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Abstract

We introduce a mathematical model for the composting process in biocells. The
model includes several phenomena, like the aerobic biodegradation of the soluble
substrate by means of a bacterial population, the hydrolysis of insoluble substrate
and the biomass decay. We investigate the best strategies to reduce substrate compo-
nents in minimal time by controlling the effects of cell oxygen concentration on the
degradation phenomenon. It is shown that singular controls are not optimal for this
model and the optimal control time profiles are of bang or bang-bang type. The occur-
rence of switchings curve is discussed. In the case of a bang-bang control we prove
that optimal control profiles have a unique switching time and the corresponding
switching curve is determined.

KEYWORDS:
Composting; Waste management; Optimal control

1 INTRODUCTION

Wastemanagement is a current problem of great interest, especially for local authorities that have to decide the action strategies in
their policy area26. A traditional approach, based on the stocking in a containment vessel, has already unclosed some criticisms,
like the increasing requirement of new stocking sites and the formation and diffusion of leachate that can contaminate soil and
aquifers6,10. For such reason, nowadays a landfill is conceived as a bioreactor, i.e. as a biological active environment where
the natural and spontaneous phenomena of aerobic or anaerobic degradation play a crucial role and are strongly exploited for a
satisfactory landfill performance18,22.
In recent years, many mathematical models have been proposed in literature to describe both aerobic and anaerobic digestion
phenomena (e.g.2,4,11,14,28) and applications to composting processes in static aerated piles13 and windrows24,25. As pointed out
in11, many anaerobic models are often proposed with the main aim to combine accuracy and complexity. From this perspective,
authors describe mathematically any phase of the degradation14 and consider several effects, like leachate recirculation and pH
adjustment28. Similarly, in composting descriptions13,24,25, several distinctive features, like the distinction between slowly and
rapidly degradable substrate and interactions with atmosphere, are taken into account to model accurately aerobic process in
open systems. Although realistic, such models are not very treatable from a mathematical point of view and few qualitative
results are available in literature2,4.
In order to improve the performance of a landfill site it is possible to set a so-called optimal control problem and individuate the
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best strategies to be adopted1,3,15,16,23.
Different issues can be faced in this context and the subsequent strategies strictly depend both on the choice of the manipulated
process and the goal to be reached. For example in15,16 a mathematical description of an aerobic degradation process occurring
in a composting biocell has been proposed. By controlling the oxygen injection, the best aeration strategies have been given to
(i) maintain satisfactory levels of oxygen concentration in the cell, (ii) maximize the production of compost and (iii) minimize
the cost of the aeration operation.
In1, the authors propose a model for a continuously filled bioreactor controlled by its dilution rate with the goal of synthesizing
optimal feeding strategies that maximize the biogas production over a time period. Other control strategies can be identified to
reach a suitable target configuration in minimal time. For example, in23, the leachate recirculation is the manipulated variable
that is used for the reduction of solid waste below a given value.
In this paper, inspired by24,25, we describe the digestion process in a composting cell, where an aerobic bacterial population
degrades the organic fraction of solidwaste. The organicmatter ismodeled as a two components substrate (soluble and insoluble).
We also consider the main basic phenomena regulating the composting process13 (i) the aerobic degradation: the bacterial
population increases by consuming soluble substrate and oxygen; (ii) hydrolysis, i.e. the solubilization of the insoluble substrate;
(iii) the biomass decay for which the bacteria death produces new insoluble substrate.
The main goal is the reduction of the substrate in minimal time by acting on the digestion process. The target is constituted by
the set of configurations with both components of substrate below given thresholds. The control is obtained through a control
function which models the effects of oxygen concentration on the degradation process. Such effects can be manipulated by
means of an aspiration/injection system20.
The paper is organized as follows: we present the mathematical model and some basic properties in Section 2 while in Section 3
the time optimal control problem is formulated and some preliminary results are discussed. The controllability set for any target
and the optimal trajectories and control are determined respectively in Sections 4 and 5. Conclusions are given in Section 6.

2 MODEL AND BASIC PROPERTIES

We propose a model that describes the action of an aerobic bacterial population degrading the organic fraction of the solid
waste stocked in a biocell. The organic matter is represented as a two component substrate, where the soluble part is ready to be
digested by bacteria while the insoluble one has to undergo a hydrolytic process. We consider also a biomass decay phenomenon.
The model is governed by the following set of ordinary differential equations:

dS
d�

= −�g̃ (S,Ω)X + c̃ℎI

dI
d�

= −c̃ℎI + b̃X

dX
d�

= �g̃ (S,Ω)X − b̃X ,

(1)

where � is the time variable, S (�), I (�) andX (�) denote the soluble substrate, the insoluble substrate and the bacterial biomass
at time � respectively; Ω (�) is the oxygen concentration in the cell atmosphere at time �; �g̃ (S,Ω)X represents the growth
rate of biomass25. The positive constants �, b̃ and c̃ℎ represent the maximal growth rate, the biomass decay and hydrolysis
coefficients, respectively.
We use the total mass conservation

 (�) = S (�) + I (�) +X (�) = S (0) + I (0) +X (0) =  (0) =∶ m (2)

to introduce the following scaling

t = �� , s = S
m
, i = I

m
, x = X

m
, ! = Ω

Ω0
, (3)

where 0 ≤ s, i, x ≤ 1, ! ≥ 0 andΩ0 is a given oxygen concentration value corresponding to the fastest substrate degradation7,26.
We consider also a restriction on the oxygen level in the cell atmosphere, ! ∈

[

0, !max
]10.
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The nondimensional system of equations reads
ds
dt

= −g (s, !) (1 − s − i) + cℎi

di
dt

= −cℎi + b (1 − s − i) ,
(4)

where the conservation law (2) is used to replace x by 1 − s − i.
As concerns the biomass growth function, we introduce the following factorization9,13,24,25

g (s, !) = g1 (s) g2 (!) , (5)

where g1 (s) and g2 (!) describe the effects of substrate and oxygen concentrations on the degradation process, respectively. We
require that

H1 - g1 (0) = 0 and g1 (s) > 0 for any s ∈ (0, 1],

H2 - g1 ∈ 1 ([0, 1]), g′1 (s) > 0 for any s ∈ [0, 1],

H3 - g2 (0) = 0 and g2 (!) > 0 for any ! ∈
(

0, !max
]

,

H4 - g2 ∈ 1
([

0, !max
])

, g′2 (!) > 0 for any ! ∈
[

0, !max
]

.

These hypothesis are satisfied by Monod functions, typically used in models for bacterial culture growth, given by17:

g1 (s) =
s

cs + s
, g2 (!) =

!
c! + !

, (6)

where cs and c! are the half-saturation constants.
Under the hypothesis H3 and H4, we introduce a control function

u (t) ∈  ∶=
{

� ∶ [0,∞) ←→
[

0, umax
]

, � Lebesgue measurable
}

(7)

modeling the effects of the oxygen concentration on the degradation rate.
Model (4) can be written as

ds
dt

= −u (t) g1 (s) (1 − s − i) + cℎi

di
dt

= −cℎi + b (1 − s − i) .
(8)

Without any loss of generality we also set umax = 1.
It can be easily checked that hypothesis H1 ensures that the set

 = {(s, i) ∈ [0, 1] × [0, 1] such that s + i ≤ 1} (9)

is positively invariant. Therefore, the solutions of (8) corresponding to nonnegative initial values, s(0) = s0 ≥ 0, i(0) = i0 ≥ 0,
remain nonnegative for any t > 0.

2.1 Basic properties for a well aerated cell
In view of the optimal synthesis that will be presented in next sections, we briefly discuss some basic properties of model (8)
when a suitable aeration strategy guarantees the same constant level of oxygen, �, at any time, i.e. u (t) = � ∈ [0, 1] for any t > 0.
It is easy to verify that the point E0 = (1, 0) ∈  is a steady solution of

ds
dt

= −�g1 (s) (1 − s − i) + cℎi

di
dt

= −cℎi + b (1 − s − i) ,
(10)

for any value of the parameter � ∈ [0, 1]. Such configuration corresponds to the absence of the bacterial population and the
insoluble substrate: the total mass m is given by the soluble substrate.
If � ≠ 0, the system (10) may admit another equilibrium state E�

1 =
(

s̃, ĩ
)

where s̃ is solution of �g1 (s) − b = 0 in [0, 1] and
ĩ = b (1 − s̃) ∕

(

cℎ + b
)

. We observe that the existence ofE�
1 strictly depends on the specific response functional considered and,

when it exists, E�
1 ∈  , since

0 ≤ ĩ < s̃ + ĩ ≤ 1 . (11)
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Physically, at equilibrium E�
1 , the bacterial population can survive because of the aeration strategy that guarantees a sufficient

level of oxygen for its growth and balances the death term.
The linear stability of equilibria may be investigated in a standard way by using linearization method, i.e. by computing the
eigenvalues of the Jacobian matrix, say J (E), associated to (10) evaluated at the equilibrium. More precisely, if both the eigen-
values of J (E) have negative real part then E is locally stable. If at least one eigenvalue of J (E) has positive real part then E
is locally unstable.
It is easy to check that E0 is linearly stable if u < b∕g1(1) while E�

1 is linearly stable when it exists. It follows that it can exist a
bifurcation value of �, say �̃ in correspondence of which the equilibrium E�

1 emerges and E0 changes its stability; moreover the
equilibrium E�

1 belongs to

2 =
{

(s, i) ∈  such that g−11 (b) ≤ s ≤ 1 , i = b (1 − s)
b + cℎ

}

, (12)

for any �̃ ≤ � ≤ 1.
We can observe that this result is obtained under the hypothesis H2; a little more complicated scenario arises when such
assumption is relaxed since the equation ug1 (s) − b = 0 could not have a unique solution.
As last remark, we observe that the local stability here implies the global stability since we can exclude the occurrence of peri-
odic solutions as a simple direct application of the Dulac criterion19.
The bifurcation diagram when the biomass growth function is of Monod type (6) is depicted in Figure 1. The parameters values
used to obtain Figure 1 and all the other plots in this paper are the purely theoretical baseline values:

cs = 0.417 , cℎ = 0.245 , b = 0.19 . (13)
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FIGURE 1Bifurcation diagram in presence ofMonod response functions (6): second component of equilibria versus bifurcation
parameter �. Parameter values are given in (13). The bifurcation value for � is �̃ = 0.26923. Continuous line denotes stability,
dashed line indicates instability.
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3 TIME OPTIMAL CONTROL PROBLEM

In this section we formulate a minimum time problem whose purpose is the reduction of both substrate components under a
given threshold. Physically this corresponds to individuate the best strategy to consume the organic fraction of solid waste in
the fastest way in order to increase the capacity of a composting plant.
Mathematically, we consider a state z∗ = (s∗, i∗), whose components indicate the given thresholds for soluble and insoluble
substrate, respectively, and we denote by  = [0, s∗] × [0, i∗] ⊂  the target set.
Our aim is to determine the optimal control function u (t) in the admissible control function set  given in (7) that drives the
state vector (s (t) , i (t)) from an initial configuration z0 =

(

s0, i0
)

∈  ⧵  to "touch" the target  in ) in the minimal time.
More precisely, we indicate by zu =

(

su, iu
)

the unique solution of (8) associated to a given control function u (t) and initial
condition z0. Our aim is to find

inf
u(t)∈

tu such that su
(

tu
)

≤ s∗ and iu
(

tu
)

≤ i∗ . (14)

The existence of the time optimal control is guaranteed, since the model (8) depends linearly on the control variable u and the
set of admissible controls  given in (7) is convex and compact (see Therorem 4.3 in12).
The optimal control problem can be formulated in terms of a suitable Hamiltonian function, by using the Pontryagin’s maximum
principle (PMP)21. Let u (t) be an optimal control function steering the initial state z0 ∈  ⧵  to the target  in minimal time;
let z (⋅) = (s (⋅) , i (⋅)) ∶ [0, tf ] ←→ ℝ2 the associated trajectory defined on the time interval [0, tf ], where tf > 0 and z(tf ) ∈ ) .
Then, according to PMP, there exists �0 ∈ ℝ− and an absolutely continuous map Λ (⋅) =

(

�s (⋅) , �i (⋅)
)

∶ [0, tf ] ←→ ℝ2 such
that

(

�0, �s (⋅) , �i (⋅)
)

≠ 0 and solves the adjoint system

�̇s = −)
)s

= �su
[

g′1 (s) (1 − s − i) − g1 (s)
]

+ �ib

�̇i = −)
)i

= −�s
[

ug1 (s) + cℎ
]

+ �i
(

cℎ + b
)

,
(15)

where the upper dots denote the derivative with respect to variable t and

 ∶  ×ℝ2 ×ℝ− × [0, 1] ←→ ℝ
(

s, i, �s, �i, �0, u
)

←→ �0 − u�sg1 (s) (1 − s − i) +
(

�s − �i
)

cℎi + �ib (1 − s − i)
(16)

is the Hamiltonian function and the control u (t) is such that

u (t) ∈ argmax�∈[0,1]
(

s (t) , i (t) , �s (t) , �i (t) , �0, �
)

, (17)

a.e. t ∈ [0, tf ]. A triplet (z,Λ, u) satisfying (8), (15) and (17) is called extremal trajectory. When �0 = 0 we say that an extremal
trajectory is abnormal whereas if �0 ≠ 0 it is normal. As tf is free,  is equal to 0 along any extremal trajectory5.
Finally, the optimal control ũ (t) satisfies the control law

ũ (t) =

⎧

⎪

⎨

⎪

⎩

0 for � (t) < 0
u ∈ (0, 1) for � (t) = 0
1 for � (t) > 0 ,

(18)

where the function
� = )

)u
= −�sg1 (s) (1 − s − i) , (19)

is called switching function8,27.

3.1 Singular trajectories and predicting switching
Let us give some useful definitions.
A time tr ∈ (0, tf ) is called regular if �(tr) ≠ 0. A switiching time ts ∈ (0, tf ) is a non-regular time (i.e. �(ts) = 0) at which the
switching function changes sign5.
An extremal trajectory has a singular arc (the trajectory is said singular) if there exists a time interval [t1, t2] ⊂ [0, tf ] where
� (t) = 0 for any t ∈ [t1, t2]. The corresponding control u (t), for t1 ≤ t ≤ t2, is called singular control.
We rewrite the dynamical system (8) as

ż = � (z) + u� (z) (20)
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and define the collinearity curve as the the set of points of  where � and � are collinear, i.e.

Δ0 ∶=
{

z = (s, i) ∈  such that f0 (z) = det [� (z) , � (z)] = 0
}

. (21)

The singular locus is defined as the subset of  of codimension 1 to which a singular trajectory belongs and is individuated as

Δ1 ∶=
{

z = (s, i) ∈  such that f1 (z) = det [� (z) , < �, � > (z)] = 0
}

, (22)

where < ⋅, ⋅ > denotes the Lie bracket.
The vector functions � and � are given by

� =
(

cℎi
−cℎi + b (1 − s − i)

)

, � =
(

−g1 (s) (1 − s − i)
0

)

; (23)

therefore we have

f0 (s, i) = g1 (s) (1 − s − i)
[

−cℎi + b (1 − s − i)
]

, f1 (s, i) = bg21 (s) (1 − s − i)
2 , (24)

defining respectively the collinearity curve Δ0 and the singular locus Δ1 as

Δ0 =
{

(s, i) ∈  such that f0 (s, i) = 0
}

, Δ1 =
{

(s, i) ∈  such that f1 (s, i) = 0
}

(25)

or, equivalently,

Δ0 = {(s, i) ∈  ∶ s = 0} ∪ {(s, i) ∈  ∶ s + i = 1} ∪
{

(s, i) ∈  ∶ i =
b (1 − s)
cℎ + b

}

,

Δ1 = {(s, i) ∈  ∶ s = 0} ∪ {(s, i) ∈  ∶ s + i = 1} .
(26)

We can notice that Δ1 ∩ Int ( ) = ∅, where Int ( ) denotes the interior of the set  . Therefore, we can exclude the occurrence of
singular trajectory and the optimal control cannot exhibit a singular arc. This means that the optimal control function is constant
(bang control) or piecewise constant (bang-bang control), where the control passes instantaneously from 0 to 1 or viceversa at
any switching time.

Proposition 1. Let (z,Λ, u) be a normal extremal trajectory. Then

(i) there exists a function ℎ ∶ ℝ ×
(

 ⧵ Δ0
)

←→ ℝ, (u, s, i) ←→ ℎ (u, s, i) such that

�̇ (t) = ℎ (u (t) , s (t) , i (t))� (t) −
f1 (s (t) , i (t))
f0 (s (t) , i (t))

, (27)

a.e. t ∈ [0, tf ];

(ii) let us introduce
± =

{

(s, i) ∈  such that
f1 (s (t) , i (t))
f0 (s (t) , i (t))

≷ 0
}

. (28)

If the extremal trajectory is optimal then at any switching time ts such that
(

s
(

ts
)

, i
(

ts
))

∈ + (respectively
(

s
(

ts
)

, i
(

ts
))

∈ −) the control passes from 1 to 0 (respectively from 0 to 1).

Proof. (i) From (19) we can write the adjoint variable �s in terms of the switching function � as

�s = −
�

g1 (s) (1 − s − i)
; (29)

since (z,Λ, u) is a normal extremal trajectory,  = 0 along the trajectory and we can set �0 = −1. It follows that

�i =
1 − u� − �scℎi

−cℎi + b (1 − s − i)
=
1 − u� +

�cℎi
g1 (s) (1 − s − i)

−cℎi + b (1 − s − i)
, (30)

where formula (29) is used in the last equality. By substitution in

�̇ (t) =
[(

�s (t) − �i (t)
)

bg1 (s (t)) − �s (t) cℎg′1 (s (t)) i (t)
]

(1 − s (t) − i (t)) , (31)

we obtain (27).
(ii) Let us suppose that there exists a switching time ts in correspondence of which the control passes from 0 to 1 in a state of
+. Since ts is a switching time it follows that �

(

ts
)

= 0. Moreover there exists " > 0 such that u = 0 in (ts − ", ts); it follows



G.Martalò ET AL 7

that �̇
(

ts
)

≥ 0.
From (27) we have

f1
(

s
(

ts
)

, i
(

ts
))

f0
(

s
(

ts
)

, i
(

ts
)) = ℎ

(

u
(

ts
)

, s
(

ts
)

, i
(

ts
))

�
(

ts
)

− �̇
(

ts
)

≤ 0 , (32)

in contradiction with the hypothesis that the switching occurs in +, i.e.
f1

(

s
(

ts
)

, i
(

ts
))

f0
(

s
(

ts
)

, i
(

ts
)) > 0.

4 CONTROLLABILITY RESULTS

We are now interested in finding the controllability set for any admissible target  = [0, s∗] × [0, i∗] ⊂  , i.e. the set of points
z0 = (s0, i0) ∈  ⧵  for which there exists an admissible control u ∈  such that the trajectory starting from z0 with control u
reaches a configuration in  in finite time.
The characterization of the controllability set will strongly depend on the position of the vertex z∗ of  in  . For such reason
we consider a possible partition of the invariant set  and discuss different cases.
Let us introduce the following curves (see Figure 2(a))

0 = {(s, i) ∈ ) such that i = 0} ,
1 =

{

(s, i) ∈ ) such that g−11 (b) ≤ s ≤ 1 , i = 1 − s
}

,
2 =

{

(s, i) ∈ ) such that 0 ≤ s ≤ g−11 (b) , i = 1 − s
}

∪ {(s, i) ∈ ) such that s = 0} ,

0 =

{

(s, i) ∈  such that s = g−11 (b) ,
b
(

1 − g−11 (b)
)

b + cℎ
≤ i ≤ 1

}

,

1 =
{

(s, i) ∈  such that 0 ≤ s ≤ g−11 (b) , i =
g1 (s) (1 − s)
g1 (s) + cℎ

}

,

(33)

and 2 given in (12). These curves give the partition

 = 0 ∪ 1 ∪ 2 , (34)

where

- 0 is bounded by 0, 1 and 2;

- 1 is bounded by 0, 1 and 2;

- 2 is bounded by 0, 1 and 2.

The partition of  is depicted in Figure 2(b) in the case of Monod response functions (6).
We denote by Γzu the backward solution of (8) with control u ∈  from 0 to tzu, where t

z
u is the first time in correspondence of

which the backward solution intersects the boundary of  .

4.1 Case I : z∗ ∈ 0
Let us consider the backward solutions of (8) with constant control u = 1 starting from z∗ (denoted by Γz∗1 ) and from z# (denoted
by Γz#1 ), where z

# is the intersection between the boundary of  and 1. Γz
#

1 intersects the boundary ) in 0 or 2 according to
the position of z# on the curve 1.
We consider two subsets 1 and 2 in  ; more precisely

- if Γz∗1 does not intersect the target set  , 1 is the subset of  bounded by Γz∗1 , the boundary of  and the line i = i∗;
otherwise, such set 1 is a subset of  and the controllability result follows trivially;

- the set Γz#1 ∪
{

(s, i) ∈  ∶ s = s∗ , 0 ≤ i ≤ i#
}

partitions  in two disjoint components; 2 is the component that does
not contain the intersection point 0 ∩ 1 ∩ 2.

Different scenarios are depicted in Figure 3 in the case of Monod response functions.
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FIGURE 2 (a) The curves i and i, i = 0, 1, 2 and (b) the partition of  in the case of a Monod response function (6). The
parameters values are given in (13).

Proposition 2. (i) If z∗ ∈ 0 then the target  is reachable from any point z0 = (s0, i0) ∈ 1 ∪ 2. (ii) If Γz
#

1 ∩ 2 ≠ ∅ (see
panels (b) and (d) in Figure 3) then the controllability set is given by  .

Proof. Let us consider a state z0 = (s0, i0) ∈ 1 and the associated solution with constant control u = 1. This trajectory is
asymptotically attracted by the stable equilibrium E1

1 (which is given by 0 ∩ 1 ∩ 2) and cannot intersect Γ
z∗
1 , since Γ

z∗
1 can be

seen as the trajectory of the forward solution starting from z̃ = Γz∗1 ∩ 2. It follows that the solution starting from z0 can reach
E1
1 asymptotically passing through the set  ; more precisely it crosses ) in the upper horizontal edge.

Analogously we can prove that the target is reachable from z0 = (s0, i0) ∈ 2 assuming constant control u = 1. This proves
point (i).
As for (ii), assume that Γz#1 ∩ 2 ≠ ∅ (panels (b) and (d) in Figure 3) and consider an initial configuration z0 = (s0, i0) ∈
 ⧵

(

 ∪ 1 ∪ 2
)

. The solution starting from z0 with constant control u = 0 is asymptotically attracted by E0 = (1, 0); this
means that it intersects the subset S2 in a finite time. Therefore the target  can be reached by considering a piecewise constant
control: the control is u = 0 until the corresponding solution crosses 2; then it switches from 0 to 1 until reaching  .

4.2 Case II : z∗ ∈ 1
Let us consider the backward solutions Γz∗1 starting from z∗ with constant control u = 1. We can observe that Γz∗1 ∪
{(s, i) ∈  ∶ s = s∗ , 0 ≤ i ≤ i∗} partitions  in two disjoint components;  is the component that does not contain the inter-
section 0 ∩ 1 ∩ 2.
We can observe that Γz∗1 intersects the boundary ) in 0 or 2 according to the position of z∗ in 1.
Different scenarios are depicted in Figure 4 in the case of Monod response functions.

Proposition 3. (i) If z∗ ∈ 1 then the target  is reachable from any point z0 = (s0, i0) ∈  . (ii) If Γz∗1 ∩ 2 ≠ ∅ (see panel (b)
in Figure 4) then the controllability set is given by  .

Proof. The results can be proved as in Proposition 2.
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parameter values are given in (13). In panels (c) and (d) the set 1 is such that 1 ⊂  and not indicated in the plot. In panels
(a) and (c) Γz#1 intersects 0. In panels (b) and (d) Γz
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4.3 Case III : z∗ ∈ 2
Proposition 4. If z∗ ∈ 2 then the controllability set for target  is  .

Proof. We can observe that when z∗ ∈ 2 it follows that  ∩2 ≠ ∅; this means (see Subsection 2.1) that there exists a parameter
u0 ∈ [0, 1] such that the equilibrium Eu0

1 ∈  ∩ 2 and is asymptotically stable (see Figure 5(a)).
For any z0 ∈  ⧵  , the forward solution starting from it with constant control u = u0 is asymptotically attracted by Eu0

1 and, as
consequence, the target  is reachable in a finite time.

As done in the previous subsections, also in this case we can individuate some suitable subsets 1 and 2. We can observe
that Γz∗1 ∪ {(s, i) ∈  ∶ s = s∗ , 0 ≤ i ≤ i∗} partitions  in two disjoint components; 2 is the component that does not contain
the intersection 0 ∩ 1 ∩ 2 while 1 =  ⧵

(

 ∪ 2
)

(see Figure 5(b) for Monod response functionals).
Since Γz∗0 , corresponding to u = 0, partitions 1, we denote by 

(1)
1 the subset bounded by Γz∗0 and the horizontal edge of  and

by  (2)1 the remaining part.
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5 OPTIMAL CONTROLS

In this section we look for optimal control in the admissible control function set (7) that drives the state vector of model (8) from
any initial configuration in  ⧵  to "touch" the boundary ) of the target  in minimal time.
We remind that the occurrence of a singular control has been excluded and we expect to find a constant or a piecewise constant
optimal control.
Let us distinguish several cases as done in the previous section.

5.1 Case I : z∗ ∈ 0
In this subsection, we will give a characterization of the optimal control for any initial state z0 in the controllability set. More
precisely, we will prove that the optimal control is given by a constant function or by a bang-bang one. In this last case, we will
show that there exists a unique switching time where the control passes from 0 to 1.
Finally, we will observe that the switching curve, where the optimal control passes from 0 to 1, is part of Γz∗1 ∪ Γ

z#
1 .

Proposition 5. Assume z∗ ∈ 0. The optimal control law that drives any z0 ∈ 1 in  is the constant function u = 0 or the
bang-bang one that switches from 0 to 1 in a state of Γz∗1 .

Proof.
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FIGURE 6 Zoom of the controllability set 1 when z∗ ∈ 0 in the case of Monod response functions (6). The nondimensional
parameters values are given in (13). Two different scenarios have to be taken into account: (a) 1 ∩+ = ∅ and (b) 1 ∩+ ≠ ∅,
where + is given in (28).

We distinguish two cases.
Case (i). Let us suppose that 1 ∩ + = ∅ (see Figures 6(a) and 7), where + has been introduced in (28).
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First, we can observe that the optimal control must be u = 1 for any z0 ∈ Γz
∗

1 to prevent that the corresponding solution exits
from the controllability set 1.
Let us consider a partition of 1 =  (1)1 ∪  (2)1 where  (1)1 is bounded by Γz∗0 , 2 and the upper horizontal edge of  and
 (2)1 = 1 ⧵ 

(1)
1 (see Figure 6(a)).

Let z0 be a state in 
(1)
1 . The solution starting from it reaches the target  on the upper horizontal edge in a state (s(tf ), i∗)where

s(tf ) < s∗. From the generalized transversality condition5, it follows that �s(tf ) = 0, �i(tf ) < 0 (from (30)) and �̇s < 0 (from
(15)). Therefore �s > 0 in a left neighborhood of tf and � < 0 from (19); hence the optimal trajectory reaches  with control
u = 0. Since 1 ⊂ − (where − is defined in (28)), there cannot exist a switching time t1 < tf where the control passes from 1
to 0. Therefore the constant u = 0 is optimal.
Now, let z0 be a state in 

(2)
1 . The target is reached with control u = 1 in the vertex z∗. A control u = 1 is not compatible with the

transversality condition when the final state is such that s(tf ) < s∗. In fact, the transversality condition on the upper horizontal
edge of  gives �s(tf ) < 0, �i(tf ) < 0 and �̇s(tf ) < 0 respectively from (30) and (15). This implies that �s > 0, � < 0 (from
(19)) and u = 0 (from (18)) in a left neighborhood of tf .
This means that the optimal trajectory leaves the initial state z0 with control u = 0 until it crosses Γz

∗

1 ; then the control switches
from 0 to 1.
Case (ii). We suppose now that 1 ∩ + ≠ ∅ (see Figure 6(b) and 7).
The analysis is the same as above for states in 1 ∩ −. If z0 ∈ 1 ∩ +, according to Proposition 1, a switching from 1 to 0
can occur. Let t1 < tf be a switching time. We can observe that the control is given by u = 0 in (t1, tf ) and �̇s(t) − �̇i(t) =
cℎ
(

�s(t) − �i(t)
)

for any t ∈ (t1, tf ). Moreover
(

�s(t1) − �i(t1)
) (

�s(tf ) − �i(tf )
)

< 0 and
(

�̇s(t1) − �̇i(t1)
) (

�̇s(tf ) − �̇i(tf )
)

<
0. It follows that there exists a time t2 ∈ (t1, tf ) such that �̇s(t2) − �̇i(t2) = 0 ≠ �s(t2) − �i(t2) and thus a contradiction.

Proposition 6. Case (i): Γz#1 ∩ 0 ≠ ∅ (see panels (a) and (c) in Figure 3). The optimal control law that drives any z0 ∈ 2 in
 is the constant function u = 1.
Case (ii): Γz#1 ∩2 ≠ ∅ (see panels (b) and (d) in Figure 3).The optimal control driving any z0 ∈ 2 in  is the constant function
u = 1.
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Proof. Consider Case (i). We observe that the optimal control must be u = 1 for any z0 ∈ Γz
#

1 to prevent that the corresponding
solution exits from the controllability set 2.
For any state z0 in the interior of 2, the corresponding optimal solution cannot reach the target  with control u = 0, because
the variable s would be increasing. Moreover, from Proposition 1, we can exclude a switching from 0 to 1, since 2 ⊂ + (see
panels (a) and (c) in Figure 3 and Figure 7). Therefore, we can conclude that the optimal control is given by the constant function
u = 1.
As concerns Case (ii), if z0 ∈ 2 ∩ + (see panels (b) and (d) in Figure 3 and Figure 7) the result is proved as in case (i).
In the case of z0 ∈ 2 ∩− the occurrence of a switching time is not excluded. Let t1 < tf be a switching time where the control
passes from 0 to 1. We observe that u = 1 in (t1, tf ) and

�̇s(t) − �̇i(t) = cℎ
(

�s(t) − �i(t)
)

− �s(t)g′1(s(t))(1 − s(t) − i(t)) ;

therefore, �̇s−�̇imust be positivewhen �s−�i = 0. It is easy to check that �s(t1)−�i(t1) > 0 > �s(tf )−�i(tf ) and, as consequence,
there exist a time such that �s − �i vanishes and passes from positive to negative values. Thus we have a contradiction.

Proposition 7. Let Γz#1 ∩2 ≠ ∅. The optimal control driving any z0 ∈  ⧵
(

 ∪ 1 ∪ 2
)

in  is of bang-bang type and passes
from 0 to 1 in correspondence of Γz#1 .
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FIGURE 8 Optimal trajectories when z∗ ∈ 0 in the case of Monod response functions (6). The parameters values are given in
(13). The controllability set is the whole invariant set  . Continuous black lines denote the switching curve; dashed and dotted
grey lines denote parts of the optimal trajectories where the control is u = 0 and u = 1, respectively.

Proof. A trajectory starting from z0 ∈  ⧵
(

 ∪ 1 ∪ 2
)

can reach the target passing through the subset 2. We observe that
2 is crossed by the optimal trajectory in presence of a constant control u = 0; from Proposition 6, the optimal control is given
by u = 1 in 2. This means that there exists at least a switching time in correspondence of which the control passes from 0 to 1
and such switching occurs in a state of Γz∗1 .
Moreover a switching from 1 to 0 in a state of

(

 ∩ −
)

⧵
(

 ∪ 1 ∪ 2
)

can be excluded as done in Proposition 5, by analyzing
the quantity �s − �i.
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FIGURE 9 Optimal trajectories when z∗ ∈ 1 (a) and z∗ ∈ 2 (b) in the case of Monod response functions (6). The parameters
values are given in (13). The controllability set is the whole invariant set  . Continuous black lines denote the switching curve;
dashed and dotted grey lines denote parts of the optimal trajectories where the control is u = 0 and u = 1, respectively.

We remark here that, if Γz#1 ∩0 ≠ ∅, the target  is not reachable from a state in  ⧵
(

 ∪ 1 ∪ 2
)

, since the controllability
set is given by 1 ∪ 2 (see Proposition 2 and panel (c) in Figure 3).
Optimal trajectories are depicted in Figure 8 in the case of a Monod response function (6) when the controllability set coincides
with the whole invariant set  . The switching curve belongs to Γz∗1 ∪ Γ

z#
1 .

5.2 Case II (z∗ ∈ 1) and Case III (z∗ ∈ 2)
In this subsection, we look for the optimal controls for any initial state z0 in the controllability set of the target  , when its
vertex z∗ is in 1 or 2.

Proposition 8. (i) If z∗ ∈ 1, for any z0 ∈  the optimal control is the constant function u = 1; the optimal control is of bang-
bang type, if z0 ∈  ⧵ ( ∪ ), and it switches from 0 to 1 in a state of Γz∗1 , when the controllability set is  .
(ii) If z∗ ∈ 2 the optimal control law that drives any z0 ∈  (1)1 in  is the constant function u = 0 while the one that drives
z0 ∈ 2 in  is u = 1. The optimal control is of bang-bang type, if z0 ∈  (2)1 and switches from 0 to 1 in a state of Γz∗1 .

Proof. (i) The result can be proved as in Propositions 6, 8; the role of Γz#1 in case I is now played by Γz∗1 . (ii) The result is proved
as in Propositions 5, 6.

The optimal trajectories and the the switching curves are depicted in Figure 9(a), when z∗ ∈ 1 and the controllability set in
the whole invariant set  , and in Figure 9(b), when z∗ ∈ 2.

6 CONCLUSIONS

The aerobic degradation plays a crucial role in the composting plant and its mathematical modeling in the organic waste man-
agement is a very useful tool, especially in determining the optimal strategies to be adopted to improve plant performances.
In this context we have proposed a mathematical model for aerobic degradation of a two component substrate in a composting
biocell and formulated a suitable time optimal control problem, whose main purpose is the reduction of the soluble and insolu-
ble substrates below a given threshold. Such reduction is realized by controlling the effects of cell oxygen concentration on the
degradation phenomenon.
For any target we have determined the controllability set, i.e. the set of configurations that can be driven to the target in finite time
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by an admissible control, and observed that such set does not always coincide with the invariant set of admissible configurations.
The results have been obtained for the non-dimensional variables and parameters; obviously, it is possible to deduce some indi-
cations in terms of the biological quantities. As example, we consider a test case, where the numerical values of initial soluble
substrate, insoluble substrate and biomass are inspired by13. More precisely, the initial configuration proposed in13 is given by

S(0) = 660Kg∕m3 , I(0) = 1080Kg∕m3 , X(0) = 0.4Kg∕m3 , (35)

corresponding to the pair (s(0), i(0)) = (0.3792, 0.6206) (consequently, from (2) x(0) = 0.0002)1.
For such configuration and parameters given in (13), a target with corner (s∗, i∗) = (0.065, 0.7) (corresponding to (S∗, I∗) =
(113.13Kg∕m3, 1218.28Kg∕m3)) cannot be reached in finite time (see Figure 3(a)). On the contrary, if the target corner is given
by s∗ = 0.075 and i∗ = 0.7 (corresponding to (S∗, I∗) = (130.53Kg∕m3, 1218.28Kg∕m3)), then the target can be reached in
finite time by assuming a constant control u = 1, since (s(0), i(0)) ∈ 2 (see Figure 3(b)).
The analysis shows that, if it is possible to regulate the initial amount of each component, it is required to carefully compose the
initial mix of substrate and bacterial population in order to well balance the effects of digestion, hydrolysis and biomass decay
processes along the entire evolution. In particular, for the target individuated by (s∗, i∗) = (0.065, 0.7), only initial configura-
tions in 1 (for example (s(0), i(0)) = (0.03, 0.72), corresponding to (S(0), I(0)) = (52.21Kg∕m3, 1253.09Kg∕m3)) and in 2
(for example (s(0), i(0)) = (0.4, 0.1), corresponding to (S(0), I(0)) = (696.16Kg∕m3, 174.04Kg∕m3)) can be steered to the
target in finite time.
The optimal control and the corresponding trajectories have been determined for any initial state in the controllability set. We
have proved that the optimal control time profiles can be constant (bang controls) or piecewise constant (bang-bang), assuming
just minimal (control u = 0 corresponding to the absence of degradation) or maximal value (control u = 1 corresponding to the
best performing admissible degradation).
In case of bang-bang control, the optimal control has a unique switching time at which it switches from 0 to 1 and the corre-
sponding switching curve has been determined (see Propositions 5, 7, 8). This means that it is optimal to not control the system
for an initial period and let the system to be driven by hydrolysis and biomass decay only. In the case of constant control, two dif-
ferent scenarios are admissible according to the initial state and target set. In the first scenario (Proposition 5), we have observed
that, if the initial substrate concentration s0 is already below the given the given threshold s∗ and the insoluble component i0 is
sufficiently close to its corresponding threshold i∗, then it is optimal to not control the system (u = 0). In the second scenario
(Proposition 6), when the initial insoluble component i0 is already below the corresponding threshold i∗ and the soluble sub-
strate concentration s0 is sufficiently close to the given threshold s∗, then it is necessary to control the system with maximum
control (u = 1) so that the digestion process plays the key role in the evolution of the biological system.
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