
11 October 2022

University of Parma Research Repository

Two agent-oriented programming approaches checked against a coordination problem / Iotti, E.;
Petrosino, G.; Monica, S.; Bergenti, F.. - ELETTRONICO. - 1237:(2021), pp. 60-70. ((Intervento presentato al
convegno 17th International Symposium on Distributed Computing and Artificial Intelligence (DCAI 2020)
nel 2020 [10.1007/978-3-030-53036-5_7].

Original

Two agent-oriented programming approaches checked against a coordination problem

Publisher:

Published
DOI:10.1007/978-3-030-53036-5_7

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2911967 since: 2022-01-18T10:02:08Z

Springer

This is the peer reviewd version of the followng article:



Two Agent-Oriented Programming
Approaches Checked Against a

Coordination Problem

Eleonora Iotti, Giuseppe Petrosino, Stefania Monica, and Federico Bergenti(B)

Dipartimento di Scienze Matematiche, Fisiche e Informatiche,
Università degli Studi di Parma, Parma, Italy

{eleonora.iotti,stefania.monica,federico.bergenti}@unipr.it,
giuseppe.petrosino@studenti.unipr.it

AQ1

Abstract. This paper discusses two approaches to agent-oriented pro-
gramming and compares them from a practical point of view. The first
approach is exemplified by Jadescript, which is an agent-oriented pro-
gramming language that has been recently proposed to simplify the adop-
tion of JADE. The second approach is exemplified by Jason, which is cur-
rently one of the most popular agent-oriented programming languages.
Jason can be configured to use JADE to support the distribution of
agents, which ensures that the discussed comparison between the two
approaches can also take into account the performance of implemented
multi-agent systems. In order to devise a quantitative comparison, the
two considered languages are used to solve the same coordination prob-
lem, and obtained implementations are compared to discuss advantages
and drawbacks of the two approaches. AQ2

Keywords: Jadescript · Jason · Agent-oriented programming

1 Introduction

The development of AOP (Agent-Oriented Programming) languages (e.g., [23])
and the study of AOSE (Agent-Oriented Software Engineering) (e.g., [6]) are of
primary importance for the community of researchers and practitioners inter-
ested in software agents and agent-based software development. In the last
few years, a plethora of methodologies, languages, and tools were presented in
the literature (e.g., [18,19]). AOP languages are generally recognized in such a
body of literature as important tools for the development of agent technologies,
in contrast to traditional (lower-level) languages, which are often considered
(e.g., [1,10]) not suitable to effectively implement software agents and agent-
based software systems with the desired characteristics (e.g., [3]).

One of the approaches to AOP that attracted much attention is the BDI
(Belief-Desire-Intention) approach [22]. In brief, the BDI approach schematizes
software agents in terms of human-like features, and it targets the design of
agents as intelligent software entities that are able to plan how to effectively

c⃝ The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): DCAI 2020, AISC 1237, pp. 1–11, 2021.
https://doi.org/10.1007/978-3-030-53036-5_7

A
ut

ho
r 

Pr
oo

f



2 E. Iotti et al.

bring about their intentions on the basis of their desires and their beliefs. The
BDI approach is actually implemented in several frameworks and languages,
which include Jason [12], GOAL (Goal-Oriented Agent Language) [16], JAL
(JACK Agent Language) [25], and 3APL (An Abstract Agent Programming Lan-
guage) [15]. Note that the BDI approach is inherently declarative, and its various
implementations are mostly derived from logic programming. The tight connec-
tion between the BDI approach and logic programming is often considered as
a limitation for the popularization of the BDI approach because logic program-
ming languages tend to have a steep learning curve for the average programmer.
On the one hand, experts of agent technologies are comfortable with the BDI
approach, but on the other hand, students and practitioners that try to adopt
the BDI approach tend to be discouraged. This is the reason why the literature
has recently witnessed the introduction of AOP languages that follow procedural
approaches, or that mix declarative features with procedural features to obtain
sophisticated hybrid languages (e.g., [13,14]).

In addition to AOP languages, several software frameworks are available
to support the construction of agent-based software systems. As stated in a
recent survey [18], among such frameworks, the primacy in terms of popularity
is held by JADE (Java Agent DEvelopment framework ) (e.g., [2]) in both the
academia and the industry. JADE provides a rich programming interface for
developers who wants to program software agents, and it also provides a run-
time platform to execute MASs (Multi-Agent Systems) on distributed computing
architectures. Unfortunately, the general perception is that a sophisticated tool
like JADE is hard to learn for the newcomers to agent-based software develop-
ment (e.g., [7]) because it requires advanced skills in both object-oriented and
agent-oriented programming. JADEL (JADE Language) (e.g., [4,7]) is a recent
DSL (Domain-Specific Language) that aims at simplifying the use of JADE by
embedding in the language the view of agents and MASs that JADE proposes.
Jadescript [8,9,20,21] leverages the experience on JADEL to propose a new AOP
language designed to simplify the construction of agents and MASs. Jadescript
is an entirely new language that provides linguistic constructs designed to con-
cretize the abstractions that characterize agent-based software development in
the attempt to promote their effective use.

The major contribution of this paper is to assess some of the characteristics of
Jadescript by means of a comparison with another AOP language in terms of the
effectiveness in the construction of a solution to an illustrative problem. Jason
was chosen as the point of reference to assess the characteristics of Jadescript,
and such a choice offers the opportunity to compare the procedural approach
to AOP that Jadescript advocates with the BDI approach that Jason uses. In
particular, Sect. 2 briefly describes the major features that Jadescript and Jason
offer to the programmer to master the complexity of agent-based software devel-
opment. Section 3 describes the illustrative problem chosen to compare the two
languages. Section 4 reports on a quantitative assessment of the implemented
solutions to the studied problem in terms of suitable metrics, and it also com-
pares the two languages in terms of a subset of the criteria described in [11],

A
ut

ho
r 

Pr
oo

f



Two AOP Approaches Checked Against a Coordination Problem 3

which are accepted criteria for the comparison of AOP languages. Finally, Sect. 5
concludes the paper by summarizing major documented results.

2 Jadescript and Jason in Brief

This section summarizes the major features that Jadescript and Jason offer,
and it highlights their commonalities and differences. Only the features that are
relevant for the comparison discussed in Sect. 4 are presented.

Linguistic Features. Jason is a powerful implementation of AgentSpeak, and
therefore it follows a declarative approach to AOP. The syntax that Jason uses
is very similar to the syntax originally proposed for AgentSpeak. Beliefs, goals,
intentions, and plans are specified for each agent in the MAS. Jason agents
are immersed in an environment, which is defined explicitly by naming a MAS
together with its infrastructure and agents.

Jadescript is grounded on JADE, and therefore it supports the construction
of agents that execute in the scope of the containers of a regular JADE platform.
A Jadescript agent has a list of behaviours to perform tasks, and behaviours are
defined procedurally to handle messages and to react to events. Following a
procedural approach to AOP, Jadescript allows the declaration of behaviours
in terms of properties, procedures, functions, message handlers, and event han-
dlers. In addition, Jadescript allows the declaration of ontologies to support the
communication among agents. Ontologies are declared in Jadescript in terms of
propositions, predicates, concepts, and actions.

In summary, Jason is a declarative language, while Jadescript has declarative
features but it is essentially a procedural language. The declarative features
that Jadescript provide are meant to support pattern matching and event-driven
programming, but the actions that agents perform are defined procedurally.

Multi-agent Systems. Jason provides a clear way to define MASs. The name of
the MAS must always be specified, and its infrastructure must be chosen. The
most common infrastructures are immediately available, and they are called
Centralized and Jade. When the Centralized infrastructure is used, all Jason
agents execute within the same process. On the contrary, the Jade infrastructure
is based on JADE, and agents can be easily distributed across JADE containers
when such an infrastructure is used. In the Jason declaration of a MAS, a Java
class that defines the actual environment can be referenced by means of the
keyword environment. Finally, the most important part of the definition of a
MAS in Jason is the list of the agents that populate the environment. Such
agents have names and references to specific agent files for their definitions.

Currently, Jadescript does not provide a specific support for the construction
of a MAS because it assumes that JADE is used to activate agents within the
environment. Jadescript agents are launched using JADE, and the infrastructure
is managed in terms of a regular JADE platform. In Jadescript, the knowledge
about the environment is passed among agents through messages, and ontologies
are essential in such an exchange of messages.

A
ut

ho
r 

Pr
oo

f



4 E. Iotti et al.

In summary, a relevant difference between Jadescript and Jason is in the
support for the construction of MASs. Actually, Jadescript does not yet offer a
means to construct a MAS, but it assumes that JADE is directly used.

Agents. The declaration of a Jason MAS references a set of agent files, which
declaratively define for each agent the initial set of beliefs (and relative rules), the
initial set of goals (and relative rules), and all available plans. The declaration
of a Jadescript agent consists of a set of properties and a set of lifecycle event
handlers. Lifecycle event handlers are used to programmatically define what an
agent should do to react to the changes of its lifecycle state.

The approaches adopted by Jason and by Jadescript for the declaration of
agents are strongly related. They declare agents in terms of internal beliefs or
properties, supported languages or ontologies, and available behaviours or plans.
On the contrary, the syntaxes adopted by the two languages are very different.
Jason is based on self-contained agent files, and the rules for beliefs and goals are
written using a Prolog-like notation. Jadescript keeps a small part of the code of
an agent in the agent declaration because behaviours, ontologies, functions, and
procedures are coded outside of the agent declaration to promote reusability.
Similarly, Jadescript supports inheritance to promote reusability by providing
the programmer with the ability to extend the definitions of agents, behaviours,
and ontologies. Instead, Jason does not offer inheritance and related features.

Plans and Behaviours. Plans are basic courses of actions for Jason agents, and
a plan in Jason consists of a triggering event, a context, which is a set of actual
beliefs, and a body. The body of a plan includes the actions to be performed and
the sub-goals to be achieved. A goal in Jason is strictly related to the environment
because it describes a state of the environment that the agent wants to actualize.

Behaviours are the means that Jadescript offers to define the tasks that agents
perform. Each agent can activate multiple behaviours whose order of execution
during the agent lifecycle is not explicitly declared by the programmer. Acti-
vated behaviours are instead collected into an internal list, and their execution
is autonomously scheduled by the agent with using a non-preemptive scheduler.
Note that a behaviour can directly access the internal state of the agent that
activated it by accessing its properties, functions, and procedures.

Jadescript behaviours can be matched with Jason plans, but Jason plans are
declarative while Jadescript behaviours are procedural. In particular, Jadescript
behaviours are not explicitly related to the goals that they help to achieve.

Events. Events in Jason are related to the beliefs and the goals of each agent.
Actually, an event can add or delete beliefs and goals, and it can also trigger the
activation of a plan to bring about a goal.

Jadescript behaviours normally include event handlers, and event handlers
are executed when managed events occur. One of the most recent additions to
the language is the support for pattern matching [21], which allows declaratively
defining the structure of managed events for each event handler.

A
ut

ho
r 

Pr
oo

f



Two AOP Approaches Checked Against a Coordination Problem 5

Both languages support event handlers in terms of reactions to events. In
both cases, the activation of event handlers affects the states of agents. The main
difference between Jadescript and Jason with respect to event handlers is the
presence of goals, which are explicit in Jason and implicit in Jadescript. Finally,
it is worth noting that in both languages events can be internal or external.

Ontologies. Ontologies are of primary importance in Jadescript because they
are used to support communication, and all non-trivial Jadescript agents are
expected to reference at least one ontology. Actually, ontologies are used in
Jadescript to state a fact or a relation about elements of the domain of the
problem. On the contrary, Jason does not provide a support for ontologies. Note
that ontologies cannot be reduced to beliefs because ontologies are descriptions
of the domain of the problem, and events can neither add nor remove ontologies.

3 The Santa Claus Coordination Problem

The Santa Claus coordination problem [24] is a well-known coordination prob-
lem that is expressed, in its simplest form, as follows. Santa Claus has nine
reindeer and ten elves in its team. He sleeps waiting for a group formed by all
of his reindeer or by three of his elves. When three elves are ready and awake
Santa Claus, he must work with them on new toys. Similarly, when the group of
reindeer is ready and awakes Santa Claus, they work together to deliver toys. It
is important that Santa Claus is awakened only when a group with the correct
size is formed. In addition, Santa Claus should give priority to the reindeer in
case that there are both a group of elves and a group of reindeer ready.

The major reasons for choosing the Santa Claus coordination problem for
the comparison between Jadescript and Jason can be listed as follows. First, the
problem is simple, but not trivial, and a number of solutions are documented in
the literature. In particular, one of such solutions has already been implemented
in JADEL [17], and the Jadescript solution used for the experiments described in
Sect. 4 is a rework of such an implementation. Second, a Jason implementation
can be found in the official Jason distribution1, and such an implementation
was used for the experiments described in Sect. 4. Third, the problem depends
on numeric parameters that can be used to vary the characteristic size of the
problem and to support quantitative comparisons.

In order to support a fair comparison among the mentioned solutions in
Jadescript and Jason, the architecture adopted in the Jason solution was used to
design the Jadescript solution. In particular, the architecture of both solutions
consists of Santa Claus, nineteen workers (ten elves and nine reindeer), and
two secretaries to schedule appointments with workers. Secretaries are called
Edna (assigned to the elves) and Robin (assigned to the reindeer), and their
responsibility is to form groups and to awake Santa Claus when needed.

1 Version 2.4 downloaded from the official site (http://jason.sourceforge.net).

A
ut

ho
r 

Pr
oo

f



6 E. Iotti et al.

The remaining of this section describes the Jadescript solution to the Santa
Claus coordination problem. The Jadescript solution uses four types of mes-
sage contents, as follows. The workerReady proposition is used by workers to
inform their secretary that they are ready, and the secretary, in turn, uses the
groupFormed proposition to inform Santa Claus that a group is formed. The OK
proposition is used by Santa Claus to notify the beginning of the working phase
to the chosen group of workers. Finally, the done proposition is used by workers
to tell that they have completed their jobs.

In the Jadescript solution, the actions of elves and reindeer are defined by
means of two behaviours, which are activated by workers at startup, as shown
in Fig. 1 (lines 8 and 9). The behaviour SendReady is declared (line 11) as one
shot, and, as such, it contains a single action defined by the procedural code
that follows the keyword do. When a Jadescript agent activates a behaviour,
the behaviour is added to the list of active behaviours of the agent, and then
the agent tries to execute it using its non-preemptive scheduler. A one shot
behaviour is removed from the list of active behaviours just after its execution,
and therefore the SendReady behaviour is used just once to send a workerReady
message to the appropriate secretary (line 12). On the contrary, the WaitForOK
behaviour is declared as cyclic (line 14). Cyclic behaviours do not leave the list
of the active behaviours of the agent until they are explicitly deactivated, and
therefore they are suitable for cyclic tasks such as message handling. In particu-
lar, the Jadescript construct that begins with the keywords on inform (line 15)
declares a message handler that is executed at the reception of a message with
performative inform and content OK. When a message with such characteristics
is received, the worker first starts its work (lines 17 and 19), then it replies with
a done message to Santa Claus (line 20), and it finally sends a workerReady
message to its secretary (line 21).

The remaining of this section discusses the behaviours used by the Jadescript
solution to the Santa Claus coordination problem to implement the two secre-
taries and Santa Claus. The Jadescript source codes of agents and behaviours is
not presented in the paper due to page restrictions.

In the adopted architecture, secretaries count how many workers are actually
ready, and when a group of the needed size is available, they promptly inform
Santa Claus using a specific message. When created, a secretary activates only
one cyclic behaviour, namely HandleWorkerMessages, and it shares three prop-
erties, namely groupSize, kind, and santa, with the behaviour. When scheduled
for execution, the behaviour first checks for workerReady messages from workers,
then it collects the identifiers of the senders, and it finally sends a groupFormed
message to Santa Claus. Note that the reindeer communicate exclusively with
Robin while elves communicate exclusively with Edna, so the group formation
processes are handled independently for the two groups.

Santa Claus uses two behaviours to implement its two possible states. The
first behaviour, which corresponds to the first state, is the cyclic behaviour
WaitForGroups. Such a behaviour first checks if there is a message in the queue
that states that a group of reindeer is ready. If no groups of reindeer are ready, the

A
ut

ho
r 

Pr
oo

f



Two AOP Approaches Checked Against a Coordination Problem 7

behaviour performs a similar check for a group of elves. When a group is correctly
formed, Santa Claus first sends an OK message to all the workers in the group,
and then it changes its state by deactivating the WaitForGroups behaviour to
activate the WaitJobCompletion behaviour. The WaitJobCompletion behaviour
is used to define the actions to perform when Santa Claus is in the second state.
In such a state, Santa Claus waits for all the workers to send done messages, then
the WaitJobCompletion behaviour is deactivated in favor of the WaitForGroups
behaviour to perform a transition back to the first state.

Fig. 1. The Worker agent and its SendReady and WaitForOK behaviours in Jadescript.

4 Quantitative Comparison

The quantitative comparison between Jadescript and Jason presented in this
section is based on three solutions to the Santa Claus coordination problem.
The considered implementations are: the Jadescript implementation presented
in Sect. 3, the Jason implementation on the Centralized infrastructure, and the
Jason implementation on the Jade infrastructure. Note that the use of JADE
allows comparing execution times. Also note that the execution time of the Jason
implementation on the Centralized infrastructure is reported as baseline.

In order to unambiguously measure execution times, only Santa Claus, Robin,
and the reindeer were activated. Hence, the settings for a single execution are
described in terms of the number of reindeer R and the number of works to
be done W . Under such an assumption, the execution times measure how well
the implementations can handle the increase of the number of agents, and how
well agents are capable of handling message exchanges. Two types of experi-
ments were performed: in the first type, execution times were measured when
the number of works is kept low and the number of reindeer increases, while in
the second type, execution times were measured when the number of reindeer

A
ut

ho
r 

Pr
oo

f



8 E. Iotti et al.

Fig. 2. Plots of execution times for the three experiments as (a) W = 20 and the
number of reindeer increases, and (b) R = 20 and the number of works increases.

is kept low and the number of works increases. For the first type of experiment,
a fixed number of W = 20 works is chosen, and reindeer range from R = 100
to R = 1000. For the second type of experiment, only R = 20 reindeer are con-
sidered, but the works to be done range from W = 100 to W = 1000. For all
considered executions, the termination condition was expressed in terms of the
number of works done.

All experiments were repeated for 100 iterations for each considered config-
uration, and the average execution times over the 100 iterations were recorded.
For all experimented configurations, the measurement of execution times started
at the activation of Santa Claus, and it stopped when Santa Claus worked W
times with reindeer and a group of reindeer was formed for the (W +1)–th time.
Such a choice allowed to ignore the time needed to start up and shut down the
platform, so that only the actual execution times of agents were recored. The
experiments were executed on an Apple MacBook Air mid-2013 with a 1.3 GHz
Intel Core i5, 3 MB L3 shared cache, 4 GB LPDDR3 1600 MHz RAM, Java
version 12, Jason version 2.4, and JADE version 4.3.0.

The execution times for all experiments are shown in Fig. 2. When the num-
ber of reindeer increases and W = 20, the Jadescript solution is much faster than
the Jason solutions, as shown in Fig. 2(a). When the number of works increases
and R = 20, the performance of the Jason solution with the Centralized infras-
tructure is very similar to the performance of the Jadescript solution, as shown
in Fig. 2(b). On the contrary, Fig. 2(b) shows that the Jason solution with the
Jade infrastructure is more than ten time slower that the Jadescript solution.

Even if the measured execution times shown in Fig. 2 offer an interesting point
of view to compare the two considered languages, other criteria must be taken
into account to propose a fair comparison. For example, a comparison between
the Jadescript solution and the Jason solutions in terms of LOCs (Lines Of
Code) shows that Jason solutions require only 45 LOCs instead of 71 LOCs.

A
ut

ho
r 

Pr
oo

f



Two AOP Approaches Checked Against a Coordination Problem 9

Besides LOCs, it is worth noting that [11] enumerates a list of accepted crite-
ria to evaluate tools for agent-based software development. Only a few of the cri-
teria proposed in [11] are applicable to support a comparison between Jadescript
and Jason. Criterion 1(d) in [11] focuses on the simplicity of AOP tools. In this
perspective, the Jason solutions are surely elegant and they require less LOCs.
On the other hand, Jadescript is very close to an agent-oriented pseudocode
and this is the reason why the Jadescript solution looks simpler and more read-
able. Also, Jason heavily relies on operators instead of keywords, which makes
the Jadescript solution definitely more understandable than the Jason solutions,
especially for the newcomers to AOP. Finally, criterion 1(i) in [11] emphasizes
the relevance of the support for software engineering principles. Some well-known
AOSE methodologies for the BDI approach are applicable to Jason, but they are
not directly supported by the language. The Jadescript solution, instead, could
be enhanced by means of available constructs in the language for inheritance
(e.g., by specializing Worker agents as Reindeer agents and Elf agents) and
modularization (e.g., by moving behaviour declarations outside of agent decla-
rations) to better support maintainability, composability, and reusability.

5 Conclusion

Jadescript has been recently introduced as an AOP language that targets the
complexity of building agent-based software systems with JADE. A few examples
of the use of Jadescript have already been proposed [8,9,20,21] to present the
language to the community of researchers and practitioners interested in agent-
based software development, but a quantitative comparison with another AOP
language was lacking. This paper compares Jadescript and Jason on a specific
problem, but comparisons with other languages and on other problems have
already been planned for the near future.

As far as performance is concerned, Fig. 2(a) shows that Jadescript helps the
programmer in fine-tuning the performance of the MAS, and Fig. 2(b) shows
that Jadescript ensures an effective use of JADE. Therefore, from the reported
performance comparison, it is evident that Jadescript is preferable to Jason for
the construction of agent-based software systems intended to scale to real-world
applications (e.g. [5]) with a large number of agents.

References

1. Bădică, C., Budimac, Z., Burkhard, H.D., Ivanovic, M.: Software agents: languages,
tools, platforms. Comput. Sci. Inf. Syst. 8(2), 255–298 (2011)

2. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE – A Java Agent DEvel-
opment framework. In: Multi-Agent Programming, pp. 125–147. Springer (2005)

3. Bergenti, F.: A discussion of two major benefits of using agents in software devel-
opment. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) Engineering Societies in
the Agents World III. Lecture Notes in Artificial Intelligence, vol. 2577, pp. 1–12.
Springer, Heidelberg (2003)

A
ut

ho
r 

Pr
oo

f



10 E. Iotti et al.

4. Bergenti, F.: An introduction to the JADEL programming language. In: Proceed-
ings of the 26th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2014), pp. 974–978. IEEE (2014)

5. Bergenti, F., Caire, G., Gotta, D.: Large-scale network and service management
with WANTS. In: Industrial Agents: Emerging Applications of Software Agents in
Industry, pp. 231–246. Elsevier (2015)

6. Bergenti, F., Gleizes, M.P., Zambonelli, F. (eds.): Methodologies and Software
Engineering for Agent Systems: The Agent-Oriented Software Engineering Hand-
book. Springer, Boston (2004)

7. Bergenti, F., Iotti, E., Monica, S., Poggi, A.: Agent-oriented model-driven devel-
opment for JADE with the JADEL programming language. Comput. Lang. Syst.
Struct. 50, 142–158 (2017)

8. Bergenti, F., Monica, S., Petrosino, G.: A scripting language for practical agent-
oriented programming. In: Proceedings of the 8th International Workshop on Pro-
gramming Based on Actors, Agents, and Decentralized Control (AGERE 2018),
pp. 62–71. ACM (2018)

9. Bergenti, F., Petrosino, G.: Overview of a scripting language for JADE-based multi-
agent systems. In: Proceedings of the 19th Workshop “From Objects to Agents”
(WOA 2018). CEUR Workshop Proceedings, vol. 2215, pp. 57–62 (2018)

10. Bordini, R.H., Braubach, L., Dastani, M., El Fallah Seghrouchni, A., Gomez-Sanz,
J.J., Leite, J., O’Hare, G., Pokahr, A., Ricci, A.: A survey of programming lan-
guages and platforms for multi-agent systems. Informatica 30(1) (2006)AQ3

11. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.: Multi-Agent Pro-
gramming. Springer, Boston (2005)

12. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak Using Jason. Wiley, Hoboken (2007)

13. Challenger, M., Mernik, M., Kardas, G., Kosar, T.: Declarative specifications for
the development of multi-agent systems. Comput. Stand. Inter. 43, 91–115 (2016)

14. Fichera, L., Messina, F., Pappalardo, G., Santoro, C.: A Python framework for
programming autonomous robots using a declarative approach. Sci. Comput. Pro-
gram. 139, 36–55 (2017)

15. Hindriks, K.V., De Boer, F.S., Van der Hoek, W., Meyer, J.J.: Agent programming
in 3APL. Auton. Agent. Multi Agent Syst. 2(4), 357–401 (1999)

16. Hindriks, K.V., Dix, J.: GOAL: a multi-agent programming language applied to
an exploration game. In: Shehory, O., Sturm, A. (eds.) Agent-Oriented Software
Engineering, pp. 235–258. Springer, Heidelberg (2014)

17. Iotti, E., Bergenti, F., Poggi, A.: An illustrative example of the JADEL program-
ming language. In: Proceedings of the 10th International Conference on Agents
and Artificial Intelligence (ICAART 2018), vol. 1, pp. 282–289. ScitePress (2018)

18. Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul.
18(1), 11 (2015)

19. Müller, J.P., Fischer, K.: Application impact of multi-agent systems and technolo-
gies: a survey. In: Shehory, O., Sturm, A. (eds.) Agent-Oriented Software Engi-
neering, pp. 27–53. Springer, Heidelberg (2014)

20. Petrosino, G., Bergenti, F.: An introduction to the major features of a scripting
language for JADE agents. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P.
(eds.) Advances in Artificial Intelligence (AI*IA 2018), pp. 3–14. Springer, Cham
(2018)

A
ut

ho
r 

Pr
oo

f



Two AOP Approaches Checked Against a Coordination Problem 11

21. Petrosino, G., Bergenti, F.: Extending message handlers with pattern matching
in the Jadescript programming language. In: Proceedings of the 20th Workshop
“From Objects to Agents” (WOA 2019). CEUR Workshop Proceedings, vol. 2404,
pp. 113–118 (2019)

22. Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: Proceedings
of the 1st International Conference on Multiagent Systems (ICMAS 1995), vol. 95,
pp. 312–319. AAAI (1995)

23. Shoham, Y.: An overview of agent-oriented programming. In: Software Agents,
vol. 4, pp. 271–290. MIT Press (1997)

24. Trono, J.A.: A new exercise in concurrency. ACM SIGCSE Bull. 26(3), 8–10 (1994)
25. Winikoff, M.: JACK intelligent agents: an industrial strength platform. In: Bor-

dini, R.H., Dastani, M., Dix, J., El Fallah, Seghrouchni A. (eds.) Multi-Agent
Programming, pp. 175–193. Springer, Boston (2005)

A
ut

ho
r 

Pr
oo

f


