Chemistry-A European Journal

Supporting Information

Calixarenes Incorporating Sulfonamide Moieties: Versatile Ligands for Carbonic Anhydrases Inhibition

Davide Sbravati, Alessandro Bonardi, Silvia Bua, Andrea Angeli, Marta Ferraroni, Alessio Nocentini, Alessandro Casnati, Paola Gratteri,* Francesco Sansone,* and Claudiu T. Supuran

Table of contents

Experimental procedures and characterization details S2-S9
Figure S1. Structures of sulfonamide containing calix[4]arenes in cone geometry and calix[6]arenes S10
Figure S2-S52. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the synthesized compounds S11-S37
Table S1. Summary of Data Collection and Atomic Model Refinement Statistics S38
Figure S53. Crystal structure of hCA II-4b complex S39
Figure S54_MM1. Supplemental modeling figures S40

Synthetic procedures and compounds characterization

Cone 25,26,27-tris(2-ethoxyethoxy)-28-(3-N-phthalimidopropoxy)calix[4]arene (1b): In a 2-necked round-bottom flask, 25,26,27-triethoxyethoxycalix[4]arene ($1.14 \mathrm{~g}, 1.78 \mathrm{mmol}$) and $\mathrm{NaH}(55 \%$ in oil, 155 mg , $3.56 \mathrm{mmol})$ were stirred in dry DMF $(30 \mathrm{ml})$ for 15 minutes at $0^{\circ} \mathrm{C}$. Then $\mathrm{N}-3$-bromopropylphthalimide $(0.95 \mathrm{~g}$, 3.56 mmol) was added in and the mixture was stirred for 48 h at $80^{\circ} \mathrm{C}$. The reaction was monitored by TLC (Hex/AcOEt 7:3). If necessary, a catalytic amount of KI is added to favourite the alkylation. The reaction was quenched by addition of $1 \mathrm{~N} \mathrm{HCl}(20 \mathrm{ml})$ and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{ml})$. The combined organic phases were hence washed with $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \times 20 \mathrm{ml})$, brine $(3 \times 40 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(1 \times 30 \mathrm{ml})$ and eventually evaporated at rotavapor. The crude was purified by flash chromatography column (Hex/AcOEt $3: 1 \rightarrow 7: 3$) to get compound 1b as a white powder ($0.89 \mathrm{~g}, 1.07 \mathrm{mmol}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.87$ (dd, $J=$ $5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pht}$), 7.74 (dd, J=5.4, $3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pht}$), 6.74-6.48 (m, 12H, Ar), 4.53 (d, J=13.3 Hz, 2H, ArCHHaxAr), 4.49 (d, J=13.3 Hz, 2H, ArCHHaxAr), 4.20-4.07 (m, 6H, ArOCH ${ }_{2}$), 4.04 (t, J=7.2 Hz, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.95-3.80 ($\mathrm{m}, 8 \mathrm{H}, \mathrm{ArOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{~N}$), 3.60-3.47 (m, $\left.6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $3.18(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArCH} H_{\text {eq }} \mathrm{Ar}$), 3.16 ($\mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH} H_{\text {eq }} \mathrm{Ar}$), 2.42-2.28 (m, 2H, CH2CH2N), 1.22-1.16 ppm (m,9H, CH_{3}); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=168.2$ (CO), 156.6, 156.2, 135.2, 135.0, 134.9, 133.9, 132.2, 128.3, 128.3, 128.1, 123.2, 122.3 and 122.2 (Ar), 73.3, 73.2 and $72.5\left(\mathrm{ArOCH}_{2}\right), 69.9$ and $69.7\left(\mathrm{ArOCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 66.3$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $35.5\left(\mathrm{CH}_{2} \mathrm{~N}\right), 31.0$ and $30.9\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right)$, $29.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $15.3 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{51} \mathrm{H}_{57} \mathrm{NO}_{9}+\mathrm{Na}^{+}$: $850.3926[\mathrm{M}+\mathrm{Na}]^{+}$; found: 850.3941.

Cone 25,27-bis(2-ethoxyethoxy)-26,28-bis(3-N-phthalimidopropoxy)calix[4]arene (1d): In a 2-necked round-bottom flask, 25,27-bis(2-ethoxyethoxy)calix[4]arene ($0.36 \mathrm{~g}, 0.64 \mathrm{mmol}$) and NaH (55% in oil, 112 mg , $2.56 \mathrm{mmol})$ were stirred in dry DMF (10 ml) for 15 minutes at $0^{\circ} \mathrm{C}$. Then $\mathrm{N}-3$-bromopropylphthalimide (0.69 g , $2.56 \mathrm{mmol})$ was added in and the mixture was stirred for 24 h at $80^{\circ} \mathrm{C}$. The reaction was monitored by (Hex/AcOEt 3:2). The reaction was quenched with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{ml})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 30 \mathrm{ml})$. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{ml})$, brine ($3 \times 30 \mathrm{ml}$) and evaporated at reduced pressure. The crude was purified by flash chromatography column (Hex/AcOEt 3:2) to get compound 1d as a white powder ($0.19 \mathrm{~g}, 0.20 \mathrm{mmol}, 32 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.86$ (dd, $J=5.3,3.1 \mathrm{~Hz}$, $4 \mathrm{H}, \mathrm{Pht}), 7.71$ (dd, $J=5.4,3.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Pht}), 6.74$ (d, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 6.67$ (t, $J=7.2,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.59-$ $6.52(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 4.53(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCHH} \mathrm{ax} A r), 4.20-4.08\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArOCH}_{2}\right), 3.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NH}_{2}$), $3.85\left(\mathrm{t}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArOCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.52\left(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.20(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 4 \mathrm{H}$, ArCHHeqAr), 2.45-2.35 (m, 4H, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$), 1.17 ($\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.2$ (CO), 156.6, 156.0, 135.4, 134.7, 133.9, 132.3, 128.5, 128.1, 123.2, 122.3 and 122.2 (Ar), 73.3 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 72.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), \quad 69.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), \quad 66.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 35.5$ $\left(\mathrm{CH}_{2} \mathrm{NH}_{2}\right)$, $31.0(\mathrm{ArCH} 2 \mathrm{Ar})$, $29.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $15.3 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{58} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{10}+\mathrm{Na}^{+}$: $965.3984[\mathrm{M}+\mathrm{Na}]^{+}$; found: 965.4006.

General procedure for phthalimide removal. In a 2-necked round-bottom flask, the phtalimido derivative and $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (10 eq x each phthalimide group) were stirred in EtOH for $4 \mathrm{~h}-18 \mathrm{~h}$ at reflux. The reaction was monitored by TLC (AcOEt). The reaction was quenched by solvent evaporation at rotavapor (warning: collect the condensed vapours in acidic solution to trap the excess of $\mathrm{NH}_{2} \mathrm{NH}_{2}$). The residue was suspended in 1 N NaOH . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 x)$ and finally the combined organic phases were evaporated at rotavapor.
Cone 25,26,27-tris(2-ethoxyethoxy)-28-(3-aminopropoxy)calix[4]arene (2b). Compound $\mathbf{2 b}$ was obtained as a colourless oil ($0.71 \mathrm{~g}, 1.02 \mathrm{mmol}, 95 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=6.81-6.73$ (m, $4 \mathrm{H}, \mathrm{Ar}$), 6.71-6.61 (m, 6H, Ar), 6.61-6.50 (m, 2H, Ar), 4.54 (d, J=13.2 Hz, 2H, ArCHHaxAr), 4.53 (d, J=13.2 Hz, 2H, ArCHH ${ }_{a x}$ Ar), 4.26-4.10 (m, 6H, ArOCH2CH2O), 4.04 (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.89 ($\mathrm{q}, \mathrm{J}=5.6 \mathrm{~Hz}, 6 \mathrm{H}$, $\mathrm{ArOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.65\left(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $3.59\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $3.22(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}$, ArCHHeqAr), 3.21 ($\mathrm{d}, ~ J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH} H_{\text {eqAr }}$), 3.06 ($\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 2.25-2.15 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.34-1.20 ppm (m, 9H, CH3); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz} ,\mathrm{CD}{ }_{3} \mathrm{OD}$): $\delta=157.4,157.2,136.5,136.4,136.1$, 136.0, 129.6, 129.5, 129.4 and $122.7(\mathrm{Ar}), 75.0,74.6$ and $74.4\left(\mathrm{ArOCH}_{2} \mathrm{CH}_{2}\right), 71.1$ and $70.9\left(\mathrm{ArOCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 67.6 and $67.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $40.1\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $33.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $31.7(\mathrm{ArCH} 2 \mathrm{Ar})$, $15.7 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): m/z calcd for $\mathrm{C}_{43} \mathrm{H}_{55} \mathrm{NO}_{7}+\mathrm{H}^{+}: 698.4051[\mathrm{M}+\mathrm{H}]^{+}$; found: 698.4028 .

Cone 25,27-bis(2-ethoxyethoxy)-26,28-bis(3-aminopropoxy)calix[4]arene (2d). Compound 2d was obtained as a yellow oil ($0.12 \mathrm{~g}, 0.18 \mathrm{mmol}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of the protonated form: $\delta=6.83$ (d, $J=6.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 6.71(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.53-6.48(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 4.46(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 4 \mathrm{H}$, ArCH $H_{\text {axAr }}$), $4.19\left(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArOCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $4.03\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$, $3.82(\mathrm{t}, \mathrm{J}=5.6$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{ArOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.55 (q, J=6.9 Hz, 4H, CH2CH3), $3.23\left(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH}_{\text {eq Ar) }}\right.$), 3.25-3.15 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}$), $2.30-2.20\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.21 \mathrm{ppm}\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$); HRMS (ESI): m / z calcd for $\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{H}^{+}: 683.4055[\mathrm{M}+\mathrm{H}]^{+}$; found: 683.4042.

1,3-Alternate 25,26,27,28-tetrakis(3-azidopropoxy)calix[4]arene (5): In a 2-necked round-bottomed flask calix[4]arene ($1.88 \mathrm{mmol}, 0.80 \mathrm{~g}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(18.85 \mathrm{mmol}, 6.14 \mathrm{~g})$ were stirred in dry DMF (10 ml) for 1 h at room temperature. Then 1 -iodo- 3 -azidopropane ($9.42 \mathrm{mmol}, 1.98 \mathrm{~g}$) was added in and the mixture was stirred for 3 days at rt , monitoring the reaction by TLC (Hex/AcOEt 4:1 and 11:1). The reaction was quenched with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{ml})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{ml})$, brine $(3 \times 30 \mathrm{ml})$ and eventually the solvent was removed at rotavapor. The crude was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ to get compound 5 as colourless crystals ($0.46 \mathrm{~g}, 0.61 \mathrm{mmol}, 33 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.08(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ar}), 6.90(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 3.86\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{ArCH} \mathrm{H}_{2} \mathrm{Ar}\right)$, $3.57\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.99\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.55-1.42 \mathrm{ppm}\left(\mathrm{m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 156.6,134.0,129.4$ and $122.7(\mathrm{Ar}), 66.9\left(\mathrm{OCH}_{2}\right), 48.1\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 38.2(\mathrm{ArCH} 2 \mathrm{Ar})$, $28.8 \mathrm{ppm}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{12} \mathrm{O}_{4}+\mathrm{Na}^{+}$: 781.3657 [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$; found: 781.3674.

1,3-Alternate $\mathbf{2 5 , 2 6 , 2 7 , 2 8 - t e t r a k i s (3 - a m i n o p r o p o x y) c a l i x [4] a r e n e ~ (6) . ~ I n ~ a ~ 2 - n e c k e d ~ r o u n d - b o t t o m e d ~ f l a s k , ~}$ compound $5(0.39 \mathrm{~g}, 0.51 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(1.07 \mathrm{~g}, 4.08 \mathrm{mmol})$ were stirred in dry $\mathrm{CHCl}_{3}(20 \mathrm{ml})$ for 1 day at rt , monitoring by TLC ($\mathrm{AcOEt} / \mathrm{CH}_{3} \mathrm{OH} 95: 5+1 \% \mathrm{NEt}_{3}$). Then $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ was added in and the mixture was kept stirring for a further day at rt. The mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{ml})$. The combined organic phases were subsequently washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{ml})$ and extracted with aqueous $1 \mathrm{~N} \mathrm{HCl}(3 \times 30 \mathrm{ml})$. Then, the aqueous phase was neutralized with NaOH and extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{ml})$. The solvent was removed at rotavapor to get compound 6 as a white powder ($0.19 \mathrm{~g}, 0.29 \mathrm{mmol}, 57 \%$ yield with traces of PPh_{3} and OPPh_{3}). Compound 6 was used for the subsequent coupling without further purification. Since a preliminary NMR analysis resulted in a complicate spectrum as frequently happens for amine containing calixarenes, the following spectra were registered after treatment of the sample with HCl in methanol solution and subsequent evaporation ($2 x$) to obtain clearer patterns of signals. ${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm): 7.27 (d, $J=7.3$ $\mathrm{Hz}, 8 \mathrm{H}, \mathrm{Ar}), 7.15-7.05(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 3.93\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.80-3.65(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}$), 3.00-2.85 (m, 8H, CH2N), 2.00-1.83 ppm (m, 8H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 157.5,135.9,135.82,135.8$, 131.4, 131.36, 131.3, 125.0, 124.5 and 124.3 (Ar), $70.0,69.5$ and $69.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 49.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 38.7,38.4$ and $38.3\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right)$, 28.8, 28.4, 28.1 and $26.7 \mathrm{ppm}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; HRMS (ESI): $\mathrm{m} / 2$ calcd for $\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{H}^{+}$: $655.4218[\mathrm{M}+\mathrm{H}]^{+}$; found: 655.4193 .

Mobile 5-nitro-25,26,27,28-tetramethoxycalix[4]arene (12a). In a 2-necked round-bottom flask, $95 \% \mathrm{HNO}_{3}$ (0.2 ml) was added to a stirred solution of $25,26,27,28$-tetramethoxycalix[4]arene ${ }^{36}$ (New J. Chem. 43, 80158023 (2019) ($0.5 \mathrm{~g}, 1.03 \mathrm{mmol}$) and glacial $\mathrm{CH}_{3} \mathrm{COOH}(1.82 \mathrm{ml})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. Immediately the mixture became deep purple colored. The reaction, monitored by TLC (Hex/AcOEt 7:3), proceeded for 40 min at rt , then was quenched by adding $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and saturated NaHCO_{3} aqueous solution (10 ml) and stirring for 30 minutes. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$ and the combined organic phases were subsequently washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{ml})$. The solvent was removed by reduced pressure and the crude was purified flash chromatography column on silica gel (eluent: Hex/AcOEt 9:1) to get compound 12a as a white powder ($57 \mathrm{mg}, 0.11 \mathrm{mmol}, 10 \%$ yield). The compound is present in solution in different conformations that make difficult the precise assignment of all the peaks and a reasonable integration. For this reason, it is simply reported the list of the signals apart some of them for which it was easily possible an assignment. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.23$ (bs, Ar), 7.89 (bs, Ar), 7.36-6.78 (several m, Ar), 6.70-6.25 (several m, Ar), 4.41 (d, $J=13.6 \mathrm{~Hz}, \operatorname{ArCH} H_{a x} A r$ of the cone conformer), 4.38 ($\mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}, \operatorname{ArCH} H_{a x A r}$ of the cone conformer), 4.08 (bs, $\mathrm{ArCH} H_{\mathrm{ax}} \mathrm{Ar}$), 3.87-3.60 ($\mathrm{m}, \mathrm{ArOCH}_{3}, \mathrm{ArCH}_{2} \mathrm{Ar}$), 3.28 (d, $\mathrm{J}=13.6 \mathrm{~Hz}, \mathrm{ArCHH}_{\text {eq }} A r$ of cone conformer), 3.23 (d, J=13.6 Hz, ArCHH ${ }_{\text {eq }}$ Ar of cone conformer), 3.17-3.09 (m, ArCHHeqAr), $2.99 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{3}\right.$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.0,162.7,158.2,158.0,157.7,157.5,157.3,142.9,142.5,137.2,136.5,136.3,136.2$, $135.5,135.1,134.4,134.1,133.5,133.2,132.4,131.6,131.0,129.8,129.2,129.0,128.4,128.2,127.8,125.9$,
124.5, 123.5, 123.3, 123.0, 122.3 and 121.8 (Ar), 62.2, 61.9, 61.3, 60.9, 59.7 and $59.2\left(\mathrm{OCH}_{3}\right), 35.82,35.5$, 31.0, 30.6, 30.5, 29.72, 29.4 ppm ($\mathrm{ArCH}_{2} \mathrm{Ar}$); HRMS (ESI): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NO}_{6}+\mathrm{Na}^{+}: 548.2044$ [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$; found: 548.2063.

Mobile 5-amino-25,26,27,28-tetramethoxycalix[4]arene (13a). In a 2-necked round-bottom flask, calixarene 12a ($0.13 \mathrm{~g}, 0.25 \mathrm{mmol}$) and $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.24 \mathrm{ml}, 4.95 \mathrm{mmol})$ were dissolved in absolute $\mathrm{EtOH}(30 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml}) .10 \% \mathrm{Pd} / \mathrm{C}$ was added in catalytic amount and the mixture stirred for 18 h at reflux. After having verified the completion of the reaction by TLC (Hex/AcOEt 7:3), the solvent was removed by reduced pressure and the crude was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. The catalyst was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{ml})$ and $\mathrm{EtOH}(3 \times 20 \mathrm{ml})$. The organic mixture of solvents was evaporated at rotavapor to obtain compound 13a as a yellow powder ($0.11 \mathrm{~g}, 0.22 \mathrm{mmol}, 89 \%$ yield). The compound is present in solution in different conformations that make difficult the precise assignment of all the peaks and a reasonable integration. For this reason, it is simply reported the list of the signals apart some of them for which it was possible an assignment. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz, CDCl 3): $\delta=7.12-6.38$ (several bm, Ar), 4.41-4.31 (m, ArCHHaxAr of cone conformer), 4.10-3.39 (m, $\mathrm{ArOCH}_{3}, \mathrm{ArCH}_{a x} \mathrm{Ar}$ of cone conformer), 3.30-3.00 ppm (m, ArCHHeqAr); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CD ${ }_{3} \mathrm{OD}$): $\delta=159.8,159.3,159.0,137.7,136.6,134.9,133.8,131.8,130.2,130.0,129.6,128.9,124.0,123.1$ and 122.8 (Ar), 62.9, 62.6, 61.6, 61.0, 60.4 and $59.4\left(\mathrm{OCH}_{3}\right), 36.4$ and $31.5 \mathrm{ppm}\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right)$; HRMS (ESI): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{4}+\mathrm{H}^{+}: 496.2482[\mathrm{M}+\mathrm{H}]^{+}$; found: 496.2458.

Mobile 5-(4-N-Boc-aminobutanoylamido)-25,26,27,28-tetramethoxycalix[4]arene (14a) In a 2-necked round-bottom flask, EDC ($0.16 \mathrm{~g}, 0.85 \mathrm{mmol}$) and Boc-GABA-OH ($0.16 \mathrm{~g}, 0.78 \mathrm{mmol}$) were stirred in dry DMF $(10 \mathrm{ml})$ for 30 minutes at room temperature. Then calixarene $13 \mathrm{a}(0.35 \mathrm{~g}, 0.71 \mathrm{mmol})$ was added in and the mixture was kept stirring for 3 days at rt, monitoring by TLC (Hex/AcOEt 1:1). The reaction was quenched by removing the solvent at rotavapor and the residue was suspended in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{ml})$. The combined organic phases were washed again with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$, evaporated at rotavapor and the crude was purified by flash chromatography column on silica gel (eluent: Hex/AcOEt 1:1) to isolate compound 14 a as a white powder ($0.11 \mathrm{~g}, 0.16 \mathrm{mmol}, 23 \%$ yield). The compound is present in solution in different conformations that make difficult the precise assignment of all the peaks and a reasonable integration. For this reason, it is simply reported the list of the signals apart some of them for which it was possible an assignment. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=8.69(\mathrm{bs}, \mathrm{NH}), 8.27(\mathrm{bs}, \mathrm{NH}), 8.03(\mathrm{bs}, \mathrm{NH}), 7.60-6.30$ (several very broad signals, Ar), 5.01 (bs, 1H, NHCOO), 4.45-4.32 (m, ArCHHaxAr of the cone conformer), 3.86-3.70 (m, $\mathrm{ArOCH}_{3}, \mathrm{ArCH}_{2} \mathrm{Ar}$), 3.35-2.91 (several very broad signals, ArCHHeqAr of cone conformer, $\mathrm{CH}_{2} \mathrm{NH}$), 2.32 (bs, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), 1.86 (bs, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.55 \mathrm{ppm}\left(\mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=170.8(\mathrm{CONH}), 157.7$ and $156.9(\mathrm{Ar}), 154.8$ and $154.4(\mathrm{OC}(\mathrm{O}) \mathrm{NH}), 135.6,135.5,134.6,134.4$, 133.8, 132.6, 130.3, 129.0, 128.2, 128.0, 122.4 and 120.3 (Ar), $79.4\left(\mathrm{CH}_{3}\right)_{3}, 61.7,61.4,60.6$ and 59.8 $\left(\mathrm{OCH}_{3}\right), 39.5\left(\mathrm{CH}_{2} \mathrm{NH}\right), 36.1(\mathrm{ArCH} 2 \mathrm{Ar}), 34.5\left(\mathrm{CH}_{2} \mathrm{CO}\right), 30.6(\mathrm{ArCH} 2 \mathrm{Ar}), 28.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)\right)$, 26.7 ppm $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{41} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}^{+}$: 703.3354 [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$; found: 703.3337.

Cone 5-N-(4-Boc-aminobutanamido)-25,26,27,28-tetraethoxyethoxycalix[4]arene (14b). In a 2-necked round-bottom flask EDC $(0.11 \mathrm{~g}, 0.55 \mathrm{mmol})$ and Boc-Gaba-OH $(0.10 \mathrm{~g}, 0.51 \mathrm{mmol})$ were stirred in dry DMF $(3 \mathrm{ml})$ for 30 minutes at rt . Then a solution of calixarene $\mathbf{1 3 b}(0.33 \mathrm{~g}, 0.50 \mathrm{mmol})$ in dry DMF (4 ml) was added in and the mixture was kept stirring for 18 h at $50^{\circ} \mathrm{C}$, monitoring by TLC (AcOEt). The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{ml})$. The combined organic phases were evaporated at rotavapor and the residude was purified by flash chromatography column on silica gel (eluent: Hex/AcOEt 1:1) to get compound 14b as a white powder ($0.11 \mathrm{~g}, 0.12 \mathrm{mmol}, 26 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.02(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NHCO}), 6.85(\mathrm{bs}, 2 \mathrm{H}, \mathrm{ArN}), 6.71-6.53(\mathrm{~m}, 9 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{BocNH}), 4.52(\mathrm{~d}$, $\left.J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCHH}_{a x} \mathrm{Ar}\right), 4.48\left(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH} \mathrm{Hax}_{\mathrm{ar}} \mathrm{Ar}\right.$), 4.18-4.07(m,8H, ArOCH $\left.\mathrm{CH}_{2}\right), 3.92-3.80$ ($\mathrm{m}, 8 \mathrm{H}, \mathrm{ArOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.56 ($\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.25-3.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right.$), $3.17(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{ArCH}_{e q} \mathrm{Ar}\right), 3.13$ (d, $\left.\mathrm{J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{e q} \mathrm{Ar}\right), 2.30\left(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 1.90-1.80(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.22 \mathrm{ppm}\left(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.5$ (CONHAr), 156.9 and 156.5 (Ar), 156.3 (OCO), 153.1, 135.5, 135.3, 134.9, 134.7, 132.4, 128.2, 122.3, 121.9 and $120.1(\mathrm{Ar}), 79.5\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 73.2\left(\mathrm{ArOCH}_{2}\right), 73.1\left(\mathrm{ArOCH}_{2} \mathrm{CH}_{2}\right), 73.1\left(\mathrm{ArOCH}_{2}\right), 69.7\left(\mathrm{ArOCH}_{2} \mathrm{CH}_{2}\right), 69.6}\right.$ $\left(\mathrm{ArOCH}_{2} \mathrm{CH}_{2}\right), 66.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 39.5\left(\mathrm{CH}_{2} \mathrm{NH}\right), 34.5\left(\mathrm{CH}_{2} \mathrm{CO}\right), 30.9(\mathrm{ArCH} 2 \mathrm{Ar}), 30.86(\mathrm{ArCH} 2 \mathrm{Ar}), 28.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$,
$26.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $15.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{53} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{11}+\mathrm{Na}^{+}$: $935.5028[\mathrm{M}+\mathrm{Na}]^{+}$; found: 935.5040.

Mobile 5-N-(4-aminobutanamido)-25,26,27,28-tetramethoxycalix[4]arene (15a) In a 2 -necked roundbottomed flask, compound $14 \mathrm{a}(0.11 \mathrm{~g}, 0.17 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. Then TES $(0.53 \mathrm{ml}$, $3.35 \mathrm{mmol})$ and TFA $(0.51 \mathrm{ml}, 6.70 \mathrm{mmol})$ were added in and the mixture was kept stirring for 4 h at rt , monitoring by TLC (AcOEt). The reaction was quenched by evaporation of the solvent and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$. The organic solution was washed with $1 \mathrm{~N} \mathrm{NaOH}(2 \times 10 \mathrm{ml})$, then evaporated at rotavapor. The solid residue was triturated with hexane (2 ml) to get, upon filtration, compound $\mathbf{1 5 a}$ as a white powder ($70 \mathrm{mg}, 0.12 \mathrm{mmol}, 72 \%$ yield). The compound is present in solution in different conformations that make difficult the precise assignment of all the peaks and a reasonable integration. For this reason, it is simply reported the list of the signals apart some of them for which it was possible an assignment. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $\delta=8.53$ (s, NH), 7.80 (bs, NH), 7.45-6.40 (several very broad signals, Ar), 4.43-4.30 (bs, ArCHHaxAr of cone conformer), 4.18-3.00 (several very broad signals, $\mathrm{ArCH}_{2} \mathrm{Ar}, \mathrm{ArOCH}_{3}$), 2.79 (bs, $\mathrm{CH}_{2} \mathrm{NH}_{2}$), 2.56-2.32 ($2 \mathrm{bs}, \mathrm{CH}_{2} \mathrm{NH}_{2}$), 2.15-1.80 ($2 \mathrm{bs}, \mathrm{CH}_{2} \mathrm{CO}$), 1.87 ppm (bs, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=171.3,170.7$ and 168.6 (CO), 157.9, 155.6, 154.5, 136.6, 135.3, 133.8, 133.2, 132.2, 131.0, 129.0, 128.1, 123.5, 123.4, 122.4, 122.2, 120.4 and 119.2 (Ar), 62.9 , 61.5 and $60.7\left(\mathrm{OCH}_{3}\right), 42.0$ and $41.5\left(\mathrm{CH}_{2} \mathrm{NH}_{2}\right), 36.1$ and $35.1\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right)$, 32.1, 31.7, 31.6, 30.9, 30.9, $30.7\left(\mathrm{CH}_{2} \mathrm{CO}, \mathrm{ArCH}_{2} \mathrm{Ar}\right)$, $26.4 \mathrm{ppm}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; HRMS (ESI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{H}^{+}$: $581.3015[\mathrm{M}+\mathrm{H}]^{+}$; found: 581.3004.

Cone 5-N-(4-aminobutanoylamido)-25,26,27,28-tetrakis(2-ethoxyethoxy)calix[4]arene hydrochloride 15b. In a 2-necked round-bottomed flask, compound $\mathbf{1 4 b}(74 \mathrm{mg}, 0.08 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.5$ $\mathrm{ml})$. Then TES $(0.25 \mathrm{ml}, 1.57 \mathrm{mmol}$,$) and TFA (0.25 \mathrm{ml}, 3.26 \mathrm{mmol})$ were added in and the mixture was kept under stirring for 18 h at rt , monitoring by TLC (AcOEt). The reaction was quenched by removing the solvent at rotavapor. Subsequently, the residue was stirred for 15 minutes into a 1 N ethanolic solution of $\mathrm{HCl}(10 \mathrm{ml})$ and then the solvent was removed at rotavapor. This procedure was repeated 3 times after which compound 15b was obtained as white powder ($75 \mathrm{mg}, 0.088 \mathrm{mmol}, 99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=6.81$ (s, $2 \mathrm{H}, \mathrm{ArN}), 6.72(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{Ar}), 6.61(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.56(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.53-6.45(\mathrm{~m}, 1 \mathrm{H}$, Ar), 4.55 (d, $J=13.2 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{ArCH} H_{a x A r)}$, $4.15\left(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{ArOCH} \mathrm{CH}_{2}\right), 4.12-4.05\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArOCH}_{2} \mathrm{CH}_{2}\right)$, 3.94-3.85 ($\mathrm{m}, 8 \mathrm{H}, \mathrm{ArOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.65-3.54 (m, 8H, CH2CH3$)_{2}$, $3.15\left(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCHH}_{e q} \mathrm{Ar}\right), 3.12(\mathrm{~d}$, $\left.J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCHH}_{e q} \mathrm{Ar}\right), 2.99\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.44\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.02-1.90(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.27-1.16 ppm (m, 12H, CH3); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=172.2$ (CO), 157.9, 157.5, 154.2, 136.6, 136.4, 136.2, 136.0, 133.6, 129.5, 129.4, 129.2, 123.3, 123.1 and 121.5 (Ar), 74.6 and $74.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $71.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $67.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 40.4\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $34.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $31.9(\mathrm{ArCH} 2 \mathrm{Ar})$, $24.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $15.7 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m / z calcd for $\mathrm{C}_{48} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{O}_{9}+\mathrm{H}^{+}: 813.4690[\mathrm{M}+\mathrm{H}]^{+}$; found: 813.4671.

General procedure for the coupling between the amino derivatives and 4-sulfamoylbenzoic acid. In a 2-necked round-bottom flask, 4-sulfamoylbenzoic acid (2eq x each amine unit) and DIPEA (2.4eq \times reactive unit) were stirred in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 10 minutes at room temperature. Then EDC was added and the resulting mixture was stirred for 10 minutes. This mixture was hence dropped in a solution in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or dry DMF of the amino derivative and the reaction was stirred for $4-18 \mathrm{~h}$ at rt if not otherwise specified. To obtain compounds $\mathbf{3 b}$ and $\mathbf{3 c}$, the reaction was performed in a microwave reactor (2 cycles, $\mathrm{T}=80^{\circ} \mathrm{C}$, ramp time $=3$ minutes, hold time $=2 \mathrm{~h}, \mathrm{P}=200$ psi, potency $=200 \mathrm{~W}$).
Cone 25-(4-sulfamoylbenzenamido)propoxy-26,27,28-tripropoxycalix[4]arene (3a). Following the general procedure, the reaction was performed on calixarene $\mathbf{2 a}(20.0 \mathrm{mg}, 3.40 \mu \mathrm{~mol})$ dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. The mixture was stirred for 18 h and monitored by $\mathrm{TLC}\left(\mathrm{AcOEt} / \mathrm{CH}_{3} \mathrm{OH} 4: 1\right)$. The reaction was quenched with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{ml})$ and the organic phase separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{ml})$ and finally evaporated at rotavapor to get compound 3 a as a white powder ($11.0 \mathrm{mg}, 13.9 \mu \mathrm{~mol}, 41 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.03-7.98$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{ArSO}_{2}$), 6.67-6.49 (m, 12H, Ar), 4.67 (s, 2H, ArNHz), $4.50\left(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCHH}_{2 x} \mathrm{Ar}\right), 4.48$ (d, J $\left.=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2 x} \mathrm{HAr}\right), 4.06\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.93-3.80\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.60$ $\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}\right.$), $3.16\left(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArCH}_{e q} \mathrm{HAr}\right), 3.15\left(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCHH}_{e q} A r\right), 2.27-$
$2.20\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 2.05-1.90 (m, 6H, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.10-.99\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$; HRMS (ESI): m / z calcd for $\mathrm{C}_{47} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}-\mathrm{H}^{+}: 789.3579[\mathrm{M}-\mathrm{H}]$; found: 789.3561.

Cone 25,26,27-tris(2-ethoxyethoxy)-28-(4-sulfamoylbenzenamido)propoxycalix[4]arene (3b): The reaction was performed on calixarene $\mathbf{2 b}(0.10 \mathrm{~g}, 0.14 \mathrm{mmol})$ in dry DMF (6 ml), following the general procedure and monitored by $\mathrm{TLC}\left(\mathrm{AcOEt} / \mathrm{CH}_{3} \mathrm{OH} 9: 1\right)$. The reaction was quenched with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{ml})$. The combined organic phases were washed with brine $(2 \times 20 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}$ $(1 \times 30 \mathrm{ml})$ and finally evaporated at rotavapor. The residude was purified by flash chromatography column (AcOEt/Hex 1:1) to get compound 3b as a white powder ($59.9 \mathrm{mg}, 0.068 \mathrm{mmol}, 48 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.59\left(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right.$), $8.01\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArSO}_{2}\right), 7.97\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArSO}_{2}\right)$, 6.67-6.59 (m, 8H, Ar), 6.59-6.51 (m, 4H, Ar), 4.55 (d, $J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCHH}_{a x} A r$), $4.53(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}$, ArCHH ${ }_{a x}$ Ar), 4.20-4.09 (m, 6H, OCH $H_{2} \mathrm{CH}_{2} \mathrm{O}$), $4.06\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.89(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.88\left(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.62\left(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.56(\mathrm{q}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.17 ($\mathrm{d}, ~ J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCHH}_{e q} \mathrm{Ar}$), $3.12(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCHH}$ eqAr), 2.40-2.25 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.19\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=168.7$ (CO), 157.6, 157.5, 147.6, 139.1, 136.3, 136.2, 129.4, 129.3, 129.0, 127.3 and 123.3 (Ar), 74.4, 74.3, $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 74.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, 71.2 and $71.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 67.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 38.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 31.9$ ($\mathrm{ArCH} \mathrm{CH}_{2} \mathrm{Ar}$), $31.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $15.7\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): m/z calcd for $\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}-\mathrm{H}^{+}: 879.3896[\mathrm{M}-\mathrm{H}]$; found: 879.3919.

Cone 25,27-dipropoxy-26,28-bis(3-(4-sulfamoylbenzamido)propoxy)calix[4]arene (3c). The reaction was performed on calixarene $\mathbf{2 c}(64.5 \mathrm{mg}, 0.10 \mathrm{mmol})$ dissolved in dry DMF (6 ml), following the general procedure and monitored by TLC (AcOEt). The reaction was quenched with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times 20 \mathrm{ml})$. The combined organic phases were washed with brine $(2 \times 20 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1 \times 30 \mathrm{ml})$, then evaporated at rotavapor. The residue was purified by semipreparative TLC (AcOEt/Hex 7:3) to get compound 3 c as a white powder ($7.90 \mathrm{mg}, 7.99 \mu \mathrm{~mol}, 8 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.98\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArSO}_{2}\right)$, $6.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 6.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.37(\mathrm{bs}, 6 \mathrm{H}, \mathrm{Ar}), 4.48\left(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH} \mathrm{Hax}_{\mathrm{ar}}\right.$), 4.31 (bs, NH NH_{2}, $4.15\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.78\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.55(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 3.16 (d, $J=13.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCHH}$ eq Ar), 2.45-2.30 (m, 4H, CH2CH 2 NH), 1.95$1.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.01 \mathrm{ppm}\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=168.7$ (CO), 157.1, 147.8, 137.3, 135.3, 129.7, 129.0, 127.4, 123.3 and $123.0(\mathrm{Ar}), 78.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 74.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right)$, $38.5\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $32.0(\mathrm{ArCH} 2 \mathrm{Ar})$, $31.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right)$, $24.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $11.1 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{54} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}_{2}-\mathrm{H}^{+}$: 987.3678 [M-H]; found: 987.3701.

Cone 25,26,27,28-tetrakis(4-sulfamoylbenzenamido)propoxycalix[4]arene (3e). Following the general procedure, the reaction was performed on calixarene $\mathbf{2 e}(100 \mathrm{mg}, 0.15 \mathrm{mmol})$ dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ dry DMF ($20 \mathrm{ml}, 3: 1$) and monitored by $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 9: 1\right)$. The reaction was quenched after 48 h with 1 N HCl $(5 \mathrm{ml})$ and extracted with AcOEt $(3 \times 30 \mathrm{ml})$. The combined organic phases were washed with brine $(2 \times 20 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1 \times 30 \mathrm{ml})$, then evaporated at rotavapor. The residue was triturated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then further purified by exclusion chromatography on Sephadex $\mathrm{LH}-20$ column (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 1: 3$) to obtain 3 e as white solid ($42 \mathrm{mg}, 0.03 \mathrm{mmol} 17 \%$). Mp: 162.7-165; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.90-7.76$ (m, 16H, ArSO_{2}), 6.65-6.50 (m, 12H, Ar), $4.47\left(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCHH} 4 \mathrm{ax}\right.$), $4.03\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 8 \mathrm{H}, 0 \mathrm{OH}_{2}\right), 3.61(\mathrm{t}$, $\left.J=7.5 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.16\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH} H_{\text {eq }} \mathrm{Ar}\right), 2.38-2.25 \mathrm{ppm}\left(\mathrm{m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , [D6]acetone): $\delta=165.1$ (CO), 155.2, 146.2, 138.1, 135.0, 128.2, 127.9, 126.1 and 122.1 (Ar), 71.9 $\left(\mathrm{OCH}_{2}\right)$, $38.7\left(\mathrm{NCH}_{2}\right)$, $30.6(\mathrm{ArCH} 2 \mathrm{Ar})$, $30.3 \mathrm{ppm}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; HRMS (ESI): m / z calcd for $\mathrm{C}_{68} \mathrm{H}_{72} \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{~S}_{4}-\mathrm{H}^{+}$: 1383.387 [M-H]; found: 1383.386.
$37,38,39,40,41,42$-Hexakis(4-sulfamoylbenzenamido)propoxycalix[6]arene (3f). Following the general procedure, the reaction was performed on calixarene $2 f(50 \mathrm{mg}, 0.05 \mathrm{mmol})$ dissolved in dry DMF (9 ml), and monitored by TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 9: 1\right)$. In this case the mixture was stirred at reflux 18 h . The reaction was quenched with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{ml})$. The combined organic phases were washed with brine $(2 \times 20 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1 \times 30 \mathrm{ml})$, then evaporated at rotavapor. The residue was purified by crystallization from EtOH to give 3 f as slightly brownish solid ($100 \mathrm{mg}, 0.048 \mathrm{mmol}, 94 \%$); m.p.: $214.8-218{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz},[\mathrm{D} 6] \mathrm{DMSO}, 333 \mathrm{~K}$): $\delta=8.21$ (bs, 6H, NH), 7.91-7.76 (m, 24H, ArSO 2$), 7.29(\mathrm{~s}, 12 \mathrm{H}$,
$\mathrm{SO}_{2} \mathrm{NH}_{2}$), 6.84 (bd, $\mathrm{J}=7.6 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{Ar}$), 6.71 (bt, $\mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar}$), 3.88 (bs, 12H, $\mathrm{ArCH} \mathrm{H}_{2} \mathrm{Ar}$), 3.56 (bs, 12H, OCH_{2}), $3.30\left(\mathrm{bs}, 12 \mathrm{H}, \mathrm{NCH}_{2}\right.$), $1.69 \mathrm{ppm}\left(\mathrm{bs}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$); HRMS (ESI): m / z calcd for $\mathrm{C}_{102} \mathrm{H}_{108} \mathrm{~N}_{12} \mathrm{O}_{24} \mathrm{~S}_{6}-$ $2 \mathrm{H}^{+}$: $1037.289[\mathrm{M}-2 \mathrm{H}]^{2-}$; found: 1037.291.

N-(3-phenoxypropyl)-4-sulfamoylbenzamide (10). Following the general procedure, the reaction was performed on 1-phenoxy-3-aminopropane $8(0.15 \mathrm{~g}, 0.69 \mathrm{mmol})$ dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$, and monitored by TLC ($\mathrm{AcOEt} / \mathrm{CH}_{3} \mathrm{OH} 4: 1$). The mixture was stirred 18 h and when the reaction resulted complete was diluted with EtOAc $(20 \mathrm{ml})$ and extracted with $1 \mathrm{M} \mathrm{NaOH}(4 \times 15 \mathrm{ml})$. The basic aqueous solution was therefore treated with $1 \mathrm{~N} \mathrm{HCl}(70 \mathrm{ml})$ till $\mathrm{pH}=1$ and the suspension formed in this way was filtered out to get compound 10 as white powder ($0.19 \mathrm{~g}, 0.58 \mathrm{mmol}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},[\mathrm{D} 6] \mathrm{DMSO}$): $\delta=8.74(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}$, NHCO), 8.00 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArSO}_{2}$), $7.90\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArSO}_{2}\right), 7.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SO}_{2} \mathrm{NH}_{2}\right), 7.29(\mathrm{t}, \mathrm{J}=7.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.93(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar}), 4.05\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.50-3.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right)$, 2.10-1.95 ppm (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, [D6]DMSO): $\delta=165.7$ (CO), 159.0, 146.6, 137.9, 129.9, 128.3, 126.1, 120.9 and $114.9(\mathrm{Ar})$, $65.6\left(\mathrm{OCH}_{2}\right)$, $37.0\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $29.3 \mathrm{ppm}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}-\mathrm{H}^{+}$: 333.0915 [M-H]; found: 333.0899.

General procedure for the coupling between the amino derivatives and 4isothiocyanatebenzenesulfonamide. In a 2-necked round-bottom flask, 4isothiocyanatobenzenesulfonamide (2.0 eq x amine unit) and the amino derivative are reacted in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or dry DMF or in a mixture of both for 4h-4days at it in presence of DIPEA (2eq x reactive unit).
Cone 25,26,27-tris(2-ethoxyethoxy)-28-(3-((4-benzensulfonamidyl)thioureido)propoxy)calix[4]arene (4b). Following the general procedure, the reaction was performed on calixarene $\mathbf{2 b}(0.10 \mathrm{~g}, 0.14 \mathrm{mmol})$ dissolved in DMF/CH2Cl2 (7 ml , 2:5), and monitored by TLC (AcOEt/Hex 7:3). After 18 h , the reaction was quenched with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{ml})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$. The combined organic phases were evaporated at rotavapor and the crude was purified by flash chromatography column (AcOEt/Hex $7: 3$) to get compound $\mathbf{4 b}$ as a white powder ($0.10 \mathrm{~g}, 0.11 \mathrm{mmol}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.59$ (bs, 1H, CSNH), 8.04-7.96 (m, 4H, ArSO ${ }_{2}$), 6.70-6.48 (m, 12H, Ar), $4.55\left(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH} \mathrm{Hax}_{\mathrm{ar}}\right.$), 4.52 (d, J=13.2 Hz, 2H, ArCHHaxAr), 4.20-4.07 (m, 6H, OCH $\mathrm{OH}_{2} \mathrm{O}$), $4.04\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$), 3.98-3.80 (m, 6H, $\mathrm{ArOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.70-3.55 (m, 2H, CH ${ }_{2} \mathrm{~N}$), $3.58\left(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.18$ (d, $J=13.2$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArCH} H_{e q} \mathrm{Ar}\right), 3.15\left(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{\text {eq }} \mathrm{Ar}\right), 2.40-2.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.30-1.12 \mathrm{ppm}$ (m, 9H, CH_{3}); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{3} \mathrm{OD}$): $\delta=182.5$ (CS), 157.7, 157.6, 144.2, 140.0, 136.3, 136.1, 129.4, 129.36, 129.3, 128.0, 123.3 and 123.2 (Ar), 74.5 and $74.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 73.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, 71.2 and $71.15\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 67.44 and $67.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $43.1\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, 32.0 and $31.9(\mathrm{ArCH} 2 \mathrm{Ar}), 30.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $15.7 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{50} \mathrm{H}_{61} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~S}_{2}-\mathrm{H}^{+}: 910.3776[\mathrm{M}-\mathrm{H}]$; found: 910.3783.

Cone 25,27-dipropoxy-26,28-bis(3-((4-benzensulfanamidyl)thioureido)propoxy)calix[4]arene (4c): Following the general procedure, the reaction was performed on calixarene $2 \mathrm{c}(85 \mathrm{mg}, 0.14 \mathrm{mmol})$ dissolved in dry DMF/dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{ml}, 1: 1)$, and monitored by TLC (AcOEt/ $\mathrm{CH}_{3} \mathrm{OH} 9: 1+1 \% \mathrm{NEt}_{3}$). After 18 h , the reaction was quenched with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{ml})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$. The combined organic phases were dried at rotavapor and the crude was purified by semipreparative TLC on silica gel (eluent: $\mathrm{AcOEt}+1 \% \mathrm{NEt}_{3}$). The solid collected was hence triturated with $\mathrm{Et}_{2} \mathrm{O}$ and, upon filtration, compound $\mathbf{4 c}$ was obtained as a white powder ($90 \mathrm{mg}, 0.092 \mathrm{mmol}, 91 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.84$ ($\mathrm{d}, \mathrm{J}=8.7$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{ArSO}_{2}$), 7.66 ($\mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArSO}_{2}$), $6.73(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 6.64(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.56-$ $6.44(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 4.61$ (bs, $\left.4 \mathrm{H}, \mathrm{NH}_{2}\right) 4.50(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{ArCHH} \mathrm{ax} \mathrm{Ar}), 4.07(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), $3.86\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 3.88-3.78 (m, 4H, OCH2CH2CH2NH), $3.17(\mathrm{~d}, \mathrm{~J}=13.2$ $\left.\mathrm{Hz}, 4 \mathrm{H}, \mathrm{ArCH} H_{\text {eq }} \mathrm{Ar}\right), 2.40-2.27\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.04-1.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.04 \mathrm{ppm}(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}$, CH_{3}). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=182.4$ (CS), 157.9, 157.5, 144.2, 140.0, 136.7, 135.8, 129.5, 129.2, 128.0, 123.5, 123.3 and $123.0(\mathrm{Ar}), 78.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 73.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 43.0\left(\mathrm{CH}_{2} \mathrm{~N}\right), 32.0(\mathrm{ArCH} 2 \mathrm{Ar})$, $31.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $24.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $11.2 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{54} \mathrm{H}_{62} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{~S}_{4}-\mathrm{H}^{+}$: 1049.344 $[\mathrm{M}-\mathrm{H}]$; found: 1049.343.

Cone 25,27-bis(2-ethoxyethoxy)-26,28-bis(3-((4-benzensulfonamidyl)thioureido)propoxy)calix[4]arene (4d): Following the general procedure, the reaction was performed on calixarene 2d ($30 \mathrm{mg}, 0.044 \mathrm{mmol}$) dissolved in dry DMF/dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{ml}, 1: 2)$, and monitored by TLC (AcOEt/Hex 4:1). After 18 h , the reaction
was quenched with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{ml})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$. The combined organic phases were dried at rotavapor and the crude was purified by semipreparative TLC (AcOEt/Hex 4:1) to get compound 4d as a white powder ($11 \mathrm{mg}, 0.010 \mathrm{mmol}, 23 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.85$ (d, $J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArSO}_{2}$), 7.65 (d, J=8.7 Hz, 4H, ArSO 2), 6.70-6.50 (m, 12H, Ar), 4.53 (d, J=13.3 Hz, 4H, ArCHH ${ }_{a x} A r$), $4.13\left(\mathrm{t}, \mathrm{J}=.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.07\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.89(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.85 (bt, $\mathrm{J}=7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.56 ($\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.18 (d, J=13.3 Hz, 4H, $\mathrm{ArCH}_{\text {eq }} \mathrm{Ar}$), 2.40-2.28 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.18 \mathrm{ppm}\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=182.3$ (CS), 157.7, 157.5, 144.1, 140.0, 136.2, 129.4, 128.0, 123.3 and $123.2(\mathrm{Ar}), 74.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 74.0$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $71.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 67.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 43.2\left(\mathrm{CH}_{2} \mathrm{~N}\right), 31.9\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right), 30.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 15.8$ ppm (CH_{3}); HRMS (ESI): m/z calcd for $\mathrm{C}_{56} \mathrm{H}_{66} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{~S}_{4}-\mathrm{H}^{+}: 1109.365[\mathrm{M}-\mathrm{H}] ;$ found: 1109.368.

37,38,39,40,41,42-Hexakis(4-benzensulfonamidylthioureido]propoxycalix[6]arene (4f). Following the general procedure, the reaction was performed on calixarene $\mathbf{2 f}(50 \mathrm{mg}, 0.051 \mathrm{mmol}$) dissolved in dry DMF (6 $\mathrm{ml})$, and monitored by $\mathrm{TLC}\left(\mathrm{AcOEt} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 2\right)$. In this case the mixture was stirred at reflux. After 24 h , the reaction was quenched by evaporation of the solvent and addition of $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{ml})$. The precipitate is filtered on a büchner and triturated with EtOH to obtain $\mathbf{4 f}$ as a slight brownish solid ($78 \mathrm{mg}, 74 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz},[\mathrm{D} 6] \mathrm{DMSO}, 353 \mathrm{~K}): \delta=9.58(\mathrm{bs}, 6 \mathrm{H}, \mathrm{CSNH}), 7.71-7.63\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{ArSO}_{2}\right), 6.97\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{SO}_{2} \mathrm{NH}_{2}\right), 6.92$ (d, $J=6.9 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{Ar}), 6.82$ (t, J=6.9 Hz, 6H, Ar), 3.93 (bs, 12H, ArCH2Ar), 3.55 (bs, 12H, OCH ${ }_{2}$), 3.42 (bs, 12H, NCH_{2}), $1.63 \mathrm{ppm}\left(\mathrm{bs}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$); HRMS (ESI): m/z calcd for $\mathrm{C}_{102} \mathrm{H}_{114} \mathrm{~N}_{18} \mathrm{O}_{8} \mathrm{~S}_{12}-2 \mathrm{H}^{+}: 1130.253[\mathrm{M}-2 \mathrm{H}]^{2-}$; found: 1130.251.

1,3-Alternate 25,26,27,28-tetrakis(4-benzensulfonamidylthioureido)propoxycalix[4]arene (7). Following the general procedure, the reaction was performed on calixarene $6(0.19 \mathrm{~g}, 0.29 \mathrm{mmol})$ dissolved in dry DMF $(20 \mathrm{ml})$, and monitored by $\operatorname{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH} 3 \mathrm{OH} 9: 1\right)$. After 18 h , the mixture was concentrated at rotavapor $(10 \mathrm{ml})$ and $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{ml})$ was added to the residue. The precipitate was filtered on a büchner and the solid recrystallized from acetone/Et2 O to get compound 7 as a brownish powder ($0.22 \mathrm{~g}, 0.15 \mathrm{mmol}, 50 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, [D6]acetone): $\delta=7.95-7.75\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{ArSO}_{2}\right), 7.16$ (d, J=7.3 Hz, 8H, Ar), $6.95(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{Ar}), 6.51\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{SO}_{2} \mathrm{NH}_{2}\right), 3.92$ (bs, $8 \mathrm{H}, \mathrm{ArCH} \mathrm{Al}_{2}$), $3.48-3.44$ (m, 16H, $\mathrm{CH}_{2} \mathrm{~N}$ and OCH_{2}), 1.67-1.61 ppm (m, $8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, [D6]acetone) $\delta(\mathrm{ppm}): 181.0$ (CS), 156.7, 143.2, 134.4, 129.8, 126.6 and $121.9(\mathrm{Ar})$, $68.1\left(\mathrm{OCH}_{2}\right), 41.4\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $37.7(\mathrm{ArCH} 2 \mathrm{Ar})$, $28.0 \mathrm{ppm}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{68} \mathrm{H}_{78} \mathrm{~N}_{12} \mathrm{O}_{12} \mathrm{~S}_{8}-2 \mathrm{H}^{+}$: 754.1741 [$\left.\mathrm{M}-2 \mathrm{H}\right]^{2-}$; found: 754.1724.

4-(3-phenoxypropyl)thioureido)benzenesulfonamide (9). Following the general procedure, the reaction was performed on 1-phenoxy-3-aminopropane ($0.11 \mathrm{~g}, 0.69 \mathrm{mmol}$) dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml), and monitored by TLC ($\mathrm{AcOEt} / \mathrm{CH}_{3} \mathrm{OH} 4: 1$). After 24 h , the reaction was quenched by addition of $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{ml})$, then the organic phase was separated and evaporated at rotavapor to get compound 9 as a light yellow powder ($0.18 \mathrm{~g}, 0.50 \mathrm{mmol}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.85$ (d, $\mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArSO}_{2}$), 7.63 (d, J=8.3 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArSO}_{2}$), $7.27(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.94(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar}), 4.09\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.82$ (bs, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 2.20-2.08 ppm (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, [D6]DMSO): $\delta=180.9$ (CS), 159.0, 138.9, 129.9, 126.7, 122.1, 121.0 and $114.9(\mathrm{Ar}), 65.8\left(\mathrm{OCH}_{2}\right), 41.6\left(\mathrm{CH}_{2} \mathrm{~N}\right) 28.6 \mathrm{ppm}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}-\mathrm{H}^{+}: 364.0795[\mathrm{M}-\mathrm{H}]$; found: 364.0817.
bis[(2-(3'-(p-benzensolfonamidyl)thioureido)propoxy-3-methyl)phenyl]methane (11). Following the general procedure, the reaction was performed on bis[(2-(3'-amino)propoxy-3-methyl)phenyl]methane (0.10 g , 0.30 mmol) dissolved in dry DMF (5 ml), and monitored by TLC (AcOEt). After 4 h , the reaction was quenched by removing the solvent at rotavapor and the resulting crude was purified by flash chromatography column (eluent: AcOEt/Hex 9:1) to get compound 11 as a light yellow powder ($0.12 \mathrm{~g}, 0.16 \mathrm{mmol}, 52 \%$ yield). Mp: 130$134{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, [D6]acetone): $\delta=9.20$ (bs, 2H, CSNHAr), 7.79 (d, J=8.7 Hz, 4H, ArSO2), 7.67 (d, $J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArSO}_{2}$), $7.66-7.65$ (bs, 2H, CH2NHCS), 7.06 ($\left.\mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}\right), 6.94(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 6.88 (d, J=7.3 Hz, 2H, Ar), $6.51\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NH}_{2}\right), 4.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH} \mathrm{H}_{2} \mathrm{Ar}\right), 3.94-3.86\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, \mathrm{OCH}_{2}\right), 2.29(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{ArCH}_{3}$), 2.22-2.10 ppm (m, 4H, CH2CH2CH2); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=182.1$ (CS), 156.8, 143.9, 140.1, 135.1, 132.2, 130.5, 129.7, 128.0, 125.1 and $123.6(\mathrm{Ar}), 72.2\left(\mathrm{OCH}_{2}\right), 44.0\left(\mathrm{CH}_{2} \mathrm{~N}\right), 30.8(\mathrm{ArCH} 2 \mathrm{Ar})$, $30.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $16.6 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{4}-\mathrm{H}^{+}$: 769.1976 [M -H]; found: 769.1961.

Mobile 5-N-(4-(4-benzensolfonamidyl)thioureido-butanamido)-25,26,27,28-tetramethoxycalix[4]arene (16a). Following the general procedure for the coupling with 4-isothiocyanatebenzenesulfonamide, the reaction was performed on calixarene $15 \mathrm{a}\left(70 \mathrm{mg}, 0.12 \mathrm{mmol}\right.$) dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{dry}$ DMF ($16 \mathrm{ml}, 15: 1$). The reaction was stirred for 4 days and monitored by $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 9: 1\right)$. Then it was quenched by removing the solvent at rotavapor and the residue was treated with $1 \mathrm{~N} \mathrm{HCl}(\mathrm{ml})$. The precipitate was collected by filtration on a büchner and purified by flash chromatography column on silica gel (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 96: 4$) to isolate compound 16a as slightly brownish powder ($25 \mathrm{mg}, 0.032 \mathrm{mmol}, 26 \%$ yield). The compound is present in solution in different conformations that make difficult the precise assignment of all the peaks and a reasonable integration. For this reason, it is simply reported the list of the signals apart some of them for which it was easily possible an assignment. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.72$ (bs, NHCS), 7.55, 7.30, 6.90, 6.72, 6.63, 6.50 (several very broad signals, Ar), 5.40 (bs, $\mathrm{SO}_{2} \mathrm{NH}_{2}$), 4.34 (bs, $\mathrm{ArCH} \mathrm{Hax}_{\mathrm{ax}} \mathrm{Ar}$ of cone conformer), 4.15-3.00 (several very broad signals, $\mathrm{ArCH}_{2} \mathrm{Ar}, \mathrm{OCH}_{3}, \mathrm{CH}_{2} \mathrm{NH}$), 2.50-1.65 ppm (several very broad signals, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$, $\mathrm{CH}_{2} \mathrm{CO}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=180.3$ (CS), 171.6 (CO), 157.8, 155.0, 135.4, 134.8, 128.2, 127.2, 122.8 (Ar) $61.4\left(\mathrm{CH}_{3}\right), 32.0,30.8,30.6,30.4,30.2,30.0,29.8,29.7,29.4,22.7,14.2 \mathrm{ppm}\left(\mathrm{ArCH} 2 \mathrm{Ar}, \mathrm{COCH}_{2}\right.$, $\mathrm{CH}_{2} \mathrm{NH}$);); HRMS (ESI): m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}_{2}-\mathrm{H}^{+}: 793.2735[\mathrm{M}-\mathrm{H}]$; found: 793.2751.

Cone
5-N-((4-(4-benzensulfanamidyl)thioureido)butanoylamido)-25,26,27,28-tetrakis(2ethoxyethoxy)calix[4]arene (16b): Following the general procedure for the coupling with 4isothiocyanatebenzenesulfonamide, the reaction was performed on calixarene 15b ($74 \mathrm{mg}, 0.09 \mathrm{mmol}$) dissolved in dry DMF (5 ml), and monitored by TLC (AcOEt/Hex 9:1). After 18 h , the reaction was quenched by evaporation of the solvent at rotavapor and the crude was purified by flash chromatography column on silica gel (eluent: AcOEt/Hex 3:1) to get compound 16b as a white powder ($7.0 \mathrm{mg}, 0.006 \mathrm{mmol}, 8 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz, [D6]acetone): $\delta=9.37$ (bs, CSNH), 8.91 (bs, CSNH), 7.90-7.70 (m, 5H, ArSO2 and CONH), 7.01 (s, $2 \mathrm{H}, \mathrm{SO}_{2} \mathrm{NH}_{2}$), 6.75-6.45 (m, 11H, Ar), $4.58\left(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCHH}_{a x} \mathrm{Ar}\right), 4.55\left(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH} H_{a x} A r\right)$, 4.25-4.15 (m, 8H, OCH2CH2O), 3.95-3.80 (m, 8H, OCH $\mathrm{OH}_{2} \mathrm{O}$), 3.66 (bs, 2H, CH2N) 3.60-3.52 (m, 8H, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.16 (d, J=13.2 Hz, 2H, ArCHHeqAr), 3.10 (d, $J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCHH}_{e q} \mathrm{Ar}$), 2.41 (bt, J=7.2 Hz, 2H, COCH_{2}), 2.01-1.90 (m, 2H, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.19 \mathrm{ppm}\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , [D6]acetone): $\delta=181.2$ (CS), 170.2 (CO), 156.7, 156.4, 152.7, 143.1, 139.0, 135.2, 135.0, 134.7, 133.5, 128.1, 126.7, 123.1, 122.0 and $119.6(\mathrm{CAr})$, $73.5,\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $69.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 65.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 43.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 34.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right)$, 30.7 and $30.6(\mathrm{ArCH} 2 \mathrm{Ar})$, $24.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $14.8 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{55} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{~S}_{2}-\mathrm{H}^{+}: 1025.440[\mathrm{M}-\mathrm{H}]$; found: 1025.441.

Figure S1. Structures of calix[4]arenes blocked in cone geometry and calix[6]arenes functionalized with benzensulfonamide units, obtained through the synthetic pathways reported in Scheme 1

$\begin{aligned} & \text { n} \\ & \stackrel{\sim}{e n} \\ & \mid \end{aligned}$	$\begin{aligned} & \text { Nิ } \\ & \text { だ } \\ & \text { \| } \end{aligned}$	

Figure $\mathrm{S} 4 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{1 d}$

Figure $\mathrm{S} 5 .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{1 d}$

Figure S6. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{2 b}$
$\underset{\sim}{\sim}$

Figure $\mathrm{S} 8 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{2 d}$

Figure $\mathrm{S} 9 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{2 d}$

Figure S11. ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{5}$

Figure $\mathrm{S} 12 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of compound 6

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
Figure S13. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) spectrum of compound 6																		

Figure $\mathrm{S} 15 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right.$) spectrum of compound $\mathbf{3 b}$

Figure $\mathrm{S} 16 .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{3 b}$

Figure S17. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{3 c}$

Figure S19. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{3 e}$

\qquad

Figure S20. ${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone-d6, 298 K) spectrum of compound 3 e

Figure S23. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{1 0}$

Figure $\mathrm{S} 24 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{4 b}$

Figure $\mathrm{S} 25 .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{4 b}$

Figure S26. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{4 c}$

Figure S28．${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{4 d}$
バゥ

Figure $\mathrm{S} 30 .{ }^{1} \mathrm{H}$ NMR (300 MHz , acetone-d6, 353 K) spectrum of compound $\mathbf{4 f}$

Figure S31. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, acetone-d6, 298 K) spectrum of compound 7

Figure S33. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right.$) spectrum of compound 9

	$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{y}{0} \end{aligned}$	+	

Figure S34. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{-\mathrm{d}_{6}}, 298 \mathrm{~K}\right)$ spectrum of compound 9

Figure S35. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{1 1}$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

Figure S36. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{1 1}$

Figure S37. ${ }^{1 \mathrm{H}}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of compound 12a

Figure $\mathrm{S} 38 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of compound 12 a

Figure S39. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of compound 13a

Figure $\mathrm{S} 41 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{1 4 a}$

Figure $\mathrm{S} 42 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of compound 14 a

Figure $\mathrm{S} 43 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{1 4 b}$

Figure $\mathrm{S} 44 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 4 b}$

Figure $\mathrm{S} 45 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{1 5 a}$

Figure $\mathrm{S} 46 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of compound 15 a

Figure $\mathrm{S} 47 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right.$) spectrum of compound $\mathbf{1 5 b}$

Figure $\mathrm{S} 48{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{1 5 b}$

Figure $\mathrm{S} 49 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of compound $\mathbf{1 6 a}$

Figure50. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 6 a}$

Figure S51. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, acetone-d6, 298 K) spectrum of compound $\mathbf{1 6 b}$

Table S1. Summary of Data Collection and Atomic Model Refinement Statistics. Values in parentheses are for the highest resolution shell.

PDB ID	7A6V
Wavelength (Å)	1.54184
Space Group	P21
Unit cell ($a, b, c, \alpha, \beta, \gamma)\left(A^{\circ}{ }^{\circ}\right)$	42.18;41.21;72.12; 90.00; 104.41; 90.00
Limiting resolution (\AA)	10.0-2.0 (3.0-2.0)
Unique reflections	16419 (11479)
R sym (\%)	17.9 (42.2)
R meas (\%)	20.5 (48.5)
Redundancy	4.19 (4.16)
Completeness overall (\%)	99.6 (99.6)
<l/ $/(1)>$	8.1 (3.6)
CC (1/2)	98.9 (89.5)
Refinement statistics	
Resolution range (A)	10.0-2.0
Unique reflections, working/free	15589, 14521
R factor (\%)	20.9
R free (\%)	25.81
r.m.s.d. bonds(\AA)	0.0077
r.m.s.d. angles (${ }^{\circ}$)	1.5611
Ramachandran statistics (\%)	
Most favored	96.9
additionally allowed	3.1
outlier regions	0.0
Average B factor (Å2)	
All atoms	18.87
inhibitors	38.84
solvent	15.40

Figure S53. Crystal structure of hCAll-4b complex. For the ligand, only the atomic positions of the arm containing the benzensulfonamide moiety and the calixarene phenolic unit linked to (in green) could be accurately determined.

Figure S54_MM1. Average RMSD (\AA) from 100 ns long MD simulations performed in triplicate. A) 7b-hCA II, B) 15b-hCA II and C) 11-hCA II adducts. The representative conformers per cluster are depicted on the left together with the pie representation of their respective abundancies.

