicity rk, such that

∑
k rk = r, then we

deduce that Γ ⊂
∏
kGL(rk,C). If we further assume that the Coulomb branch chiral ring

is freely generated,12 we conclude, via a famous theorem of Chevalley, Shephard, and Todd
that Γ acts on C̃B as a complex reflection group. More explicitly, Γ =

∏
k Γk is a product

of irreducible complex reflection groups, compatible with the U(1)r condition. Irreducible
complex reflection groups were classified by Shephard and Todd, see e.g., [40]. What’s
more, we anticipate, but have not worked out in detail, that the crystallographic condition
follows from electric-magnetic duality of the low-energy effective theory on the Coulomb
branch.

The action of Γ on C2h is also constrained by N = 2 superconformal symmetry, because
W should have an SU(2)R group of (non-holomorphic) isometries. This requirement trans-
lates into the condition that Γ is an element of the Sp(h) factor of Sp(h)×SU(2)R ⊂ SO(4h)
which act on flat C2h ' R4h. It then immediately follows that the space W = C2h/Γ is a
so-called symplectic singularity.13

The inclusion of W in the Higgs branch of vacua in (3.2) requires a comment. In
general W is not a subvariety of MHiggs, but rather the normalization of such (singular)
subvariety, see [12]. In particular, this implies that some of the element of the chiral ring
C[W ] do not descend from elements of the Higgs branch chiral ring.

Theories whose moduli space of vacua contains a nontrivial ECB possess a distinguished
set of partial Higgsings triggered by vacuum expectation values corresponding to points
in W . These Higgsings are special because they preserve the rank of the theory. More
precisely, let us take w ∈ W and denote by Γw ⊂ Γ the subgroup of Γ that fixes w. The
Coulomb branch of the theory one obtains after a Higgsing corresponding to the point w

10See, e.g., [20, 34, 35] and references therein for instances in which complex reflection groups have
appeared in the description of the moduli space of vacua of theories with extended supersymmetry.

11See, e.g., [20, 34, 36].
12This fact was first explicitly conjectured in [37]. Some potential counterexamples have been discussed

recently in, e.g., [36, 38, 39].
13For more details on symplectic singularities, see [41]. Our case of interest is discussed in his exam-

ple (2.5).
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is given by

CBIR = C̃B
Γw

. (3.3)

When w is a generic point of W , one has Γw = id.14 Thus, C̃B is identified with CBIR
for these generic partial Higgsings. While the relation between Coulomb branches of the
UV and IR theories is simple, the relation between the UV and IR Higgs branches is more
involved and discussed in the examples below.

3.2 The enhanced Coulomb branch of S(r)
G,` theories

We propose that the enhanced Coulomb branch of the N = 2 S-fold theories is given by

ECB[S(r)
G,`] = CM ⊗ (vΓ ⊕ v∗Γ)⊗ (VΓ ⊕ V ∗Γ )⊗ (VΓ ⊗ CuIR)

Γ , Γ = G(`, 1, r) , (3.4)

Let us describe the ingredients in this formula.

• The action of the complex reflection group G(`, 1, r) on its fundamental representation
VΓ ' Cr, which we parametrize by (z1, . . . , zr), is generated by the symmetric group
Sr together with (Z`)r transformations generated by zk 7→ ωδjk zk, for j = 1, . . . , r and
with ω = e2πi/`.15 In particular, any g ∈ G(`, 1, r) ⊂ GL(VΓ) can be parametrized as
g = ΩP where Ω ∈ (Z`)r and P ∈ Sr.

• The symbol vΓ ' C denotes the nontrivial one-dimensional representation of G(`, 1, r),
which transforms as vΓ 7→ (det Ω) vΓ where Ω ∈ (Z`)r was specified in the previous
bullet.

• The superscript ∗ denotes complex conjugation.

• CuIR is a copy of the complex plane with complex coordinate uIR of scaling dimension
∆uIR = ∆7. Recall that ∆7 = h∨G+6

6 , and thus depends on G. See table 3.

By comparing (3.4) with the general expression (3.1) one identifies

C2h ' CM ⊗ (vΓ ⊕ v∗Γ)⊗ (VΓ ⊕ V ∗Γ ) . (3.5)

Clearly, M = h− r, and h was given in table 1 — concisely, M = `h∨G/6, where h∨G is the
dual Coxeter number of G. The Coulomb branch of S(r)

G,` is

CB[S(r)
G,`] = VΓ ⊗ CuIR

Γ , Γ = G(`, 1, r) . (3.6)

The scaling dimensions of the Coulomb branch generators of the S-fold theories can be
found from (3.6) after recalling that the degrees of the invariants of Γ = G(`, 1, r) are
(`, 2`, . . . , r`). We then produce the list

{`, 2`, . . . , r`} ×∆uIR , ∆uIR = ∆7 . (3.7)
14If this were not the case, we would have W = C2h0 ×W ′, indicating the presence of h0 decoupled free

hypers.
15In fact, G(`, 1, r) coincides with the so-called wreath product of Z` with Sr.
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The spectrum (3.7) reproduces (2.2) providing a nice consistency check of (3.4). According
to the general discussion above, the Higgsing associated to a generic point of W results
in a theory whose Coulomb branch is described by C̃B = VΓ ⊗ CuIR . We thus find a
theory whose Coulomb branch spectrum is {∆7,∆7, . . . ,∆7}. We identify this theory as
the product of r copies of the one-instanton theory I(1)

G .
In the Higgs branch of S(r)

G,`, from each generic point of W thus sprout r copies of the
Higgs branch of the one-instanton SCFT I(1)

G . Adding the dimensions, we easily find the
dimension ofMHiggs to be

dim(MHiggs) = dim(W ) + r × dim(MHiggs[I(1)
G ]) . (3.8)

Recall that the quaternionic dimension of W is h and of MHiggs[I(1)
G ] is h∨G − 1. This

information, together with the Coulomb branch spectrum (3.7), the Shapere-Tachikawa
relation, and anomaly matching on the Higgs branch, i.e., 24(c − a) = dimHMHiggs,16

provides a shortcut to the determination of a and c. We easily reproduce (2.3)–(2.4), or,
equivalently, the data in table 1, by recalling that M = h− r = `h∨G/6.

It is useful to spell out the isometries of the space W , defined in (3.2), for the example
of S-fold theories. Indeed, these isometries appear as flavor symmetry subgroups of the
SCFT. The manifest symmetry ofW is U(M)×U(1). However, various enhancements take
place. First, for ` = 2, G(`, 1, r) coincides with the Weyl group Br. The representations
VΓ and vΓ are then real so that VΓ ⊕ V ∗Γ = VΓ ⊗ C2 and vΓ ⊕ v∗Γ = vΓ ⊗ C2. This implies
that U(M)×U(1) enhances to SP (M)×SU(2) when ` = 2. Second, when r = 1, VΓ = vΓ
and there is a further symmetry enhancement to SP (M + 1) (for ` = 2), while for ` 6= 2
one finds U(M + 1) .

As pointed out in the previous subsection, theories with an ECB possess a distinguished
set of rank-preserving Higgsings. Inequivalent Higgsing are characterized by complex re-
flection subgroups of Γ. It is instructive to illustrate this point in the case of ` = 2, r = 2,
so that Γ = B2. The inequivalent ECB Higgsings are summarized in the following table17

w ∈ {C2M ;C2,C2} Γw TIR CB spectrum

{0; 0, 0} B2 S(2)
G,2 (2, 4)∆7

{e; 0, 0} D2 T (2)
G,2 (2, 2)∆7

{0; e, 0} or {0; 0, e} B1 S(1)
G,2 ⊗ I

(1)
G (1, 2)∆7

{0; e, e} S2 I(2)
G (1, 2)∆7

generic id I(1)
G ⊗ I

(1)
G (1, 1)∆7

(3.9)

Here e and e are non-vanishing elements of C2M and C2 respectively. The pattern for higher
r (and still ` = 2) is similar, reflecting the fact that the subgroups of Br are products of Sr′ ,

16This expression is valid when the theory on a generic point of the Higgs branch contains only hyper-
multiplets.

17Notice that two different entries have the same Coulomb branch spectrum.
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Br′′ , and Dr′′′ , see, e.g., [42]. The theory obtained in the infrared is a product of instanton
theories, S-fold theories and a new family of theories T (r)

G,2 associated to the D-factors. We
will describe these theories, and their cousins for other values of `, in detail in the next
subsection. Before doing so, let us close this subsection with a pictorial overview of the
various ECB Higgsings, as well more generic Higgsings of S(2)

G,2:

S(2)
G,2

T (2)
G,2

S(1)
G,2 ⊗ I

(1)
G

I(2)
G

S(1)
G,2

(I(1)
G )⊗2

I(1)
G

Here we have omitted a few obvious Higgsings. All renormalization group flows represented
in the diagram by a black arrow can be easily understood in the context of the geometric
realization in F-theory, but the red entries are invisible in F-theory.

3.3 The T (r)
G,` theories

We introduce the theories T (r)
G,` by performing the partial Higgsing of the S(r)

G,` theories
associated to a point w on the factor CM ⊗ vΓ of (3.4). (For example, in (3.9), we are
considering the Higgsing in the second row.) When w lies in CM ⊗vΓ, then Γw = G(`, `, r),
which is the subgroup of G(`, 1, r) consisting of elements g = ΩP ∈ G(`, 1, r), Ω ∈ (Z`)r and
P ∈ Sr, such that det Ω = 1. Note that for ` = 2 one finds the Weyl group G(2, 2, r) = Dr,
while G(`, `, 1) = Id. The ECB of the resulting theories is thus

ECB[T (r)
G,` ] = (VΓ ⊕ V ∗Γ )⊗ (VΓ ⊗ CuIR)

Γ , Γ = G(`, `, r) . (3.10)

Similarly to the case of S-fold theories the Coulomb branch has the structure

CB[T (r)
G,` ] = VΓ ⊗ CuIR

Γ , Γ = G(`, `, r) , (3.11)

so that the CB spectrum is determined by the degrees of the invariants of G(`, `, r) as18

{Di[T (r)
G,` ]} = {`, 2`, . . . , (r − 1)`; r} ×∆uIR , ∆uIR = ∆7 . (3.12)

As for S-fold theories, the a and c central charges follows immediately from the Coulomb
branch spectrum just derived and the dimension of the Higgs branch. As in (3.8), the
latter quantitiy can be computed by adding the dimension of W ' C2r/G(`, `, r) to that

18Note that the theory T (2)
A1,3 has spectrum {3; 2}× 4

3 = {4, 8
3}. This pair is compatible with the constraints

of [43] and also with the construction of [44], although this pair of numbers does not appear in their table
of allowed spectra at rank two. This is just due to a different choice of branch of the logarithm in the
dimension formula of [44]. A similar fact was observed in footnote 16 of [28].
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of r copies of the one-instanton SCFT. Indeed, also now, the infrared theory at a generic
point of W is r copies of the one-instanton theory. We then find

a[T (r)
G,` ] = 1

4 r (`∆7(r − 1) + (3∆7 − 2)) , (3.13a)

c[T (r)
G,` ] = 1

4 r (`∆7(r − 1) + (4∆7 − 3)) , (3.13b)

where we have used once again the relations dimHMHiggs[I(1)
G ] = h∨G − 1 and ∆7 = h∨G+6

6 ,
see e.g. [18].

The isometry-group of W is in general only U(1). However, for ` = 2, it enhances to
SU(2) for r > 2 because VΓ is real, and further enhances to SU(2)×SU(2) for r = 2 due to
the fact that G(2, 2, 2) = D2 = D1×D1. In the latter caseW = (VD2×C2)/D2 = (C2/Z2)2.
For r = 2 and ` = 3, 4 the symmetry U(1) is enhanced to SU(2) as follows from the low-
rank identification G(3, 3, 2) = S3, G(4, 4, 2) = B2, which are real.19 These isometry-groups
manifest themselves as flavor symmetries of the theories T (r)

G,` . Indeed, they are given by
the second factor of the flavor symmetry as given in table 2. One can easily determine the
first flavor symmetry factor in full by analyzing the relevant Higgsing of S(r). We present
examples of the corresponding “unHiggsings” later.

Similarly to the S-fold theories, T -theories admit ECB-type Higgsings. These produce
products of lower-rank theories of types T (r′)

G,` and I(r′′)
G , following the pattern of subgroups

of Γ see [42, 45]. They also admit non-ECB-Higgsings that decrease their rank. We will
argue below that the Higgsing associated to giving a minimal nilpotent vacuum expectation
value to the moment map of the first factor in the flavor symmetry group in table 2,
which is always simple and whose Lie algebra we will denote by f, produces the Higgsing
T (r)
G,` 7→ S

(r−1)
G,` .20 All in all, we thus find the chain of Higgsings

S(r) → T (r) → S(r−1) → · · · → T (2) → S(1) → I(1) , (3.15)

which defines a distinguished path in the Hasse diagram. We will put it to use to compute
a number of properties of the T -theories. In particular, we will use it to find the flavor
central charges of T (r)

G,` .
The Higgsing T (r) → S(r−1) can be used to determine the level of the flavor symmetry

subalgebra f of the T (r)
G,` models. (Recall that f is the Lie algebra of the first factor of the

flavor symmetry as tabulated in table 2.) We do so by matching the c central charge of the
UV theory with the central charge of the IR theory together with the contribution of h∨f −2

19For r = 1 W = C2 corresponding to the fact that T (1) = I(1) × 1 hyper.
20The relation between Higgs branches of T (r)

G,` and S(r−1)
G,` is

MHiggs[T (r)
G,` ] ∩S =MHiggs[S(r−1)

G,` ]× C2(h∨
f
−2) (3.14)

where S := eθ + C fθ denotes the Slodowy slice at the minimal nilpotent element eθ. Note that this is not
quite the standard definition of a Slodowy slice which is Se := e + kerf , with kerf = {x ∈ f|[f, x] = 0},
where (e, f, h) is the sl2 triple associated to the nilpotent element in question. The definition used in (3.14)
differs from the latter only by the C2(h∨

f
−2) factor. We also point out that the equality dim[MHiggs[T (r)]] =

dim[MHiggs[S(r−1)]] + (h∨f − 2) + 1 follows from the identity h∨G − h∨f + 1 −M = 0, upon also using (3.8)
and dim[MHiggs[I(1)

G ]] = h∨G − 1.
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free hypermultiplets and an additional hypermultiplet with non-canonical transformation
properties.21 This gives the relation

− 12 c[T (r)
G,` ] = −12 c[S(r−1)

G,` ]− (h∨f − 2) + 2(−3
2kf + 1) . (3.16)

Since we have already determined the values of c of the T -theories, this formula provides
a derivation for the level kf.

From the same Higgsing T (r) → S(r−1) we can also derive the following relation in-
volving the flavor central charge of the a1 algebra in the last factor of the flavor symmetry
groups in tables 1 and 2, which is present for ` = 2

ka1 [T (r)
G,2] = ka1 [S(r−1)

G,2 ] + kcM [S(r−1)
G,2 ] . (3.17)

This expression expresses the fact that UV SU(2) flavor symmetry arises as the diagonal
of the IR SU(2) flavor symmetry group and an SU(2) subgroup of Sp(M). See below for
more details. At this point, we have derived all properties of the T (r)

G,` theories that were
presented in table 2.

However, further constraints can be derived, which now serve as consistency checks.
Let us now consider the Higgsing S(r) → T (r). Similarly to the rank-one case discussed
in [12], when ` = 2 this Higgsing corresponds to a nilpotent vacuum expectation value for
a moment map. In fact, in this case it is a minimal nilpotent vacuum expectation value
for the first Sp(M) factor of the S-flavor symmetry in table 1. The same logic as used to
determine (3.16) applies, so we have

− 12 c[S(r)
G,2] = −12 c[T (r)

G,2] + (−1)(M − 1) + 2(−3
2kcM + 1) , (3.18)

which can be used to fix kcM . In the cases ` = 3, 4, a similar, but slightly more involved,
analysis can be performed to determine the level of the SU(M) factors.

Finally, from the Higgsing S(r) → T (r) we can derive the flavor central charges of the
a1 factors present when ` = 2,

ka1 [S(r)
G,2] = ka1 [T (r)

G,2] + kf[T (r)
G,2] . (3.19)

At low ranks there are extra symmetries whose levels can be fixed by similar methods. All
in all, it is remarkable that all the levels can be fixed entirely by this procedure.

3.4 Un-Higgsings and free-field realizations

In this subsection, we will explain how the ideas introduced in [12, 18, 24] can be used,
on the one hand, to determine various properties of S and T theories, some of which have
been described just now, and on the other hand, obtain a rather precise description of their
Higgs branches as affine varieties. The idea is to consider a particular partial Higgsing of
a UV theory to an IR theory, and to use the IR building blocks to reconstruct the Higgs

21This relation was derived in [24]. It can also be derived from anomaly matching on the Higgs branch
by noticing that the IR SU(2)R can be identified in the UV, see [12] for more details.
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branch and the associated vertex operator algebra of the UV theory. The real power of
this method is to derive many properties of the UV theory from very little input.

Let us start our endeavor by proposing the Higgs branch generators of S(r)
G,2

22

W(1)
(1,3) ,W

(2)
(1,5) , . . . ,W

(r)
(1,2r+1) , (3.20a)

W(1)
(cM ,1) ,W

(2)
(cM ,3) , . . . ,W

(r)
(cM ,2r−1) , (3.20b)

W(1)
(g∗,1) ,W

(2)
(g∗,3) , . . . ,W

(r)
(g∗,2r−1) , (3.20c)

W(3/2)
(g1,2) ,W

(5/2)
(g1,4) , . . . ,W

(r+ 1
2 )

(g1,2r) , (3.20d)

W( r+1
2 )

(2M,r+1) ,W
( r+2

2 )
(R,r) ,W

( r+3
2 )

(R′,r−1) ,W
( r+4

2 )
(R′′,r−2) , . . . (3.20e)

where W(1)
(1,3) := Ja1 , W(1)

(cM ,1) := JcM and W(1)
(g∗,1) = Jg∗ are flavor currents and g1 and

R,R′,R′′ . . . denote the following representations of cM × g∗ (where g∗ = ∅, a1, u1 for
M = 4, 2, 1)

g1 =


42 ,
(5, 3) ,
2±

R =


48 ,
(4, 3) ,
1± ,

R′ =


160 ,
(16, 1) ,
∅ ,

. . . (3.21)

The superscript in parenthesis denotes the SU(2)R weight of the corresponding generator.
At rank one, the generators of dimension one recombine to form JcM+1 currents and the
ones of dimension 3/2 recombine in a representation of JcM+1 × g?. For r = 2, this list
agrees with the index results of section 5. What’s more, for any r, it is not hard to convince
oneself that the set (3.20a) together with the cM currents and W( r+1

2 )
2M,r+1 coincide with the

set of generators of C[W ] where W = C2h

Γ with C2h given in 3.5. Similarly, we propose for
the generators of the Higgs branch of T (r)

G,2

W(1)
(1,3) ,W

(2)
(1,5) , . . . ,W

(r−1)
(1,2r−1) , (3.22a)

W(1)
(f,1) ,W

(2)
(f,3) , . . . ,W

(r)
(f,2r−1) , (3.22b)

W(3/2)
(r,2) ,W

(5/2)
(r,4) , . . . ,W

(r− 1
2 )

(r,2(r−1)) , (3.22c)

W( r2 )
(1,r+1) ,W

( r+1
2 )

(r,r) ,W( r2 +1)
(r′,r−1) ,W

( r2 +1)
(f,r−1) , . . . (3.22d)

where f = f4, so7, a2 and r = 26, 7,∅, r′ = 26,∅,∅ for G = E6, D4, A2 respectively. As
before W(1)

(1,3) := Ja1 and W(1)
(f,1) := Jf are currents. The set of generators (3.22a), together

with W( r2 )
(1,r+1) in (3.22d), is part of the set of generators of C[W ], see [34]. For r = 1 the

list (3.22) reduces to g ' f⊕ r flavor currents and one free hypermultiplet. For r = 2 there
is an extra a1 current and the set of generators of dimension 3/2 extracted from (3.22) is
W(3/2)

(r,2,1), W(3/2)
(r,1,2). Our proposal agrees with the index results of section 5 for r = 2.

22As the . . . in (3.20e) indicate, this is not the full list of generators. The missing generators can be in
principle detected and determined by closure of the Poisson algebra of the listed generators.
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3.4.1 Inverting the Higgsing T (r) → S(r−1)

We will start with a concrete example and later spell out the general structure.

T (2) from S(1). As the last Higgsing in (3.15) is discussed in great detail in [12], let us
describe the next to last Higgsing of the chain (3.15). To keep the discussion somewhat
concrete we will focus on the example of T (2)

E6,2 → S
(1)
E6,2. As shown in [12],23 the generators

of the Higgs branch of S(1)
E6,2 are the c5 flavor symmetry currents, which we will denote as

JIR
c5 , and additional generators of weight R = 3/2 transforming in the representation 132,
that will be denoted as WIR

132. The theory in the UV is T (2)
E6,2 and has flavor symmetry

algebra f4⊕c1⊕c1. As advertised above (3.15), the relevant Higgsing corresponds to giving
a minimal nilpotent vacuum expectation value to the f4 current. This singles out a c3 ⊂ f4
as the commutant of the embedded sl2 in f4. The associated Goldstone bosons transform
in the 14′ of c3. Following the ideas presented in [24] we introduce a dense open set in the
Higgs branch of the UV theory, which in this case is24

MH [T (2)
E6,2] ⊃ U '

MH [S(1)
E6,2]× C14

ξ × T∗(C∗)
Z2

, (3.23)

where the factor C14
ξ corresponds to 14 half-hypermultiplets and T∗(C∗) denotes the cotan-

gent bundle of C∗, which we coordinatize by (e1/2, h). The symplectic structure of the UV
Higgs branch follows from the symplectic structure of the IR ingredients, which for T∗(C∗)
is {h, e1/2} = e1/2. All the chiral ring relations of the UV theory (conjecturally) follow
algebraically from the one in the IR theory. If we restrict the first factorMH [S(1)

E6,2] to its
origin, (3.23) reduces to the approximation of the minimal nilpotent orbit of f4 discussed
in [24].

The group Z2 acts by negation on the coordinates ξ and e1/2, its action on the gener-
ators ofMH [S(1)

E6,2] will be specified momentarily.
It is useful to keep track of the factor of the flavor symmetry which is visible from the

UV to the IR. For the Higgsings in question this is the commutant of sl(2)θ in the flavor
symmetry of the UV theory, which for T (2)

G,2 is f\ ⊕ c1 ⊕ c1, see (3.38). In the case G = E6
we have f\ = c3 and the Higgs branch generators JIR

c5 , WIR
132 of the IR theory decompose as

follows
c5 → c3 ⊕ c1 ⊕ c1 ⊕ (6, 2, 1)⊕ (6, 1, 2)⊕ (1, 2, 2) , (3.24)

132→ (14′, 2, 2)⊕ (14′, 1, 1)⊕ (14, 2, 1)⊕ (14, 1, 2)⊕ (6, 1, 1) , (3.25)

where the color code is introduced for later convenience. After this preparation, we are in
a position to describe the action of Z2 on the generators of MH [S(1)

E6,2]: the components
c3 ⊕ c1 ⊕ c1 ⊕ (1, 2, 2) ' c3 ⊕ c2 and (14, 2, 1)⊕ (14, 1, 2) ' (14, 4) are even, the remaining
(6, 2, 1)⊕ (6, 1, 2) ' (6, 4) and (14′, 2, 2)⊕ (14′, 1, 1)⊕ (6, 1, 1) ' (14′, 5)⊕ (1, 6) are odd.

We are now ready to present the form of the generators of the Higgs branch of the UV
theory in terms of the IR building blocks entering (3.23). The UV flavor symmetry takes

23While we were completing this manuscript, this fact also appeared in [46].
24The case of T (r)

G,` is essentially identical.
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the form25

JUV
f4 =


(
e, h,

(
S\ − 1

4 h2
)

e−1
)

(
ξ14′ e1/2, (O14′ + ξ14′ h) e−1/2

)
,

JIR
c3 + ξξ ,

JUV
c
(A)
1

= JIR
c
(A)
1
, JUV

c
(B)
1

= JIR
c
(B)
1

. (3.26)

The quantities S\ and O14′ are composites of the IR ingredients excluding the T∗(C∗)
coordinates (e−1/2, h) with scaling weight R = 2 and R = 3/2 respectively. Their explicit
form is fixed by starting with an ansatz with the correct R and flavor symmetry quantum
numbers and imposing that the algebra f4 is realized by Poisson brackets.26 The schematic
form of the generators obtained in this way is O14′ = # ξ3 + # ξ JIR

c3 + # WIR
(14′,1,1) and

S\ = # ξ4 + # ξ2 JIR
c3 + # ξWIR

(14′,1,1) + #
(
JIR
c3

)2
.

The Higgs branch of T (2)
E6,2 contains additional generators. Their form in terms of the

IR ingredients is27

WUV
(26,2,1) =

JIR
(6,2,1)e

1/2 + desc ,
WIR

(14,2,1) + JIR
(6,2,1)ξ14′

∣∣
(14,2,1) ,

WUV
(26,1,2) =

JIR
(6,1,2)e

1/2 + desc ,
WIR

(14,1,2) + JIR
(6,1,2)ξ14′

∣∣
(14,1,2) ,

(3.27)

WUV
(52,2,2) =


JIR

(1,2,2)e + desc ,
WIR

(14′,2,2)e
1/2 + desc ,

(. . . )(21,2,2) ,

WUV
(26,1,1) =

WIR
(6,1,1)e

1/2 + desc ,
(. . . )(14,1,1) ,

(3.28)

where desc indicates sl(2)θ descendants. Notice that since we already provided the form
of the flavor symmetry f4 ⊕ c1 ⊕ c1, the explicit expression of each irreducible W generator
can be obtained from any of its components by acting with the symmetry generators. This
remark applies in particular to the expressions (. . . )(21,2,2) and (. . . )(14,1,1) that we have
left unspecified.

One of the most interesting aspects of this construction is that (in favorable circum-
stances) it admits a straightforward “affine uplift” where the geometric IR ingredients
in (3.23) are replaced by VOAs building blocks. In the case of (3.23), these VOA ingredi-
ents are V[S(1)

e6,2], the symplectic boson VOA and a pair of chiral bosons associated to the
T∗(C∗) factor, see [24]. This construction is used to determine the central charge of the
UV theory, see (3.16), and the levels of the flavor symmetry. It is currently an open ques-
tion to establish which functions on the open patch U extend to the whole Higgs branch.
However, it appears that going through the affine uplift helps solving this problem by a
mechanism that we illustrate in the following simple example. We require that the VOA
operator corresponding to the generators WUV are affine Kac-Moody (AKM) primaries.
The function JIR

(1,2,2), being Z2 even, is a good function on U , but it is easy to verify that
the corresponding VOA generator is not AKM primary. The function JIR

(1,2,2)e on the other

25Recall that f4 → c1 ⊕ (14′, 2)⊕ c3.
26The commutation relations of f4 in this basis can be found in [24].
27Recall that 26→ (6, 2)⊕ (14, 1).
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hand corresponds to an f4 AKM primary, its geometric avatar is thus included in the set
of Higgs branch generators.

The cases of T (2)
D4,2 and T (2)

A2,2 follow the same pattern as T (2)
E6,2. In the case of D4 we

decompose the IR Higgs branch generators as

c3 → c1 ⊕ c1 ⊕ c1 ⊕ (2, 2, 1)⊕ (2, 1, 2)⊕ (1, 2, 2) , c1 → c1 (3.29)

(14′, 3)→ ((2, 2, 2)⊕ (2, 1, 1)⊕ (1, 2, 1)⊕ (1, 1, 2), 3) , (3.30)

The expressions for JUV
so7 , WUV

(7,2,1), WUV
(7,1,2) and WUV

(21,2,2) are obtained by decoding the color
coding according to the above template. Notice that in this case there is no olive part in
the decomposition, compared to (3.25), so the corresponding WIR generator is absent. In
the a2 case the relevant decompositions are

c2 → c1 ⊕ c1 ⊕ (1, 2, 2) , u1 → u1 (3.31)

5± → (2, 2)± ⊕ (1, 1)± . (3.32)

The colors encode how to reconstructs the UV generators to be JUV
a2 , and WUV

(8,2,2).

T (r) from S(r−1): general rank. The case of general r is very similar to the one of
r = 2, but with the important difference that the UV theory T (r>2)

G,2 has flavor symmetry
f⊕ c1 instead of the f⊕ c1⊕ c1 symmetry which is present for r = 2. Hence, symmetry that
remains unbroken from the UV to IR is now f\⊕ c1. We decompose the IR generators with
respect to this manifest symmetry using, for example

c4 ⊕ a1 → c3 ⊕ c1 ⊕ (6, 2, 1)⊕ a1 → c3 ⊕ ã1 ⊕ (6, 2)⊕ (1, 3) , (3.33)

(42, 2)→
(
(14′, 2)⊕ (14, 1), 2

)
→ (14′, 3)⊕ (14′, 1)⊕ (14, 2) . (3.34)

Here ã1 is the diagonal of a1 and c1. The UV flavor symmetry takes the form

JUV
f4 =


e + desc ,(
ξ14′e1/2,

(
WIR,(3/2)

(14′,1) + . . .
)

e−1/2
)
,

JIR
c3 + ξξ ,

JUV
c1 = JIR

ã1
, (3.35)

The generator in (3.22c) and (3.22b) follow the pattern

WUV,(3/2)
(26,2) =

JIR
(6,2)e

1/2 + desc ,
WIR,(3/2)

(14,2) + JIR
(6,2)ξ14′

∣∣
(14,2) ,

WUV,(2)
(52,3) =


JIR

(1,3)e + desc
WIR,(3/2)

(14′,3) e1/2 + desc
. . .

(3.36)
and similar expressions for WUV,(k−1/2)

(26,2k) and WUV,(k)
(52,2k−1) for k = 2, . . . , r. Concerning the

generators in (3.22d), taking as an example the second entry in (3.22d), we have

WUV,( r+1
2 )

(26,r) =

WIR,( r2 )
(6,r) e1/2 + desc ,

. . .
. (3.37)
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Remark: it follows from the realization of the current of f\ in (3.35) as JUV
f\

= JIR
f\

+ ξξ,
that the two-dimensional levels satisfy the following relations

matching f\ = c3 k
(2d)
f4

[T (r)
e6,2] = −5

2 + k
(2d)
c4 [S(r−1)

e6,2 ] , (3.38a)

matching f\ = a1 ⊕ b1

 k
(2d)
so7 [T (r)

d4,2] = −3
2 + k

(2d)
c2 [S(r−1)

d4,2 ] ,
2 k(2d)

so7 [T (r)
d4,2] = −4 + k

(2d)
c1 [S(r−1)

d4,2 ] ,
(3.38b)

matching f\ = a1 k
(2d)
a2 [T (r)

a2,2] = −1 + k
(2d)
c2 [S(r−1)

a2,2 ] , (3.38c)

matching f\ = a1 3k(2d)
g2 [T (r)

d4,3] = −5 + k
(2d)
a2 [S(r−1)

d4,3 ] , (3.38d)

see, e.g., [24]. Note also that k(2d) = −1
2k, in terms of the four-dimensional flavor central

charge k. These relations thus provide many consistency conditions on the flavor central
charges of the S and T theories.

3.4.2 Inverting the Higgsing S(r) → T (r)

We will now describe the Higgsing S(r) → T (r). In the case r = 1 it reduces to the analysis
presented in [12]. In this case analogue of the open patch (3.23) is given by

MH [S(r)
G,`] ⊃ U '

MH [T (r)
G,` ]× C2(M−1)

ξ × T∗(C∗)
Z`

. (3.39)

If we restrict the first factorMH [T (r)
G,` ] to its origin, (3.39) reduces to an approximation of

W = C2M/Z`, where the action of Z` on C2M was defined below (3.4). In the following
we will describe explicitly only the case G = E6 and ` = 2 for concreteness. In this
case the manifest symmetry from the UV to the IR is cM−1 ⊕ c1 = c3 ⊕ c1. The relevant
decompositions for the IR generators (3.22) under this symmetry are

f4 → c3 ⊕ c1 ⊕ (14′, 2) , a1 → a1 , (3.40)

(26, 2)→ (6, 2, 2)⊕ (14, 1, 2) ' (6, 3)⊕ (6, 1)⊕ (14, 2) . (3.41)

The flavor symmetry of the UV theory is realized as

JUV
c4 =


e + desc ,(
ξ e1/2, (WIR

(6,1) + . . . )e−1/2
)
,

JIR
c3 + ξξ ,

JUV
a1 = JIR

c1 + JIR
a1 . (3.42)

This identification alone is sufficient to determine the levels of the flavor symmetry. The
generators of the Higgs branch in the list (3.20d), (3.20b) are given by

WUV
(42,2) =

JIR
(14′,2) e + desc ,

WIR
(14,2) + JIR

(14′,2)ξ
∣∣
(14,2) ,

WUV
(36,3) =


JIR
a1 e + desc ,(
WIR

(6,3) + JIR
a1 ξ

)
e1/2 + desc ,

(. . . )(21,3) ,

(3.43)
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and similar expressions for W(k)
(36,2k−1), W(k+ 1

2 )
(42,2k) with k = 1, . . . , r. Let us also provide a few

examples for the generators (3.20e):

WUV,( r+1
2 )

(8,r+1) =

WIR,( r2 )
(1,r+1) e1/2 + desc ,

WIR,( r+1
2 )

(6,r+1) + . . . ,
WUV,( r+2

2 )
(48,r) =


WIR,( r+1

2 )
(14,r) e1/2 + desc ,

WIR,( r+2
2 )

(14′,r) + . . . ,

WIR,( r+2
2 )

(6,r) + . . . ,

(3.44)

WUV,( r+3
2 )

(160,r−1) =



WIR,( r+1
2 )

(6,r−1) e + desc ,

WIR,( r+2
2 )

(21,r−1) e1/2 + . . . ,

WIR,( r+2
2 )

(14,r−1) e1/2 + . . . ,

. . .

(3.45)

where we have displayed the IR ingredients

WIR,( r+1
2 )

(26,r) →WIR,( r+1
2 )

(6,r+1) + WIR,( r+1
2 )

(6,r−1) + WIR,( r+1
2 )

(14,r) , (3.46a)

WIR,( r+2
2 )

(26,r−1) →WIR,( r+2
2 )

(6,r) + WIR,( r+2
2 )

(6,r−2) + WIR,( r+2
2 )

(14,r−1) , (3.46b)

WIR,( r+2
2 )

(52,r−1) →WIR,( r+2
2 )

(21,r−1) + . . . . (3.46c)

By using the chain of Higgsing (3.15) one can verify the consistency of the list of generators
proposed in (3.20) and (3.22) and add the missing generators in (3.20e), (3.22d).

4 Construction of S-fold theories from six dimensions

In [28] it was observed that the rank-one models S(1)
G,` can be constructed by compactifying

certain six-dimensional N = (1, 0) theories on a torus with almost commuting holonomies
for the global symmetry along its cycles. Their focus was mainly on models with a dimen-
sion six Coulomb branch operator (i.e., `∆7 = 6 in our notation), although it was pointed
out that a change in the choice of holonomies, effectively implementing a four-dimensional
mass deformation, can be used to recover the other rank-one models as well. The purpose
of this section is to extend their construction to higher rank S-fold theories, thereby pro-
viding an independent construction of S(r)

G,` models, and to the novel class of theories T (r)
G,` .

We will again focus on the case `∆7 = 6.

4.1 S(r)
G,` theories from six dimensions

We start by discussing in detail the construction of S(r)
G,` theories (with `∆7 = 6) via torus

compactifications.

4.1.1 The six-dimensional theories

The relevant six-dimensional theories to construct the models S(r)
G,` via torus compactifi-

cation can be realized in M-theory by probing an M9-plane wrapping R6 × C2/Z` with a
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stack of r M5-branes wrapping R6. The resulting six-dimensional SCFTs have been stud-
ied in detail in [47, 48]. In these references it was emphasized that the resulting theory
is specified by the choice of holonomy for the E8 symmetry supported on the M9-wall.
The global symmetry of the theory is then (at least) SU(`) times the subgroup of E8 left
unbroken by the holonomy. For our purposes, it is also useful to keep in mind the F-theory
realization of these six-dimensional SCFTs in terms of an elliptically fibered Calabi-Yau
threefold. By blowing up the singularity in the base, we move to a generic point on the
tensor branch of the theory: in the case at hand we get a collection of r curves with self-
intersection −1,−2, . . . ,−2. Notice that by blowing down the −1 curve the neighboring
−2 curve becomes a −1 curve and with a sequence of r blow-downs of −1 curves we can
eliminate the whole configuration of curves. With a further complex structure deformation
we can finally remove completely the singularity in the base. Theories with this property
have been dubbed very Higgsable in [49].

The advantage of going to a generic point on the tensor branch is that there the theory
admits a Lagrangian description in terms of a collection of vector, tensor and hypermul-
tiplets and is thus easier to study. The choice of E8 holonomy enters in specifying the
gauge theory data and the relevant cases for us are given by linear quivers of r SU(`)
gauge groups (supported on the r curves in the base), with bifundamental hypermultiplets
in between. The quiver ends on one side with ` fundamental hypermultiplets for the last
SU(`) gauge group, whereas at the other end (namely the gauge group supported on the −1
curve) we have eight fundamental hypermultiplets and a hypermultiplet in the two-index
antisymmetric representation of SU(`). More concretely, we will consider three classes of
SCFTs whose gauge theory phase is described as follows:

• For ` = 2 we choose the SO(16)-preserving holonomy. In the notations of [47] this
corresponds to n′2 = 1 and N6 = r. The gauge theory is therefore

8 SU(2) SU(2) . . . SU(2) 2

r

(4.1)

where we have colored in red the gauge group supported on the −1 curve. As we have
already explained, the number N6 of SU(2) gauge groups is r. What’s more, the two-
index antisymmetric hypermultiplet is absent in this case because that representation
is trivial for SU(2). The global symmetry of the theory is SO(16)× SU(2)× SU(2).
The SU(2)×SU(2) ∼= SO(4) symmetry acts on the two fundamental hypermultiplets
on the right-hand side of the quiver. Moreover, one of the SU(2)-factors simultane-
ously rotates all bifundamental hypermultiplets as well.

• For ` = 3 we choose the SU(9)-preserving holonomy, namely n′3 = 1 and N6 = r. For
SU(3) an antisymmetric hypermultiplet is equivalent to a fundamental one, therefore
the quiver is

9 SU(3) SU(3) . . . SU(3) 3

r

(4.2)
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This model is discussed, for example, in subsection 3.4.5 of [48]. Its global symmetry
is SU(9)× SU(3)× U(1).

• For ` = 4 we choose the SU(8) × SU(2)-preserving holonomy, namely n′4 = 1 and
N6 = r. The quiver is

8 SU(4) SU(4) . . . SU(4) 4

r

1 (4.3)

with global symmetry SU(8)× SU(2)× U(1)× SU(4). The SU(2) flavor symmetry
acts on the hypermultiplet in the 6 (which we denote with a squared 1) of the red
SU(4) gauge-group.

Notice that for r = 1, when there’s only one gauge group, these models reduce precisely
to those considered in [28]. In particular, in this case the fundamental hypermultiplets
at the two ends of the quiver are charged under the same gauge group and therefore the
global symmetry enhances. This is in perfect agreement with our expectation: the global
symmetry of higher rank S-fold theories is smaller than that of rank-one models. We
will now discuss the details of the compactification in the presence of almost commuting
holonomies for the flavor symmetry in each of the three cases (4.1)–(4.3).

4.1.2 Four-dimensional SCFTs from torus-compactifications

In this subsection we will show that, starting from the six-dimensional SCFTs described in
the previous subsection, with a judicious choice of almost commuting holonomies along the
nontrivial cycles of T 2, we find four-dimensional SCFTs with the same global symmetry
and Coulomb branch spectrum as the S(r)

G,` theories (with `∆7 = 6). We will also show that
the dimension of the enhanced Coulomb branch agrees. Moreover, we will be able to read
off the transformation properties of the free hypermultiplets constituting the ECB.

We start by turning on almost commuting holonomies for the symmetries SO(16),
SU(9), and SU(8) respectively. In the case ` = 2 we consider an Sp(4)× SU(2) subgroup
of SO(16) under which the vector decomposes as 16 → (8,2) and embed the holonomies
in the SU(2) part as follows:

P =

J8 0

0 −J8

 , Q =

 0 J8

−J8 0

 , (4.4)

where J8 is the 8 × 8 symplectic form of Sp(4). The matrices P and Q commute up to
the Z2 center of SO(16) and leave just the Sp(4) subgroup unbroken. The eight SU(2)
doublets on the left of the quiver (4.1) are organized into a half hypermultiplet transforming
as (16,2)→ (8,2,2), where the second SU(2) is broken by the holonomies (4.4).

The holonomies considered above can be turned on provided there are no operators
charged under the Z2 center. On the other hand, we have just seen that the eight SU(2)
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fundamental hypermultiplets transform nontrivially. To remedy this, we should accompany
the flavor holonomies (4.4) with holonomies embedded in the leftmost SU(2) gauge group
of the form

P =

 i 0

0 −i

 ; Q =

 0 i

i 0

 . (4.5)

Now, by turning on these holonomies, the leftmost SU(2)× SU(2) bifundamental in (4.1)
acquires a nontrivial charge under Z2 and therefore we should embed the almost commuting
holonomies (4.5) in the second SU(2) gauge group as well. By iterating this argument, we
conclude that we should embed the holonomies in all the gauge groups along the quiver
(therefore breaking the gauge symmetry completely) and also in one SU(2)-factor of the
global symmetry acting on the two flavors at the right end of the quiver. In this way we
break the global symmetry down to Sp(4)× SU(2), which is precisely the expected global
symmetry for S(r)

G,` theories.28 In the next subsection, we will recompute the Weyl anomaly
coefficients and flavor central charges using the construction of S(r)

G,` as a torus-reduction
of six-dimensional SCFTs, and confirm that they also match with our expectations.

This construction also grants easy access to the (quaternionic) dimension of the ECB
fiber. At a generic point of the tensor branch of the six-dimensional SCFT the low-energy
effective theory consists of r tensor multiplets and the linear quiver (4.1). Upon torus
compactification, we end up at a generic point of the Coulomb branch of the resulting
four-dimensional theory, where the low-energy spectrum consists of r vector multiplets
coming from the tensor multiplets. The six-dimensional vector multiplets do not con-
tribute because our choice of holonomies has broken the gauge group completely. We also
obtain a collection of additional free hypermultiplets: from the half-hypermultiplet trans-
forming in the (8,2,2) we get four free hypermultiplets, as the holonomy is embedded
diagonally in SU(2) × SU(2) and the (2,2) decomposes as 3 + 1. These eight invariant
half-hypermultiplets transform as the 8 of Sp(4). The same argument shows that from each
bifundamental we get one hypermultiplet, leading to r hypermultiplets all transforming as
doublets of SU(2). Overall we find 4 + r free hypermultiplets at a generic point of the
r-dimensional Coulomb branch, in perfect agreement with the ECB dimension predicted
from F-theory.

In the case ` = 3 we consider an SU(3)2 subgroup of the SU(9) global symmetry
such that the fundamental decomposes as 9 → (3,3). We embed the almost commuting
holonomies in one of the SU(3) factors as follows:

P =


I3 0 0

0 ω3I3 0

0 0 ω6I3

 , Q =


0 I3 0

0 0 I3

I3 0 0

 . (4.6)

28The SU(2) factor of the global symmetry, as well as the U(1) factors we will find for ` = 3, 4, are
inherited from the global symmetry of the six-dimensional theory. See, e.g., [50] for a recent discussion on
global symmetries in six dimensions, from which our statements can be easily derived.

– 26 –



J
H
E
P
0
1
(
2
0
2
1
)
0
2
2

Here I3 is the 3 × 3 identity matrix and ω = e2πi/9. This choice breaks SU(9) to SU(3),
and the two holonomies commute up to a Z3. Again, the nine flavors on the left of the
quiver (4.2) transform in the (9,3)→ (3,3,3) and in order to avoid the occurrence of fields
charged under the discrete Z3 group, we have to embed the holonomies in the SU(3) gauge
group as well. The presence of the SU(3)×SU(3) bifundamentals then forces us to embed
the holonomies in all the gauge groups and the global SU(3) rotating the flavors at the
right end of the quiver (4.2). In this way, we break the gauge symmetry completely and we
find a four-dimensional theory of rank r with global symmetry SU(3) × U(1). For r = 1,
this symmetry enhances to SU(4). Again, we can determine the dimension of the ECB by
counting the hypermultiplets surviving the projection. We get one from each bifundamental
and three from the nine flavors which transform as a triplet of the SU(3) global symmetry.
We therefore find a 3 + r-dimensional ECB, in agreement with the expected structure of
S(r)
D4,3 theories.

Finally, for ` = 4 we consider an SU(4) × SU(2) subgroup of SU(8) such that the
fundamental representation decomposes as 8 → (4,2). We embed the almost commuting
holonomies inside SU(4) as

P =



I2 0 0 0

0 ω2I2 0 0

0 0 ω4I2 0

0 0 0 ω6I2


, Q =



0 I2 0 0

0 0 I2 0

0 0 0 I2

I2 0 0 0


, (4.7)

which break SU(8) to SU(2). Here I2 is the 2 × 2 identity matrix and ω = e2πi/8. The
two holonomies commute up to an element in Z4. The eight fundamentals on the left of
the quiver (4.3) transform in the (8,4) → (2,4,4). Therefore, once again, we embed the
holonomies in the SU(4) gauge group as well. As in the previous case the embedding
propagates along the quiver and we end up breaking the gauge symmetry completely. We
also need to embed the holonomy in the SU(2) carried by the antisymmetric hypermultiplet.
The choice (4.5) does the job. When the dust settles, we find that the four-dimensional
torus-reduced theory has rank r and SU(2)×U(1) flavor symmetry. What’s more, it has 2+
r free hypermultiplets at a generic point of the Coulomb branch. The two hypermultiplets
come from the eight flavors on the left and transform as a doublet of SU(2). (We do not
find any massless hypermultiplet coming from the antisymmetric hypermultiplet.) This
fits perfectly with the known properties of S(r)

A2,`
theories.

Finally, for all cases, we can determine the spectrum of the Coulomb branch using the
algorithm presented in appendix B of [28]. As was mentioned before, the six-dimensional
theories under investigation here are characterized by a collection of r curves which can
be eliminated by repeatedly blowing down the −1 curve at one end of the configuration.
Combining this with the fact that the chosen holonomies always break the gauge group
completely, the algorithm of [28] immediately shows that the Coulomb branch operators
have scaling dimension 6, 12, . . . , 6r as expected.
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4.1.3 Computing central charges

The goal of this subsection is to compute the central charges of the four-dimensional theories
we obtained via torus-compactifications from six dimensions. We apply the method of [28],
which in turn builds on the construction proposed in [49]. The analysis of [28] exploits
the fact that in the rank-one case, upon putting the six-dimensional theory on the torus,
the Coulomb branch of the resulting four-dimensional theory has three singular points:
one at the origin associated to the SCFT we are after and two extra singularities where a
hypermultiplet becomes massless and which go off to infinity in the zero area limit of the
torus. The key point of the analysis is that the Z` holonomies affect the periodicity of the
scalar one gets by integrating the 2-form B, which is part of the tensor multiplet, on the
torus. This enters in the definition of the gauge invariant coordinate parametrizing the
four-dimensional Coulomb branch.

In our case the Coulomb branch is not one-dimensional. However, we can exploit
the observation of [49] that for every very Higgsable theory there is a “distinguished”
one-dimensional submanifold in the Coulomb branch which has exactly the singularity
structure described just now. Therefore we can apply the formulae valid for rank-one
theories given in [28]. This one-dimensional slice of the Coulomb branch is most easily
described in terms of the F-theory description of the six-dimensional theory: we start from
the resolved geometry with our collection of r curves Ci and then we blow down r − 1
curves with self-intersection −1, until we are left with a single −1 curve whose volume
parametrizes the position in a one-dimensional submanifold of the tensor branch. Upon
torus compactification this becomes a one-dimensional submanifold of the Coulomb branch
and is precisely the slice we are looking for. At a generic point of this submanifold the low-
energy effective theory contains a free vector multiplet coming from the tensor supported
on the curve in six dimensions, the free hypermultiplet which is not projected out by the
almost commuting holonomies, and a nontrivial SCFT originating from the curves we have
blown down. This SCFT is simply S(r−1)

G,` .
The idea is then to argue by induction: we know that for r = 1 the twisted com-

pactification leads to the central charges of S(1)
G,` theories. This was proven in [28]. We

then assume that the central charges for the twisted compactification of rank r − 1 six-
dimensional theories are correctly reproduced,29 and prove that this implies that also those
of the rank-r theories work out. The claim that by blowing down r−1 curves we get S(r−1)

G,`

theories is part of the inductive step.
The computation of [28] exploits the topological twist argument of [30] which provides

the difference between central charges evaluated at the singularity at the origin (which
corresponds to the SCFT we are interested in) and those at a generic point of the above-
introduced one-dimensional slice of the Coulomb branch. The result for rank-one theories is

(2a− c)SCFT − (2a− c)generic = −3d
`
− 1

2 , (4.8)

cSCFT − cgeneric = 3− 3d
`
− 1 , (4.9)

29Here, by rank we mean the dimension of the tensor branch.

– 28 –



J
H
E
P
0
1
(
2
0
2
1
)
0
2
2

where d is a coefficient appearing in the anomaly polynomial of the six-dimensional theory.
Whenever the effective theory at a generic point on the one-dimensional locus of the tensor
branch we are considering is Lagrangian, which is the case for rank-one theories, cancella-
tion of the gauge anomaly requires d = −h∨G, minus the dual Coxeter number of the gauge
group G. Since the gauge group supported on any curve is SU(`) for all the models we are
considering, we have d = −` for rank-one theories.

The equations (4.8) and (4.9) apply to our case as well, modulo the fact that the
quantities (2a − c)generic and cgeneric now include (by induction) the contribution from
S(r−1)
G,` , which we denote as (2a − c)r−1 and cr−1 from now on. Also, the value of d is

no longer equal to −h∨G because the effective theory at a generic point is not Lagrangian
anymore. We therefore need to compute d for the models of interest.

The anomaly polynomial for six-dimensional SCFTs coming from an F-theory com-
pactification includes a Green-Schwarz term of the form [51]

IGS = 1
2ΩijI

iIj . (4.10)

Here Ωij is the inverse of the matrix ηij ≡ −Ci · Cj encoding the intersection numbers of
the curves Ci in the base and Ii is a 4-form associated with the curve Ci describing the
Green-Schwarz coupling of the corresponding tensor field. In particular each Ii includes
the term

Ii = dic2(R) + . . . (4.11)

where c2(R) is the second Chern class of the R-symmetry bundle. We are interested in
computing the coefficients di. Since at a generic point of the tensor branch, before blowing
down anything, the low-energy theory is always Lagrangian we can use the gauge anomaly
argument mentioned before to conclude that for our models di = −` for all values of i.
When we blow down the −1 curve (which we denote C1), the −2 curve intersecting it (let’s
call it C2) becomes a −1 curve and its Green-Schwarz term becomes [51]

I2 → I2 + I1.

Therefore, when we repeatedly blow down −1 curves until we are left with a single −1
curve, we find the Green-Schwarz term

I =
∑
i

Ii =
∑
i

dic2(R) + · · · = −r`c2(R) + . . . , (4.12)

and we are led to the conclusion that we should plug in (4.8) and (4.9) d = −r`.
We therefore find from (4.8)

(2a− c)r = (2a− c)r−1 + 3r − 1
4 . (4.13)

We can now notice that 3r − 1/4 is the contribution of a Coulomb branch operator of
dimension 6r and therefore we recover (2.3), as expected. From (4.9) we find

cr = cr−1 + 3 + 3r`
`

− 3
4 . (4.14)
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On the other hand, from (2.3) and (2.4) we find

cr = `∆7r
2

4 + r(`∆7 + 2∆7 − 3)
4 + `(∆7 − 1)

12 . (4.15)

Setting `∆7 = 6, we can easily see that (4.15) satisfies the recursion (4.14). We therefore
conclude that the a and c central charges computed from the six-dimensional setup indeed
reproduce the expected result.

Next, we can compute the flavor central charge of the nonabelian global symmetry
coming from the fundamental hypermultiplets on the left-hand side of the quivers described
in subsection 4.1.1 (i.e., the nonabelian groups H in table 4). In the rank-one case the
arguments of [28] lead to the formula

kSCFT − kgeneric = 12I
`

, (4.16)

where I is the embedding index of the four-dimensional global symmetry into the six-di-
mensional flavor symmetry. As we have seen, the four-dimensional symmetry group of
the higher-rank theories is just a subgroup of the symmetry of the corresponding rank-one
theory, but we can notice that the embedding index is always equal to one. Furthermore, in
the Green-Schwarz term (4.10) only I1 carries information about the flavor central charge.
Combining these considerations, we are led to the conclusion that (4.16) holds true for
higher-rank theories as well, where again kgeneric includes the contribution of S(r)

G,`. In this
case, the free vector multiplet and the free hypermultiplet do not contribute. The value of
I is given in [28]: I = 1 for ` = 2 and I = ` for ` = 3, 4. We therefore find for ` = 2

kr = kr−1 + 6 , k1 = 7 , (4.17)

where we have given the value k1 of the flavor central charge for the rank-one theory
computed in [28]. We thus obtain kr = 6r + 1. For ` = 3, 4 we find instead the formula

kr = kr−1 + 12; , k1 = 14 , (4.18)

leading to the result kr = 12r + 2. These values of the flavor central charge are in perfect
agreement with the F-theory computation, see table 6.

Finally, we can compute the flavor central charge of the additional SU(2) flavor sym-
metry group present for ` = 2. Given our constraint `∆7 = 6, we are more specifically
looking at S(r)

E6,2 theories. This case is slightly different because all bifundamental hyper-
multiplets are charged under this symmetry. Let us start by considering the rank-one case,
where we divide the ten flavors into a group of eight and two, to make this case more uni-
form with higher-rank theories. Clearly only the latter will contribute to the SU(2) flavor
central charge. If we denote the SU(2) background curvature with F , the Green-Schwarz
4-form I1 will include the term

I1 = α trF 2 + . . .

Upon compactification on T 2, the quantity k
SU(2)
SCFT − k

SU(2)
generic will be proportional to α,30

and from (4.16) we know that kSU(2)
SCFT − k

SU(2)
generic = 6. For generic r, we still have I1 =

30Actually α = 1/4, but for our argument we can leave it generic.
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α trF 2 + . . . , but all the 4-forms associated with the r− 1 curves with self-intersection −2
will be Ii = 2α trF 2 + . . . (for i 6= 1) since there are bifundamentals both on the left and
on the right, and they indeed contribute the same amount. We therefore conclude that
after the blow-down we find the Green-Schwarz term

I =
∑
i

Ii = (2r − 1)α trF 2 + . . . (4.19)

We then deduce the formula31

k
SU(2)
SCFT − k

SU(2)
generic = 12r − 6 , (4.20)

where kSU(2)
generic includes the contribution of S(r−1)

E6,2 and the free hypermultiplet which con-
tributes 1 to the flavor central charge. From (4.20), we thus deduce the relation

kSU(2)
r = k

SU(2)
r−1 + 12r − 5 , k

SU(2)
1 = 7 , (4.21)

which implies kSU(2)
r = 6r2 + r, again in perfect agreement with table 6.

4.1.4 Comments about F/M-theory duality

The above discussion makes clear that there are (at least) two descriptions in string theory
of the S(r)

G,` theories: one in F-theory involving r D3-branes probing a fourfold singularity
obtained by considering a Z` “orbifold” of a seven-brane of type G (i.e., the generalized
S-fold) and another in M-theory involving r M5-branes probing an M9-plane which is
wrapping a C2/Z` singularity. The M5-branes wrap a torus with prescribed holonomies
around the two cycles.

This situation is reminiscent of the well-known duality between F-theory and M-theory,
usually used as a definition of the F-theory background: F-theory on an elliptically fibered
Calabi-Yau times S1 is equivalent to M-theory on the same Calabi-Yau space. Under this
duality a D3-brane transverse to the circle is mapped to an M5-brane wrapping the elliptic
fiber. This is exactly what happens in our case, since there is a one-to-one correspondence
between the D3-probes on the F-theory side and the M5-branes wrapping a T 2 in the M-
theory setup. However, in our case the standard M/F duality cannot be applied since we do
not have a trivially-fibered circle transverse to the D3-branes and accordingly the M-theory
background is different from the F-theory S-fold. This suggests that it might be possible
to generalize the standard duality beyond the situation in which a trivially-fibered S1 is
available in F-theory. This intriguing possibility definitely deserves further investigations.

4.2 T (r)
G,` theories from six dimensions

Similarly to the case of S-fold SCFTs, we can construct the models T (r)
G,` via compactifi-

cations of six-dimensional N = (1, 0) theories on a torus. We again restrict attention to
31More precisely, the flavor central charge is encoded in the coefficient of the term P1(T ) trF 2 of the

Green-Schwarz part of the anomaly polynomial IGS = 1
2I

2. Implicitly we are therefore also using the fact
that I = (2r − 1)α trF 2 + 1

4P1(T ) + . . . . The coefficient of P1(T ) comes entirely from I1, since it vanishes
for all other Ii’s which are associated with curves of self-intersection −2 [51].
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the case `∆7 = 6. The relevant six-dimensional SCFTs are realized via the same M-theory
setup as before, but we choose the E8 holonomy in such a way that the −1 curve does
not support any gauge algebra, while on the r− 1 curves with self-intersection −2 we have
SU(`) gauge groups with bifundamental hypermultiplets in between and ` flavors at each
end of the quiver. We often find it more convenient to blow down the −1 curve, resulting in
a semi-Lagrangian description consisting of the linear quiver described just now, but where
the leftmost SU(`) gauge group also couples to the rank-one E-string theory. The global
symmetry involves the subgroup of E8 which commutes with the SU(`) being gauged: E7
for ` = 2, E6 for ` = 3 and SO(10) for ` = 4.

Notice that the case r = 1 simply corresponds to the rank-one E-string theory for
all values of `. Since E8 has trivial center the holonomies we turn on along the cycles of
the torus can be rotated into the Cartan subalgebra (see [28]). The reduction thus results
in a four-dimensional mass-deformation of the E8 Minahan-Nemeschansky theory. Also,
the resulting one-dimensional Coulomb branch does not have the structure described in
subsection 4.1.3, but rather it is an `-th cover of a II∗ geometry, with Coulomb branch
operator of dimension ∆7 = 6/`. Also, the case r = 2 is special as we have an enhancement
of the six-dimensional global symmetry: in this case there is a single SU(`) gauge group
with 2` flavors, which results in a larger flavor symmetry in four dimensions as well.

4.2.1 The ` = 2 case

In the notation of [47] we set n2 = 1 and N6 = r. The quiver is therefore

E-string SU(2) SU(2) . . . SU(2)

2

2

r − 1

(4.22)

The full flavor symmetry of the six-dimensional SCFT is E7 × SU(2)3, with one SU(2)
acting simultaneously on all the bifundamental hypermultiplets (and also on the two flavors
at each end of the quiver). In the rank-two case the global symmetry enhances to E7 ×
SO(7). In order to specify the almost commuting holonomies we consider an F4 × SU(2)
subgroup of E7 and embed the Z2 holonomies (4.5) in the SU(2) part. As explained in
subsection 4.1.2, we need to make sure that no operators are charged under Z2. The only
protected E-string operator charged under the E8 global symmetry is the moment map.32

It transforms in the 248-dimensional adjoint representation of E8, which decomposes under
F4 × SU(2)× SU(2) (where the second SU(2)-factor is the gauged SU(2)) as

248→ (52,1,1) + (1,3,1) + (26,3,1) + (1,1,3) + (1,4,2) + (26,2,2) . (4.23)

Since the last two factors are charged under Z2, we should embed the holonomy in the
gauge group as well and, as in subsection 4.1.2, this propagates along the quiver due to

32We assume that the full spectrum of unprotected operators is also compatible with our choice of
holonomies as determined by considering the moment map operator. It would be important to elucidate
this point.
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the presence of the bifundamentals, breaking all the gauge groups. At the end of the
day, the torus reduction will produce a four-dimensional SCFT of rank r which for r > 2
has F4 × SU(2) global symmetry. The ECB fiber has dimension r. Indeed, we get one
hypermultiplet from each bifundamental. They are charged under SU(2) but are singlets
under F4.

For r = 2, we have just a single SU(2) gauge group with four flavors which transform
in the 8 of the SO(7) global symmetry. The spinor of SO(7) decomposes under SU(2)3 as
8→ (2,1,2) + (1,2,2) and by embedding the holonomy in the third SU(2) we get a rank-
two SCFT with F4×SU(2)2 global symmetry and two-dimensional ECB fiber: at a generic
point of the Coulomb branch the low-energy theory includes two free hypermultiplets, each
charged under one SU(2) factor.

4.2.2 The ` = 3 case

For ` = 3 we set n3 = 1 and N6 = r. We find the following quiver

E-string SU(3) SU(3) . . . SU(3)

3

3

r − 1

(4.24)

whose global symmetry is E6×SU(3)2×U(1) for generic r and E6×SU(6) for r = 2 [50].
The adjoint of E8 decomposes under E6×SU(3) as 248→ (78,1)+(1,8)+(27, 3̄)+(27,3).
We now consider a G2×SU(3) subalgebra of E6 and embed the Z3 holonomy in the SU(3)
part. Again, we should also embed the holonomy in the SU(3) gauge groups. The reason
is that under G2 × SU(3) × SU(3) (where the second SU(3) is the leftmost gauge group
in the quiver (4.24)) we have the decomposition

248→ (14,1,1) + (1,8,1) + (7,8,1) + (1,1,8) + (1, 6̄, 3̄) + (7,3, 3̄) + (1,6,3) + (7, 3̄,3) ,
(4.25)

of which the last four factors are uncharged under Z3 only if we embed the holonomy
diagonally in the two SU(3) groups. Once again, we end up breaking all the gauge groups
in the quiver completely. The torus-reduced theory has rank r and its ECB fiber has
dimension r.

The case r = 2 was already considered in [28].33 As was mentioned before, the global
symmetry carried by the hypermultiplets enhances to SU(6) and if we consider an SU(3)×
SU(2) subgroup such that the fundamental decomposes as 6→ (3,2), we can simply embed
the holonomy in the SU(3) factor and find a rank-two theory with two-dimensional ECB
fiber and global symmetry G2 × SU(2). The two free hypers at a generic point of the
Coulomb branch transform as a doublet of SU(2). Since for r > 2 the global symmetry of
the six-dimensional theory is E6×SU(3)2×U(1), we expect the resulting four-dimensional
SCFT to have global symmetry G2 × U(1) for r > 2.34

33In this reference, it was also identified with the class S description of (5.19).
34We thank Fabio Apruzzi for discussions about global symmetries of these models.
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4.2.3 The ` = 4 case

For ` = 4 we choose the SO(10) × SU(4)-preserving holonomy with n4 = 1 and N6 = r.
The resulting quiver is

E-string SU(4) SU(4) . . . SU(4) 4

r − 1

4 (4.26)

This theory has already been discussed in [47, 48, 52]. Its global symmetry is SO(10) ×
SU(4)2 × U(1), which enhances to SO(10)× SU(8) for r = 2. The adjoint representation
of E8 decomposes under SU(4)× SO(10) as

248→ (15,1) + (1,45) + (6,10) + (4̄,16) + (4,16) . (4.27)

We now consider an SU(4) × SU(2) × SU(2) subgroup of SO(10) and embed the Z4
holonomy in the SU(4) part. Resultingly, the decomposition of the adjoint representation
of E8 under SU(4)G×SU(4)×SU(2)×SU(2), where SU(4)G denotes the gauged SU(4),
contains the adjoint representations of the four factors which are clearly invariant under
Z4 and

248 ⊃ (4, 4̄,2,1)+(4̄,4,2,1)+(6,6,1,1)+(4,4,1,2)+(4̄, 4̄,1,2)+(6,1,2,2)+(1,6,2,2) .
(4.28)

The first three factors indicate that we should embed the holonomies in SU(4)G as well.
On the other hand, the last four factors are invariant only if we also embed the Z2 holon-
omy (4.5) in the second SU(2) factor. Therefore, only an SU(2) subgroup of SO(10) sur-
vives in the four-dimensional reduction. Due to the propagation along the quiver we break
completely the gauge symmetry and we end up with a rank r theory with SU(2) × U(1)
global symmetry for r > 2 and SU(2)2 for r = 2. The ECB fiber has again dimension r.

4.2.4 Coulomb branch spectrum and central charges from six-dimensions

The realization of T (r)
G,` as torus-compactifications of six-dimensional SCFTs allows us to

(re)derive their Coulomb branch spectrum. We find perfect agreement with the data pre-
sented in table 2. As mentioned above, the only difference with respect to S(r)

G,` theories is
the fact that the −1 curve in the fully resolved geometry does not support any gauge alge-
bra. According to the algorithm presented in [28] we therefore conclude that the Coulomb
branch operators have scaling dimensions

6, 12, . . . , 6(r − 1), 6r
`
, (4.29)

in agreement with our expectations.
Also the a and c central charges can be computed, completely similarly to the discussion

in subsection 4.1.3. The rank-one case is the easiest as we can simply apply equations (4.8)
and (4.9). In this case, we should set d = −1, because on the −1 curve we do not have
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any gauge algebra [51]. We find the central charges of instanton-SCFTs (with the free
hypermultiplet removed):

4(2a− c) = 12− `
`

, c = 6− `
`

+ 1
6 , (4.30)

namely the E6 Minahan-Nemeschanksy theory for ` = 2, SU(2) SQCD with four flavors
for ` = 3, and the (A1, D4) Argyres-Douglas theory for ` = 4.

For higher-rank cases, it suffices to notice that d receives a contribution equal to −`
from all the −2 curves, since they support an SU(`) gauge group, and therefore we should
plug d = −`(r − 1) − 1 in (4.8) and (4.9). Also, (2a − c)generic and cgeneric include the
contribution from the rank-(r − 1) theory, the contribution of a free vector multiplet and
a collection of free hypermultiplets: two for r = 2 and one for higher rank. We therefore
discuss the two cases separately. For r = 2 we find

4(2a− c) = 10`+ 24
`

, c = 3`+ 24
2` . (4.31)

We proceed by induction for r > 2 as in subsection 4.1.3. Substituting d = −`(r − 1) − 1
in (4.8) and (4.9) we find

cr = cr−1 + 12`r − 15`+ 24
4` , (2a− c)r = (2a− c)r−1 + 3`(r − 1) + 3

`
− 1

4 , (4.32)

and using the r = 2 result (4.31) we get

(2a− c)r = 6`r(r − 1)− r`+ 12r
4` , cr = 6`r(r − 1)− 3r`+ 24r

4` , (4.33)

which is valid for r ≥ 2. Notice that the formula for 2a− c is consistent with the Shapere-
Tachikawa formula (see (4.29)).

Finally, we turn attention to the derivation of the flavor central charges of T (r)
G,` us-

ing (4.16). We start with the global symmetry arising from the E-string sector, namely
F4 for ` = 2, G2 for ` = 3 and SU(2) for ` = 4. All these have embedding index one
in the six-dimensional global symmetry and the free hypermultiplets at a generic point of
the Coulomb branch do not contribute as they are not charged under these groups. We
therefore find from (4.16) kr = kr−1 + 12/`. Moreover, they also have embedding index
one in the larger global symmetry that occurs for r = 1. Since the flavor central charge in
the rank-one case is known to be 12/`, we conclude that

kF4
r = 6r , kG2

r = 4r , kSU(2)
r = 3r . (4.34)

These values agree for r = 2 with those read off from the class S description. See section 5.
The flavor central charges of the various SU(2) factors can be computed as follows. Let

us start with the cases ` = 3, 4 for which we just need to discuss the r = 2 case. As is clear
from the six-dimensional description, the E-string sector does not contribute whereas the
two free hypermultiplets on the Coulomb branch form a doublet. Moreover, the embedding
index of this SU(2) inside the six-dimensional flavor symmetry is equal to `. Combining
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these facts, we easily see that (4.16) leads to the relation kSU(2) = 12 + 2 = 14 both for
` = 3 and ` = 4. In the case ` = 2 and r = 2 we have instead two SU(2) factors, both
with embedding index one in the six-dimensional global symmetry. At a generic point of
the Coulomb branch there is one hypermultiplet charged under each factor and again the
E-string sector does not contribute. Therefore from (4.16) we find kSU(2) = 7 for both
factors.

Finally, for the cases r > 2 the analysis is a bit more involved and requires us to look
at the anomaly polynomial in more detail. Looking at (4.22), we see that for any of the
SU(2) gauge groups supported on a curve both the bifundamental at its left and at its right
contribute to the SU(2) symmetry surviving the compactification. If we denote the SU(2)
background curvature with F , the corresponding Green-Schwarz 4-form I will include the
term

I = 1
2 trF 2 + . . . , (4.35)

and this holds for all the r − 1 curves supporting a gauge group. We therefore conclude
that after the blow-down we find the Green-Schwarz term

I =
∑
i

Ii = r − 1
2 trF 2 + . . . (4.36)

Hence, we deduce the formula

k
SU(2)
SCFT − k

SU(2)
generic = 12r − 12 , (4.37)

where kSU(2)
generic includes the contribution of the rank-(r− 1) theory and the free hypermulti-

plet, which contributes one to the flavor central charge. We therefore find from (4.20) the
relation

kSU(2)
r = k

SU(2)
r−1 + 12r − 11 , k

SU(2)
2 = 14 . (4.38)

The central charge in the r = 2 case is determined exploiting the fact that the E-string
does not contribute and that both free hypers are charged under SU(2). Since this is twice
the central charge of the two SU(2) factors of the rank-two theory, this tells us that only
the diagonal combination of the two survives at higher rank. From the recursion (4.38) we
find kSU(2)

r = 6r2 − 5r.

5 Class S realizations

A very wide swath of four-dimensional N = 2 superconformal field theories admit a class
S construction, i.e., they can be realized as a topologically twisted compactification of a
six-dimensional N = (2, 0) theory on a Riemann surface, oftentimes in the presence of
half-BPS codimension-two defects marking points on the surface [6, 53]. The question we
address in this section is whether the newly discovered S-fold SCFTs and their cousins T (r)

G,`

have a class S realization.
Our strategy to identify class S realizations of the higher-rank S-fold SCFTs is to per-

form a systematic scan. Recalling that the exactly marginal couplings of theories of class S
are encoded in the complex structure moduli of the Riemann surface and taking note of the
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fact that higher-rank S-fold SCFTs are isolated strongly-coupled theories, we can restrict
our attention to theories associated with three-punctured spheres.35 Theories associated
with three-punctured spheres, often called trinion theories, are determined by the choice of
simply-laced Lie algebra j = an, dn, e6,7,8 specifying the above-lying six-dimensional (2, 0)
theory and a choice of (twisted) punctures. The punctures of our interest are regular (also
called tame). If such puncture is untwisted, it is labeled by an embedding of su(2) into
j. On the other hand, when encircling a twisted puncture, it acts by an element of the
outer-automorphism group of j. Correspondingly, twisted punctures are specified by an
su(2)-embedding into g, the Langlands dual of the subalgebra invariant under that outer-
automorphism twist. What’s more, because our aim is to find realizations of the entire series
of higher-rank S-fold theories, our primary focus are untwisted and Z2-twisted theories of
increasing rank n of the Lie algebras j = an or dn. Nevertheless, while (twisted) theories of
type e6,7,8 or Z3-twisted d4 theories cannot accommodate arbitrarily high Coulomb branch
scaling dimensions, we will see that they do provide realizations of various low-rank models
of our interest.

The necessary technology to perform our scan has been developed in a sequence of
papers [54–63] for all series of theories except for twisted A2n models. The exploration of
the latter has been initiated recently in [64]. In particular, upon specifying the triple of
embeddings labeling the punctures, these papers provide the necessary tools to compute
the following data of the theory:

• the a and c Weyl anomaly coefficients,

• the Coulomb branch spectrum ∆i, i = 1, . . . , r,

• the Schur limit of the superconformal index36

IS(q, aj) := tr (−1)F qE−R
rank gF∏
j=1

a
fj
j . (5.1)

Here the trace runs over the Hilbert space of states of the radially quantized theory.
Furthermore, E is the conformal dimension and R the SU(2)R Cartan generator,
while fj are Cartan generators of the theory’s flavor symmetry algebra gF . Writing
the index as a plethystic exponential,37 the first few terms take the general form

IS = PE
[ 1

1− q (χ2h q
1
2 + χadj q + . . .)

]
. (5.2)

Here χ2h is the possibly not fully refined character of the fundamental representation
of sp(h). This term in the exponential indicates the presence of h free hypermultiplets.
At order q, one encounters χadj, the possibly not fully refined character of the adjoint
representation of the flavor symmetry algebra of the interacting part of the theory.

35Note that it may happen that such theories still possess a frozen exactly marginal coupling, see [54].
36In principle we have also access to the Macdonald limit of the superconformal index, but we’ll focus on

this simpler limit throughout this paper.
37The plethystic exponential is defined as PE[g(xi)] = exp[

∑∞
i=1

1
n
g(xni )].
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The Schur limit of the superconformal index is of particular interest because, via
the SCFT/VOA correspondence of [11], it computes the vacuum character of the
associated vertex operator algebra.38 For more details on the computation of (the
Schur limit of) the superconformal index, the reader may also wish to consult [69–73],

• the flavor symmetry central charge k for each simple factor in the flavor symmetry
group.

These data are often sufficient to identify a candidate theory. Further consistency checks
can be performed by, for example, investigating if the class S realization is consistent with
the partial Higgsings of section 3.

Note that upon increasing the rank n of j = an or dn, the scaling dimensions that
Coulomb branch chiral ring generators of the trinion theories can have go up as well,
while simultaneously the majority of trinion theories have a Coulomb branch of ever larger
dimensionality. These features make looking for a particular theory of a particular rank
feasible.

Overall, we were successful at identifying various rank-two S-fold models, but still
higher-rank S-fold SCFTs have proved elusive.39 We also identify various theories belonging
to the collection T (2)

G,` .
We organize our class S identifications of the models S(r)

G,` and T
(r)
G,` according to the

choice of group G. The same model often has many different class S realizations. We
do not list all of them, but only a representative one that appears at smallest rank n.
Exceptions are made if a trinion at higher rank n (or more than one trinion at the same
rank n) is of relevance to elucidate a relation to another class S realization.

Throughout the rest of this section, we specify su(2)-embeddings by the dimensions of
the su(2) representations that appear in the decomposition of the fundamental (or vector)
representation of j or g. Repeated entries are indicated with a superscript. To easily tell
apart Z2-twisted punctures, we additionally underline them. For Z3-twists, we indicate the
outer-automorphism element explicitly as a subscript. Trinions are denoted by a triple of
embeddings within parenthesis. A subscript indicates the type j of the theory.

Realizations of S(r)
E6,` and T (r)

E6,`. For the models S(r)
E6,2, we have found the following

class S realizations:

S(1)
E6,2 ⊗HM⊗3 ←→

(
[3, 22, 1], [3, 22, 1], [22, 14]

)
d4
, (5.3)

S(2)
E6,2 ⊗HM⊗2 ←→

(
[42, 32], [5, 42, 1], [5, 42, 1]

)
d7
. (5.4)

Here HM stands for the theory of a single (full) hypermultiplet. As these are our first
identifications, let us provide some more details.40 First, we can compute the Coulomb

38See, for example, [64–68] for a discussion of the SCFT/VOA correspondence in the context of theories
of class S.

39While we consider it unlikely, we do not, however, claim that none of the still higher-rank theories can
be realized in class S, as our scans were necessarily finite and we have not excluded the possibility that
these models occur in trinions describing product theories.

40The theory S(1)
E6,2, often colloquially referred to as the rank-one C5 theory, has been analyzed in detail

already in [56].
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branch spectrum of these models by applying the rules of [56]. We easily confirm that
their Coulomb branch chiral ring is generated by operators of scaling dimensions ∆ = 6
and ∆1 = 6,∆2 = 12, respectively. Next, one can compute the Schur limit of their
superconformal indices. For simplicity focusing on the first few orders, one finds for the
trinion

(
[3, 22, 1], [3, 22, 1], [22, 14]

)
d4

IS
((

[3, 22, 1], [3, 22, 1], [22, 14]
)
d4

; q, ai
)

= PE
[ 1

1− q (χR1(ai) q
1
2 + χR2(ai) q + . . .)

]
, (5.5)

where R1 is the direct sum of representations (1,1; 2,1,1)⊕ (1,1; 1,2,1)⊕ (1,1; 1,1,2) of
the SU(2)7×SU(2)7×SU(2)3

8 flavor symmetries manifested by the punctures of the trinion,
and R2 equals (3,1; 1,1,1)⊕perms⊕(2,2; 1,1,1)⊕perms. We have also already indicated
as subscripts the flavor central charges of the manifest flavor symmetry factors, computed
using the results of [56, 57]. Two important conclusions can be drawn from this expression.
First, the trinion contains three full hypermultiplets. Second, the flavor symmetry of
the interacting part of the trinion is a 55-dimensional algebra, which decomposes as R2
indicates. We recognize this is as a decomposition of c5. The flavor symmetry manifested
by the trinion acting on its interacting part is SU(2)5

7: the free hypermultiplets carried
away one unit of flavor central charge from the three SU(2) factors under which they
are charged. The decomposition R2 indicates that SU(2)5

7 is embedded inside C5 with
embedding index one, so we conclude that the flavor central charge of the enhanced flavor
symmetry is indeed kc5 = 7. Similarly,

IS
((

[42, 32], [5, 42, 1], [5, 42, 1]
)
d7

; q
)

= PE
[ 1

1− q (4 q
1
2 + 39 q + . . .)

]
. (5.6)

The trinion contains two hypermultiplets and the flavor symmetry algebra of its interacting
subsector is 39-dimensional. Upon refining, one finds that this algebra is c4×a1. The flavor
central charge of the c4-factor can be confirmed to be kc4 = 13, while the a1-factor is an
enhancement of a u(1) flavor symmetry. Some more details are as follows. The manifest
flavor symmetry of the trinion is SU(2) × U(1) × SU(2) × SU(2). One hypermultiplet
is a doublet of the first SU(2) factor, while the other one is charged under the U(1)
flavor symmetry. The enhanced flavor symmetry of the interacting part of the theory
decomposes as 2×(1,1,1)0,±1⊕(3,1,1)0⊕(1,3,1)0⊕(1,1,3)0⊕(2,1,1)± 1

2
⊕(1,2,1)± 1

2
⊕

(1,1,2)± 1
2
⊕ (2,2,1)± 1

2
⊕ (2,1,2)± 1

2
⊕ (1,2,2)± 1

2
. We recognize the decomposition of C4

into SU(2)3×U(1) and an additional SU(2) has emerged. After removing the contribution
of the free hypermultiplet, the three SU(2) factors in the C4 decomposition have flavor
central charge 13. They appear on equal footing and are embedded with index one. Finally,
the conformal anomaly coefficients a and c of the trinions can be most easily computed
using the results of [57]. After subtracting the contribution of the free hypermultiplets,
one finds, as expected, (a, c)S(1)

E6,2
= (41

12 ,
49
12) and (a, c)S(2)

E6,2
= (29

3 ,
65
6 ).

In light of the identification of all instanton-SCFTs I(r)
G as trinions of linearly increasing

rank n [74], it may be worth pointing out that also in d8 one encounters S(2)
E6,2. In detail,

S(2)
E6,2 ⊗HM⊗7 ←→

(
[44], [53, 1], [7, 42, 1]

)
d8
. (5.7)
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However, the set of d12 theories does not contain S(3)
E6,2. In fact, we have not encountered

S(3)
E6,2 in any class S theory of type dn for n ≤ 14. Finally, it should be mentioned that
S(2)
E6,2 also occurs as a Z2-twisted e6 theory, as was already pointed out in [21].41

Any of the realizations of S(2)
E6,2 we have presented can be used to compute its Schur

index to high order. We obtain for its first several orders

IS
(
S(2)
E6,2; q, a,b

)
= PE

[ 1
1− q

{(
χc4

adj(a) + χa1
adj(b)

)
q +

(
χc4

8 (a)χa1
adj(b) + χc4

42(a)χa1
2 (b)

)
q

3
2

+
(
1 + χa1

5 (b) + χc4
adj(a)χa1

adj(b) + χc4
48(a)χa1

2 (b)
)
q2

+
(
χc4

160(a) + χc4
42(a)χa1

4 (b)
)
q

5
2 + . . .

}]
. (5.8)

Here a,b denote the c4 and a1 flavor symmetry fugacities respectively.
For the models T (r)

E6,2, we have found the following simple class S realizations:42,43

T (2)
E6,2 ←→

(
[3, 22, 1], [3, 22, 1], [18]

)
d4
, (5.9)

T (2)
E6,2 ⊗HM⊗5 ←→

(
[42, 32], [5, 42, 1], [5, 5, 3, 1]

)
d7
. (5.10)

The interacting part of this trinion correctly reproduces the conformal anomaly coefficients
(a, c)T (2)

E6,2
= (13

2 ,
15
2 ), the Coulomb branch spectrum ∆1 = ∆2 = 6, and the flavor sym-

metry (F4)12 × SU(2)7 × SU(2)7 (the flavor central charges of the SU(2) factors cannot
be determined directly from the second realization). The class S realization allows for a
straightforward evaluation of the Schur index of T (2)

E6,2:

IS
(
T (2)
E6,2; q, a,b1,b2

)
= PE

[ 1
1− q

{(
χf4

adj(a) + χa1
adj(b1) + χa1

adj(b2)
)
q

+
(
χf4

26(a)χa1
2 (b1) + χf4

26(a)χa1
2 (b2)

)
q

3
2

+
(
χf4

adj(a)χa1
2 (b1)χa1

2 (b2) + χf4
26(a)

)
q2 + . . .

}]
.

(5.11)

Notice that the Higgsing of S(2)
E6,2 to T (2)

E6,2, triggered by giving a vacuum expecta-
tion value to the c4 moment map, is manifest in the D7 class S realization. Indeed the
realizations (5.4) and (5.10) differ in the specification of one puncture. If we depict a
puncture by a Young diagram whose columns have heights equal to the integers specifying
the su(2)-embedding, our Higgsing corresponds to moving one box in the Young diagram
that captures a factor of the c4 flavor symmetry. The operation of Higgsing by moving one
box at a time was studied in detail in [75]. The realizations in D4 also make manifest the
Higgsing of T (2)

E6,2 to the rank-two instanton SCFT I(2)
E6

: the former theory is described by
the trinion

(
[3, 22, 1], [3, 22, 1], [18]

)
d4

and the latter by the trinion
(
[32, 12], [3, 22, 1], [18]

)
d4
.

41It is entry 113 of subsection 3.4 of [60].
42The D4 realization has already appeared explicitly in [56].
43As above, among others, there is also a realization in d8, to wit,

(
[44], [53, 1], [7, 5, 3, 1]

)
d8
, and in twisted

e6 (see entry 30 of subsection 3.5 of [60]).
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Realizations of S(r)
D4,` and T (r)

D4,`. Looking for class S realizations of S(r)
D4,`

and T (r)
D4,`

proceeds similarly. Recall that now nontrivial S-fold theories correspond to two possible
values of `, namely ` = 2, 3. We first remind the reader of one of the realizations of S(1)

D4,2
as a twisted A3 theory [54]:

S(1)
D4,2 ⊗HM⊗1 ←→

(
[2, 12], [22, 1], [22, 1]

)
a3
. (5.12)

Within this same family of twisted A2n+1 theories, we have scanned up to (and including)
A25, and additionally found the rank-two S-fold theory

S(2)
D4,2 ⊗HM⊗1 ←→

(
[42], [33], [42, 1]

)
a7
. (5.13)

The usual checks can be performed. Its Coulomb branch spectrum works out to be
∆1 = 4,∆2 = 8. The Weyl anomaly coefficients of the interacting part of the theory
match the expectation of table 1: (a, c)S(2)

D4,2
= (73

12 ,
20
3 ). Its interacting flavor symmetry is

Sp(2)9×SU(2)18×SU(2)16 — all levels can be easily confirmed from this particular class
S description –, and finally its Schur index can be computed straightforwardly:

IS
(
S(2)
D4,2; q, a,b1,b2

)
=

PE
[ 1

1− q
{(
χc2

adj(a) + χa1
adj(b1) + χa1

adj(b2)
)
q

+
(
χc2

4 (a)χa1
adj(b2) + χc2

5 (a)χa1
adj(b1)χa1

2 (b2)
)
q

3
2

+
(
1 + χa1

5 (b2) + χc2
adj(a)χa1

adj(b2) + χa1
adj(b1)χa1

adj(b2) + χc2
4 (a)χa1

adj(b1)χa1
2 (b2)

)
q2

+
(
χc2

5 (a)χa1
adj(b1)χa1

4 (b2) + χc2
16(a)− χc2

4 (a)χa1
adj(b1)

)
q

5
2 + . . .

}]
. (5.14)

Among the theories T (r)
D4,2, we find a realization of the rank-two model in twisted A3

T (2)
D4,2 ←→

(
[14], [22, 1], [22, 1]

)
a3
. (5.15)

This theory has all the correct properties — ∆1 = ∆2 = 4, (a, c)T (2)
D4,2

= (4, 9
2), and flavor

symmetry SO(7)8 × SU(2)2
5 –, see [54]. This theory can be easily seen to admit Higgsings

to the rank-two d4 instanton SCFT, which can be realized as
(
[14], [22, 1], [3, 1, 1]

)
a3
, and

to S(1)
D4,2 presented above. It may also be useful to observe that in the set of twisted A7

trinions, one also encounters this model:

T (2)
D4,2 ⊗HM⊗2 ←→

(
[42], [33], [5, 3, 1]

)
a7
. (5.16)

This description clearly shows that T (2)
D4,2 can be obtained from S(2)

D4,2 by performing a
partial Higgsing triggered by a vacuum expectation value of the Sp(2) moment map. The
Schur index of T (2)

D4,2 reads

IS
(
T (2)
D4,2; q, a,b1,b2

)
= PE

[ 1
1− q

{(
χb3

adj(a) + χa1
adj(b1) + χa1

adj(b2)
)
q

+
(
χb3

7 (a)χa1
2 (b1) + χb3

7 (a)χa1
2 (b2)

)
q

3
2

+ χb3
adj(a)χa1

2 (b1)χa1
2 (b2) q2 + . . .

}]
. (5.17)
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Turning attention to ` = 3, we note that in [61] the theory S(1)
D4,3 has been identified

as a particular Z3 twisted D4 theory:

S(1)
D4,3 ←→

(
[5, 3], [A1]ω, [A1]ω2

)
d4
, (5.18)

where the twist by the Z3 element ω is indicated explicitly with a subscript. Moreover,
su(2)-embeddings into g2 are specified by their Bala-Carter labels.44 We have not been
able to find another realization of this model or its higher rank cousins. However, the class
of Z3 twisted D4 theories does contain T (2)

D4,3 as well:

T (2)
D4,3 ←→

(
[5, 3], [0]ω, [A1]ω2

)
d4
, (5.19)

where 0 denotes the trivial embedding into g2. This theory exhibits all expected properties,
see table 2. Its Schur index is given by

IS
(
T (2)
D4,3; q, a,b

)
= PE

[ 1
1− q

{(
χg2

adj(a) + χa1
adj(b)

)
q +

(
χa1

4 (b) + 2χg2
7 (a)χa1

2 (b)
)
q

3
2

+
(
3 + χg2

adj(a) + 2χg2
7 (a)χa1

3 (b)
)
q2

+
(
χg2

adj(a)χa1
4 (b) + χg2

7 (a)χa1
2 (b)

)
q

5
2 + . . .

}]
. (5.20)

The Higgsing from T (2)
D4,3 to S(1)

D4,3 is obvious in class S, and so is the Higgsing to the
rank-two d4 instanton SCFT S(2)

D4,1, which admits a realization as
(
[5, 3], [0]ω, [Ã1]ω2

)
d4
.

Realizations of S(r)
A2,` and T (r)

A2,`. Let us next turn attention to S(r)
A2,`

and T (r)
A2,`

, which
are defined for ` = 2, 4. While for ` = 4, not even S(1)

A2,4 has a known class S description,
for ` = 2, it was found in [54, 76] that

S(1)
A2,2 ←→

(
[2, 1], [1, 1], [1, 1]

)
a2
. (5.21)

We may expect to find some of the other models of our interest in the collection of twisted
Aeven theories. A scan through twisted A2n trinions is however inconvenienced by our
current lack of understanding of their Coulomb branch spectra. Nevertheless, a systematic
study of such theories has recently been initiated in [64]. In that work, T (2)

A2,2 was also
identified. It was called T̃3 and is given by

T (2)
A2,2 ←→

(
[1, 1, 1], [1, 1], [1, 1]

)
a2
. (5.22)

Its index was already computed in [64] and reads

IS
(
T (2)
A2,2; q, a,b1,b2

)
= PE

[ 1
1− q

{(
χc1

adj(b1) + χc1
adj(b2) + χa2

adj(a)
)
q

+
(
χc1

2 (b1)χc1
2 (b2)χa2

adj(a)− 1
)
q2 + . . .

]
. (5.23)

44The su(2)-embedding labeled by A1 has commutant su(2) inside g2. It is determined by the decomposi-
tion 7→ (1,3)+(2,2) under su(2)×su(2). For later purposes, let us also remark that the su(2)-embedding
labeled by Ã1 also has centralizer su(2) and is determined by the decomposition 7→ (3,1) + (2,2).
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We have not been able to identify S(2)
A2,2.

45 Finally, we note that the family of twisted A2

theories makes manifest a variety of partial Higgsings, in particular the Higgsing of T (2)
A2,2

to S(1)
A2,2 and to I(2)

A2
←→

(
[1, 1, 1], [1, 1], [2]

)
a2
.

Realizations of S(r)
A1,` and T (r)

A1,`. We have not encountered any class S realizations of
S(r)
A1,`

or T (r)
A1,`

.
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