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1 Introduction

Let (M, J ) be a 2m-dimensional almost complex manifold. Then the almost complex
structure J induces a bigrading on the bundle of differential forms on M . The exterior
derivative d acts on differential forms as the sum of four differential operators, d =
μ + ∂ + ∂̄ + μ̄.

The celebrated theorem of Newlander and Nirenberg states that (M, J ) admits the
structure of complex manifold (i.e., J is integrable) if and only if NJ = 0, that is
equivalent to μ = μ̄ = 0. Consequently, in such a case d = ∂ + ∂̄ . For complex
manifolds it is classical and well established the theory of Dolbeault cohomology,
obtained as the cohomology of the ∂̄ operator. Another fundamental tool in the study of
complex manifolds is the Hodge Theory for the ∂̄ operator that, once fixed a Hermitian
metric, establishes an isomorphism between the Dolbeault cohomology and the kernel
of the Dolbeault Laplacian�∂̄ . However for almost complexmanifolds, the operator ∂̄
is not cohomological and the Dolbeault cohomology cannot have the usual definition.
It is natural to look for other cohomological theories to study geometric properties
of almost complex manifolds. Motivated by the comparison between the J -tamed
symplectic cone Kt

J and the J -compatible symplectic cone Kc
J of an almost complex

manifold, defined as the projection in cohomology of the space of symplectic forms
taming J , respectively calibrating J , Li and Zhang introduced in [13] two cohomology
groups: the J -invariant cohomologygroups, respectively J -anti-invariant cohomology
groups, of an almost complexmanifold (M, J ) denotedwith H+, respectively H−, are
formed by 2nd -de Rham classes represented by closed J -invariant forms, respectively
J -anti-invariant forms, with respect to the natural action of J on the space of 2-forms.

Such groups generalize the real Dolbeault cohomology classes in H1,1
∂̄

∩ H2
dR(R)

and (H2,0
∂̄

+H0,2
∂̄

)∩H2
dR(R) respectively. The focus is onwhether the almost complex

structure J is C∞-pure, i.e., H+ ∩ H− = {0} or C∞-full, i.e., H2
dR = H+ + H−.

The problem is further studied in [10], where it is proved that any almost complex
structure on a compact 4-manifold is C∞-pure and C∞-full, and in [11]. Such a result
can be viewed as a sort of Hodge decomposition for 4-dimensional compact almost
complex manifolds.

RecentlyCirici andWilson defined in [6] an analogous ofDolbeault cohomology for
almost complex manifolds, that is also called Dolbeault cohomology. This definition
of cohomology is based on the decomposition of d and allows a development of
a harmonic theory, at least in some favorable situation such as in [7] for the almost
Kähler case (see also [17]). AFrölicher spectral sequence E p,q

r builds a bridge between
the Dolbeault cohomology and the complex de Rham cohomology. In general, the
computation of such groups is difficult, since they might not be finite-dimensional (cf.
[8]). A special setting in which calculations can be performed is that of Lie Algebras.
Such computations have a direct application in the study of the left-invariant Dolbeault
cohomology of nilmanifolds, as showed in [6].

In this paper we study the relation between the complex cohomology group H+
C

of J -invariant complex forms and the Dolbeault cohomology group H1,1
Dol on almost

complex manifolds. Next we extend some results obtained in [6] for nilmanifolds,
to the case of solvmanifolds. More in details, since we have a characterization of J -
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invariant 2-forms as real forms of complex bidegree (1, 1), it is natural to ask whether
they belong or not to the Dolbeault cohomology groups, or at least if there exists an
isomorphism between H+ and a subgroup of H1,1

Dol .We relate J -invariant cohomology
and Dolbeault cohomology, finding that the condition

E0,1
1

∼= E0,1
2

is necessary and sufficient for the former cohomology group to be contained into
the latter up to isomorphism (Theorem 4.2). Then given any solvmanifold endowed
with a left-invariant almost complex structure, we prove that the left-invariant spectral
sequence satisfies Serre duality at every page and that the left-invariant Dolbeault
cohomology groups are isomorphic to the kernel of a suitableLaplacian (Theorem6.1).
We apply our results, and showhow information on the left-invariant cohomologies can
be used to deduce information on the non-left-invariant ones. Finally calculations of
left-invariant spectral sequence and J -invariant cohomology are performed on almost
complex manifolds and solvmanifolds endowed with a left-invariant almost complex
structure to give concrete applications.

The paper is organized as follows. In Sect. 2 we briefly recall some basic defini-
tions that will be used later on, and we introduce the notation. In Sect. 3 we resume
the definition given by Cirici and Wilson of Dolbeault cohomology for almost com-
plex manifolds. In particular, we focus on the spectral sequence arising from a Hodge
filtration, and give an explicit description of it. Section 4 is devoted to the study of
J -invariant cohomology and Dolbeault cohomology. We prove the results mentioned
above, and investigate the behaviour of the necessary and sufficient condition under
small deformations, showing with an example that it is not a closed property. Section 5
recalls the construction of the Dolbeault cohomology of Lie Algebras, while in Sect. 6
we prove the Serre duality for solvmanifolds and show a possible application of the
results. Finally in Sect. 7 we collect various examples of Dolbeault cohomology and
spectral sequences. Among them, we provide computations of the left-invariant spec-
tral sequence on 4-dimensional solvmanifolds that do not admit any integrable almost
complex structure. For such examples the Dolbeault cohomology theory for almost
complex manifolds becomes the main tool to investigate their geometry.

2 Preliminaries and Notation

Let (M, J ) be an almost complex manifold of real dimension 2m, with J an almost
complex structure on the tangent bundle, i.e., J ∈ End(T M) such that J 2 = −I d.
Denote by A∗

R
(respectively A∗

C
) the algebras of real (respectively complex) differential

forms on M . J induces a bigrading on complex forms,

Ak
C

=
⊕

p+q=k

Ap,q
C

. (2.1)
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On real k-forms, α ∈ Ak
C
, J induces a map still denoted by J and defined by

Jα(X1, . . . , Xk) = α(J X1, . . . , J Xk). (2.2)

If k is odd, J 2 = −I d, while if k is even, J is an involution. In particular, A2
R

decomposes as

A2
R

= A+
R

+ A−
R
, (2.3)

where A+
R
denotes the J -invariant forms and A−

R
the J -anti-invariant forms. If we

consider the bidegree induced on complex forms by J , it’s easy to check that A+
R

consists of real forms in A1,1
C

, while A−
R
of real forms in A2,0

C
+ A0,2

C
. We denote with

H∗
dR(R) (respectively H∗

dR(C)) the real (respectively complex) de Rham cohomology
of M .

The de Rham cohomology groups consisting of J -invariant and J -anti-invariant
forms were introduced in [13]. We shall use the notation of Drǎghici et al. [11]. The
J -invariant real cohomology group is

H+ =
{
[α] ∈ H2

dR(R) : α ∈ A+
R

∩ ker d
}
, (2.4)

and the J -anti-invariant real cohomology group is

H− =
{
[α] ∈ H2

dR(R) : α ∈ A−
R

∩ ker d
}
. (2.5)

In the following we will denote a (p, q)-form α with α p,q .
We call a solvmanifold the quotient of a connected, simply connected and solvable

Lie Group G, by a discrete and co-compact subgroup � of G. We denote it by �\G.
If G is also nilpotent, we call �\G a nilmanifold.

3 Dolbeault Cohomology and Spectral Sequences

Let (M, J ) be an almost complex manifold of real dimension 2m. The exterior deriva-
tive decomposes as d = μ + ∂ + ∂̄ + μ̄, with bidegrees

|μ| = (2,−1), |∂| = (1, 0), |∂̄| = (0, 1), |μ̄| = (−1, 2). (3.1)

The almost complex structure J is integrable if and only if μ̄ ≡ 0. The equation
d2 = 0 gives the relations
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ2 = 0

μ∂ + ∂μ = 0

μ∂̄ + ∂̄μ + ∂2 = 0

μμ̄ + ∂∂̄ + ∂̄∂ + μ̄μ = 0

μ̄∂ + ∂μ̄ + ∂̄2 = 0

μ̄∂̄ + ∂̄μ̄ = 0

μ̄2 = 0

(�)

Since μ̄2 = 0, μ̄ is a well defined cohomological operator and its cohomology is the
μ̄-cohomology

H p,q
μ̄ = ker(μ̄ : Ap,q

C
−→ Ap−1,q+2

C
)

Im(μ̄ : Ap+1,q−2
C

−→ Ap,q
C

)
. (3.2)

In general, ∂̄ does not square to 0 on M , and its cohomology is not well defined. From
the relation ∂̄μ̄ + μ̄∂̄ = 0, ∂̄ is well defined on cohomology classes of H p,q

μ̄ , and

thanks to ∂̄2 + μ̄∂ + ∂μ̄ = 0, it squares to 0, thus we can define [6, Definition 3.1] the
Dolbeault cohomology of the almost complex manifold (M, J ) as the ∂̄-cohomology
of the μ̄-cohomology, i.e.,

H p,q
Dol = ker(∂̄ : H p,q

μ̄ −→ H p,q+1
μ̄ )

Im(∂̄ : H p,q−1
μ̄ −→ H p,q

μ̄ )
. (3.3)

The cohomology groups are well defined and if μ̄ = 0, they coincide with the usual
Dolbeault cohomology groups for complex manifolds. As in the complex case, the
Dolbeault cohomology is induced by a filtration on differential forms and has an
associated spectral sequence that coincides with the Frölicher spectral sequence of
complex manifolds if μ̄ = 0. We recall here the construction: consider the filtration

F p Ak
C

= Ap,q
C

∩ ker μ̄ ⊕
⊕

j≥p+1

A j,k− j
C

. (3.4)

The filtration is bounded by 0 from below and by m from above. With a shift of
indexing, the filtration coincideswith the filtration of a suitablemulticomplex endowed
with 4 differentials, and the two spectral sequences are isomorphic, up to taking pages
shifted by one step. Denote by

E p,q
r , p, q = 0, . . . ,m, r ≥ 1, (3.5)

the pages of the sequence.Then E p,q
1

∼= H p,q
Dol and the (r+1)-th page is the cohomology

of the previous one,
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E p,q
r+1

∼= ker(dr : E p,q
r −→ E p+r ,q−r+1

r )

Im(dr : E p−r ,q+r−1
r −→ E p,q

r )
, (3.6)

with respect to the differential dr , |dr | = (r ,−r + 1). An explicit description up to
isomorphism of the differential dr and of the pages of the spectral sequence is given
in [14] for a general multicomplex, and was first described in [9] for the Frölicher
spectral sequence of a complex manifold. For page 1, we have

E p,q
1

∼= {α ∈ Ap,q
C

∩ ker μ̄ : ∂̄α ∈ Im μ̄}
{η ∈ Ap,q

C
: η = μ̄a + ∂̄b and μ̄b = 0} , (3.7)

and if ∂̄α = μ̄ϕ, then

d1[α]E1 = [∂α − ∂̄ϕ]E1 . (3.8)

In general, we have an isomorphism

E p,q
r

∼= X p,q
r

Y p,q
r

, (3.9)

where

X p,q
r =

{
α p,q ∈ Ap,q

C
: there exist α p+ j,q− j , j = 1, . . . r , satisfying

0 = μα p+k,q−k + ∂α p+k+1,q−k−1 + ∂̄α p+k+2,q−k−2 + μ̄α p+k+3,q−k−3, k ∈ Z

}

(3.10)

where the equation has to be read with α p+k,q−k = 0 if k is not 0, 1, . . . , r , and

Y p,q
r =

{
ηp,q ∈ Ap,q

C : there exist ηp− j,q+ j−1, j = −1, 0, . . . , r − 1 satisfying

ηp,q = μηp−2,q+1 + ∂ηp−1,q + ∂̄ηp,q−1 + μ̄ηp+1,q−2,

0 = μηp−k,q+k−1 + ∂ηp−k+1,q+k−2 + ∂̄ηp−k+2,q+k−3

+ μ̄ηp−k+3,q+k−4 k = 3, . . . , r − 1
}
. (3.11)

We say that the spectral sequence degenerates at page r , for bidegree (p, q), and write
E p,q
r

∼= E p,q∞ , if

E p,q
r

∼= E p,q
j ∀ j ≥ r . (3.12)

The spectral sequence degenerates at page r if it degenerates at page r for all bidegrees.
At the E∞ page, the degeneration of the spectral sequence induces a bigrading on

the de Rham cohomology of the almost complex manifold. In particular, E p,q∞ consists
of cohomology classes in H p+q

dR (C) that admit a complex representative of bidegree
(p, q).
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4 Inclusion of J-Invariant Cohomology into Dolbeault Cohomology

Denote by H+
C

= H+ ⊗ C the complexified of the J -invariant cohomology group.
We are going to study under which conditions H+

C
is isomorphic to a subgroup of

H1,1
Dol through the isomorphism of (3.9) between the Frölicher spectral sequence and

the quotients X p,q
r /Y p,q

r .
The results are stated in Theorem 4.2, that gives a characterization valid in the

almost complex case. At the end, we briefly investigate the stability of the condition
found in the theorem under small deformations (in the integrable case).

For almost complex manifolds of any dimension, H+
C
consists of complex de Rham

cohomology classes in H2
dR(C) that admit a representative of type (1, 1) (cf. [10],

Lemma 2.11).
We begin considering the map in cohomologies induced by the identity on repre-

sentatives and show that it is never well defined.

Proposition 4.1 Let (M, J ) be an almost complex manifold. The map

H+
C

−→ H1,1
Dol

[α1,1]+ 
−→ [α1,1]Dol

is not well defined.

Proof The cohomology class [α1,1]+ is written as

[α1,1]+ = {α1,1 + d(β1,0 + β0,1) : dα1,1 = 0}.

In particular, ∂̄α1,1 = μ̄α1,1 = 0. This implies that there exists a cohomology class
in H1,1

Dol given by [α1,1]Dol . However the definition of the map is not independent of
the representative chosen in [α1,1]+. We show now that this independence can never
occur. Checking independence on the representative reduces to check that

[0]+ ⊆ [0]Dol ∈ H1,1
Dol .

Assume that this is the case, i.e. that

d(β1,0 + β0,1) ∈ [0]Dol ∀β1,0 ∈ A1,0
C

, β0,1 ∈ A0,1
C

.

Taking β0,1 = 0, we have that

[dβ1,0]Dol = [∂β1,0 + ∂̄β1,0 + μ̄β1,0]Dol = [∂β1,0 + ∂̄β1,0]Dol .

Since the terms ∂β1,0 and ∂̄β1,0 have different bidegree, they must be in the trivial
class separately. The first one is trivial if and only if ∂β1,0 = 0 for every β1,0 ∈ A1,0

C
.

In other words ∂ must vanish on (1, 0)-forms. The second one is trivial if and only
if μ̄ vanishes on (1, 0)-forms, i.e. if the almost complex structure J is integrable.
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This proves that if the inclusion is well defined M must be a complex manifold with
vanishing ∂ on (1, 0)-forms. This is not the case even on complex tori. ��

In order to obtain an affirmative result, we must consider the inclusion up to iso-
morphism. In particular we focus on the isomorphism (3.9), that allows to use the
explicit description of the pages of the spectral sequence recalled in (3.10) and (3.11).

At bidegree (1, 1), the r -th page of the spectral sequence is E1,1
r

∼= X1,1
r /Y 1,1

r ,
where

X1,1
1 = {α1,1 : 0 = μ̄α1,1 = ∂̄α1,1 + μ̄α2,0},

X1,1
2 = {α1,1 : 0 = μ̄α1,1 = ∂̄α1,1 + μ̄α2,0 = ∂α1,1 + ∂̄α2,0},

X1,1
3 = {α1,1 : 0 = μ̄α1,1 = ∂̄α1,1 + μ̄α2,0 = ∂α1,1 + ∂̄α2,0 = μα1,1 + ∂α2,0},

Y 1,1
1 = {η1,1 = ∂̄η1,0, μ̄η1,0 = 0},

Y 1,1
2 = Y 1,1

3 = {η1,1 = ∂̄η1,0 + ∂η0,1, μ̄η1,0 + ∂̄η0,1 = 0}.

Note that the spectral sequence at bidegree (1, 1) degenerates at most at page 3
independently of the dimension of the manifold. In fact |dr | = (r ,−r + 1), then

0
dr−−−−→ E1,1

r
dr−−−−→ 0,

if r ≥ 3, and E1,1∞ = E1,1
3 . If m = 2, then it degenerates at the second page. Indeed, if

M is compact, J is integrable andm = 2 (i.e., if M is a compact complex surface) or if
M is a compact Kähler manifold of any dimension, it degenerates at the first page and
the Dolbeault cohomology group at bidegree (1, 1) is isomorphic to the complexified
of H+ (cf. [13], Theorem 2.16).

If J is integrable, we simply have

X1,1
1 = {α1,1 : 0 = ∂̄α1,1},

X1,1
2 = {α1,1 : 0 = ∂̄α1,1 = ∂α1,1 + ∂̄α2,0},

X1,1
3 = {α1,1 : 0 = ∂̄α1,1 = ∂α1,1 + ∂̄α2,0 = ∂α2,0},

Y 1,1
1 = {η1,1 = ∂̄η1,0},

Y 1,1
2 = Y 1,1

3 = {η1,1 = ∂̄η1,0 + ∂η0,1, ∂̄η0,1 = 0}.

Before stating the theorem, we make a consideration on the spectral sequence at
bidegree (0, 1). We have

0
d3−−−−→ E0,1

3
d3−−−−→ 0,

so that E0,1
3 = E0,1

r for all r ≥ 3, but E0,1
1 = E0,1

2 does not imply E0,1
2 = E0,1

3 , since
in general

E0,1
2

d2−−−−→ E2,0
2
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does not vanish.
In what follows we establish a necessary and sufficient condition in order to have

an inclusion up to isomorphism of the complexified J -invariant cohomology into the
Dolbeault cohomology.

Theorem 4.2 Let (M, J )be analmost complexmanifold.Denote byϕ the isomorphism
E p,q
r

∼= X p,q
r /Y p,q

r . Then the following conditions are equivalent

(i) ϕ(H+
C

) ⊆ ϕ(H1,1
Dol );

(ii) E0,1
1

ϕ∼= E0,1
2 .

If (i) [or (ii)] holds, then the inclusion is injective.

Proof Using the isomorphism ϕ, (i) is equivalent to prove that

X1,1
3

Y 1,1
3

⊆ X1,1
1

Y 1,1
1

,

while (ii) is equivalent to

X0,1
1

Y 0,1
1

= X0,1
2

Y 0,1
2

.

X p,q
r and Y p,q

r satisfy by definition the following chain of inclusions:

Y p,q
1 ⊆ Y p,q

2 ⊆ · · · ⊆ Y p,q∞ ⊆ X p,q∞ ⊆ · · · ⊆ X p,q
2 ⊆ X p,q

1 .

For (p, q) = (1, 1), using that Y 1,1
2 = Y 1,1

3 , this reduces to

Y p,q
1 ⊆ Y p,q

2 ⊆ X p,q
3 ⊆ X p,q

2 ⊆ X p,q
1 .

We begin by proving that condition (i) holds if and only if Y 1,1
1 = Y 1,1

2 . In fact if

(i) is satisfied, we consider elements in the quotient X1,1
3 /Y 1,1

2 of the form 0 + Y 1,1
2 .

Such elements belong to the quotient X1,1
1 /Y 1,1

1 if Y 1,1
2 ⊆ Y 1,1

1 . Since Y 1,1
1 is always

a subset of Y 1,1
2 , we have Y 1,1

2 = Y 1,1
1 . Conversely, if Y 1,1

2 = Y 1,1
1 , then (i) reduces to

X1,1
3

Y 1,1
1

⊆ X1,1
1

Y 1,1
1

,

that is true thanks to the general relation X1,1
3 ⊆ X1,1

1 .
We prove now equivalence with (ii). The differential d1 of the spectral sequence

computed on E0,1
1 is

d1[η0,1]1 = [∂̄η1,0 + ∂η0,1]1



112 Page 10 of 28 L. Sillari, A. Tomassini

where η1,0 is any (1, 0)-form such that μ̄η1,0 + ∂̄η0,1 = 0.
Writing the explicit expression of Y 1,1

2 , we have that Y 1,1
2 ⊆ Y 1,1

1 if and only if

for all η1,0, η0,1 satisfying μ̄η1,0 + ∂̄η0,1 = 0,

there exists γ 1,0 such that ∂̄η1,0 + ∂η0,1 = ∂̄γ 1,0, with μ̄γ 1,0 = 0., i.e.

E0,1
1

d1=0−−−−−→ E1,1
1 ,

or, equivalently, X0,1
1 = X0,1

2 . This gives the desired isomorphism since E0,1
2

∼=
ker d1 ∩ E0,1

1
∼= E0,1

1 . Injectivity follows immediately from

Y 1,1
1 ∩ X1,1

3 ⊆ Y 1,1
1 = Y 1,1

3 .

��
In Example 7.1, we will show in a concrete case how the inclusion is not well

defined if the condition E0,1
1

∼= E0,1
2 is not satisfied, even in the favorable case of a

complex manifold. In Remark 7.3, we will note that Example 7.2 shows how the same
occurs for the left-invariant Dolbeault cohomology on an almost complex manifold
(the left-invariant cohomology will be introduced in the following sections).

For the inclusion up to isomorphism, the key condition is the isomorphism between
two terms of the spectral sequence

E0,1
1

∼= E0,1
2 , (∗)

thus we find meaningful considering the openness and closedness of (∗) under small
deformations of complex structure.

Let M be a compact complex manifold (so that the E p,q
r are finite dimensional) and

{Jt } a deformation of complex structures on M , with small t ∈ C. An easy calculation
shows that if we assume (∗) for t = 0, the function

e0,12 (t) = dim E0,1
2 (t),

is upper semicontinuous with respect to t . Indeed we have upper semicontinuity of
h p,q(t) = dim H p,q

∂̄
(t). Then

e0,12 (t) ≤ h0,1(t) ≤ h0,1(0) = e0,12 (0).

We ask the following

Question let (M, J0) be a compact complex manifold. Is condition (∗) stable under
small deformations of the complex structure J0?
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In all the examples for which we performed computations, the stability is satisfied.
On the other side, as a consequence of Example 7.1, we have that (∗) is not a closed

condition even if we assume the integrability of J . More precisely, the example shows
the following proposition.

Proposition 4.3 There exist complex manifolds (M, J ) such that

(i) the spectral sequence satisfies

E0,1
1 �= E0,1

2 ,

(ii) there are curves of complex structures {Jt } satysfying J0 = J and

E0,1
1 (t) ∼= E0,1

2 (t)

for all small t �= 0.

The same happens at the level of the left-invariant spectral sequence for almost
complex manifold as shown in Example 7.4.

5 Dolbeault Cohomology of Lie Algebras

Let g be a real Lie Algebra of dimension 2m and J a complex structure on the vector
space g. We call J an almost complex structure on the Lie Algebra g. Consider the
Chevalley–Eilenberg complex of g, (A∗

g, d). Recall that the differential is defined as
the dual of the Lie bracket [·, ·] for 1-forms, and extended as a derivation to all forms.
J induces a bidegree on the complexified of the Chevalley–Eilenberg complex,

Ak
gC

=
⊕

p+q=k

Ap,q
gC

. (5.1)

The Dolbeault cohomology of the Lie Algebra g is the ∂̄-cohomology of the μ̄-
cohomology groups,

H p,q
Dol (g) = Hq(H p,∗

μ̄ (g), ∂̄), (5.2)

and the spectral sequence {E∗,∗
r (g)}r∈N associated to the Hodge filtration

F p Ak
gC

= Ap,q
gC

∩ ker μ̄ ⊕
⊕

j≥p+1

A j,k− j
gC

. (5.3)

is the spectral sequence of g. In the setting of Lie Algebras, it’s possible to com-
pute easily the cohomology as a matter of linear algebra and all the spaces are finite
dimensional. We set

bkg = dimC Hk
dR(g, C), (5.4)
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and

h p,q
g = dimC H p,q

Dol (g). (5.5)

As a consequence of the existence of the spectral sequence, we have Frölicher inequal-
ities (cf. [12]) for the almost complex case.

Theorem 5.1 ([6], Proposition 5.1) Let g be a real Lie Algebra, dim g = 2m, and J
an almost complex structure on g. Then

bkg ≤
∑

p+q=k

h p,q
g . (5.6)

Denote by χ(g) = ∑
k(−1)kbk the Euler characteristic of g. Then

χ(g) =
∑

p,q

(−1)p+q h p,q
g . (5.7)

Consider now a J -compatible inner product 〈·, ·〉 on g. It is possible to develop
a harmonic theory for differential operators that makes easier some computations of
cohomology groups. The Hodge ∗ operator is defined as usual by the relation

〈ϕ, η〉Vol = ϕ ∧ ∗η̄, (5.8)

with Vol denoting the volume form in A2m
gC

, and ϕ, η ∈ Ap,q
gC

. Taken δ among d, μ, ∂ ,

∂̄ , μ̄, the formal adjoint of δ is the operator

δ∗ = − ∗ δ̄ ∗ . (5.9)

The δ-Laplacian is defined as

�δ = δδ∗ + δ∗δ, (5.10)

and the space of δ-harmonic (p, q)-forms is

Hp,q
δ = Ap,q

gC
∩ ker�δ. (5.11)

On a Lie Algebra, the above spaces are always finite dimensional.
The operator μ̄∗ is the adjoint of μ̄ with respect to 〈·, ·〉, and Ap,q

gC
admits a Hodge

decomposition

Ap,q
gC

= Hp,q
μ̄ ⊕ μ̄(Ap+1,q−2

gC
) ⊕ μ̄∗(Ap−1,q+2

gC
). (5.12)

In particular, cohomology classes in H p,q
μ̄ (g) admit a μ̄-harmonic representative. For

a Lie Algebra, the Dolbeault cohomology can also be obtained as the cohomology of
the operator ∂̄μ̄, defined on μ̄-harmonic (p, q)-forms as
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∂̄μ̄(ϕ) = Hμ̄(∂̄ϕ), (5.13)

where we denoted with Hμ̄ the projection on μ̄-harmonic forms. It can be checked
that ∂̄μ̄ is a cohomological operator and

H p,q
Dol (g)

∼= ker(∂̄μ̄ : Hp,q
μ̄ → Hp,q+1

μ̄ )

Im(∂̄μ̄ : Hp,q−1
μ̄ → Hp,q

μ̄ )
. (5.14)

Taking the adjoint ∂̄ ∗̄
μ := Hμ̄ ◦ ∂̄∗, we can consider the associated Laplacian

�∂̄μ̄
= ∂̄ ∗̄

μ∂̄μ̄ + ∂̄μ̄∂̄ ∗̄
μ. (5.15)

The space of ∂̄μ̄-harmonic forms is

Hp,q
∂̄μ̄

= Hp,q
μ̄ ∩ ker�∂̄μ̄

. (5.16)

The main obstruction to using ∂̄μ̄ to study the Dolbeault cohomology, lies in the
fact that in general, ∂̄ ∗̄

μ is not the metric adjoint of ∂̄μ̄. However, this is the case in
some favorable situation, in particular for compact Lie Groups or for the left-invariant
cohomology of solvmanifolds.

6 Dolbeault Cohomology of Solvmanifolds Endowedwith a
Left-Invariant Almost Complex Structure

In this section we extend results obtained by J. Cirici and S. O. Wilson in [6] for
nilmanifolds, to the case of solvmanifolds, showing that the left-invariant Dolbeault
cohomology always satisfies Serre duality and is described by ∂̄μ̄. Finally, we show
how Theorem 4.2 can be used, together with the left-invariant cohomology, to recover
informations on the (non-left-invariant) Dolbeault cohomology.

Let M = �\G be a solvmanifold. Consider the three graded algebra:

• A∗
g, algebra of differential forms on g;

• L A∗(M), algebra of left-invariant forms on M ;
• A∗(M), algebra of differential forms on M .

There is always an isomorphism

A∗
g

∼= L A∗(M), (6.1)

and an inclusion

L A∗(M) ↪−→ A∗(M). (6.2)

Both clearly extend to the complexified version of the algebras. The isomorphism of
the Chevalley–Eilenberg complex with left-invariant forms, induces an isomorphism
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of the de Rham cohomology of g and the left-invariant de Rham cohomology of M
(i.e., the de Rham cohomology of left-invariant forms),

H∗
dR(g; C) ∼= L H∗

dR(M; C), (6.3)

but in general the inclusion is not a quasi-isomorphism, and the left-invariant de
Rham cohomology is not isomorphic to the de Rham cohomology of M . However,
that happens in some favorable case. In particular, if M itself is a compact Lie Group,
or if G is completely solvable, then

H∗
dR(g; C) ∼= H∗

dR(M; C). (6.4)

An almost complex structure J̃ defined on g induces in a natural way an almost
complex structure J on the solvmanifold M . We call such a J , a left-invariant almost
complex structure on M . J̃ is integrable if and only if J is integrable as an almost
complex structure on M .

The left-invariant Dolbeault cohomology of M is defined as the Dolbeault coho-
mology of the complexified Lie Algebra,

L H p,q
Dol (M) = H p,q

Dol (g), (6.5)

and the left-invariant spectral sequence of M as the spectral sequence associated to
the Dolbeault cohomology of g,

L E∗,∗
r = E∗,∗

r (g). (6.6)

One can consider also the non-left-invariant Dolbeault cohomology associated to J .
It is not known if this cohomology coincides with the left-invariant one, even in the
case when (6.4) holds, but this is conjectured to be true for nilmanifolds and integrable
almost complex structures (cf. [16]).

We want to prove the following theorem.

Theorem 6.1 Let M = �\G be a solvmanifold. Then for all (p, q), its left-invariant
Dolbeault cohomology is obtained as ∂̄μ̄-harmonic left-invariant forms,

L H p,q
Dol (M) ∼= LHp,q

∂̄μ̄
. (6.7)

The left-invariant spectral sequence satisfies Serre duality at every page

L E p,q
r

∼= L Em−p,m−q
r , ∀r ≥ 1. (6.8)

Before giving the proof of the theorem, we make some preliminary observation and
state some useful Lemma.
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The study of left-invariant cohomology is made easy if ∂̄ ∗̄
μ is the metric adjoint of

∂̄μ̄. A sufficient condition for this to happen (cf. [6], Lemma 5.2) is

∂ ≡ 0 on Am−1,m
gC

. (6.9)

Equivalent conditions to (6.9) are

d ≡ 0 on A2m−1
gC

, (6.10)

and

H2m
dR (g; C) ∼= C. (6.11)

We recall now some consequence of (6.10), thatwill be used to proveTheorem6.1. The
fact that ∂̄ ∗̄

μ is adjoint of ∂̄μ̄, allows to use harmonic theory to establish an isomorphism

from ∂̄μ̄-harmonic forms to the Dolbeault cohomology of g, (and consequently to the
left-invariant cohomology of M).

Proposition 6.2 ([6], Theorem 5.4) Let g be a Lie Algebra and H2m
dR (g; C) ∼= C. Then

Hp,q
μ̄ = Hp,q

∂̄μ̄
⊕ ∂̄μ̄(Hp,q−1

μ̄ ) ⊕ ∂̄ ∗̄
μ(Hp,q+1

μ̄ ), (6.12)

and ∂̄μ̄-harmonic forms are isomorphic to the Dolbeault cohomology of g,

H p,q
Dol (g)

∼= Hp,q
∂̄μ̄

. (6.13)

The Hodge ∗ operator and conjugation give, with the usual argumentation, Serre
duality for Hp,q

∂̄μ̄
, and via the above isomorphism, the first page of the left-invariant

spectral sequence also satisfies Serre duality.

Proposition 6.3 ([6], Corollary 5.5) Let g be a Lie Algebra and H2m(g; C) ∼= C. Then

H p,q
Dol (g)

∼= Hm−p,m−q
Dol (g).

For the sake of completeness, we recall the proof of the following well known
result.

Lemma 6.4 Let g be a unimodular Lie Algebra, dimR g = 2m. Then d ≡ 0 on A2m−1
gC

.

Proof Fix an inner product 〈·, ·〉 on g. Let {e j }2mj=1 be an ortonormal basis of g with

respect to the inner product and {φ j }2mj=1 its dual basis. Set

[e j , ek] =
∑

l

Cl
jkel , Cl

jk + Cl
k j = 0
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The differential on 1-forms is determined by the structure constants

dφl = −1

2

∑

j,k

Cl
jkφ

j ∧ φk .

A basis of (2m − 1)-forms is given by {φ1 ∧ · · · ∧ φ̂ j ∧ · · · ∧ φ2m}2mj=1, where φ̂ j

means that the form is omitted. Then we have

d(φ1 ∧ · · · ∧ φ̂ j ∧ · · · ∧ φ2m)

=
∑

k< j

(−1)k+1dφk ∧ φ1 ∧ · · · ∧ φ̂k ∧ · · · ∧ φ̂ j ∧ · · · ∧ φ2m

+
∑

k> j

(−1)kdφk ∧ φ1 ∧ · · · ∧ φ̂ j ∧ · · · ∧ φ̂k ∧ · · · ∧ φ2m

=
∑

k< j

(−1)k
(∑

l<n

Ck
lnφ

l ∧ φn
)

∧ φ1 ∧ · · · ∧ φ̂k ∧ · · · ∧ φ̂ j ∧ · · · ∧ φ2m

+
∑

k> j

(−1)k+1
( ∑

l<n

Ck
lnφ

l ∧ φn
)

∧ φ1 ∧ · · · ∧ φ̂ j ∧ · · · ∧ φ̂k ∧ · · · ∧ φ2m

=
∑

k< j

(−1)kCk
k jφ

k ∧ φ j ∧ φ1 ∧ · · · ∧ φ̂k ∧ · · · ∧ φ̂ j ∧ · · · ∧ φ2m

+
∑

k> j

(−1)k+1Ck
jkφ

j ∧ φk ∧ φ1 ∧ · · · ∧ φ̂ j ∧ · · · ∧ φ̂k ∧ · · · ∧ φ2m

= (−1) j
∑

k

Ck
jkV ol = (−1) j T r(ade j )Vol,

where Vol = φ1 ∧ · · · ∧ φ2m , and the last equality follows by definition of trace

Tr(ade j ) =
∑

k

〈ade j (ek), ek〉 =
∑

k

Ck
jk .

If g is unimodular, the trace of the adjoint vanishes, and so does the differential. ��
We are ready to proceed with the proof.

Proof of Theorem 6.1 Since G is a connected, simply connected solvable Lie Group
that admits a lattice, it is unimodular and by Lemma 6.4, condition (6.10) is satisfied.

Proposition 6.2 and 6.3 are valid for g and so the left-invariant Dolbeault cohomol-
ogy group of M are isomorphic to left-invariant ∂̄μ̄-harmonic forms and satisfy Serre
duality. This proves (6.7), and also (6.8) for the first page.

For r = 1, note that (L E∗,∗
1 , d1) satisfies the hypothesis of themain theorem in [15].

In fact we proved that d vanishes on A2m−1
gC

, thus also ∂ , ∂̄ and μ̄ vanish on A2m−1
gC

.
d1 is a sum of such differentials, thus d1 = 0. Serre duality at first page, d1 = 0 on
A2m−1
gC

and L Em,m
1

∼= C imply Serre duality at every page. ��
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We conclude the section applying our results to solvmanifolds and to compact Lie
Groups.

Proposition 6.5 Let M = �\G be a solvmanifold endowed with a left-invariant
almost complex structure J . Denote by L H+

C
, respectively L H p,q

Dol , its left-invariant
J -invariant cohomology, respectively its left-invariant Dolbeault cohomology, and by
H+
C
, respectively H p,q

Dol , the non-left-invariant cohomologies.

Assume that L H+
C

�
L H1,1

Dol . Then H+
C

� H1,1
Dol .

Proof Consider the following maps, induced in cohomology by the identity:

L H+
C

−→ H+
C

L [α1,1]+ 
−→ [α1,1]+

and

L H1,1
Dol −→ H1,1

Dol
L [α1,1]Dol 
−→ [α1,1]Dol

They are well defined since left-invariant forms are also ordinary differential forms,
and they are injective because of the equalities

L H+
C

∩ [0]+ = L [0]+ (6.14)
L H1,1

Dol ∩ [0]Dol = L [0]Dol (6.15)

These equalities follow from the commutativity of the differential d with the operator
L∗

γ , i.e. the pullback of left multiplication by an element γ ∈ �. In fact commutativity
of the operators implies that left-invariant forms that are the differential of a form, are
actually the differential of a left-invariant form, and this proves (6.14). Separating the
bidegree of the components of d, we have that

[μ̄, L∗
γ ] = [∂̄, L∗

γ ] = 0,

and this proves (6.15). This gives an injection of left-invariant cohomology groups into
the non-left-invariant ones. The same reasoning shows that analogousmonomorphisms
are present for the groups E0,1

1 , E0,1
2 and their left-invariant version, since E0,1

2 is
computed as the kernel of d1, that again commutes with L∗

γ .
Theorem 4.2 is true at level of non-left-invariant cohomology, and of course also

at level of left-invariant cohomologies thanks to the injection.
Assume now that L H+

C
�

L H1,1
Dol . As a consequence of Theorem 4.2, L E0,1

1 �

L E0,1
2 . On the other side, if E0,1

1
∼= E0,1

2 , then L E0,1
1

∼= L E0,1
2 at the level of left-

invariant cohomology. In particular, L E0,1
1 �

L E0,1
2 implies E0,1

1 � E0,1
2 , and using

again Theorem 4.2, we conclude that H+
C

� H1,1
Dol . ��
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This proposition allows to use a property easy to check on left-invariant cohomology
to recover information on non-left-invariant cohomology. An analogous result can be
stated for compact Lie Groups.

Let G be a compact Lie Group endowed with a left-invariant almost complex
structure J , and g its Lie Algebra.

The left-invariant Dolbeault cohomology of G is

L H p,q
Dol (G) = H p,q

Dol (g, J ).

In the same way, the left-invariant spectral sequence is given by

L E p,q
r (G) = E p,q

r (g, J ).

We recall here a result from Cirici and Wilson that shows how it is possible to inject
the left-invariant spectral sequence into the non-left-invariant one.

Proposition 6.6 ([6], Lemma 5.9) Let G be a compact Lie Group with a left-invariant
almost complex structure J . For all r ≥ 0, the inclusion L A∗(G) ↪→ A∗(G) induces
an injection

L E p,q
r (G) ↪→ E p,q

r (G, J ).

As an immediate consequence of Theorem 4.2 and Proposition 6.6, we can deduce
the following proposition for compact Lie Groups.

Proposition 6.7 Let G be a compact Lie Group endowed with a left-invariant almost
complex structure J . Assume that L H+

C
�

L H1,1
Dol(G). Then H+

C
� H1,1

Dol .

7 Examples

In this section we show some example of what was proved in Sect. 4 and in Sect. 6.
We begin showing that, on a complex manifold, (∗) is not a closed condition. We

also explictly showwith computations that when it is not satisfied, cohomology classes
in H+

C
do not define cohomology classes in H1,1

∂̄
.

Example 7.1 (E0,1
1

∼= E0,1
2 is not a closed condition) We provide two examples of not

closedness of condition

E0,1
1

∼= E0,1
2 , (∗)

The first one has appeared in [5], Example 4.8, with the purpose of showing different
behaviours for the spectral sequence of a 6-dimensional nilmanifold. The example
exhibits a curve of complex structures parametrized by t , in order to prove that the
numbers dim E p,q

2 (t) are neither upper semi-continuos nor lower semi-continuous
with respect to t . The spectral sequence behaves as follows:

• For sin t = 1 we have E•,•
1 � E•,•

2 � E•,•
3

∼= E•,•∞ ;
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• For sin t = −1 we have E•,•
1 � E•,•

2
∼= E•,•∞ ;

• For |sin t | �= 1 we have E•,•
1

∼= E•,•
2 � E•,•

3
∼= E•,•∞ ;

We recall here the construction of the complex structure. Consider a 6-dimensional
real Lie Algebra spanned by {e j }, j = 1, . . . , 6. The differentials of the dual basis
determine the Lie Algebra g and we take them to be as follows:

de1 = 0, de2 = 0, de3 = 0, de4 = e12, de5 = e13 + e42, de6 = e14 + e23.

Consider the family of complex structure parametrized by t , given by

Jt e
1 = −

√
3(3 − sin t)(7 + 3 sin t)

(5 + sin t)(11 − sin t)
e2,

Jt e
3 =

√
3(3 − sin t)(11 − sin t)

(5 + sin t)(7 + 3 sin t)
e4,

Jt e
5 = −

√
(11 − sin t)(7 + 3 sin t)

3(3 − sin t)(5 + sin t)
e6,

and the nilpotent complex Lie Algebra obtained as

4ϕ1
t = √

(11 − sin t)(5 + sin t)e1 + i
√
3(3 − sin t)(7 + 3 sin t)e2,

8ϕ2
t = (5 + sin t)(7 + 3 sin t)e3 − i

√
3(5 + sin t)(3 − sin t)(11 − sin t)(7 + 3 sin t)e4,

and

128ϕ3
t = (5 + sin t)(7 + 3 sin t)

[
3(3 − sin t)

√
(11 − sin t)(5 + sin t)e5

+ i(11 − sin t)
√
3(3 − sin t)(7 + 3 sin t)e6

]
.

The basis of (1, 0)-forms parametrized by t , has the following differentials:

dϕ1
t = 0, dϕ2

t = ϕ11̄
t , dϕ3

t = 1 − sin t

2
ϕ12
t + 2ϕ12̄

t + 1 + sin t

4
ϕ21̄
t .

If |sin t | �= 1, we have that the first page of the spectral sequence is isomorphic, as a
vector space, to the second one (but not to the third one). In particular, condition (∗)
is satisfied. For sin t = 1, we have

dϕ1
t = 0, dϕ2

t = ϕ11̄
t , dϕ3

t = ϕ12̄
t + 1

2
ϕ21̄
t ,

thus H0,1
∂̄

∼= C
3, while E0,1

2
∼= C

2 and (∗) is not satisfied.
More explictly,dϕ3̄

t = ∂ϕ3̄
t = ϕ1̄2

t + 1
2ϕ

2̄1
t is ad-exact 2-formand thus belongs to the

0 class in H+
C
. However, it does not belong to the 0 class in the Dolbeault cohomology
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of (1, 1)-forms since it is not the ∂̄ of any (1, 0)-form, and so the inclusion H+
C

⊆ H1,1
∂̄

is not well defined.
The second example comes from the holomorphically parallelizable Nakamura

manifold, and its small deformations. The manifold can be obtained as the quotient of
the Lie Group G = C �φ C

2, with

φ(z) =
[
ez 0
0 e−z

]
,

by the lattice � = 〈a + ib, c + id〉. If we assume that b, d ∈ πZ (cf. [1], Example
3.4), we can compute the Dolbeault cohomology of the manifold using a sub-complex
of differential forms spanned by the (0, 1)-forms

dz1̄, e−z1dz2̄, ez1dz3̄,

and the conjugate (1, 0)-forms. In [2], it is proved that we can compute the Dolbeault
cohomology of a holomorphically parallelizable solvmanifold and its small deforma-
tions along special curves by means of a suitable sub-complex of differential forms
(cf. [2], Corollary 3.7). In particular, for the Nakamura manifold, one can consider a
curve of complex strcuture given by

t dz1̄ ⊗ ∂

∂z1
.

By [2], Proposition 4.2, along such a curve and for all t �= 0, the ∂∂̄-lemma is satisfied,
the spectral sequenceof deformations of theNakamuramanifold degenerates at thefirst
page, and so condition (∗) is satisfied. On the contrary, for t = 0 the spectral sequence
of the holomorphically parallelizable Nakamura manifold does not degenerate at the
first page.

The above manifolds, both provide a proof of Proposition 4.3.

We proceed now to compute the Dolbeault left-invariant cohomology of 4-
dimensional solvmanifolds that do not admit integrable almost complex structures.
There exists three such solvmanifolds (cf. [4]). The first one is a nilmanifold. The
second one is a symplectic, completely solvable but not nilpotent solvmanifold (Exam-
ple 7.2) and the last one is a completely solvable but not symplectic nor nilpotent
solvmanifold (Example 7.5). Calculations for the nilmanifold have already been made
in [6], Example 5.15.

Example 7.2 (�\Sol(3) × S
1) Denote by Sol(3) the solvable Lie Group of dimension

3. It can be obtained considering the groups (R,+), (R2,+) and taking the semi-direct
product Sol(3) = R �φ R

2, with

φ(t) =
[
et 0
0 e−t

]
.
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The product Sol(3)×R can be identified as a subgroup of matrices via the homomor-
phism

(t, x, y, s)
θ
−−−→

⎡

⎢⎢⎢⎢⎣

et 0 x 0 0
e−t y 0 0

1 0 0
1 s
1

⎤

⎥⎥⎥⎥⎦
∈ SL(5, R).

Denote with K the image of Sol(3) × R by θ . Then K is a subgroup of SL(5, R)

with respect to matrix multiplication, isomorphic to Sol(3) × R. By Auslander et al.
[3] (Theorem 4), K admits a lattice �. The quotient M = �\K is a solvmanifold, of
real dimension 4. An explicit construction of M can be found in [4] in the examples
following the classification of four-dimensional solvmanifolds. Taking A ∈ K and
computing A−1d A, we obtain a basis of left-invariant forms

{
e1 = dt, e2 = e−t dx, e3 = etdy, e4 = ds

}
.

The dual basis of vector fields is

{
e1 = ∂

∂t
, e2 = et

∂

∂x
, e3 = e−t ∂

∂ y
, e4 = ∂

∂s

}
.

The only non-zero brackets are

[e1, e2] = e2, [e1, e3] = −e3,

and the differentials of 1-forms can be obtained directly differentiating {e j }, or by
taking the dual of the Lie bracket. The only non-vanishing differentials are

de2 = −e12, de3 = e13, de24 = −e124, de34 = e134.

We can directly compute the left-invariant de Rham cohomology of M and, since
Sol(3) × R is completely solvable, it coincides with the real de Rham Cohomology:

H0
dR(M; R) = 〈1〉,

H1
dR(M; R) = 〈e1, e4〉,

H2
dR(M; R) = 〈e14, e23〉,

H3
dR(M; R) = 〈e123, e234〉,

H4
dR(M; R) = 〈e1234〉.

In particular, the Euler characteristic of M is 0. The complex de Rham cohomology
of M is obtained as the complexified of the real one.
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We shall consider two almost complex structures on M . Set

(A)

{
Je1 = e2,

Je3 = e4,
(B)

{
Je1 = e4,

Je2 = e3.

Structure (A) will provide an example of a left-invariant spectral sequence degener-
ating at the first page. This almost complex strcuture is not almost-Kähler. On the
other side, structure (B) will provide an example of a left-invariant spectral sequence
degenerating at the second page, and it is an almost-Kähler structure.

Regarding structure (A), a basis of complex vector fields is obtained by taking
projections of e1 and e3. Define

Z1 = π1,0(e1) = 1

2
(e1 − ie2), Z2 = π1,0(e3) = 1

2
(e3 − ie4).

A basis of the complexified tangent space is {Z1, Z2, Z̄1, Z̄2}, and a basis of dual
forms for the complexified Lie Algebra is {ϕ1, ϕ2, ϕ̄1, ϕ̄2}, where

ϕ1 = e1 + ie2, ϕ2 = e3 + ie4.

As for the de Rham cohomology, the differentials μ, ∂ , ∂̄ , μ̄ of complex forms can be
obtained calculating the differential of the complex forms starting from the real ones,
then separating the bidegrees, or else by duality from the brackets. The differentials
are

1 − forms: μϕ1 = 0, ∂ϕ1 = 0, ∂̄ϕ1 = 1

2
ϕ11̄, μ̄ϕ1 = 0,

μϕ2 = 0, ∂ϕ2 = 1

4
ϕ12, ∂̄ϕ2 = 1

4
(ϕ12̄ + ϕ1̄2), μ̄ϕ2 = 1

4
ϕ1̄2̄,

and the conjugate equations. Note that the almost complex structure is not integrable
since μ̄ϕ2 �= 0. From the differentials on 1-form, we can compute them for all degrees,
and then compute the left-invariant spectral sequence. As a consequence of Theo-
rem 6.1, it satisfies Serre duality. We show calculations only for bidegree (1, 1). On

A1,1
C

= 〈ϕ11̄, ϕ12̄, ϕ1̄2, ϕ22̄〉,

μ̄ vanishes for bidegree reasons. ∂̄ vanishes on ϕ11̄, and ∂̄ϕ12̄ = ∂̄ϕ1̄2 = μ̄ϕ12, while
∂̄ϕ22̄ does not belong to the image of μ̄, then

X1,1
1 = 〈ϕ11̄, ϕ12̄, ϕ1̄2〉.

For bidegree reason, (1, 1)-forms cannot be in the image of μ̄, so we just have to check
the existence of a (1, 0)-form β1,0 such that η1,1 = ∂̄β1,0 and μ̄β1,0 = 0. In general,
β1,0 = aϕ1 + bϕ2. The condition μ̄β1,0 = 0 gives
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μ̄β1,0 = b

4
ϕ1̄2̄ = 0,

so it has to be β1,0 = aϕ1. Then

∂̄β1,0 = a

2
ϕ11̄,

so that Y 1,1
1 = 〈ϕ11̄〉. Taking the quotient, we have

L H1,1
Dol(M) = 〈ϕ12̄, ϕ1̄2〉 ∼= C

2.

Analogous calculations show that

L H1,0
Dol(M) = L H2,0

Dol(M) = L H0,2
Dol(M) = L H1,2

Dol(M) = {0},
L H0,1

Dol(M) = 〈ϕ1̄, ϕ2̄〉 ∼= C
2,

L H2,1
Dol(M) = 〈ϕ121̄, ϕ122̄〉 ∼= C

2,

L H0,0
Dol(M) = 〈1〉 ∼= C,

L H2,2
Dol(M) = 〈ϕ121̄2̄〉 ∼= C.

The first page is

L
AE

∗,∗
1

∼=
0 0 C

C
2

C
2

C
2

C 0 0
.

Note that the spectral sequence degenerates at the first page because separately in
every bidegree, the dimension can only decrease and at the last page their sum must
coincide with the Betti numbers of M . To compute the real J -invariant group H+, we
write forms in H2

dR as complex forms:

e14 = ϕ1 + ϕ1̄

2
∧ ϕ2 − ϕ2̄

2i
= 1

4i
(ϕ12 + ϕ1̄2 − ϕ12̄ − ϕ1̄2̄),

e23 = ϕ1 − ϕ1̄

2i
∧ ϕ2 + ϕ2̄

2
= 1

4i
(ϕ12 − ϕ1̄2 + ϕ12̄ − ϕ1̄2̄).

First adding then subtracting we obtain e14 − e23 ∈ H+ and e14 + e23 ∈ H−,

H+ =
〈
1

2i
(ϕ1̄2 − ϕ12̄)

〉
, H− =

〈
1

2i
(ϕ12 − ϕ1̄2̄)

〉
.
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This is sufficient to conclude the computation of H+ and H− since in dimension 4,
we always have a direct sum decomposition

H2
dR(M; R) = H+ ⊕ H−,

(cf. [10], Theorem 2.3).
For structure (B), the d-closed 2-form providing an almost-Kähler metric is ω =

e14+e23. The computations of the left-invariant spectral sequence proceed in the same
way as for structure (A). The only non-vanishing differentials are

∂̄ϕ2 = −1

2
ϕ12̄, μ̄ϕ2 = −1

2
ϕ1̄2̄, μ̄ϕ12 = 1

2
ϕ11̄2̄, ∂ϕ12̄ = −1

2
ϕ121̄,

and the conjugate equations. The computation of Dolbeault cohomology group is
straightforward:

L H0,0
Dol(M) = 〈1〉, L H2,2

Dol(M) = 〈ϕ121̄2̄〉,
L H1,1

Dol(M) = 〈ϕ11̄, ϕ22̄, ϕ12̄, ϕ1̄2〉 ∼= C
4,

L H0,1
Dol(M) = 〈ϕ1̄, ϕ2̄〉, L H2,1

Dol(M) = 〈ϕ121̄, ϕ122̄〉,
L H1,0

Dol(M) = 〈ϕ1〉, L H1,2
Dol(M) = 〈ϕ21̄2̄〉,

and the first page of the spectral sequence is

L
B E

∗,∗
1

∼=
0 C C

C
2

C
4

C
2

C C 0

Note that this is not the bigrading induced on the complex de Rham cohomology, since
for example dim L H1,0

Dol + dim L H0,1
Dol � dim H1

dR . The same happens for degree 2
and 3. The following page is obtained as E p,q

2
∼= X p,q

2 /Y p,q
2 . The quotients are

L E0,0
2 = 〈1〉, L E2,2

2 = 〈ϕ121̄2̄〉,
L E1,0

2 = 〈ϕ1〉, L E1,2
2 = 〈ϕ21̄2̄〉,

L E0,1
2 = 〈ϕ1̄〉, L E2,1

2 = 〈ϕ122̄〉,
L E2,0

2 = L E0,2
2 = {0},

L E1,1
2 = 〈ϕ11̄, ϕ22̄〉.

For dimension reasons, this is also the ∞ page of the spectral sequence,

L
B E

∗,∗
r

∼=
0 C C

C C
2

C

C C 0
, ∀r ≥ 2,
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and gives the induced bigrading on the de Rham cohomology. Proceeding as for
structure (A),

H+ = 〈iϕ11̄, iϕ22̄〉, H− = {0}.

Remark 7.3 In both examples, harmonic representatives of H+
C

are also harmonic

representative of L H1,1
Dol . For structure (A), the condition

L E0,1
1

∼= L E0,1
2 is satisfied,

and if we consider a non-harmonic representative in H+
C
, it still defines a class in

L H1,1
Dol , as expected from Theorem 4.2. In fact we have H+

C
= 〈ϕ1̄2 − ϕ12̄〉. The

generator is d-closed. d-exact (1, 1) forms are written as ∂̄β1,0 + ∂β0,1, with

β1,0 = aϕ1 + bϕ2, β0,1 = cϕ1̄ + dϕ2̄,

with the conditions μ̄β1,0 + ∂̄β0,1 = 0 and μβ0,1 + ∂β1,0 = 0 that are satisfied only
if b + d = 0. Immediately we have

∂̄β1,0 + ∂β0,1 = a − c

2
ϕ11̄,

that is the 0 class in L H1,1
Dol .

This is not true for structure (B), in fact if wemodify ϕ11̄ with a d-exact (1, 1)-form,
the class in L H1,1

Dol varies.

Example 7.4 (Let-invariant deformations of �\Sol(3) × S
1) In this example we com-

pute left-invariant deformations of the manifold M = �\Sol(3) × S
1. Consider the

almost complex solvmanifold endowed with a left-invariant almost complex structure
(M, J ), where J is the structure (B) of Example 7.2. We study the behaviour of the
left-invariant spectral sequence under deformations.

Since we are interested in the left-invariant cohomology, calculating deformations
of J is a matter of linear algebra. As a matrix, J is written as

J =
[

0 −I d2
I d2 0

]
,

and its small deformations are represented by a 4 × 4 matrix L satisfying

L J + J L = 0.

This last condition is written as

L =
[

A B
PBP −PAP

]

where A and B are 2 × 2 matrices and P =
[
0 1
1 0

]
.
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The deformations are also codified by a form ψ ∈ T 1,0M ⊗ T 0,1M∗ that is written
as

ψ = ψ1
1ϕ1̄ ⊗ Z1 + ψ2

1ϕ1̄ ⊗ Z2 + ψ1
2ϕ2̄ ⊗ Z1 + ψ2

2ϕ2̄ ⊗ Z2,

and must satisfy ψ = 1
2 (L − i J L). By writing out both members of the equality we

obtain the expression of ψ in function of A and B, then we compute the brackets
of the deformed structures in function of ψ and the brackets at time 0. Finally by
duality we obtain the differentials of the deformed left-invariant forms, and compute
the left-invariant spectral sequence. We classify deformations into two groups:

(i) A21 + A12 = 0 and B11 = 0,
(ii) the remaining structures.

For structures of type (i), the behaviour of the spectral sequence stays the same, and
we have degeneracy at the second page. For structures of type (ii) and t �= 0, we have
that the spectral sequence degenerates at the first page and coincides with the spectral
sequence of structure (A).

In particular this shows that condition L E0,1
1 = L E0,1

2 is not closed (at level of
left-invariant spectral sequence), since it is not satisfied for t = 0, but it is true for
deformations of class (i i).

Example 7.5 (�\G) Let G = R �σ R
3, with

σ(t) =
⎡

⎣
eα2t 0 0

eα3t 0
eα4t

⎤

⎦ ,

with α j real numbers satisfying α2 + α3 + α4 = 0. G identifies as a subgroup of
matrices, still denoted by G, via the homomorphism

(t, x, y, z) 
−−→

⎡

⎢⎢⎣

eα2t 0 0 x
eα3t 0 y

eα4t z
1

⎤

⎥⎥⎦ ∈ SL(4, R).

A proof that G admits a lattice �, and an explicit construction of the quotient can be
found, as for Example 7.2, in [4]. Then the quotient M = �\G is a solvmanifold, of
real dimension 4. A basis of left-invariant forms is

{
e1 = dt, e2 = e−α2t dx, e3 = e−α3t dy, e4 = e−α4t dz

}
.

The dual basis of vector fields is

{
e1 = ∂

∂t
, e2 = eα1t ∂

∂x
, e3 = eα3t ∂

∂ y
, e4 = eα4t ∂

∂z

}
.
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The only non-zero brackets are

[e1, e j ] = α j e j , j = 2, 3, 4.

The non-vanishing differentials are

de2 = −α2e
12, de3 = −α3e

13, de4 = −α4e
14,

de23 = α4 e
123, de24 = α3 e

124, de34 = α2 e
134.

G is completely solvable, and its left-invariant cohomology coincides with the real de
Rham Cohomology:

H0
dR(M; R) = 〈1〉,

H1
dR(M; R) = 〈e1〉,

H2
dR(M; R) = {0},

H3
dR(M; R) = 〈e234〉,

H4
dR(M; R) = 〈e1234〉.

We compute the left-invariant spectral sequence for the almost complex structure

{
Je1 = e2,

Je3 = e4,

The non-vanishing differentials on 1-forms are

∂̄ϕ1 = α2

2
ϕ11̄, ∂ϕ2 = −α3 + α4

4
ϕ12, μ̄ϕ2 = −α3 − α4

4
ϕ1̄2̄,

∂̄ϕ2 = −α3 + α4

4
ϕ1̄2 − α3 − α4

4
ϕ12̄.

The left-invariant Dolbeault cohomology is

L E∗,∗
1

∼=
0 0 C

C
2

C
2

C
2

C 0 0
.

The spectral sequence degenerates at the second page, giving the bigrading of the de
Rham cohomology:

L E∗,∗
r

∼=
0 0 C

C 0 C

C 0 0
, ∀r ≥ 2.
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