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Boundary regularity for manifold constrained p(x)-harmonic maps

Iwona Chlebicka, Cristiana De Filippis and Lukas Koch

Abstract

We prove partial and full boundary regularity for manifold constrained p(x)-harmonic maps.
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1. Introduction

In this paper we complete the partial regularity theory for p(x)-harmonic maps studied in [10]
providing partial and full boundary regularity for manifold constrained minima of the variable
exponent energy:

g +
(
W 1,p(·)(Ω,M) ∩W

1,p(·)
0 (Ω,RN )

)
� w �→ E(w,Ω) :=

∫
Ω

k(x)|Dw|p(x) dx (1.1)

for a suitable boundary datum g : Ω̄ → M. We immediately refer to Section 2.2 for the complete
list of assumptions in force concerning the regularity of ∂Ω, the coefficients appearing in the
energies displayed in (1.1)–(1.2) and the topology of the manifold M. Our main accomplishment
is that there exists a relatively (to Ω̄) open subset Ω0⊆Ω̄ of full n-dimensional Lebesgue measure
on which u is the locally Hölder continuous and the singular set Σ0 := Ω̄ \ Ω0 has Hausdorff
dimension at the most equal to n− γ1; see (2.2)1 for more information on this quantity. This
is the content of the following theorem.

Theorem 1.1. Under assumptions (2.1), (2.2), (2.3) and (2.6), let u ∈ W 1,p(·)(Ω,M) be
a solution to the Dirichlet problem (1.1) with boundary datum g ∈ W 1,q(Ω̄,M) satisfying (2.7).
Then there exists a relatively (to Ω̄) open subset Ω0 ⊆ Ω̄ so that u ∈ C

0,1−n
q

loc (Ω0,M) with q
as in (2.7) and Hn−γ1(Σ0) = 0.

Moreover, after strengthening the hypotheses on the variable exponent p(·), we can prove
that the singular set of solutions to problem

g +
(
W 1,p(·)(Ω,M) ∩W

1,p(·)
0 (Ω,RN )

)
� w �→ J (w,Ω) :=

∫
Ω

|Dw|p(x) dx (1.2)

does not intersect the boundary ∂Ω. In this respect we have
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Theorem 1.2. Under assumptions (2.1), (2.4) and (2.6), let u ∈ W 1,p(·)(Ω,M) be a solution
to the Dirichlet problem (1.2) with boundary datum g : Ω̄ → M satisfying (2.7). Then there
exists a constant Υ ≡ Υ(data) ∈ (0, 1] such that if

[g]0,1−n
q ;Ω̄ < Υ, (1.3)

then Σ0 � Ω and so u is (1 − n
q )-Hölder continuous in a neighborhood of ∂Ω.

The results exposed in Theorems 1.1–1.2 are new already in the case p(·) ≡ const. In fact, we
recover for the p(x)-Laplacian the boundary regularity theory already available for p-harmonic
maps, under weaker assumptions on the boundary datum than those considered in [23, 31,
52]. Let us put our results into the context of the available literature. The regularity theory
for vector-valued minimizers of functionals modeled upon the p-Laplacean integral, that is,
variational problems, such as

W 1,p
loc (Ω,RN ) � w �→

∫
Ω

F (x,Dw) dx

|z|p � F (x, z) � (1 + |z|2)
p
2 , 1 < p < ∞,

(1.4)

started with the seminal paper [55] and received several contributions later on; see [24–26, 28,
40, 43] and references therein for an overview of the state of the art concerning p-Laplacean
type problems. On the other hand, the regularity theory in the case when both minimizers and
competitors take values into a manifold M ⊂ RN faces additional difficulties. The cornerstones
of the theory were laid down by the fundamental papers [17, 19, 51, 52] analyzing harmonic
maps, that is, constrained minimizers of the functional in (1.4) for p = 2; see also [30, 53].
We mention also the recent works [46, 47] for a fine analysis of the singular set of harmonic
maps. The extension of the basic results to the case p �= 2 has been done in the by now classical
papers: [21–23, 31, 42]. Moreover, several of these results have been extended to more general
functionals with p-growth, for instance the quasiconvex case has been treated in [36] while
a purely PDE approach has been proposed in [16]. The matter of boundary regularity for
vectorial problems is rather delicate and received lots of attention in the literature, starting
from [37, 52], which covers the case of quadratic functionals. This theory has been extended
later on to variational integrals of p-Laplacean type; see [14] for the first results in this direction
and [3, 15, 27–29, 39] for general systems with standard p-growth. On the other hand, we
note that energies of the type in (1.1) do not satisfy conditions as in (1.4), but rather, the more
general and flexible one

W 1,p
loc (Ω,RN ) � w �→

∫
Ω

F (x,Dw) dx

|z|p � F (x, z) � (1 + |z|2)
q
2 1 < p � q < ∞.

(1.5)

The systematic study of functionals as in (1.5) started in [44, 45] and, subsequently, has
undergone an intensive development over the last years; see for instance [2, 4–6, 11, 18, 20,
32, 34, 35]. In particular, the energy in (1.1) have been introduced in the setting of Calculus of
Variations and Homogenization in the seminal works [38, 56]. Energies as in (1.1) also occur
in the modeling of electrorheological fluids, a class of non-Newtonian fluids whose viscosity
properties are influenced by the presence of external electromagnetic fields [1, 50] or image
restoration [7]; see also [13] for the basic properties of the p(x)-Laplacian. As for regularity, the
first result in the vectorial case has been obtained in [9], where it is shown that local minimizers
of energy (1.2) are locally C1,β-regular in the unconstrained case. Subsequently, the regularity
theory of functionals with variable exponent growth has been developed in a series of interesting
papers [48, 49, 54], where the authors established partial regularity results for unconstrained
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minimizers that are on the other hand obviously related to the constrained case. Especially, in
[54] is given an interesting partial regularity result and some singular set estimates for a class of
functionals related to the constrained minimization problem in which minimizers are assumed
to take values in a single chart. Finally, [10] is devoted to the study of partial inner regularity of
manifold constrained p(x)-harmonic maps and to the analysis and dimension-reduction of their
singular set.

Organization of the paper. This paper is organized as follows. Section 2 contains our
notation, the list of the assumptions which will rule problems (1.1)–(1.2), several by now
classical tools in the framework of regularity theory and some results of geometric and
topological nature on Lipschitz retractions. Finally, Sections 3–4 are devoted to the proof
of Theorems 1.1 and 1.2, respectively.

2. Preliminaries

In this section we display our notation, list the main assumptions in force throughout the
paper and collect some useful tools for regularity theory and several well-known results in the
framework of manifold-valued maps.

2.1. Notation

Following a usual custom, we denote by c a general constant larger than 1. Different occurrences
from line to line will be still denoted by c, while special occurrences will be denoted by c1, c2, c̃
or the like. Relevant dependencies on parameters will be emphasized using parentheses, that
is, c ≡ c(p, ν, L) means that c depends on p, ν, L. Given any measurable subset U ⊂ Rn, we
denote by |U | its n-dimensional Lebesgue measure and with Hk(U) its k-dimensional Hausdorff
measure, for some k � 0. For a point x0 ∈ Rn and a number � > 0 we indicate with B�(x0) :=
{x ∈ Rn : |x− x0| < �} the open ball centered at x0 and with radius � and further, B� ≡
B�(0). Similarly, for x0 ∈ Rn−1 × {0} we define the half ball centered at x0 as B+

� (x0) := {x ∈
B�(x0) : xn > 0}. We moreover set B+

� ≡ B+
� (0). We also name Γ�(x0) the set {x ∈ Rn : xn =

0 and |x0 − x| < �} and ∂+B+
� (x0) := ∂B+

� (x0) \ Γ�(x0). As before, Γ� ≡ Γ�(0). With U ⊂ Rn

being a measurable subset having finite and positive n-dimensional Lebesgue measure, and
with h : U → Rk, being a measurable map, we shall denote by

(h)U ≡ −
∫
U

h(x) dx :=
1
|U |

∫
U

h(x) dx

its integral average. Similarly, with γ ∈ (0, 1] we denote the Hölder seminorm of h as

[h]0,γ;U := sup
x,y∈U,x �=y

|h(x) − h(y)|
|x− y|γ .

It is well known that the quantity defined above is a seminorm and when [h]0,γ;U < ∞, we
will say that h belongs to the Hölder space C0,γ(U,Rk). When clear from the context, we will
omit the reference to U , that is: [h]0,γ;U ≡ [h]0,γ . Finally, given any set Γ allowing for a trace
operator, we denote by trΓ(h) the trace of h on Γ.

2.2. Main assumptions

Let us turn to the main assumptions that will characterize our problem. The set Ω ⊂ Rn, n � 2
is open, bounded, connected and

∂Ω is C2-regular. (2.1)
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When considering the functional in (1.1), the exponent p(·) will always satisfy{
p ∈ C0,α(Ω̄) for some α ∈ (0, 1],
1 < γ1 := infx∈Ω̄ p(x) � p(x) � γ2 := supx∈Ω̄ p(x) < ∞,

(2.2)

while the coefficient k(·) is so that{
k ∈ C0,ν(Ω̄) for some ν ∈ (0, 1],
0 < λ � k(x) � Λ < ∞ for all x ∈ Ω̄

(2.3)

holds true. We anticipate that in the estimates contained in Section 3.2, only min{α, ν} will
be relevant, so for simplicity, for the proof of Theorem 1.1 we will assume that α = ν, that
is: p(·), k(·) ∈ C0,α(Ω̄). When dealing with the question of full boundary regularity, we need
higher regularity for p(·). Precisely, we shall suppose that{

p ∈ C0,1(Ω̄),
2 � γ1 � p(x) � γ2 < ∞,

(2.4)

with γ1 and γ2 as in (2.2)2. Given an half ball B+
R and a ball B�(x0) with x0 ∈ B+

R and
� ∈ (0, R− |x0|), we denote

p1(x0, �) := inf
x∈B�(x0)∩B+

R

p(x) and p2(x0, �) := sup
x∈B�(x0)∩B+

R

p(x). (2.5)

Since in (2.5) we will always consider the intersection with the same ball B+
R , the reference

to R in the symbols p1, p2 is omitted. When clear from the context, in (2.5) we shall not
mention x0 that is: pi(x0, �) ≡ pi(�) for i ∈ {1, 2}. With a little abuse, we will adopt the
notation in (2.5) also to denote the infimum (respectively, the supremum) of p(·) on B+

R : the
context will remove any ambiguity. Note that there is no loss of generality in assuming γ1 < γ2,
otherwise p(·) ≡ const on Ω̄, and in this case the problem is very well understood [23, 31, 52].
Furthermore, we need to impose some topological restriction on the manifold M. Precisely, we
ask that⎧⎪⎨⎪⎩

M is a compact, m-dimensional, C3 Riemannian submanifold of RN with N � 3,
M is [γ2] − 1 connected,
∂M = ∅.

(2.6)

Here [x] denotes the integer part of x and the definition of j-connectedness is given in
Section 2.4, Definition 4. Moreover, we assume that the boundary datum satisfies:

g ∈ W 1,q(Ω̄,M) for some q > max {n, γ2}. (2.7)

Combining (2.7) with Morrey’s embedding theorem we automatically get that

g ∈ C0,1−(n/q)(Ω̄,M). (2.8)

Finally, to shorten the notation we shall collect the main parameters of the problem in the
quantities

datap(·) := (n,N,M, λ,Λ, γ1, γ2, q, [p]0,α, α),

data := (n,N,M, λ,Λ, γ1, γ2, q, [k]0,ν , [p]0,α, ν, α).

Any dependencies of the constants appearing in the forthcoming estimates on quantities
depending on the characteristics of M, such as, for instance, the L∞-norm of maps with
range in M (which is clearly finite being M compact) will be simply denoted as a dependency
on M in the form: c ≡ c(M).
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Remark 1. Assumption (2.1) assures that there exists a positive constant r̂ ≡ r̂(n,Ω)
such that B�(x0) ∩ Ω is simply connected for all � ∈ (0, r̂] and any x0 ∈ ∂Ω. This renders the
existence of a positive constant c ≡ c(n,Ω) such that

Hn−1(B�(x0) ∩ ∂Ω)
Hn−1(∂B�(x0) ∩ Ω)

> c for all � ∈ (0, r̂], x0 ∈ ∂Ω.

Moreover, the Ahlfors condition yields that

|B�(x0) ∩ Ω|≈�n for all x0 ∈ Ω̄, � ∈ (0, r̂],

with constants implicit in ‘≈’ depending on n,Ω. We shall refer to such constants with the
term ‘Ahlfors constants’; see [14, Section 2].

As to fully clarify the framework we are going to adopt, we need to introduce some basic
terminology on the so-called Musielak–Orlicz–Sobolev spaces. Essentially, these are Sobolev
spaces defined by the fact that the distributional derivatives lie in a suitable Musielak– Orlicz
space, rather than in a Lebesgue space as usual. Classical Sobolev spaces are then a particular
case. Such spaces and related variational problems are discussed for instance in [8, 13, 33,
38], to which we refer for more details. Here we will consider spaces related to the variable
exponent case in both unconstrained and manifold-constrained settings.

Definition 1. Given an open set Ω ⊂ Rn, the Musielak–Orlicz space Lp(·)(Ω,Rk), k � 1,
with p(·) satisfying (2.2), is defined as

Lp(·)(Ω,Rk) :=
{

w : Ω → Rk measurable and
∫

Ω

|w|p(x) dx < ∞
}

endowed with the Luxemburg norm ‖w‖Lp(·)(Ω,Rk) = inf{λ > 0 :
∫
Ω
|w/λ|p(x) dx < 1}. Conse-

quently,

W 1,p(·)(Ω,Rk) :=
{
w ∈ W 1,1(Ω,Rk) ∩ Lp(·)(Ω,Rk) such that |Dw| ∈ Lp(·)(Ω,Rk×n)

}
with the norm ‖w‖W 1,p(·)(Ω,Rk) = ‖w‖Lp(·)(Ω,Rk) + ‖ |Dw| ‖Lp(·)(Ω,Rk). The variant

W
1,p(·)
loc (Ω,Rk) is defined as in the classical case, whereas W

1,p(·)
0 (Ω,Rk) is a closure of

smooth and compactly supported functions in the norm ‖ · ‖W 1,p(·)(Ω,Rk).

It is well known that, under assumptions (2.2), the set of smooth maps is dense in
W 1,p(·)(Ω,Rk); see, for example, [18, 38]. Following [10] we also recall the analogous definition
of such spaces when mappings take values into M.

Definition 2. Let M be a compact submanifold of Rk, k � 2, without boundary and
Ω ⊂ Rn an open set. For p(·) satisfying (2.2), the Musielak–Orlicz–Sobolev space W 1,p(·)(Ω,M)
of functions into M can be defined as

W 1,p(·)(Ω,M) :=
{
w ∈ W 1,p(·)(Ω,Rk) : w(x) ∈ M for a.e. x ∈ Ω

}
.

The local space W
1,p(·)
loc (Ω,M) consists of maps belonging to W 1,p(·)(B,M) for all open sets

B � Ω.

Of course, when p(·) ≡ const, Definitions 1 and 2 reduce to the classical Sobolev spaces
W 1,p(Ω,Rk) and W 1,p(Ω,M), respectively. Since the regularity question in Ω is local in
nature, we can choose coordinates {xi}ni=1 centered at x0 ∈ ∂Ω such that locally Ω is the
upper half space Rn ∩ {xn > 0}, therefore, to avoid unnecessary complications, from now on
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we will assume that Ω ≡ B+
1 ; see [14, 15, 31, 37, 39, 52] for a more detailed discussion on

this matter. Let us display the definition of constrained W 1,p(·)-minimizer of (1.1) in B+
1 .

Definition 3. Let assumptions (2.1)–(2.6) and (2.7) be in force and consider the Dirichlet
class Cp(·)

g (B+
1 ,M) := {w ∈ W 1,p(·)(B+

1 ,M) : trΓ1(w) = trΓ1(g)}. A map u ∈ W 1,p(·)(B+
1 ,M)

with trΓ1(u) = trΓ1(g), is a constrained minimizer of the functional in (1.1) in the Dirichlet
class Cp(·)

g (B+
1 ,M) provided that E(u,B+

1 ) � E(w,B+
1 ) holds for all maps w ∈ Cp(·)

g (B+
1 ,M)

so that (u− w) ∈ W 1,p
0 (B+

1 ,RN ).

To shorten the notation, for � ∈ (0, 1], x0 ∈ Rn ∩ {xn � 0}, f ∈ W 1,p(·)(B̄+
� (x0),X ) and

a subset X ⊆ RN , we also introduce the general Dirichlet class

Ĉp(·)
f (B+

� (x0),X ) := f +
(
W 1,p(·)(B+

� (x0),X ) ∩W
1,p(·)
0 (B+

� (x0),RN )
)
.

Clearly, the previous position makes sense also when p(·) ≡ const.

2.3. Well-known results

When dealing with p-Laplacean type problems, we shall often use the auxiliary vector fields
Vs,t : RN×n → RN×n, defined by

Vs,t(z) := (s2 + |z|2)(t−2)/4
z, t ∈ (1,∞) and s ∈ [0, 1] (2.9)

whenever z ∈ RN×n. If s = 0 we shall simply write Vs,t ≡ Vt. A useful related inequality is
contained in the following:

|Vs,t(z1) − Vs,t(z2)| ≈ (s2 + |z1|2 + |z2|2)(t−2)/4|z1 − z2|, (2.10)

where the equivalence holds up to constants depending only on n,N, t. An important property
which is usually related to such field is recorded in the following lemma.

Lemma 2.1. Let t > −1, s ∈ [0, 1] and z1, z2 ∈ RN×n be so that s + |z1| + |z|2 > 0. Then∫ 1

0

[
s2 + |z1 + λ(z2 − z1)|2

] t
2 dλ≈(s2 + |z1|2 + |z2|2) t

2 ,

with constants implicit in ‘≈’ depending only on n,N, t.

The next are a couple of simple inequalities which will be used several times throughout the
paper. They are elementary; see, for example, [9, 10, 48, 54].

Lemma 2.2. The following inequalities hold true.

(i) For any ε0 > 0, there exists a constant c ≡ c(ε0) such that for all t � 0, l � m � 1 there
holds |tl − tm| � c(l −m)(1 + t(1+ε0)l).

(ii) For t ∈ (0, 1], consider the function g1(t) := tc̃t
γ

, where c̃ is an absolute real constant
and γ ∈ (0, 1]. Then limt→0 g1(t) = 1 and supt∈(0,1] g1(t) � c(c̃, γ). Via the substitution

t �→ t−1, we have an analogous property for the function [1,∞) � t �→ g2(t) := tc̃t
−γ

, for
c̃ and γ as before. Precisely there holds that limt→∞ g2(t) = 1 and supt∈[1,∞) g2(t) �
c(c̃, γ).

We conclude this section by recalling the celebrated iteration lemma [26].
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Lemma 2.3. Let h : [�,R0] → R be a non-negative, bounded function and 0 < θ < 1, 0 � A,
0 < β. Assume that h(r) � A(d− r)−β + θh(d), for � � r < d � R0. Then h(�) � cA/(R0 −
�)−β holds, where c ≡ c(θ, β) > 0.

2.4. Extensions

In this section we shall borrow from [10] some useful lemmas concerning locally Lipschitz
retractions. Such results were first introduced in [31] and intensively used in the literature
for dealing with possibly non-homogeneous variational problems whose structure is a priori
non-compatible with any kind of monotonicity formulae [10, 12, 36]. We refer to Remark 2
for a quick discussion on this matter. We start with clarifying a key assumption in our paper,
which is the concept of j-connectedness.

Definition 4. Given an integer j � 0, a manifold M is said to be j-connected if its first j
homotopy groups vanish identically, that is π0(M) = π1(M) = · · · = πj−1(M) = πj(M) = 0.

It is well known that a compact manifold M ⊂ RN without boundary admits a tubular
neighborhood M ⊂ ω ⊂ RN . Identifying M with its image in RN , we say that a neighborhood
ω of M has the nearest point property if for every x ∈ ω there is a unique point ΠM(x) ∈ M
such that dist(x,M) = |x− ΠM(x)|. The map ΠM : ω → M is called the retraction onto M,
we shall refer to it also as ‘projector’. Moreover, the regularity of M influences the regularity
of ΠM in the following way:

M is Ck-regular for k � 2 =⇒ ΠM ∈ Ck−1(ω,M), (2.11)

see [36] for a deeper discussion on this matter. It is important to stress that manifolds endowed
with the relatively simple topology described by Definition 4 enjoy good properties in terms of
retractions; cf. [31, 36].

Lemma 2.4. Let M ⊂ RN be a compact, j-connected submanifold for some integer j ∈
{0, . . . , N − 2} contained in an N -dimensional cube Q. Then there exists a closed (N − j −
2)-dimensional Lipschitz polyhedron X ⊂ Q \M and a locally Lipschitz retraction ψ : Q \
X → M such that for any x ∈ Q \X, |Dψ(x)| � c/dist(x,X) holds, for some positive c ≡
c(N, j,M).

The next lemma allows modifying the image of a map while keeping under control boundary
values and p(·)-energy; see also [10, Lemma 5].

Lemma 2.5. Let M be as in (2.6) and U ⊆ B+
1 a subset with positive measure and Lipschitz

boundary. If w ∈ W 1,p(·)(U,RN ) ∩ L∞(U,RN ) is so that w(∂U) ⊂ M, then there exists w̃ ∈
Ĉp(·)
w (U,M) satisfying ∫

U

|Dw̃|p(x) dx � c

∫
U

|Dw|p(x) dx,

where c ≡ c(N,M, γ2).

Remark 2. When dealing with manifold constrained minima of the p-Laplacean energy
it is customary to recover the fundamental Caccioppoli inequality by exploiting the so-
called monotonicity formula; see [21–23, 42, 51–53]. This way cannot be used in our case.
Even though it is possible to show a monotonicity formula for the p(x)-energy, that is,
Lemma 4.2, see also [10, Lemma 12; 54, Lemma 4.1], its proof crucially requires some corollaries
of Gehring Lemma, which, in turn, is implied by Caccioppoli inequality, whose proof requires
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the monotonicity formula. Lemma 2.5 breaks this vicious circle giving the chance of deriving
Caccioppoli inequality directly by minimality, as we will see in Section 3.1.

3. Partial boundary regularity

As mentioned in Section 2.2, to avoid unnecessary complications, we shall take Ω ≡ B+
1 . In

fact, since ∂Ω is C2-regular, given any x0 ∈ ∂Ω, there exists an open neighborhood Bx0 of x0

and a change of variable Ψ0 ∈ C2(B̄x0 ,R
n) so that in the new coordinates yi := Ψi

0(x) it holds
that

Ψ0(x0) = 0, Ψ0(B̄x0 ∩ Ω̄) = B̄+
1 , Ψ0(B̄x0 ∩ ∂Ω) = Γ1.

Moreover, there exists a positive constant c0 ≡ c0(n, ∂Ω) such that

0 < c−1
0 � ‖DΨ0‖L∞(B̄x0∩Ω̄) � c0 < ∞.

We stress that, being ∂Ω compact, the constant c0 does not depend on x0. A straightforward
computation shows that, if u ∈ W 1,p(·)(Ω,M) solves (1.1), then the map ũ := u ◦ Ψ−1

0 solves
an analogous problem still satisfying (2.2) and (2.3). Assumption (2.7) on the boundary
condition is preserved as well: if g ∈ W 1,q(Ω̄,M) then g̃ := g ◦ Ψ−1

0 ∈ W 1,q(B̄+
1 ,M). We refer

to [14, 31, 37] for more details on this matter. Therefore, keeping Definition 3 in mind, we
shall study problem

Cp(·)
g (B+

1 ,M) � w �→ min
∫
B+

1

k(x)|Dw|p(x) dx, (3.1)

with k(·) and p(·) as in (2.3)–(2.2), respectively, and g as in (2.7).

3.1. Basic regularity results

We first fix a threshold radius R∗ ∈ (0, 1] so that

0 < R∗ � min

⎧⎪⎨⎪⎩1,
(

γ2
1

4n[p]0,α

) 1
α

,

⎛⎝γ1q
(
1 − n

q

)
4n[p]0,α

⎞⎠
1
α

⎫⎪⎬⎪⎭ (3.2)

and choose R ∈ (0, R∗]. Further restrictions on the size of R∗ will be imposed in Section 3.2.
An immediate consequence of (3.2) is that, given any half-ball B+

R and all balls B�(x0) with
x0 ∈ B+

R and � ∈ (0, R− |x0|), there holds⎧⎨⎩ p∗1(x0, �) > p2(x0, �)

np2(x0,�)
q � p1(x0, �)

for all R ∈ (0, R∗], � ∈ (0, R− |x0|), (3.3)

which is, on the other hand, automatic when p1(x0, �) � n. Obviously, in (3.3) we adopted the
usual terminology

p∗ :=

{
np
n−p if 1 < p < n,

any finite number larger than p if p � n.

Recall now that, if B�(x0) � B+
R and w ∈ W 1,p(B�(x0),RN ) is such that w ≡ 0 on U ⊂ B�(x0)

with |U | > ĉ|B�(x0)| for some positive, absolute ĉ, then Sobolev–Poincaré’s inequality gives∫
B�(x0)

|w/�|p dx � c�−n(p/p∗−1)

(∫
B�(x0)

|Dw|p∗ dx

) p
p∗

, (3.4)
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for c ≡ c(n,N, p, ĉ). Here p∗ := max{1, np
n+p}. We consider now an intrinsic version of [14,

Theorem 2.4].

Proposition 3.1. Let U ⊂ Rn be an open, bounded domain with Lipschitz boundary and
finite Ahlfors constants depending only on n. Let also A ⊂ Ū be a closed subset. Consider two
non-negative functions f1 ∈ L1(U) and f2 ∈ L1+σ̂(U) for some σ̂ > 0. With θ ∈ (0, 1), assume
that there holds

−
∫
B�/2(x0)∩U

f1 dx � b

⎧⎨⎩
(
−
∫
B�(x0)∩U

fθ
1 dx

) 1
θ

+ −
∫
B�(x0)∩U

f2 dx

⎫⎬⎭ (3.5)

for almost all x0 ∈ U \A with B�(x0) ∩A = ∅ and a positive constant b. Set

d(x) :=
|B dist(x,A)(x) ∩ U |

|U | and f̃1(x) := d(x)f1(x).

Then there exists a positive threshold σg ≡ σg(b, θ, σ̂) ∈ (0, σ̂) such that(
−
∫
U

f̃1+σ
1 dx

) 1
1+σ

� c(n, θ, b, σ̂)

{(
−
∫
U

f1 dx
)

+
(
−
∫
U

f1+σ
2 dx

) 1
1+σ

}
for all σ ∈ [0, σg).

Proof. The proof is essentially the same as the one in [14] with minor changes due to the
fact that in our case (3.5) involves the whole integrand; see also [26, Lemma 6.2]. �

As a consequence of Proposition 3.1, we derive some higher integrability results for solutions
to problem (1.1).

Lemma 3.2. Under assumptions (2.2), (2.3), (2.6) and (2.7), let u ∈ W 1,p(·)(B+
R ,M) be

a solution of problem (3.1). Then, for x0 ∈ B̄+
R , with R ∈ (0, R∗], R∗ as in (3.2) and 0 < � <

R− |x0|, there exists a positive threshold σg ≡ σg(datap(·), q) ∈ (0, q
γ2

− 1) such that for all

σ ∈ (0, σg) there holds that(
−
∫
B�/2(x0)∩B+

R

(1 + |Du|2)
p(x)(1+σ)

2 dx

) 1
1+σ

� c

⎡⎣−∫
B�(x0)∩B+

R

(1 + |Du|2)
p(x)

2 dx +

(
−
∫
B�(x0)∩B+

R

|Dg|p(x)(1+σ) dx

) 1
1+σ

⎤⎦, (3.6)

for c ≡ c(datap(·), q). If B�(x0) � B+
R then, there exists a positive threshold σ′

g ≡
σ′
g(datap(·)) > 0 so that(

−
∫
B�/2(x0)

(1 + |Du|2)
p(x)(1+σ)

2 dx

) 1
1+σ

� c−
∫
B�(x0)

(1 + |Du|2)
p(x)

2 dx, (3.7)

for all σ ∈ (0, σ′
g) with c ≡ c(datap(·)). In particular,

|Du|p(·)(1+σ) ∈ L1(B+
R) for all σ ∈ [0,min

{
σg, σ

′
g

})
. (3.8)

Proof. We take x0 ∈ B̄+
R , 0 < � < R− |x0| and distinguish two cases: xn

0 � 3�
4 and xn

0 > 3�
4 .

Case 1: xn
0 � 3�

4
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We fix parameters �
2 < τ1 < τ2 � � and a cutoff function η ∈ C1

c (Bτ2(x0)) with the following
specifics:

1Bτ1 (x0) � η � 1Bτ2 (x0) and |Dη| � 4
τ2 − τ1

. (3.9)

Note that in this case the intersection Bτ2(x0) ∩ ΓR can be non-empty and the map w :=
u− η(u− g) agrees with u in the sense of traces on ∂(Bτ2(x0) ∩B+

R). This means that we can
use Lemma 2.5 to recover a map w̃ ∈ Ĉp(·)

u (Bτ2(x0) ∩B+
R ,M) satisfying the energy inequality

(3.9) and so that∫
Bτ2 (x0)∩B+

R

|Du|p(x) dx � λ−1

∫
Bτ2 (x0)∩B+

R

k(x)|Du|p(x) dx

�λ−1

∫
Bτ2 (x0)∩B+

R

k(x)|Dw̃|p(x) dx � Λ
λ

∫
Bτ2 (x0)∩B+

R

|Dw̃|p(x) dx

�c

∫
(Bτ2 (x0)\Bτ1 (x0))∩B+

R

|Du|p(x) dx + c

∫
Bτ2 (x0)∩B+

R

[
|Dg|p(x) +

∣∣∣∣ u− g

τ2 − τ1

∣∣∣∣p(x)
]

dx,

with c ≡ c(N,λ,Λ, γ2,M). Once the inequality of the previous display is available, we can use
Widmann’s hole-filling technique; Lemmas 2.3 and Lemma 2.2 (ii) to end up with∫

B�/2(x0)∩B+
R

|Du|p(x) dx � c

∫
B�(x0)∩B+

R

|Dg|p(x) dx + c�−p2(�)

∫
B�(x0)∩B+

R

|u− g|p(x) dx

�c

∫
B�(x0)∩B+

R

|Dg|p(x) dx + c

∫
B�(x0)∩B+

R

∣∣∣∣u− g

�

∣∣∣∣p(x)

dx

�c

∫
B�(x0)∩B+

R

|Dg|p(x) dx + c

∫
B�(x0)∩B+

R

∣∣∣∣u− g

�

∣∣∣∣p1(�)

dx, (3.10)

where c ≡ c(N,λ,Λ, γ2,M). Now we extend u = g in B�(x0) \B+
R , note that condition xn

0 �
3�/4 implies that |B�(x0) \B+

R | � c(n)|B�(x0)| and use (3.4) to bound

−
∫
B�(x0)∩B+

R

∣∣∣∣u− g

�

∣∣∣∣p1(�)

dx �c

(
−
∫
B�(x0)∩B+

R

|Du−Dg|(p1(�))∗ dx

) p1(�)
(p1(�))∗

�c

(
−
∫
B�(x0)∩B+

R

(1 + |Du|2)
p(x)(p1(�))∗

2p1(�) dx

) p1(�)
(p1(�))∗

+ c

(
−
∫
B�(x0)∩B+

R

|Dg|
p(x)(p1(�))∗

p1(�) dx

) p1(�)
(p1(�))∗

,

for c ≡ c(n, γ1, γ2). Merging the content of the two previous displays we obtain

−
∫
B�/2(x0)∩B+

R

(1 + |Du|2)
p(x)

2 dx �c−
∫
B�(x0)∩B+

R

|Dg|p(x) dx

+ c

(
−
∫
B�(x0)∩B+

R

(1 + |Du|2)
p(x)

2 · (p1(�))∗
p1(�) dx

) p1(�)
(p1(�))∗

, (3.11)

where c ≡ c(n,N, λ,Λ, γ1, γ2,M).
Case 2: xn

0 > 3�
4
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In this case, we see that B 3�
4
� B+

R , so as in [10, Lemma 9] we recover

−
∫
B�/2(x0)

(1 + |Du|2)
p(x)

2 dx �c

(
−
∫
B3�/4(x0)

(1 + |Du|2)
p(x)

2 · (p1(�))∗
p1(�) dx

) p1(�)
(p1(�))∗

�c

(
−
∫
B�(x0)

(1 + |Du|2)
p(x)

2 · (p1(�))∗
p1(�) dx

) p1(�)
(p1(�))∗

, (3.12)

for c ≡ c(n,N, λ,Λ, γ1, γ2,M). Once (3.11)-(3.12) are available, we can apply Proposition 3.1
with U ≡ B�(x0) ∩B+

R and A ≡ ∂B�(x0) ∩B+
R to conclude with (3.6)–(3.7).

Combining (3.6), (3.7) and a standard covering argument, we obtain (3.8) and the proof is
complete. �

Remark 3. Since Dg ∈ Lq(B+
1 ,RN×n) with (2.7) in force, by the Hölder inequality we can

rearrange (3.6) as follows:(
−
∫
B�/2(x0)∩B+

R

(1 + |Du|2)
p(x)(1+σ)

2 dx

) 1
1+σ

� c

⎡⎢⎣−∫
B�(x0)∩B+

R

(1 + |Du|2)
p(x)

2 dx +

(
−
∫
B�(x0)∩B+

R

|Dg|q dx

) p2(�)
q

⎤⎥⎦, (3.13)

for c ≡ c(datap(·), q).

Let us point out a particularly helpful inequality contained in the proof of Lemma 3.2.

Corollary 3.3. Under assumptions (2.2), (2.3), (2.6) and (2.7), let u ∈ W 1,p(·)(B+
1 ,M)

be a solution of problem (3.1). Then for any half-ball BR ⊂ B̄+
1 and all balls B�(x0) with

x0 ∈ B+
R , � ∈ (0, R− |x0|), R ∈ (0, R∗] and R∗ as in (3.2), there holds that

−
∫
B�/2(x0)∩B+

R

|Du|p(x) dx � c−
∫
B�(x0)∩B+

R

[∣∣∣∣u− g

�

∣∣∣∣p(x)

+ |Dg|p(x)

]
dx (3.14)

with c ≡ c(datap(·)). In case B�(x0) � B+
1 , the inequality

−
∫
B�/2(x0)∩B+

R

|Du|p(x) dx � c−
∫
B�(x0)∩B+

R

∣∣∣∣u− (u)�
�

∣∣∣∣p(x)

dx, (3.15)

for c ≡ c(datap(·)). Moreover, the following inequalities are satisfied:

−
∫
B�/4(x0)∩B+

R

|Du|p(x) dx � c�−p2(�) and −
∫
B�/4(x0)∩B+

R

|Du|p(x)(1+σ) dx � c�−p2(�)(1+σ),

(3.16)

with c ≡ c(n,N,M, γ1, γ2, q, ‖Dg‖Lq(B+
1 )) and for all σ ∈ [0,min{σg,

q
n − 1}], where σg is the

same higher integrability threshold appearing in Lemma 3.2.

Proof. Inequality (3.14) is similar to (3.10) in the proof of Lemma 3.2, while the proof of
(3.15) is contained in [10, Lemma 8]. To prove (3.16) we only need to note that by (2.7)2 it
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immediately follows that

�p2(�) −
∫
B�(x0)∩B+

R

|Dg|p(x)(1+σ) dx � c

[
�p2(�) + �p2(�)

(
−
∫
B�(x0)∩B+

R

|Dg|p2(�)(1+σ) dx

)]

�c
[
�p2(�) + �p2(�)(1−n(1+σ)

q )
(
1 + ‖Dg‖2γ2

Lq(B+
1 )

)]
� c(n, γ2, ‖Dg‖Lq(B+

1 )).

(3.17)

Using this information together with (3.14) and (2.6)1, we obtain (3.16)1. Combining (3.6)–(3.7)
with (3.16)1 and (3.17), we get (3.16)2 and the proof is complete. �

By Proposition 3.1 with A ≡ ∅, we can prove a globally higher integrability result for p-
harmonic functions; see, for example, [10, Lemma 10; 14, Lemma 3.3].

Lemma 3.4. Let R ∈ (0, 1], x0 ∈ ΓR and � ∈ (0, R− |x0|). Assume (2.2)2, (2.3)2 and (2.6)
take p ∈ [γ1, γ2] and f ∈ W 1,p(B̄�(x0) ∩ B̄+

R ,M) so that |Df |p ∈ L1+δ̂(B̄�(x0) ∩ B̄+
R). If v ∈

W 1,p(B�(x0) ∩B+
R ,M) is a solution of the Dirichlet problem

Ĉp
f (B�(x0) ∩B+

R ,M) � w �→ min
∫
B�(x0)∩B+

R

k(x)|Dw|p dx, (3.18)

then there exists a positive threshold δg ≡ δg(n,N,M, γ1, γ2, λ,Λ) ∈ (0, δ̂) so that(
−
∫
B�(x0)∩B+

R

|Dv|p(1+δ) dx

) 1
1+δ

� c

⎧⎨⎩−
∫
B�(x0)∩B+

R

|Dv|p dx +

(
−
∫
B�(x0)∩B+

R

|Df |p(1+δ) dx

) 1
1+δ

⎫⎬⎭ (3.19)

for all δ ∈ [0, δg). In (3.19), c ≡ c(n,N,M, γ1, γ2, λ,Λ).

3.2. Proof of Theorem 1.1

The proof of Theorem 1.1 relies on the following result.

Proposition 3.5. Under assumptions (2.1), (2.2), (2.3) and (2.6), let u ∈ W 1,p(·)(B+
1 ,M)

be a solution of problem (3.1) with boundary datum g : B̄+
1 → M satisfying (2.7). Then, there

exist a threshold radius R∗ ≡ R∗(data) ∈ (0, 1] and a smallness parameter ε ≡ ε(data) ∈ (0, 1]
such that if(

�p2(x0,�)−n

∫
B�(x0)∩B+

R

|Du|p2(x0,�) dx

) 1
p2(x0,�)

+

(
�q−n

∫
B�(x0)∩B+

R

|Dg|q dx

) 1
q

< ε,

(3.20)

for some R ∈ (0, R∗], x0 ∈ B+
R and � ∈ (0, R− |x0|), then

u ∈ C
0,1−n

q

loc

(
(B�(x0) ∩ B̄+

R) \ Σ0(u,B�(x0) ∩ B̄+
R),M)

,

where Σ0(u,B�(x0) ∩ B̄+
R) ⊂ B̄+

R is a closed subset with dimH(Σ0(u,B�(x0) ∩ B̄+
R)) < n− γ1.

Proof. For the sake of simplicity, we split the proof into six steps.
Step 1: Setting a threshold radius. As mentioned in Section 3.1, there is no loss of generality

in reducing the size of the half ball we are working on. Precisely, in addition to (3.2), we choose
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a radius R ∈ (0, R∗], where now it is

0 < R∗ < min

⎧⎪⎨⎪⎩1,
[

γ2
1

4n[p]0,α

] 1
α

,

⎛⎝γ1q
(
1 − n

q

)
4n[p]0,α

⎞⎠
1
α

,

(
σ0γ1

2[p]0,α(2 + σ0)

) 1
α

⎫⎪⎬⎪⎭, (3.21)

for σ0 ∈ (0, 1) defined as

σ0 := min
{

1
4
,
σ′
g

2
,
σg

2
,

2
γ2 − 1

,
α

γ2
,
q − γ2

γ2

}
. (3.22)

In (3.22), σg and σ′
g are the higher integrability thresholds appearing Lemma 3.2, therefore,

given an half-ball B+
R ⊂ B+

1 , by (3.8) there holds that

|Du|p(·)(1+σ) ∈ L1(B+
R) for all σ ∈ [0, σ0]. (3.23)

Moreover, in addition to (3.3), another straightforward consequence of the restriction imposed
in (3.21) yields that

p2(x0, �) < p2(x0, �)
(
1 +

σ0

2

)
<(1 + σ0)p1(x0, �), (3.24)

whenever x0 ∈ B+
R and � ∈ (0, R− |x0|). Hence, combining (3.23) and (3.24) we can conclude

that

|Du|p2(x0,�) ∈ L1(B�(x0) ∩B+
R). (3.25)

Let us stress that by continuity, for any point x̄ ∈ B̄+
R for which p(x̄) � n, we can find

a small ball B�x̄
(x̄) ⊂ B̄+

R so that p(x) > n− σ0
2 for all x ∈ B�x̄

(x̄). Combining this information
with (3.6)–(3.7), the fact that by (3.22) we have(

n− σ0

2

)
(1 + σ0) > n +

σ0

4
,

and with Morrey’s embedding theorem we obtain that u ∈ C0,
σ0

4n+σ0 (B�x̄/2(x̄) ∩B+
1 ,M).

Therefore, for the rest of the paper, we shall assume that γ2 < n. Moreover, since from now
on we work on sets of the type B�(x0) ∩B+

R with x0 ∈ B+
R and � ∈ (0, R− |x0|), we shall

simplify the notation in (2.5) as follows: p1(x0, �) ≡ p1(�) and p2(x0; �) ≡ p2(�).
Step 2: Comparison, first time. Let u ∈ W 1,p(·)(B+

1 ,M) be a solution to the minimization
problem (3.1) with (2.7) in force. We introduce the extensions

ũ(x) :=

{
u(x′, xn) − g(x′, xn) if xn � 0,
−(u(x′,−xn) − g(x′,−xn)) if xn < 0.

(3.26)

Since trΓ1(u) = trΓ1(g), it easily follows that ũ ∈ W 1,p(·)(B1,RN ) and, by (3.23), for all
B�(x0) ⊆ BR ⊂ BR∗ with R∗ as in (3.21) there holds that∫

B�(x0)

|Dũ|p2(�) dx � c

∫
B�(x0)∩B+

R

[
|Du|p2(�) + |Dg|p2(�)

]
dx (3.27)

with c ≡ c(γ1, γ2). Before going on we define the following quantities:

φ(x0, �, p) :=

(
�p −
∫
B�(x0)

(1 + |Dũ|2)p/2 dx

) 1
p

;

φ+(x0, �, p) :=

(
�p −
∫
B�(x0)∩B+

R

(1 + |Du|2)p/2 dx

) 1
p

;
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ψ(x0, �) := φ(x0, �, p2(�)), ψ+(x0, �) := φ+(x0, �, p2(�));

χ+(x0, �) := ψ+(x0, �) +

(
�q−n

∫
B�(x0)∩B+

R

|Dg|q dx

) 1
q

,

where x0, � and R satisfy the usual relation R ∈ (0, R∗], x0 ∈ B+
R and � ∈ (0, R− |x0|). In the

definition of ψ(x0, �), p2(�) is as in (2.5). Clearly, if B�(x0) � B+
R , both φ+(·) and ψ+(·) denote

the average on the full ball B�(x0). We shall start our analysis by considering a point x0 ∈ ΓR

and imposing (3.20) on B�(x0) ∩B+
R ≡ B+

� (x0), which, with the terminology introduced above
reads as

χ+(x0, �) < ε, (3.28)

where ε ∈ (0, 1) is a small parameter whose size will be suitably reduced along the proof. Note
that, as done in the case of (3.27), for all balls B�(x0) ⊂ BR, by the Hölder inequality we have

χ+(x0, �) � c′

⎡⎣ψ(x0, �) +

(
�p2(�)−n

∫
B�(x0)∩B+

R

|Dg|p2(�) dx

) 1
p2(�)

⎤⎦

+ c′
(
�q−n

∫
B�(x0)∩B+

R

|Dg|q dx

) 1
q

� c′

⎡⎣ψ(x0, �) +

(
�q−n

∫
B�(x0)∩B+

R

|Dg|q dx

) 1
q

⎤⎦, (3.29)

for c′ ≡ c′(n, γ1, γ2, q). Now we compare u to a solution v ∈ W 1,p2(�)(B+
�/2(x0),M) of the

Dirichlet problem

Ĉp2(�)
u (B+

�/2(x0),M) � w �→ min
∫
B+

�/2(x0)

k(x)|Dw|p2(�) dx. (3.30)

Such a solution exists, given that by (3.25), class Ĉp2(�)
u (B+

�/2(x0),M) is non-empty. The

minimality of v in class Ĉp2(�)
u (B+

�/2(x0),M) yields that it satisfies the Euler–Lagrange equation

0 =
∫
B+

�/2(x0)

k(x)p2(�)|Dv|p2(�)−2[Dv ·Dϕ−Av(Dv,Dv)ϕ] dx, (3.31)

for any ϕ ∈ W
1,p2(�)
0 (B+

�/2(x0),RN ) ∩ L∞(B+
�/2(x0),RN ), where, for y ∈ M, Ay : TyM×

TyM → (TyM)⊥ denotes the second fundamental form of M. In particular, by tangentiality,
we have

∇2Π(v)(Dv,Dv) = −Av(Dv,Dv) and |Av(Dv,Dv)| � cM|Dv|2, (3.32)

where cM depends only on the geometry of M; see [53, Appendix to Chapter 2]. Let us quantify
the Lp2(�)-distance between Du and Dv. We first note that, by (3.25), the map ϕ := u− v is
admissible as a test in (3.31), thus exploiting the monotonicity properties of the integrand
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in (3.30), (2.10) and Lemma 2.1 we obtain∫
B+

�/2(x0)

|Vp2(�)(Du) − Vp2(�)(Dv)|2 dx

�c

∫
B+

�/2(x0)

k(x)
[
|Du|p2(�) − |Dv|p2(�)

]
dx + c

∫
B+

�/2(x0)

|Dv|p2(�)|u− v| dx, (3.33)

where c ≡ c(n,N, γ1, γ2, λ,Λ,M). Let us estimate the two quantities appearing on the
right-hand side of (3.33). Note that, being v a solution of (3.30), it satisfies the
assumptions of Lemma 3.4 with p = p2(�), f = u and δ̂ = σ0

2 , therefore, choosing any
σ′ ∈ (0,min{δg, δ̂, 1

γ2−1}), by the Hölder inequality we control:

∫
B+

�/2(x0)

|Dv|p2(�)|u− v| dx � c�n

(
−
∫
B+

�/2(x0)

|Dv|p2(�)(1+σ′) dx

) 1
1+σ′

·
(
−
∫
B+

�/2(x0)

|u− v| 1+σ′
σ′ dx

) σ′
1+σ′

=: c(n)�n[(I) · (II)].

By (3.6), (3.19), (3.24), the minimality of v in class Ĉp2(�)
u (B+

�/2(x0),M), Hölder inequality,
(3.28) and Lemma 2.2 (ii) we bound

(I) � c

(
−
∫
B+

�/2(x0)

|Du|p2(�)(1+σ′) dx

) 1
1+σ′

� c

(
−
∫
B+

�/2(x0)

|Du|p1(�)(1+σ0) dx

) p2(�)
p1(�)(1+σ0)

� c

⎡⎣−∫
B+

� (x0)

(1 + |Du|2)
p(x)

2 dx +

(
−
∫
B+

� (x0)

|Dg|p(x)(1+σ0) dx

) 1
1+σ0

⎤⎦
p2(�)
p1(�)

� c

⎡⎢⎣−∫
B+

� (x0)

(1 + |Du|2)
p(x)

2 dx +

(
−
∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

⎤⎥⎦
p2(�)
p1(�)

� cε
p2(�)(p2(�)−p1(�))

p1(�)

⎡⎢⎣−∫
B+

� (x0)

(1 + |Du|2)
p2(�)

2 dx +

(
−
∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

⎤⎥⎦,
with c ≡ c(datap(·)). With the Poincaré inequality, (3.22), the minimality of v in class
Ĉp2(�)
u (B+

�/2(x0),M) and (3.28) we get

(II) �c

(
�p2(�) −

∫
B+

�/2(x0)

|Du−Dv|p2(�) dx

) σ′
1+σ′

�c

(
�p2(�)−n

∫
B+

� (x0)

(1 + |Du|2)
p2(�)

2 dx

) σ′
1+σ′

� cε
γ1σ′
1+σ′ ,
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where c ≡ c(n,M, γ1, γ2, λ,Λ). Finally, by (3.13), (3.19), Lemma 2.2(i) with ε0 = σ′, the
minimality of v in class Ĉp2(�)

u (B+
�/2(x0),M), (3.22) and (3.28) we have∫

B+
�/2(x0)

k(x)
[
|Du|p2(�) − |Dv|p2(�)

]
dx �

∫
B+

�/2(x0)

k(x)
∣∣∣ |Du|p2(�) − |Du|p(x)

∣∣∣ dx

+
∫
B+

�/2(x0)

k(x)
∣∣∣ |Dv|p(x) − |Dv|p2(�)

∣∣∣ dx

� c�n+α

[
−
∫
B+

�/2(x0)

(1 + |Du|2)
p2(�)

2 (1+σ′)
dx + −

∫
B+

�/2(x0)

(1 + |Dv|2)
p2(�)

2 (1+σ′)
dx

]

� c�n+α

(
−
∫
B+

�/2(x0)

(1 + |Du|2)
p1(�)(1+σ0)

2 dx

)

� c�n+α

⎡⎢⎣(−
∫
B+

� (x0)

(1 + |Du|2)
p(x)

2 dx

)
+

(
−
∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

⎤⎥⎦
1+σ0

� c�n+α−σ0p2(�)

⎡⎢⎣�p2(�)−n

∫
B+

� (x0)

(1 + |Du|2)
p2(�)

2 dx +

(
�q−n

∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

⎤⎥⎦
σ0

·

⎡⎢⎣−∫
B+

� (x0)

(1 + |Du|2)
p2(�)

2 dx +

(
−
∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

⎤⎥⎦

� cεσ0γ1

⎡⎢⎣∫
B+

� (x0)

(1 + |Du|2)
p2(�)

2 dx + �
n
(
1− p2(�)

q

)(∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

⎤⎥⎦,
where c ≡ c(datap(·)). Merging the content of all the previous displays we end up with∫

B+
�/2(x0)

|Vp2(�)(Du) − Vp2(�)(Dv)|2 dx

� cε
σ′γ1
1+σ′

⎡⎢⎣∫
B+

� (x0)

(1 + |Du|2)
p2(�)

2 dx + �
n
(
1− p2(�)

q

)(∫
B+

�/2(x0)

|Dg|q dx

) p2(�)
q

⎤⎥⎦, (3.34)

where c ≡ c(datap(·)). If p2(�) � 2, by (2.10) and (3.34) we directly obtain that∫
B+

�/2(x0)

|Du−Dv|p2(�) dx �
∫
B+

�/2(x0)

|Vp2(�)(Du) − Vp2(�)(Dv)|2 dx

� cε
σ′γ1
1+σ′

⎡⎢⎣∫
B+

� (x0)

(1 + |Du|2)
p2(�)

2 dx + �
n
(
1− p2(�)

q

)(∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

⎤⎥⎦,
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while, when 1 < p2(�) < 2, via Hölder inequality, (3.34), the minimality of v in class
Ĉp2(�)
u (B+

�/2(x0),M) and (2.10) we can conclude that∫
B+

�/2(x0)

|Du−Dv|p2(�) dx

�
(∫

B+
�/2(x0)

|Du−Dv|2(|Du|2 + |Dv|2)
p2(�)−2

2 dx

) p2(�)
2

·
(∫

B+
�/2(x0)

(|Du|2 + |Dv|2)
p2(�)

2 dx

) 2−p2(�)
2

� cε
σ′γ2

1
2(1+σ′)

⎡⎢⎣∫
B+

� (x0)

(1 + |Du|2)
p2(�)

2 dx + �
n
(
1− p2(�)

q

)(∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

⎤⎥⎦.
All in all, setting κ := γ1σ

′

1+σ′ min{1, γ1
2 }, we get∫

B+
�/2(x0)

|Du−Dv|p2(�) dx � cεκ
∫
B+

� (x0)

(1 + |Du|2)
p2(�)

2 dx

+ cεκ�
n
(
1− p2(�)

q

)(∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

, (3.35)

for c ≡ c(datap(·)).
Step 3: Comparison, second time. Set k0 := k(x0). We confront v with the solution h ∈

W 1,p2(�)(B+
�/4(x0),RN ) of the Dirichlet problem

Ĉp2(�)
v (B+

�/4(x0),RN ) � w �→
∫
B+

�/4(x0)

k0|Dw|p2(�) dx. (3.36)

Furthermore, h solves the Euler–Lagrange equation

0 =
∫
B+

�/4(x0)

k0p2(�)|Dh|p2(�)Dh ·Dϕ dx, (3.37)

for all ϕ ∈ W
1,p2(�)
0 (B+

�/4(x0),RN ). Note that, by the results in [41] there holds that

‖h‖L∞(B+
�/4(x0))

� c(N)‖v‖L∞(B+
�/4(x0))

� c(N,M). (3.38)

Recalling [14, Lemma 3.4] there holds that∫
B+

ς (x0)

|Dh|p2(�) dx �c

(
ς

�

)ϑ ∫
B+

�/2(x0)

|Du|p2(�) dx

+ cς
n
(
1− p2(�)

q

)(∫
B+

�/2(x0)

|Dg|q dx

) p2(�)
q

, (3.39)

for all ς ∈ (0, �
4 ) and any ϑ ∈ (n(1 − p2(�)

q ), n), with c ≡ c(n,N, γ1, γ2, λ,Λ, q). For (3.39) we
also used that, by (3.36) and (3.30) it is trΓ�/4(h) = trΓ�/4(v) = trΓ�/4(u) = trΓ�/4(g), the
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minimality of h in class Ĉp2(�)
v (B+

�/4(x0),RN ) and the one of v in class Ĉp2(�)
u (B+

�/2(x0),M).
Exploiting now the monotonicity properties of the integrand in (3.36), Lemma 2.1, (3.31),
(3.37), Hölder inequality and the minimality of h in class Ĉp2(�)

v (B+
�/4(x0),RN ). We estimate

c

∫
B+

�/4(x0)

|Vp2(�)(Dv) − Vp2(�)(Dh)|2 dx

�
∫
B+

�/4(x0)

k0p2(�)
(
|Dv|p2(�)−2Dv − |Dh|p2(�)−2Dh

)
· (Dv −Dh) dx

=
∫
B+

�/4(x0)

(k0 − k(x))p2(�)|Dv|p2(�)−2Dv · (Dv −Dh) dx

+
∫
B+

�/4(x0)

k(x)p2(�)|Dv|p2(�)−2Dv · (Dv −Dh) dx

� c�α
∫
B+

�/4(x0)

|Dv|p2(�)−1|Dv −Dh| dx + c

∫
B+

�/4(x0)

|Dv|p2(�)|v − h| dx

� c�α
∫
B+

�/4(x0)

|Dv|p2(�) dx + c

∫
B+

�/4(x0)

|Dv|p2(�)|v − h| dx =: c[�α(I) + (II)],

with c ≡ c(n,N, λ,Λ, γ1, γ2, [k]0,α, α). The minimality of v in class Ĉp2(�)
u (B+

�/2(x0),M) yields
that

(I) � λ−1

∫
B+

� (x0)

|Du|p2(�) dx

and, recalling also (3.28), we see that(�
2

)p2(�)−n
∫
B+

�/2(x0)

|Dv|p2(�) dx � 2n−γ1�p2(�)−n

∫
B+

�/2(x0)

|Du|p2(�) dx

� 2n−γ1

⎡⎢⎣�p2(�)−n

∫
B+

� (x0)

(1 + |Du|2)
p2(�)

2 dx +

(
�q−n

∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

⎤⎥⎦
< 2n−γ1εp2(�). (3.40)

By the Hölder inequality, the minimality of h in class Ĉp2(�)
v (B+

�/4(x0),RN ) and the one of v

in class Ĉp2(�)
u (B+

�/2(x0),M), Lemma 3.4, (3.7), (3.38) and (3.40) we bound

(II) �c�n

(
−
∫
B+

�/4(x0)

|Dv|p2(�)(1+σ′) dx

) 1
1+σ′(

−
∫
B+

�/4(x0)

|v − h|p2(�) dx

) σ′
1+σ′

�c�n

⎡⎢⎣−∫
B+

�/2(x0)

|Du|p2(�) dx +

(
−
∫
B+

�/2(x0)

|Dg|q dx

) p2(�)
q

⎤⎥⎦

·
(
�p2(�)−n

∫
B+

�/4(x0)

|Dv −Dh|p2(�) dx

) σ′
1+σ′
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�cε
γ1σ′
1+σ′

⎡⎢⎣∫
B+

� (x0)

(1 + |Du|2)
p2(�)

2 dx + �
n
(
1− p2(�)

q

)(∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

⎤⎥⎦,
for c ≡ c(datap(·)). Merging the content of the two previous displays and proceeding as in the
last part of Step 2 we end up with∫

B+
�/4(x0)

|Dv −Dh|p2(�) dx

� c[εκ + �α]

⎡⎢⎣∫
B+

� (x0)

(1 + |Du|2)
p2(�)

2 dx + �
n
(
1− p2(�)

q

)(∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

⎤⎥⎦, (3.41)

with c ≡ c(data). Collecting inequalities (3.35) and (3.41) we obtain∫
B+

�/4(x0)

|Du−Dh|p2(�) dx

� c[εκ + �α]

⎡⎢⎣∫
B+

� (x0)

(1 + |Du|2)
p2(�)

2 dx + �
n
(
1− p2(�)

q

)(∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

⎤⎥⎦, (3.42)

where c ≡ c(data).
Step 4: Morrey decay estimates at the boundary. Let ς ∈ (0, �

4 ) and estimate, via (3.27),
(3.39) and (3.42),∫

Bς(x0)

(1 + |Dũ|2)
p2(�)

2 dx � c

[∫
B+

ς (x0)

|Du|p2(�) dx +
∫
B+

ς (x0)

|Dg|p2(�) dx

]
+ cςn

� c

[∫
B+

ς (x0)

|Du−Dh|p2(�) dx +
∫
B+

ς (x0)

|Dh|p2(�) dx +
∫
B+

ς (x0)

|Dg|p2(�) dx

]
+ cςn

� c

[(
ς

�

)n

+ εκ + �α +
(
ς

�

)ϑ
]

·

⎡⎢⎣∫
B+

� (x0)

(1 + |Du|2)
p2(�)

2 dx + �
n
(
1− p2(�)

q

)(∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

⎤⎥⎦

+ c

(
ς

�

)n
(
1− p2(�)

q

)(
�q−n

∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

,

where c ≡ c(data). Now recall that n >ϑ > n(1 − p2(�)
q ), so we can always find β′ ∈ (n(1 −

p2(�)
q ), ϑ). Moreover set p̃2(�) := p2(�) − n + β′ and choose ς = τ� for some τ ∈ (0, 1

4 ).
Multiplying both sides of the previous inequality by (τ�)p2(�)−n we obtain

(τ�)p2(�)−n

∫
Bτ�(x0)

(1 + |Dũ|2)
p2(�)

2 dx

� τ p̃2(�)
[
cτn−β′

+ cτ−β′
(εκ + Rα

∗ ) + cτϑ−β′]
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·

⎡⎢⎣�p2(�)−n

∫
B+

� (x0)

(1 + |Du|2)
p2(�)

2 dx +

(
�q−n

∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

⎤⎥⎦

+ cτp2(�)(1−n
q )
(
�q−n

∫
B+

� (x0)

|Dg|q dx

) p2(�)
q

, (3.43)

for c ≡ c(data). With the notation introduced in Step 2, the inequality in (3.43) reads as

φ(x0, τ�, p2(�)) � τ
p̃2(�)
p2(�)

[
cτ

(n−β′)
p2(�) + cτ

− β′
p2(�)

(
ε

κ
p2(�) + R

α
p2(�)
∗

)
+ cτ

ϑ−β′
p2(�)

]

·
⎡⎣ψ+(x0, �) +

(
�q−n

∫
B+

� (x0)

|Dg|q dx

) 1
q

⎤⎦+ cτ1−n
q

(
�q−n

∫
B+

� (x0)

|Dg|q dx

) 1
q

,

(3.44)

therefore since φ(x0, r, t1) � φ(x0, r, t2) for 1 � t1 � t2, we obtain from (3.44):

ψ(x0, τ�) �τ
p̃2(�)
p2(�)

[
cτ

(n−β′)
p2(�) + cτ

− β′
p2(�)

(
ε

κ
p2(�) + R

α
p2(�)
∗

)
+ cτ

ϑ−β′
p2(�)

]

·
⎡⎣ψ+(x0, �) +

(
�q−n

∫
B+

� (x0)

|Dg|q dx

) 1
q

⎤⎦

+ cτ1−n
q

(
�q−n

∫
B+

� (x0)

|Dg|q dx

) 1
q

with c ≡ c(data). Recalling that τ ∈ (0, 1
4 ), it is easy to see that

τ
p̃2(�)
p2(�)

[
cτ

(n−β′)
p2(�) + cτ

− β′
p2(�)

(
ε

κ
p2(�) + R

α
p2(�)
∗

)
+ cτ

ϑ−β′
p2(�)

]

� τ
p̃2(�)
p2(�)

[
cτ

n−ϑ
γ2 + cτ−

ϑ
γ1

(
ε

κ
γ2 + R

α
γ2∗
)

+ cτ
ϑ−β′
γ2

]
,

therefore, merging the content of the two above displays we obtain

ψ(x0, τ�) �τ
p̃2(�)
p2(�)

[
cτ

n−ϑ
γ2 + cτ−

ϑ
γ1

(
ε

κ
γ2 + R

α
γ2∗
)

+ cτ
ϑ−β′
γ2

]

·
⎡⎣ψ+(x0, �) +

(
�q−n

∫
B+

� (x0)

|Dg|q dx

) 1
q

⎤⎦

+ cτ1−n
q

(
�q−n

∫
B+

� (x0)

|Dg|q dx

) 1
q

�τ
p̃2(�)
p2(�)

[
cτ

n−ϑ
γ2 + cτ−

ϑ
γ1

(
ε

κ
γ2 + R

α
γ2∗
)

+ cτ
ϑ−β′
γ2

]
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·
⎡⎣ψ(x0, �) +

(
�q−n

∫
B+

� (x0)

|Dg|q dx

) 1
q

⎤⎦

+ cτ1−n
q

(
�q−n

∫
B+

� (x0)

|Dg|q dx

) 1
q

, (3.45)

with c ≡ c(data). Select τ , ε and R∗ so small that⎧⎨⎩ τ
p̃2(�)
p2(�) � 1

8 , c′cτ
n−ϑ
γ2 � 1

3 , c′cτ−
ϑ
γ1

(
ε

κ
γ2 + R

α
γ2∗
)
� 1

3

c′cτ
ϑ−β′
γ2 � 1

3 , (c′ + c)τ1−n
q � 1

8 ,
(3.46)

where c′ is the same constant appearing in (3.29). By (3.29) and (3.28), with the choice made
above we can conclude that

χ+(x0, τ�) �
1
2

⎡⎣ψ+(x0, �) +

(
�q−n

∫
B+

� (x0)

|Dg|q dx

) 1
q

⎤⎦

+
1
2

(
�q−n

∫
B+

� (x0)

|Dg|q dx

) 1
q

< ε,

so iterations are legal. Moreover, combining (3.45) and (3.46) we have

ψ(x0, τ�) � τ
p̃2(�)
p2(�)ψ(x0, �) + c�1−n

q

(∫
B+

� (x0)

|Dg|q dx

) 1
q

, (3.47)

for c ≡ (data, q). Iterating (3.47) on integers k � 1 we end up with

ψ(x0, τ
k�) �τ

k
p̃2(�)
p2(�)ψ(x0, �)

+ c

(∫
B+

� (x0)

|Dg|q dx

) 1
q

�1−n
q τ (k−1)(1−n

q )
k−1∑
j=0

τ
j
(

p̃2(�)
p2(�)−1+n

q

)
. (3.48)

Since p̃2(�)
p2(�)

− 1 + n
q > 0, the series on the right-hand side of (3.47) converges, so we have

ψ(x0, τ
k�) � τ

k
p̃2(�)
p2(�)ψ(x0, �) + c

(∫
B+

� (x0)

|Dg|q dx

) 1
q

�1−n
q τ (k−1)(1−n

q ), (3.49)

for c ≡ c(data). Whenever 0 < ς < � we can find k ∈ N so that τk+1� � ς < τk�, so using
(3.49) and the very definition of p̃2(�) we obtain

ψ(x0, ς) �τ
− n

p2(�)ψ(x0, τ
k�)

�τ
− n

p2(�)

⎡⎣τk p̃2(�)
p2(�)ψ(x0, �) + c�1−n

q τ (k−1)(1−n
q )
(∫

B+
� (x0)

|Dg|q dx

) 1
q

⎤⎦

�cτ
−2

(
1+ n

γ1

)
⎡⎣( ς

�

) p̃2(�)
p2(�)

ψ(x0, �) + �1−n
q

(∫
B+

� (x0)

|Dg|q dx

) 1
q

⎤⎦
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�c

⎡⎣( ς

�

)1−n
q

ψ(x0, �) + ς1−
n
q

(∫
B+

� (x0)

|Dg|q dx

) 1
q

⎤⎦, (3.50)

for c ≡ c(data). To summarize, we just got that, if x0 ∈ ΓR is any point satisfying (3.28) on
B+

� (x0) for some � ∈ (0, R− |x0|) then

ψ(x0, ς) �c

⎡⎣( ς

�

)1−n
q

ψ(x0, �) + ς1−
n
q

(∫
B+

� (x0)

|Dg|q dx

) 1
q

⎤⎦

�c

(
ς

�

)1−n
q

(
�p2(�) −

∫
B+

� (x0)

(1 + |Du|2)
p2(�)

2 dx

) 1
p2(�)

+
(
ς

�

)1−n
q

(
�q−n

∫
B+

� (x0)

|Dg|q dx

) 1
q

�c

(
ς

�

)1−n
q

χ+(x0, �) � c

(
ς

�

)1−n
q

(3.51)

for c ≡ c(data). In (3.51) we also used (3.28) to control χ+(x0, �) with ε ∈ (0, 1].
Step 5: Partial Hölder continuity.
Now we aim to prove an estimate analogous to (3.51) valid also for points x0 ∈ B̄+

R not
necessarily belonging to ΓR. As in [37, Proof of Lemma 2], we shall determine a threshold ι ≡
ι(data) ∈ (0, 10 000−1) and x0 ∈ B+

R satisfying (3.28) for some � ∈ (0, R− |x0|). For 0 < ς < �
we distinguish two main cases: ς < 2ι� or ς � 2ι�.

Case 1: ς < 2ι�. We take x̂ ∈ ΓR so that d := dist(x0,ΓR) = |x0 − x̂|. Now, if 2ι� � d we
note that Bd(x0) ⊂ B2d(x̂) ⊂ B�/2(x̂) ⊂ B�(x0), therefore according to (3.28) it is

χ+
(
x̂,

�

2

)
� cχ+(x0, �) � c(n, γ1, γ2, q)ε,

so reducing the size of ε ≡ ε(data) determined in (3.46) to ε′ := ε
2c we end up with

χ+
(
x̂,

�

2

)
< ε′. (3.52)

If 2ι� > ς � d we immediately note that

Bς(x0) ⊂ B4ς(x̂) ⊂ B�/4(x̂) ⊂ B�(x0), (3.53)

and, since (3.52) legalizes (3.51) with x0 replaced by x̂, we obtain

ψ(x0, ς) �cψ(x̂, 4ς) � c

(
ς

�

)1−n
q

, (3.54)

for c ≡ c(data). If 2ι� � d > ς, we separately look at two possible occurrences: 2ι� � d � 4ς
and 2ι� � d with 4ς > d. In the first case, we note that Bς(x0) ⊆ Bd/4(x0) ⊂ Bd/2(x0) � B+

R

and, since Bd/2(x0) ⊂ B+
2d(x̂) and (3.52) is in force, by (3.51) it is

ψ+

(
x0,

d

2

)
� cψ+(x̂, 2d) � c

(
d

�

)1−n
q

χ+
(
x̂,

�

2

)
< cι1−

n
q ε′,

with c ≡ c(data). After reducing the size of ι > 0 in such a way that cι1−
n
q ε′ < ε0, where ε0 is

the smallness threshold appearing in [10, (3.16)] we get that ψ(x0, d/2) < ε0 so [10, estimates
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(3.40)–(3.43)] and (3.51) apply and render for arbitrary β ∈ (0, 1),

ψ+(x0, ς) � c
( ς
d

)β
ψ+

(
x0,

d

2

)
+ cςβ � c

( ς
d

)β(d

�

)1−n
q

χ+
(
x̂,

�

2

)
+ cςβ ,

for c ≡ c(data). This in particular determines the dependency ι ≡ ι(data). Using (3.52) and
choosing β = 1 − n/q in the above display we can conclude with (3.54). On the other hand,
when 4ς > d we see that inclusion (3.53) holds with B4ς(x̂) replaced by B8ς(x̂) (keep in mind
that ι < 10 000−1) and this yields (3.54). Now we consider the occurrence ς < 2ι� < d. It follows
that B2ι�(x0) � B+

R and

ψ+(x0, 2ι�) � cι1−
n
γ1 χ+(x0, �) < c(n, γ1, γ2, q)ε.

Restricting further the size of ε in such a way that cε � ε0, where ε0 is the smallness threshold
appearing in [10, (3.16)] we obtain ψ+(x0, 2ι�) < ε0 and again estimates [10, (3.40)–(3.43)]
apply, thus getting

ψ(x0, ς) �cψ+(x0, ς) + c

(
ς

�

)1−n
q

(
�q−n

∫
B�(x0)∩B+

R

|Dg|q dx

)1/q

�ι−β0c(data, β0)
(
ς

�

)β0

+ c

(
ς

�

)1−n
q

χ+(x0, �),

for all β0 ∈ (0, 1), so we can conclude using (3.28) and fixing β0 = 1 − n/q above.
Case 2: ς � 2ι�. Estimate (3.51) trivially holds with a constant c ≡ c(data).
All in all, we have just proved that if x0 ∈ B̄+

R satisfies (3.28) on B�(x0) ∩B+
R for some

� ∈ (0, R− |x0|), then

ψ(x0, ς) � c(data)
(
ς

�

)1−n
q

. (3.55)

Now, by the continuity of Lebesgue’s integral and of the mapping x0 �→ p2(x0, �), we can
conclude that if (3.28) holds for x0 on B�(x0) ∩B+

R then it holds also on B�(y) ∩B+
R for all

y ∈ B̄+
1 belonging to a sufficiently small, relatively open neighborhood of x0, say, Bx0 ⊂ B̄+

R .
Then the set

D0 :=
{
y ∈ Bx0 : χ+(y, �) < ε on B�(y) ∩B+

R , R ∈ (0, R∗], � ∈ (0, R− |y|)}
is relatively open, so via (3.55) we can conclude that(

ς−n(1− γ1
q )
∫
Bς(x0)

|Dũ|γ1 dx

) 1
γ1

� c�
n
q −1, (3.56)

where c ≡ c(data). By (3.56) and Morrey’s embedding theorem we can conclude that ũ is (1 −
n
q )-Hölder continuous in a neighborhood of D0, which in turn implies that u ∈ C

0,1−n
q

loc (D0,M).
Step 6: Hausdorff dimension of the singular set Given the characterization of D0, we easily

see that the singular set Σ0(u,B�(x0) ∩B+
R) can be defined as

Σ0(u,B�(x0) ∩B+
R) :=

(
B̄+

R ∩B�(x0)
) \D0.

Moreover, for y ∈ B�(x0) ∩B+
R , via (2.7) we see that

lim sup
ς→0

χ+(y, ς) � lim sup
ς→0

(
ςp2(y,ς)−n

∫
Bς(y)∩B+

R

(1 + |Du|2)
p2(y,ς)

2 dx

) 1
p2(y,ς)
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+ lim sup
ς→0

(
ςq−n

∫
Bς(y)∩B+

R

|Dg|q dx

) 1
q

� lim sup
ς→0

(
ςp2(y,ς)−n

∫
Bς(y)∩B+

R

(1 + |Du|2)
p2(y,ς)

2 dx

) 1
p2(y,ς)

,

therefore

Σ0(u,B�(x0) ∩B+
R) ⊂

{
y ∈ B̄�(x0) ∩ B̄+

R : lim sup
ς→0

ψ+(y, ς) > 0
}
.

Now, note that, as in (3.24),

p2(y, ς)<(1 + σ0)p1(x0, R∗) for all 0 < ς � R∗, Bς(y) ∩B+
R ⊂ B�(x0) ∩B+

R , (3.57)

so we obtain,(
ςp2(y,ς) −

∫
Bς(y)∩B+

R

(1 + |Du|2)
p2(y,ς)

2 dx

) 1
p2(y,ς)

�
(
ςp1(x0,R∗)(1+σ0) −

∫
Bς(y)∩B+

R

(1 + |Du|2)
p1(x0,R∗)(1+σ0)

2 dx

) 1
p1(x0,R∗)(1+σ0)

,

which by (3.6) is finite. This allows concluding that Σ0(u,B�(x0) ∩B+
R) is contained into the

set

D1 :=
{
y ∈ B̄�(x0) ∩ B̄+

R : lim sup
ς→0

φ+(y, ς, p1(x0, R∗)(1 + σ0))p1(x0,R∗)(1+σ0) > 0
}
.

By [26, Proposition 2.7] it follows that dimH(D1) � n− p1(x0, R∗)(1 + σ0), so by (2.2)2 we
easily have that dimH(D1) < n− γ1 and so dimH(Σ0(u,B�(x0) ∩B+

R)) < n− γ1. The proof is
complete. �

Once Proposition 3.5 is available, we can cover B+
1 with balls having the same fea-

tures of B�(x0) ∩B+
R and remembering that, by (2.2)2, p1(x0, R∗) � γ1, we obtain that

dimH(Σ0(u)) � n− γ1(1 + σ0) < n− γ1, and so dimH(Σ0(u)) < n− γ1. Via a standard cover-
ing argument, we can conclude that u ∈ C

0,1−n
q

loc (B̄+
1 \ Σ0(u),M) and the proof of Theorem 1.1

is complete.

Remark 4. The result in Theorem 1.1 essentially shows that solutions of problem (1.1)
are as regular as the boundary datum allows, in particular, if instead of (2.7) we assume g ∈
W 1,∞(Ω̄,M), we can prove that u ∈ C0,β

loc (Ω0,M) for all β ∈ (0, 1), as done in the p-Laplacean
case in [31, 52].

4. Full boundary regularity

In this section we recover a regularity criterion based on the result in Theorem 1.1. The main
preliminary step consists in proving compactness of sequences of minimizers of (3.1) under
uniform assumptions; see [10, 14, 48].

Remark 5. We will always assume that γ2 < n, otherwise, as stressed in Step 1 of the
proof of Theorem 1.1, by Morrey’s embedding theorem we would have u Hölder continuous in
a small neighborhood of any point x̄ ∈ B̄+

1 so that p(x̄) � n.
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Lemma 4.1. Let {kj}, {pj} be two sequences of Hölder continuous functions satisfying⎧⎪⎨⎪⎩
supj∈N[kj ]0,ν < ck for some ν ∈ (0, 1]
λ � kj(x) � Λ for all x ∈ B̄+

1

‖kj − k0‖L∞(B̄+
1 ) → 0, k0(·) ∈ C0,ν(B̄+

1 )
(4.1)

and ⎧⎪⎨⎪⎩
supj∈N[pj ]0,α < cp for some α ∈ (0, 1]
pj(x) � γ1 > 1 for all x ∈ B̄+

1 , j ∈ N

‖pj − p0‖L∞(B̄+
1 ) → 0, p0 � γ1 > 1 constant,

(4.2)

respectively. For each j ∈ N, let uj ∈ W 1,pj(·)(B+
1 ,M) be a constrained minimizer of

Ej(w,B+
1 ) :=

∫
B+

1

kj(x)|Dw|pj(x) dx,

in class Cpj(·)
gj (B+

1 ,M), where the manifold M is as in (2.6) and the sequence {gj} ⊂
W 1,q(B̄+

1 ,M), uniformly satisfying (2.7), is weakly convergent to some g0 ∈ W 1,q(B̄+
1 ,M).

Then, there exists a subsequence, still denoted by {uj}, such that

uj ⇀ u0 weakly in W 1,(1+σ̃)p0(B+
R ,M) (4.3)

for some σ̃ > 0 and any R ∈ (0, 1). In particular, u0 is a constrained minimizer of the functional

E0(w,B+
R) :=

∫
B+

R

k0(x)|Dw|p0 dx

in class Cp0
g0

(B+
R ,M). Moreover,

Ej(uj , B
+
R) → E0(u0, B

+
R) for all R ∈ (0, 1).

Finally, if xj is a singular point of uj and xj → x0, then x0 is a singular point for u0.

Proof. For the reader’s convenience, we split the proof into three steps.
Step 1: Weak convergence. By assumption, the sequence {gj} is weakly convergent in

W 1,q(B̄1,M), so we can find a positive, finite constant M ≡ M(n,M, q) so that

sup
j∈N

‖gj‖W 1,q(B+
1 ) � M. (4.4)

Since the whole sequence {uj} has image contained in M, which, by (2.6)1 is compact, we
immediately have that supj∈N ‖uj‖L∞(B+

1 ) � c(M) < ∞, thus, up to extracting a non-relabeled
subsequence,

uj ⇀ u0 weakly in Lt(B+
1 ,M) for all t ∈ (1,∞). (4.5)

Moreover, being the assumptions in (4.1)–(4.2) uniform in j ∈ N, we deduce that Lemmas 3.2
and 3.4 for the associated frozen problem hold with constants independent of j. In particular,
recalling the uniform features of the functions gj and combining (3.8) with a standard covering
argument we can conclude that {uj} ⊂ W

1,p(·)(1+σ)
loc (B+

1 ,M) for all σ ∈ [0,min{σg, σ
′
g}). Now

we take any ball B�(x0) ⊂ B1 with � ∈ (0, 1
4 min{1 − |x0|, R∗}] and R∗ as in (3.21), so we can

apply (3.16)2 with any σ ∈ (0,min{σg,
n−γ2
γ2

, q
n − 1}) to deduce that∫

B�(x0)∩B+
1

|Duj |pj(x)(1+σ) dx � c�n−p2(x0,�)(1+σ) � c(n,N,M, γ1, γ2, q). (4.6)
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In (4.6) we also used (4.4) to incorporate the dependency on the constant from ‖Dgj‖Lq(B+
1 )

into the one from (n,M, q). Now set

σ̂g :=
1
4

min
{
σg, σ

′
g, δg,

n− γ2

γ2
,
q

n
− 1

}
,

where σg, σ′
g and δg are the same higher integrability threshold determined in Lemmas 3.2

and 3.4, respectively, and choose any σ ∈ (0, σ̂g). Because of the uniform convergence of the
sequence {pj} to the constant p0, taking j ∈ N sufficiently large we can find positive constants
γ1 � q1 � q2 � γ2 such that

1 < q1 � pj(·) � q2 < ∞ on B̄+
1 , q2

(
1 +

σ

2

)
<q1(1 + σ), q2<p0

(
1 +

σ

2

)
(4.7)

and

0 � q2 − q1 <
δgγ1

16
and 1 � q2

q1
< 2. (4.8)

Combining (4.6), (4.7) and the choice of σ > 0 we made, we can conclude that∫
B�(x0)∩B+

1

|Duj |q2(1+σ
2 ) dx � c(n,M, γ1, γ2, q). (4.9)

By (4.5) and (4.9) we derive the uniform boundedness of the functions uj in
W 1,(1+σ/2)q2(B�(x0) ∩B+

1 ,M), so, up to extract a (non-relabeled) subsequence, we obtain
that uj ⇀ ū0 weakly in W 1,(1+σ/2)q2(B�(x0) ∩B+

1 ,M), for some ū0 ∈ W 1,(1+σ/2)q2(B�(x0) ∩
B+

1 ,M). Anyway, by (4.5), ū0(x) = u0(x), u0(x) ∈ M for a.e. x ∈ B�(x0) ∩B+
1 and, by the

Rellich–Kondrachov theorem,

uj → u0 strongly in L(1+σ/2)q2(B�(x0) ∩B+
1 ,M), (4.10)

Duj → Du0 weakly in L(1+σ/2)q2(B�(x0) ∩B+
1 ,RN×n). (4.11)

From (4.7)1 and (4.2)3, we see that q2 � p0, therefore (4.3) is proved for instance with

σ̃ =
σ̂g

4
. (4.12)

Using the lower semicontinuity of the norm, we also have that∫
B�(x0)∩B+

1

|Du0|q2(1+ σ̃
2 ) dx � c(datap(·)). (4.13)

Inequality (4.13) and the convergence in (4.10)–(4.11) hold on B�(x0) ∩B+
1 , but we will show

that they actually hold on half balls having any radius R ∈ (0, 1). In fact, being B̄+
1 compact,

we can find m ≡ m(n) and a finite family of balls {B�k
(xk)}mk=1 so that {�k} ⊂ (0, R∗

4 ) and
B+

1 ⊆ ⋃m
k=1 B�k

(xk). Then, given any measurable subset U ⊆ B+
R with R ∈ (0, 1), we trivially

have that U ⊆ ⋃m
k=1(B�k

(xk) ∩B+
1 ) and, recalling (4.10), (4.11) and (4.13):∫

U

|Du0|q2(1+ σ̃
2 ) dx �

m∑
k=1

∫
B�k

(xk)∩B+
1

|Du0|q2(1+ σ̃
2 ) dx � mc � c(datap(·)) (4.14)

‖Duj‖
L

q2(1+ σ̃
2 )(U)

�
m∑

k=1

‖Duj‖
L

q2(1+ σ̃
2 )(B�k

(xk)∩B+
1 )

� c(datap(·)) (4.15)

‖uj − u0‖
L

q2(1+ σ̃
2 )(U)

�
m∑

k=1

‖uj − u0‖
L

q2(1+ σ̃
2 )(B�k

(xk)∪B+
1 )

→ 0, (4.16)
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so (4.3) is completely proved. Note that (4.3) and the weak continuity of the trace operator
yield in particular that

trΓR
(u0) = trΓR

(g0) for all R ∈ (0, 1). (4.17)

Step 2: Compactness. We fix R ∈ (0, 1) and, as a first step toward the proof of the minimality
of E0(u0, B

+
R) in class Cp0

g0
(B+

R ,M) we show that

E0(u0, B
+
R) � lim inf

j→∞
Ej(uj , B

+
R). (4.18)

Since Ej(uj , B
+
R) = (Ej(uj , B

+
R) − E0(uj , B

+
R)) + E0(uj , B

+
R) and, by weak lower semicontinuity

and (4.5) it is

E0(u0, B
+
R) � lim inf

j→∞
E0(uj , B

+
R), (4.19)

we only need to show that

|Ej(uj , B
+
R) − E0(uj , B

+
R)| → 0, (4.20)

which is a consequence of (4.1)3, (4.2)3, Lemma 2.2 (i) with ε0 = σ
2 and (4.9). In fact,

|Ej(uj , B
+
R) − E0(uj , B

+
R)| �

∣∣∣∣∣
∫
B+

R

(kj(x) − k0(x))|Duj |pj(x) dx

∣∣∣∣∣
+

∣∣∣∣∣
∫
B+

R

k0(x)
[
|Du|pj(x) − |Duj |p0

]
dx

∣∣∣∣∣ � ‖kj − k0‖L∞(B+
R)

∫
B+

R

|Du|pj(x) dx

+ c‖pj − p0‖L∞(B+
R)

∫
B+

R

(1 + |Duj |2)
q2
2 (1+σ

2 ) dx

� c
[
‖kj − k0‖L∞(B+

R) + ‖pj − p0‖L∞(B+
R)

]
→ 0.

The constant c appearing in the previous display depends only on datap(·). Combining (4.20)
and (4.19) we end up with (4.18). Now, let ũ0 ∈ W 1,p0(B+

R ,M) be a solution of the Dirichlet
problem

Ĉp0
u0

(B+
R ,M) � w �→ min E0(w,B+

R). (4.21)

As in [10, 14, 30] we fix any θ ∈ (0, 1), a cut-off function η ∈ C1
c (BR) satisfying

1B(1−θ)R � η � 1BR
and |Dη| � 1

Rθ
, (4.22)

and consider a bi-Lipschitz transformation Φ: B̄+
R → B̄R so that

Φ|∂+B+
R

= I∂+B+
R

and Φ(ΓR) = {x ∈ ∂BR : xn < 0}. (4.23)

Being Φ bi-Lipschitz, if JΦ is its jacobian, we have that

0 < c(n)−1 � |JΦ(x)| � c(n) < ∞. (4.24)

Let us look at the function

ũj(x) := ũ0(x) + (1 − η(Φ(x)))(uj(x) − u0(x)) for x ∈ B+
R .

By (4.22)1 and (4.23) we see that

B+
R ∩ {0 � η(Φ(x)) < 1}=B+

R ∩ Φ−1(B̄R \ B̄(1−θ)R). (4.25)
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Since

∂
(
B+

R ∩ {0 � η(Φ(x)) < 1}) = ∂B+
R ∪ ∂{η(Φ(x)) = 1},

by (4.17) we infer also that

in a neighborhood of ∂
(
B+

R ∩ {0 � η(Φ(x)) < 1}), ũj takes values in M. (4.26)

In particular, according to (4.17) and to the definition given in (4.21), we have⎧⎪⎨⎪⎩
trΓR

(ũj) = trΓR
(gj)

tr∂+B+
R
(ũj) = tr∂+B+

R
(uj)

tr∂{η(Φ(x))=1}(ũj) = tr∂{η(Φ(x))=1}(ũ0).

(4.27)

Conditions (4.26)–(4.27) justify the application of Lemma 2.5 on the set B+
R ∩ {0 � η(Φ(x)) <

1} to end up with a function w̄j ∈ W
1,pj(·)
loc (B+

1 ,M) satisfying⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w̄j

(
∂
(
B+

R ∩ {0 � η(Φ(x)) < 1})) ⊂ M
trΓR

(w̄j) = trΓR
(gj)

tr∂+B+
R
(w̄j) = tr∂+B+

R
(uj)

tr∂{η(Φ(x))=1}(w̄j) = tr∂{η(Φ(x))=1}(g0),∫
B+

R∩{0�η(Φ(x))<1} |Dw̄j |pj(x) dx �
∫
B+

R∩{0�η(Φ(x))<1} |Dũj |pj(x) dx

(4.28)

with constants implicit in ‘�’ depending on (N,M, γ2). Finally, define

w̃j(x) :=

{
ũ0(x) if x ∈ B+

R ∩ {η(Φ(x)) = 1}
w̄j(x) if x ∈ B+

R ∩ {0 � η(Φ(x)) < 1}.
Now, note that the choices we made in (4.8) and (4.12) imply that

q2
p0

(
1 +

σ̃

2

)
= 1 +

[
q2 − p0

p0
+

q2σ̃

2p0

]
< 1 +

δg
8
, (4.29)

so by Lemma 3.4, (4.29), (4.14) and the minimality of ũ0 in class Ĉp0
u0

(B+
R ,M), we get∫

B+
R∩{0�η(Φ(x))<1}

|Dũ0|pj(x) dx � c|B+
R ∩ {0 � η(Φ(x)) < 1}| + c

∫
B+

R

|Dũ0|q2(1+ σ̃
2 ) dx

�c|B+
R ∩ {0 � η(Φ(x)) < 1}| + c

∫
B+

R

|Du0|q2(1+ σ̃
2 ) dx < ∞, (4.30)

for c ≡ c(datap(·)). In (4.30) we used, in particular, that∫
B+

R

|Dũ0|q2(1+ σ̃
2 ) dx � c

∫
B+

R

|Du0|q2(1+ σ̃
2 ) dx, (4.31)

with c ≡ c(n,N,M, γ1, γ2, λ,Λ), which follows by the minimality of ũ0 in class Ĉp0
u0

(B+
R ,M)

and Lemma 3.4. Via (4.24), (4.25) and a straightforward change of variables we have∣∣ B+
R ∩ {0 � η(Φ(x)) < 1} ∣∣ =

∫
B+

R

1{0�η(Φ(x))<1} dx

�
∫
B+

R∩{Φ−1(B̄R\B(1−θ)R)}
dx �

∫
BR\B̄(1−θ)R

|JΦ(x)|−1 dx

� c(n)|B̄R \ B̄(1−θ)R| → 0 as θ → 0. (4.32)
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We then estimate

Ej(uj , B
+
R) �Ej(w̃j , B

+
R)

�Ej(w̃j , B
+
R ∩ {0 � η(Φ(x)) < 1}) + Ej(ũ0, B

+
R ∩ {η(Φ(x)) = 1})

=:(I)j + (II)j . (4.33)

In the previous display, we used that, in view of (4.28)2,3, w̃j is a legitimate comparison map
to uj . The bounds in (4.30), (4.28)4 and (4.32) then legalize the following estimate:

(I)j �c

∫
B+

R∩{0�η(Φ(x))<1}

[
|Dũ0|pj(x) + |Duj −Du0|pj(x) +

∣∣∣∣ uj − u0

Rθ

∣∣∣∣pj(x)
]

dx

�c

∫
B+

R∩{0�η(Φ(x))<1}
|Dũ0|pj(x) dx + c

∫
B+

R∩{0�η(Φ(x))<1}

[
|Duj |pj(x) + |Du0|pj(x)

]
dx

+ c

∫
B+

R∩{0�η(Φ(x))<1}

∣∣∣∣ uj − u0

Rθ

∣∣∣∣pj(x)

dx =: c
[
(I)1j + (I)2j + (I)3j

]
where c ≡ c(N,M, γ1, γ2). Let us bound the three terms appearing on the right-hand side
of the above inequality. By Lemma 2.2 (i) with ε0 = σ̃

2 , (4.31), (4.7), (3.19), (4.32), (4.2)3 and
the absolute continuity of Lebesgue’s integral we have

(I)1j �c

∫
B+

R∩{0�η(Φ(x))<1}

[
|Dũ0|pj(x) − |Dũ0|p0

]
dx + c

∫
B+

R∩{0�η(Φ(x))<1}
|Dũ0|p0 dx

�c‖pj − p0‖L∞(B+
1 )

∫
B+

R∩{0�η(Φ(x))<1}
|Dũ0|q2(1+ σ̃

2 ) dx + o(θ)

�c‖pj − p0‖L∞(B+
1 )

∫
B+

R

|Du0|q2(1+ σ̃
2 ) dx + o(θ) = o(j) + o(θ),

with c ≡ c(datap(·)). By (4.7), (4.14), (4.15), (4.32) we get that

(I)2j � o(θ) +
∫
B+

R∩{0�η(Φ(x))<1}
[|Duj |q2 + |Du0|q2 ] dx

� o(θ) + c(datap(·))|B+
R ∩ {0 � η(Φ(x)) < 1}| σ̃

1+σ̃ � o(θ).

Moreover, using (4.16), Hölder inequality and (4.32) we have

(I)3j �|B+
R ∩ {0 � η(Φ(x)) < 1}| +

∫
B+

R∩{0�η(Φ(x))<1}

∣∣∣∣ uj − u0

rθ

∣∣∣∣q2 dx

�o(θ) + (Rθ)−q2 |B+
R ∩ {0 � η(Φ(x)) < 1}| σ̃

1+σ̃ ‖uj − u0‖q2
L

q2(1+ σ̃
2 )(B+

R)

�o(θ) + (Rθ)−q2o(j),

and, trivially,

(II)j � Ej(ũ0, B
+
R).
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Finally, by (4.1)3, (4.2)3, (4.30) and (4.31) we get

|Ej(ũ0, B
+
R) − E0(ũ0, B

+
R)|

�
[
‖kj − k0‖L∞(B+

1 ) + ‖pj − p0‖L∞(B+
1 )

](
1 +

∫
B+

R

|Du0|q2(1+ σ̃
2 ) dx

)

� c(datap(·))
[
‖kj − k0‖L∞(B+

1 ) + ‖pj − p0‖L∞(B+
1 )

]
= o(j).

Plugging the content of all the previous estimates in (4.33) we end up with

Ej(uj , B
+
R) � E0(ũ0, B

+
R) + o(j) + o(θ) + (Rθ)−q2o(j).

By (4.18) we can take the liminf as j → ∞ in the above display to obtain

E0(u0, B
+
R) � lim inf

j→∞
Ej(uj , B

+
R)

� lim sup
j→∞

[E0(ũ0, B
+
R) + o(j) + o(θ) + (Rθ)−q2o(j)

]
�E0(ũ0, B

+
R) + o(θ). (4.34)

Sending θ → 0 in (4.34) and using the minimality of ũ0 in class Ĉp0
u0

(B+
R ,M), we end up with

E0(u0, B
+
R) � E0(ũ0, B

+
R) � E0(w,B+

R)

for all w ∈ Ĉp0
u0

(B+
R ,M). Therefore, by Definition 3 and (4.17), the minimality of u0 in class

Cp0
g0

(B+
R ,M) is proved. Finally, combining (4.34) with the minimality of ũ0 in class Ĉp0

u0
(B+

R ,M),
we can conclude that Ej(uj , B

+
R) → E0(u0, B

+
R).

Step 3. Singular points. Let {xj} ⊂ B̄+
1 be the sequence of singular points in the statement.

The interior case x0 ∈ B+
1 has already been analyzed in [10, Section 4.1], so we can assume

that x0 ∈ Γ1. Up to choose j ∈ N sufficiently large and then relabel, we can also suppose that
{xj} ⊂ B+

R for some R ∈ (0, R∗
4 ), x0 ∈ ΓR and (4.7)–(4.8) are in force. By Theorem 1.1, (2.7)

and (4.4), we can find a radius R̃ > 0 and a positive constant ε̃, both independent of j ∈ N so
that if xj is a singular point of uj , then(

�p2,j(�)−n

∫
B+

� (xj)

(1 + |Duj |2)
p2,j(�)

2 dx

) 1
p2,j(�)

> ε̃ > 0 (4.35)

for all � ∈ (0, 1
4 min{R̃, R∗ −R}), with R∗ as in (3.21). In the above display, we denoted

p2,j(�) := supx∈B�(xj)∩B+
R
pj(x). Set σ′ := min{σ̃, α

γ2
}. By Lemma 2.2 (i) with ε0 = σ′

2 and
(3.16)2, we estimate∣∣∣∣∣ �p2,j(�)−n

∫
B+

� (xj)

[
(1 + |Duj |2)

p2,j(�)
2 − (1 + |Duj |2)

pj(x)
2

]
dx

∣∣∣∣∣
1

p2,j(�)

� c�1+ α
γ1

(
−
∫
B+

� (xj)

(1 + |Duj |2)
p2,j(�)

2

(
1+σ′

2

)
dx

) 1
p2,j(�)

� c�−
σ′
2 + α

γ2 → 0, (4.36)

for c ≡ c(n,N,M, γ1, γ2, q). By (4.35), (4.36), (4.4) and (3.14) we then get

ε̃ <c�−
σ′
2 + α

γ2 + c

(
�p2,j(�)−n

∫
B+

� (xj)

(1 + |Duj |2)
pj(x)

2 dx

) 1
p2,j(�)
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�c�−
σ′
2 + α

γ2 + c� + c�
1− n

p2,j(�)

[∫
B+

2�(xj)

∣∣∣∣uj − gj
�

∣∣∣∣pj(x)

dx +
∫
B+

2�(xj)

|Dgj |pj(x) dx

] 1
p2,j(�)

�c�−
σ′
2 + α

γ2 + c� + c�1−n
q

(∫
B+

� (xj)

|Dgj |q dx

) 1
q

+ c�
1− n

p2,j(�)

[∫
B+

2�(xj)

∣∣∣∣uj − u0

�

∣∣∣∣q2(1+ σ̃
2 )

dx +
∫
B+

2�(xj)

∣∣∣∣gj − u0

�

∣∣∣∣pj(x)

dx

] 1
p2,j(�)

�c�σ
′′

+ c

[
−
∫
B+

2�(xj)

|uj − u0|q2(1+ σ̃
2 ) dx + −

∫
B+

2�(xj)

|gj − u0|pj(x) dx

] 1
p2,j(�)

, (4.37)

where we set σ′′ := min{1 − n
q ,

α
γ2

− σ′
2 }> 0 and c ≡ c(n,N,M, γ1, γ2, q). By (4.16) we get

−
∫
B+

2�(xj)

|uj − u0|q2(1+ σ̃
2 ) dx → 0 as j → ∞. (4.38)

Since gj ⇀ g0 weakly in W 1,q(B̄+
1 ,M), then by the Rellich–Kondrachov theorem there holds

that, up to subsequences, gj → g0 strongly in Lq(B̄+
1 ,M) and pointwise a.e., therefore, keeping

also (4.2)3 in mind, we can apply dominated convergence theorem to end up with

−
∫
B+

2�(xj)

|gj − u0|pj(x) dx → −
∫
B+

2�(xj)

|g0 − u0|p0 dx as j → ∞. (4.39)

By (4.2)3, (4.38) and (4.39) we can take the limit superior with respect to j ∈ N on both sides
of the inequality in (4.37) to obtain

ε̃ � c�σ
′′

+ c

(
−
∫
B+

2�(xj)

|g0 − u0|p0 dx

) 1
p0

. (4.40)

We finally pass to the limit superior for � → ∞ in (4.40) and have

0 < ε̄p0 � lim sup
�→0

−
∫
B+

2�(xj)

|u0 − g0|p0 dx,

meaning that x0 is a singular point for u0. In the previous display, we set ε̄ := ε̃/c. �

The next lemma is a monotonicity formula in the spirit of [10, 23, 52, 54].

Lemma 4.2. Under assumptions (2.3), (2.4), (2.6) and (2.7), let u ∈ W 1,p(·)(B+
1 ,M) be

a solution of problem (3.1). Suppose also that

k(0) = 1. (4.41)

Then, for all κ ∈ (0, 1 − n
q ), there exist Υ ≡ Υ(n,N,M, γ1, γ2, q) ∈ (0, 1] and a threshold

T ≡ T (data, κ) ∈ (0, 1] such that if

[g]0,1−n
q ;B̄+

1
< Υ, (4.42)

then the map Φ: (0, T
4 ) → [0,∞) defined as

Φ(τ) := exp
(

c̃

β′′ τ
β′′
)[

τp2(τ)−n

∫
B+

τ

k(x)|Dũ|p2(τ) dx + c
τκ

κ

]
, (4.43)
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with ũ as in (3.26), β′′ ≡ β′′(n, q, ν) and c, c̃ ≡ c, c̃(data, ‖Dg‖Lq(B+
1 ), κ), is monotone non-

decreasing. Moreover, the following inequality holds true:∫
∂B+

1

|u(Rx) − u(�x)|p2(�) dHn−1(x)

�c log(R/�)p2(�)−1
[
�p2(�)−p2(R)(Φ(R) − Φ(�))

]
+ c(R− �)γ1(1−n

q ), (4.44)

for c ≡ c(data, ‖Dg‖Lq(B+
1 ), κ).

Proof. Let u ∈ W 1,p(·)(B+
1 ,M) be a solution of problem (3.1), κ ∈ (0, 1) be a fixed constant

and select T ∈ (0, 1] so that

0 < T � min

{
R∗,

1 − κ

32[p]0,1
,

(
λ

4[k]0,ν

) 2
ν

}
,

where R∗ is as in (3.21). Such a position assures that, whenever τ ∈ (0, T
4 ], (3.23)-(3.25) hold

with R replaced by τ , moreover,

p2(4τ) − p1(τ) � 1 − κ

2
and 4[k]0,ντ

ν
2 � λ, (4.45)

with ν as in (2.3)1. For τ ∈ (0, T
4 ], we introduce the functional

W 1,p2(τ)(B+
τ ,M) � w �→ Eτ (w,B+

τ ) :=
∫
B+

τ

k(x)|Dw|p2(τ) dx

and let v ∈ W 1,p2(τ)(B+
τ ,M) be a solution of problem

Ĉp2(τ)
u (B+

τ ,M) � w �→ min Eτ (w,B+
τ ). (4.46)

By the minimality of v in class Ĉp2(τ)
u (B+

τ ,M) and that of u in class Cp(·)
g (B+

1 ,M) we bound

|Eτ (u,B+
τ ) − Eτ (v,B+

τ )| = Eτ (u,B+
τ ) − Eτ (v,B+

τ )

� |Eτ (u,B+
τ ) − E(u,B+

τ )| + |Eτ (v,B+
τ ) − E(v,B+

τ )| =: (I) + (II).

Let

σ′′ :=
1
4

min
{
σg, δg,

n− γ2

γ2
,
1 − κ

2γ2

}
, (4.47)

where σg and δg are the higher integrability threshold from Lemmas 3.2–3.4, respectively.
Combining (2.2)1, (2.3)1, Lemma 3.2, Lemma 2.2 (i) with ε0 = σ′′ and (3.16)2 we end up with

(I) � cτ

∫
B+

τ

(1 + |Du|2)
p2(τ)(1+σ′′)

2 dx � cτ1+n−p2(4τ)(1+σ′′),

for c ≡ c(datap(·), ‖Dg‖Lq(B+
1 )). In a totally similar way, using this time Lemma 3.4, (3.16)2

and Lemma 2.2 (ii) with ε0 = σ′′ we get

(II) �cτ

∫
B+

τ

(1 + |Dv|2)
p2(τ)(1+σ′′)

2 dx

�cτ

∫
B+

τ

(1 + |Dv|2)
p2(τ)(1+σ′′)

2 dx � cτ1+n−p2(4τ)(1+σ′′),

with c ≡ c(datap(·), ‖Dg‖Lq(B+
1 )). Merging the content of the previous displays we obtain

Eτ (u,B+
τ ) � Eτ (v,B+

τ ) + cτ1+n−p2(4τ)(1+σ′′). (4.48)
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Now, for τ as above, define xτ := τ x
|x| . As in [52, Lemma 1.3] we consider the following

comparison map:

wτ (x) :=

{
u(x) if x ∈ B+

1 \B+
τ

ũ(xτ ) + g(x) if x ∈ B+
τ ,

where ũ is defined in (3.26). Note that, by (3.24)–(3.25) there holds that

wτ ∈ u + W
1,p(·)
0 (B+

τ ,RN ) and wτ ∈ W 1,p2(τ)(B+
τ ,RN ). (4.49)

Moreover, since (2.11) and (4.42) are in force, we see that

dist(wτ ,M) � c(n, q, β0)Υτβ0 with β0 := 1 − n

q
,

therefore, choosing Υ small enough, and thus determining the dependency Υ ≡
Υ(n,N,M, γ1, γ2, q), we can project wτ onto M thus obtaining a map w̄τ := ΠM(wτ ) satisfying

w̄τ ∈ Ĉp2(τ)
u (B+

τ ,M) and
∫
B+

τ

|Dw̄τ |p2(τ) dx � (1 + cΥτβ0)
∫
B+

τ

|Dwτ |p2(τ) dx, (4.50)

for c ≡ c(n,N,M, γ1, γ2, q). Note that by the mean value theorem applied to the function
[0,∞) � s �→ (t + s)p2(τ) there holds that

(|Dũ| + |Dg|)p2(τ) � |Dũ|p2(τ) + p2(τ)(|Dũ| + |Dg|)p2(τ)−1|Dg|, (4.51)

so by Hölder inequality with conjugate exponents ( p2(τ)
p2(τ)−1 , p2(τ)), (4.42) and (4.50) we get∫

B+
τ

|Dwτ |p2(τ) dx �
∫
B+

τ

(|Dũ(xτ )| + |Dg|)p2(τ) dx

�(1 + cτβ0)
∫
B+

τ

|Dũ(xτ )|p2(τ) dx

+ c

[
τ−β0(p2(τ)−1)

∫
B+

τ

|Dg|p2(τ) dx +
∫
B+

τ

|Dg|p2(τ) dx
]

�(1 + cτβ0)
∫
B+

τ

|Dũ(xτ )|p2(τ) dx

+ c

[
τ
−β0(p2(τ)−1)+n

(
1− p2(τ)

q

)
+ τ

n
(
1− p2(τ)

q

)]
‖Dg‖Lq(B+

1 )

�(1 + cτβ0)
∫
B+

τ

|Dũ(xτ )|p2(τ) dx + cτn(1−
1
q )+1−p2(τ) (4.52)

for c ≡ c(n, γ1, γ2, q, ‖Dg‖Lq(B+
1 )). In the previous expression, we also used the original value

of β0. By (2.3), (4.41) and (4.50) we can refine (4.52) as∫
B+

τ

k(x)|Dw̄τ |p2(τ) dx �(1 + 4[k]0,ντν)
∫
B+

τ

|Dw̄τ |p2(τ) dx

�(1 + cτβ
′
)
∫
B+

τ

|Dũ(xτ )|p2(τ) dx + cτn(1−
1
q )+1−p2(τ), (4.53)
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where β′ := min{β0, ν} and c ≡ c(n,N,M, γ1, γ2, q, [k]0,ν , ‖Dg‖Lq(B+
1 )). Let us evaluate the

p2(τ)-energy of ũ. First, recall that if ∂ũ
∂r := Dũ · x

|x| denotes the radial derivative of ũ, then∣∣∣∣ ∂ũ∂r
∣∣∣∣ � |Dũ|. (4.54)

Moreover, if p2(τ) � 2 and t � s � 0 there holds that

(t− s)p2(τ) � tp2(τ) − sp2(τ). (4.55)

A straightforward computation renders, for x ∈ B+
τ that

|Dũ(xτ )|2 =
τ2

|x|2
[
|Dũ(xτ )|2 −

∣∣∣∣ Dũ(xτ ) · xτ

|xτ |
∣∣∣∣2
]
,

so by (4.54), (4.55), area formula, (2.3), (4.41) and (4.45)2∫
B+

τ

|Dũ(xτ )|p2(τ) dx =
τ

n− p2(τ)

∫
∂B+

τ

[
|Dũ(x)|2 −

∣∣∣∣ ∂ũ∂r
∣∣∣∣2
] p2(τ)

2

dHn−1(x)

� τ

n− p2(τ)

[∫
∂B+

τ

|Dũ(x)|p2(τ) −
∣∣∣∣ ∂ũ∂r

∣∣∣∣p2(τ)
]

dHn−1(x)

� τ

n− p2(τ)

[
(1 + τ

ν
2 )
∫
∂B+

τ

k(x)|Dũ(x)|p2(τ) dHn−1(x) −
∫
∂B+

τ

∣∣∣∣ ∂ũ∂r
∣∣∣∣p2(τ)

dHn−1(x)

]
.

(4.56)

Recalling the position made in (3.26), proceeding as in (4.51) and using Young inequality
with conjugate exponents ( p2(τ)

p2(τ)−1 , p2(τ)), (4.42), (2.3), (4.48) and the minimality of v in class

Ĉp2(τ)
u (B+

τ ,M) with (4.50)1 we have

Eτ (ũ, B+
τ ) �(1 + cτβ0)Eτ (u,B+

τ ) + cτ−β0(p2(τ)−1)

∫
B+

τ

|Dg|p2(τ) dx

�(1 + cτβ0)Eτ (v,B+
τ ) + c

[
τn(1−

1
q )+1−p2(τ) + τn+1−p2(4τ)(1+σ′′)

]
�(1 + cτβ0)Eτ (w̄τ , B

+
τ ) + c

[
τn(1−

1
q )+1−p2(τ) + τn+1−p2(4τ)(1+σ′′)

]
�(1 + cτβ

′
)
∫
B+

τ

|Dũ(xτ )|p2(τ) dx + c
[
τn(1−

1
q )+1−p2(τ) + τn+1−p2(4τ)(1+σ′′)

]
.

(4.57)

with c(datap(·), ‖Dg‖Lq(B+
1 )). Merging (4.57) with (4.56) and using (4.54), (2.3) and (4.45)2

we obtain

Eτ (ũ, B+
τ ) � τ

n− p2(τ)

[
(1 + cτβ

′′
)
∫
∂B+

τ

k(x)|Dũ|p2(τ) dHn−1(x)

−
∫
∂B+

τ

∣∣∣∣ ∂ũ∂r
∣∣∣∣p2(τ)

dHn−1(x) + cτβ
′
(τ

ν
2 + 1)

∫
∂B+

τ

k(x)|Dũ|p2(τ) dHn−1(x)

]

+ c
[
τn(1−

1
q )+1−p2(τ) + τn+1−p2(4τ)(1+σ′′)

]
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�τ(1 + cτβ
′′
)

n− p2(τ)

∫
∂B+

τ

k(x)|Dũ|p2(τ) dHn−1(x)

− τ

n− p2(τ)

∫
∂B+

τ

∣∣∣∣ ∂ũ∂r
∣∣∣∣p2(τ)

dHn−1(x)

+ c
[
τn(1−

1
q )+1−p2(τ) + τn+1−p2(4τ)(1+σ′′)

]
, (4.58)

with β′′ := min{ν
2 , β

′} and c ≡ c(data, ‖Dg‖Lq(B+
1 )). To summarize, we got

τ

∫
∂B+

τ

k(x)|Dũ|p2(τ) dHn−1(x) � n− p2(τ)
1 + cτβ′′

∫
B+

τ

k(x)|Dũ|p2(τ) dx

+
τ

1 + cτβ′′

∫
∂B+

τ

∣∣∣∣ ∂ũ∂r
∣∣∣∣p2(τ)

dHn−1(x)

− c(n− p2(τ))
1 + cτβ′′

[
τn(1−

1
q )+1−p2(τ) + τn+1−p2(4τ)(1+σ′′)

]
(4.59)

for c ≡ c(data, ‖Dg‖Lq(B+
1 ), β0). Now, set(

0,
T

4

)
� τ �→ f(τ) := τp2(τ)−n

∫
B+

τ

k(x)|Dũ|p2(τ) dx. (4.60)

Multiplying both sides of (4.59) by τp2(τ)−n−1 and using (4.45)1 and (4.47) we obtain

τp2(τ)−n

∫
∂B+

τ

k(x)|Dũ|p2(τ) dHn−1(x) �n− p2(τ)
1 + cτβ′′

[
τ−1f(τ) − c

(
τκ−1 + τ−

n
q

)]

+
τp2(τ)−n

1 + cτβ′′

∫
∂B+

τ

∣∣∣∣ ∂ũ∂r
∣∣∣∣p2(τ)

dHn−1(x) (4.61)

for c ≡ c(data, ‖Dg‖Lq(B+
1 ), κ). From (2.4) follows that (0, T

4 ) � τ �→ p2(τ) is differentiable with
bounded, non-negative first derivative 0 � p′(τ) � c(n, [p]0,1). We compute:

f′(τ) =(p2(τ) − n)τp2(τ)−n−1

∫
B+

τ

k(x)|Dũ|p2(τ) dx

+ τp2(τ)−n

∫
∂B+

τ

k(x)|Dũ|p2(τ) dHn−1(x)

+ p′2(τ) log(τ)τp2(τ)−n

∫
B+

τ

k(x)|Dũ|p2(τ) dx

+ p′2(τ)τp2(τ)−n

∫
B+

τ

k(x) log(|Dũ|)|Dũ|p2(τ) dx.

We record that, for all ε0 ∈ (0, 1) there holds that

| log(t)| � c(ε0)(1 + t)t−ε0 for any t > 0. (4.62)

Let us estimate the last two terms appearing in the expansion of f′(τ). Using (4.62) with
ε0 = 1 − β′′ we bound

p′2(τ) log(τ)τp2(τ)−n

∫
B+

τ

k(x)|Dũ|p2(τ) dx � cp′2(τ)τβ
′′−1+p2(τ)−n

∫
B+

τ

k(x)|Dũ|p2(τ) dx.
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By (4.62) with ε0 = 1 − p2(τ)min{σ0
2 , 1−κ

2γ2
}, (keep (3.22)–(3.24) in mind) and (3.16)2 we obtain

p′2(τ)τp2(τ)−n

∫
B+

τ

k(x) log(|Dũ|)|Dũ|p2(τ) dx �cτp2(τ) −
∫
B+

τ

(1 + |Dũ|)p2(τ)(1+ε0) dx

�cτp2(τ)−p2(4τ)(1+ε0) � cτκ−1,

for c ≡ c(datap(·), ‖Dg‖L1(B+
1 ), κ). All in all, we got the following lower bound for f′(τ):

f′(τ) �(p2(τ) − n)τp2(τ)−n−1

∫
B+

τ

k(x)|Dũ|p2(τ) dx

+ τp2(τ)−n

∫
∂B+

τ

k(x)|Dũ|p2(τ) dHn−1(x)

− cp′2(τ)τβ
′′−1+p2(τ)−n

∫
B+

τ

k(x)|Dũ|p2(τ) dx− cτκ−1

=τp2(τ)−n

∫
∂B+

τ

k(x)|Dũ|p2(τ) dHn−1(x)

+
(
p2(τ) − n− cp′2(τ)τβ

′′) f(τ)
τ

− cτκ−1, (4.63)

with c ≡ c(data, ‖Dg‖Lq(B+
1 ), κ). Set

ϕ(τ) := n− p2(τ) + cp′2(τ)τβ
′′
.

Merging (4.61) and (4.63) we obtain

f′(τ) +
(
ϕ(τ) − n− p2(τ)

1 + cτβ′′

)
f(τ)
τ

� τp2(τ)−n

1 + cτβ′′

∫
∂B+

τ

∣∣∣∣ ∂ũ∂r
∣∣∣∣p2(τ)

dHn−1(x) − cτκ−1

[
2(n− p2(τ))

1 + cτβ′′ + 1
]
,

where c ≡ c(data, ‖Dg‖Lq(B+
1 ), κ). In the previous display we also used that κ � β0. It is easy

to see that ∣∣∣∣ ϕ(τ) − n− p2(τ)
1 + cτβ′′

∣∣∣∣ � c̃(data, ‖Dg‖Lq(B+
1 ), κ)τβ

′′
,

therefore we get

f′(τ) + c̃τβ
′′−1f(τ) + cτκ−1 � τp2(τ)−n

1 + cτβ′′

∫
∂B+

τ

∣∣∣∣ ∂ũ∂r
∣∣∣∣p2(τ)

dHn−1(x). (4.64)

Let Φ(·) be the function defined in (4.43). Combining (4.64) and the fact that τ ∈ (0, 1], we
immediately see that

Φ′(τ) � exp

{
c̃τβ

′′

β′′

}[
c̃τβ

′′−1f(τ) + f′(τ) + cτκ−1
]

�τp2(τ)−n

1 + c

∫
∂B+

τ

∣∣∣∣ ∂ũ∂r
∣∣∣∣p2(τ)

dHn−1(x),
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with c ≡ c(data, ‖Dg‖Lq(B+
1 ), κ). At this stage, we integrate the inequality in the previous

display over τ ∈ (�,R) with 0 < � < R � T � 1 to get

Φ(R) − Φ(�) � 1
1 + c

∫ R

�

τp2(τ)−n

(∫
∂B+

τ

∣∣∣∣ ∂ũ∂r
∣∣∣∣p2(τ)

dHn−1(x)

)
dτ

��p2(R)−p2(�)

1 + c

∫ R

�

τp2(�)−n

(∫
∂B+

τ

∣∣∣∣ ∂ũ∂r
∣∣∣∣p2(τ)

dHn−1(x)

)
dτ. (4.65)

Once (4.65) is available, we can proceed exactly as in [54, Lemma 4.1] to end up with∫
∂B+

1

|ũ(Rx) − ũ(�x)|p2(�) dHn−1(x)

� log(R/�)p2(�)−1

∫ R

�

τp2(�)−n

(∫
∂B+

τ

∣∣∣∣ ∂ũ∂r
∣∣∣∣p2(�)

dHn−1(x)

)
dτ

� 1 + c

�p2(R)−p2(�)
log(R/�)p2(�)−1[Φ(R) − Φ(�)], (4.66)

for c ≡ c(data, ‖Dg‖Lq(B+
1 ), κ). Finally, keeping in mind (2.7) and position (3.26) we bound

via (4.66):∫
∂B+

1

|u(Rx) − u(�x)|p2(�) dHn−1(x) � c

∫
∂B+

1

|ũ(Rx) − ũ(�x)|p2(�) dHn−1(x)

+ c

∫
∂B+

1

|g(Rx) − g(�x)|p2(�) dHn−1(x)

�c log(R/�)p2(�)−1
[
�p2(�)−p2(R)(Φ(R) − Φ(�))

]
+ c(R− �)γ1(1−n

q ),

with c ≡ c(data, ‖Dg‖Lq(B+
1 ), κ) and the proof is complete. �

Before going on, let us stress that, as in Section 3, we can reduce problem (1.2) to an equiv-
alent one defined on the half-ball B+

1 . In fact, in the proof of Theorem 1.2 we shall consider
u ∈ W 1,p(·)(B+

1 ,M) solution to

Cp(·)
g (B+

1 ,M) � w �→
∫
B+

1

|Dw|p(x) dx, (4.67)

with boundary datum g(·) as in (2.7) (of course Ω̄ is replaced by B̄+
1 ). Now we are ready

to prove Theorem 1.2.

4.1. Proof of Theorem 1.2

As a consequence of Theorem 1.1, we know that u ∈ C0,β0
loc (B̄+

1 \ Σ0(u),M), for a closed,
negligible set Σ0 ⊂ B̄+

1 . Let us prove that Σ0 ∩ ∂B+
1 = ∅. By contradiction, assume that x0 ∈ Γ1

is a singular point for u ∈ W 1,p(·)(B+
1 ,M), solution to (4.67). Up to translations, there is no loss

of generality in assuming x0 = 0. Now, for j ∈ N, define the rescaled maps

uj(x) := u(x/j), pj(x) := p(x/j), kj(x) := jpj(x)−p(0), gj(x) := g(x/j).
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Since u ∈ W 1,p(·)(B+
1 ,M) solves (4.67), we deduce that each uj ∈ W 1,pj(·)(B+

j ,M) solves
problem

Cpj(·)
gj (B+

j ,M) � w �→ min
∫
B+

j

kj(x)|Dw|pj(x) dx, (4.68)

therefore it is easy to see that it also solves

Cpj(·)
gj (B+

1 ,M) � w �→ min
∫
B+

1

kj(x)|Dw|pj(x) dx. (4.69)

Note that, whenever x ∈ B̄+
1 , a straightforward computation shows that

{pj} and {kj} are Lipschitz continuous uniformly on j ∈ N in B̄+
1 . (4.70)

Again for x ∈ B̄+
1 , recalling Morrey’s embedding theorem we see that

sup
x∈B̄+

1

|pj(x) − p(0)| � 4[p]0,1|x/j| � 4[p]0,1(1/j) → 0 (4.71)

sup
x∈B̄+

1

|kj(x) − 1| � max
{

exp
(

4[p]0,1 log(j)
j

)
− 1, 1 − exp

(−4[p]0,1 log(j)
j

)}
→ 0 (4.72)

sup
x∈B̄+

1

|gj(x) − g(0)| � 4[g]0,1−n
q
|x/j|1−n

q � 4[g]0,1−n
q
(1/j)1−

n
q → 0. (4.73)

Furthermore, recalling (2.7) and (4.73) we see that∫
B+

1

|Dgj |q dx � jq−n‖Dg‖q
Lq(B+

1 )
dx → 0,

so

gj → g(0) in W 1,q(B̄+
1 ,M). (4.74)

Collecting (4.68) and (4.70)–(4.74) we see that the assumptions of Lemma 4.1 are satisfied
in B+

1 , so in particular uj ⇀ u0 weakly in W
1,(1+σ̃)p(0)
loc (B+

1 ,M), u0 is a solution of problem

Cp(0)
g(0)(B

+
R ,M) � w �→ min

∫
B+

R

|Dw|p(0) dx (4.75)

for any R ∈ (0, 1) and, since x0 = 0 is a singular point of all the functions uj , then it is also
a singular point for u0. We fix 0 < μ1 < μ2 < 1 and let j ∈ N be so large that j−1 < T

4 with
T as in Lemma 4.2. Recalling also (1.3) (on B̄+

1 of course), we see that the assumptions of
Lemma 4.2 are satisfied, we can apply (4.44) with � = μ1/j and R = μ2/j to get∫

∂B+
1

|uj(μ1x) − uj(μ2x)|p2(μ1/j) dHn−1(x)

=
∫
∂B+

1

|u(j−1μ1x) − u(j−1μ2x)|p2(μ1/j) dHn−1(x)

�c log(μ2/μ1)p2(μ1/j)(Φ(μ2/j) − Φ(μ1/j)) + cj−γ1(1−n
q )(μ2 − μ1)γ1(1−n

q ), (4.76)

with Φ(·) defined as in (4.43) with k(·) ≡ 1. By Lemma 4.2, we deduce that

lim
j→∞

Φ(μ1/j) = lim
j→∞

Φ(μ2/j) = L for some finite L � 0,
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thus

c log(μ2/μ1)p2(μ1/j)(Φ(μ2/j) − Φ(μ1/j)) + cj−γ1(1−n
q )(μ2 − μ1)γ1(1−n

q ) → 0. (4.77)

Furthermore, in light of (4.3) we have that uj → u0 almost everywhere in B+
1 , so recalling also

(4.71) we get

|uj(μ2x) − uj(μ1x)|p2(μ1/j) → |u0(μ2x) − u0(μ1x)|p(0) for a.e. x ∈ B+
1 . (4.78)

Combining (4.78), (2.6)1 and the dominated convergence theorem, we obtain

lim
j→∞

∫
∂B+

1

|uj(μ2x) − uj(μ1x)|p2(μ1/j) dHn−1(x)

=
∫
∂B+

1

|u0(μ2x) − u0(μ1x)|p(0) dHn−1(x). (4.79)

Inserting (4.79) and (4.77) in (4.76), we end up with∫
∂B+

1

|u0(μ2x) − u0(μ1x)|p(0) dHn−1(x) = 0,

which in turn implies that u0 is homogeneous of degree zero. Recalling that u0 is a solution
of (4.75), by [31, Theorem 5.7] we can conclude that u0 is constant, so x0 = 0 cannot be
a singular point. This means that Σ0 � B+

1 and the proof is complete.
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