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Abstract: One of the main challenges in intelligent vehicles concerns pedestrian detection
for driving assistance. Recent experiments have showed that state-of-the-art descriptors
provide better performances on the far-infrared (FIR) spectrum than on the visible one, even
in daytime conditions, for pedestrian classification. In this paper, we propose a pedestrian
detector with on-board FIR camera. Our main contribution is the exploitation of the
specific characteristics of FIR images to design a fast, scale-invariant and robust pedestrian
detector. Our system consists of three modules, each based on speeded-up robust feature
(SURF) matching. The first module allows generating regions-of-interest (ROI), since in
FIR images of the pedestrian shapes may vary in large scales, but heads appear usually as
light regions. ROI are detected with a high recall rate with the hierarchical codebook of
SURF features located in head regions. The second module consists of pedestrian full-body
classification by using SVM. This module allows one to enhance the precision with low
computational cost. In the third module, we combine the mean shift algorithm with
inter-frame scale-invariant SURF feature tracking to enhance the robustness of our system.
The experimental evaluation shows that our system outperforms, in the FIR domain, the
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state-of-the-art Haar-like Adaboost-cascade, histogram of oriented gradients (HOG)/linear
SVM (linSVM) and MultiFtrpedestrian detectors, trained on the FIR images.

Keywords: pedestrian detection; far-infrared images; scale-invariant feature matching;
SURF; hierarchical codebook; SVM; pedestrian classification and tracking

1. Introduction

The recent advances of intelligent transportation systems and the increasing requirements for road
safety have resulted in progressive integration of advanced driver assistance systems (ADAS). Over the
past few years, various ADAS have been implemented into cars, including adaptive cruise control, lane
departure warning, blind spot detection, among other intelligent functions. These systems allow one
to increase road safety by helping the driver in his or her driving process. For intelligent vehicles, the
implementation of pedestrian protection systems (PPS) is necessary to reduce the number of accidents
and fatalities. Night vision systems are currently available in high-end cars, such as the BMW
7-series. These on-board systems have to be real time, precise and robust during day and nighttime
in order to detect pedestrians, assist the driver and even intervene for avoiding accidents.

PPS require a robust pedestrian detection system in order to cope with variable pedestrian shapes and
appearances, difficult lighting conditions and cluttered backgrounds. In the last few years, many research
systems have been proposed to tackle these problems. The existing systems process data acquired by
passive sensors, either in monocular [1,2] or stereo [3,4] configurations recorded with visible or infrared
cameras, active sensors [5,6] and even with sophisticated and expensive system configurations combining
active sensors with passive cameras [7,8]. Within such systems, passive vision seems to us a natural
choice, because it mimics human perception and allows the recognition of the obstacle types (pedestrian,
cycle, vehicle).

The basic architecture of pedestrian detection systems is generally composed of three modules:
ROI generation, hypothesis validation and pedestrian tracking. Recent reviews are given in [9–12].
For on-board monocular vision systems, the problems of ROI generation and pedestrian tracking are
particularly difficult, because road scenes are highly dynamic. As the pedestrians and the camera are
moving, techniques, like simple foreground or motion modeling [13], could not be reliably applied.
Moreover, information about disparity or 3D pixel position is not always available to simplify the process
of ROI generation [3]. The simplest technique to obtain initial pedestrian locations is to select all of the
possible candidates in the image according to the aspect ratio and size [14] without explicit segmentation.
This brings us to the inherent problem of sliding-windows for generic object detection and localization,
which is usually solved with machine learning and classification techniques [1,15].

Sliding-window techniques have been widely used and experimented in public pedestrian datasets,
such as Caltech and Daimler, taken with a visible (VIS) camera from a vehicle driving through an urban
environment [10–12]. An interesting benchmark [11] of the most promising pedestrian detection systems
on the visible spectrum was performed on the Caltech pedestrian dataset. The MultiFtr system, based on
a combination of histogram of oriented gradients (HOG) features and Haar wavelets within an AdaBoost
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classifier [16], with a HOG-based detector with a linear SVM classifier [1] as a close second, outperforms
all of the other pedestrian detection systems. A recent survey [12], having more algorithms in comparison
to the Caltech database, highlights that the MultiFtr-based detectors are among the most accurate ones,
although they happen also to be quite slower. In fact, MultiFtr + motion detector was the best, followed
by ChannelFtr, where Haar-like features are computed over multiple channels of visual data, including
LUV color channels. Another survey [10] has involved the evaluation of different systems on the Daimler
pedestrian dataset. The results indicate an advantage of the system based on HOG-features with linear
SVM [1] at higher image resolution and lower proceeding speed, but a superiority of Haar-like wavelets
with the AdaBoost cascade approach [17] at lower image resolution and near-real-time processing. The
following systems: Haar-like Adaboost cascade, HOG/linear SVM (linSVM) and MultiFtr, trained on
FIR images, will therefore serve as references for evaluating our pedestrian detection system in the
FIR domain.

Thanks to the decreasing cost of infrared (IR) cameras, different pedestrian detection systems
processing IR images have been proposed over the past few years [18–21]. The advantage of employing
this technology is that even in very low light conditions, pedestrians appear mostly as light regions
in contrast to the darker background. Besides, recent experiments have shown that all benchmarked
descriptors, like HOG, LBP, LGP and ISS, perform better for pedestrian classification on the FIR
spectrum than on the visible one, even in daytime conditions [22]. In fact, images acquired with
IR cameras could be less impacted by illumination, shadow, color and texture, compared to visible
ones. In the literature, one distinguishes between near-IR (NIR, 0.75–1.4 µm) and far-IR (FIR,
7–14 µm) pedestrian detection systems. Since NIR images are quite similar to daylight VIS ones, they
seem more appropriate than FIR for ADAS applications, like lane departure warning and traffic sign
recognition [9]. As we focus our interest on pedestrian detection applications, we decided to use an
FIR camera, which is not only the appropriate choice during the night or in low-light conditions, but is
also very convenient for distinguishing warm targets, like pedestrians, in daytime conditions. However,
FIR images have characteristics that make the detection still a difficult task. Firstly, pedestrian image
intensities are not uniform, since they vary with respect to temperature, distance, orientation and object
surface properties. Secondly, FIR images can be also characterized by blur and a lack of texture
information. Thirdly, objects, such as animals, electric boxes and light poles, produce additional contrast,
which complicates the pedestrian detection process. Moreover, FIR images are hard to exploit in
summer, where the temperature between pedestrians and other objects is very low. Our goal is therefore
to overcome these difficulties by exploiting the specific characteristics of FIR images in order to design
a fast, scale-invariant and robust pedestrian detection system in daytime conditions.

The outline of the paper is as follows. After reviewing related work in Section 2 and emphasizing
our contributions in Section 3, we introduce the background of our detection system in Section 4. Our
pedestrian representation method, based on the conception of an original hierarchical codebook, is
described in Section 5. Section 6 covers the details of our pedestrian detection system. Experimental
results that validate our system are presented in Section 7. Finally, conclusions are drawn, and future
work is suggested.



Sensors 2015, 15 8573

2. Related Work

Since pedestrians are represented by higher intensity than the background in FIR images, it is
feasible to generate ROI by thresholding the images appropriately [18,20]. Bertozzi et al. [21] proposed
an adaptive threshold by assuming that non-pedestrian intensities follow a Gaussian distribution.
In [19], thresholding was performed using histogram analysis. Nevertheless, the problem of choosing
an appropriate threshold is a key issue, not only for the additional light produced by non-pedestrian
objects, but also because pedestrian intensities vary with respect to temperature and distance.
In [23,24], the pedestrian localization process consists of searching for warm symmetrical objects with
a specific size and aspect ratio. Mahlisch et al. [25] proposed a shape-based multiple detector for
low-resolution FIR pedestrian recognition. To speed up processing, image regions that pass a relaxed
“flat-world-assumption” are applied to both a hierarchical contour matching and a cascade classification,
according to the likelihood-image estimated by a hyper-permutation network. Given the typical smooth
edges in FIR data and the difficulty of edge segmentation, the shape-dependent methods seem to us not
suited for precise localization of pedestrians in FIR images. Moreover, shape-dependent methods could
not overcome the problem of occlusions.

Meis et al. [26] addressed the occlusion problem by stating that pedestrian groups and, in particular,
pedestrians walking side by side can be separated by using a head detector. In order to cope with
large intra-class variation, Jungling and Arens [2] proposed to learn an implicit shape model (ISM) of
pedestrians in IR images. The basic theory of this approach was presented in [27,28]. It consists of
defining allowed shapes implicitly where local appearances, represented in a codebook structure, are
consistent with each other. The advantages of this approach are its flexibility to face the problem of
pedestrian variability and the fact that a small number of training examples is needed to learn an efficient
shape model.

In ROI generation, algorithms robust to partial occlusions and large intra-class variations tend to
produce a significant number of false positives. Techniques, like symmetry verification [29] or template
matching [30], are not precise enough to avoid false positives, nor to recognize pedestrians in particular
situations (walking, running, occluded). These problems have been especially addressed by integrating
pattern representation and classification methods to reliably recognize pedestrians [14,18,20,31].

Most pedestrian classification approaches are based on global or region object representation. The
global features are computed over all of the pixels within a bounding box (BB), while region-based
features are determined over image regions. For instance, gray-level image features [18] and Gabor
wavelets [31,32] are based on global representations. Typical region-based techniques include Haar
wavelets [14,33] and histograms of oriented gradients (HOGs) [20]. These representations involve
the influence of every pixel that lies within a BB, which may cause difficulties for accurate object
classification. In fact, a BB does not capture explicitly the true shape of the object inside it and could even
contain a majority of non-object pixels. This is especially problematic for pedestrians, which are heavily
occluded by other road objects. Besides, it is almost impossible to define an explicit global model for all
possible shapes and appearances of pedestrians. Solutions based on local descriptors [34,35], extracted
around a set of interest points for matching and recognition, could resolve these problems.
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Since SVM has shown impressive learning and classification performance, there has been an
increasing interest in developing algorithms that combine image representation by local descriptors
with SVM [36–38]. While global- and region-based features extracted from images resized at the
same resolution generate a fixed dimension feature vector, local features cannot be extracted with the
same number and at the same location in images. Thus, the main problem to solve is to define an
SVM kernel able to compare objects with different number of mismatch features. In the literature,
many techniques have been proposed to overcome this problem. Different methods based on histograms
built on local feature clusters were proposed. The histogram counts, for each object, how many feature
points of each codebook cluster index occur [38–40]. Wallraven et al. [36] introduced a formulation
of feature matching step as a part of the kernel itself, known as local matching kernel (LMK). Inspired
by this technique, Fritz et al. [37] proposed a suitable combination between codebook representation
with SVM classification and added stronger spatial constraints by imposing position rules for feature
matching. LMK has good classification performance, but presents high computational cost to compute
feature matching. In [41], we showed that a significant speed up in classification time can be achieved
without losing performances by using traditional kernels, like linear (linSVM) or RBF (RBF-SVM) on
a SURF-based, compact, but discriminative signature of pedestrians.

The ROI generation and classification modules are usually configured to detect pedestrians from a
given image frame. Several pedestrian detectors involve a tracking module, which is usually based
on hard-costing Kalman or particular filters to follow detected pedestrians over time [9,12]. This step
has several purposes: avoiding false detections over time, predicting future pedestrian positions, thus
feeding the foreground segmentation algorithm with pre-candidates, and, at a higher level, making useful
inferences about pedestrian behavior (e.g., walking direction). However, the detected hypotheses could
be integrated in a fast tracking module, which keeps track of pedestrians in successive frames.

3. Contributions

With respect to the related works, our contributions stem from how we:

• design an algorithm for automatic generation of a pertinent head codebook and flexible enough to
tolerate important pedestrian appearance changes;
• define a common hierarchical representation that allows not only to detect pedestrian head, but

also pedestrian body recognition and tracking;
• exploit the hierarchical structure of the codebook to further improve time processing, detection

and classification performance;
• propose a temporal SURF feature matching for pedestrian tracking in successive frames.

We introduce in the next section the background of our system before describing its basic components.

4. Background of the System

In this section, we describe the techniques of image representation by SURF features and SVM-based
object classification.



Sensors 2015, 15 8575

4.1. Image Representation by SURF Features

As we previously mentioned, image representations by local features have been shown to be robust
to occlusions and background changes. Among these, we choose to use SURF [35], because it is a
scale- and rotation-invariant point of interest (POI) detector and descriptor. Bay et al. [35] demonstrated
that the SURF detector is several times faster than SIFT [34] and more robust against different image
transformations. The SURF descriptor is based on sums of 2D Haar wavelet responses and makes an
efficient use of integral images. The SURF characteristics that we exploit are:

• Haar wavelet descriptor of 64 elements,
• Scale of the descriptor (ρ),
• Hessian value (H) used to approximate the feature strengths,
• Laplacian value, which is negative for light regions and positive for dark ones.

This last characteristic is especially useful for pedestrian detection. In fact, a pedestrian head mostly
appears in an FIR image as a light region in contrast to the darker background. Thus, in the learning
phase, we retained only SURF points with a negative Laplacian value to build our head codebook
representation. In the testing stage, codebook matching with POI extracted from an image allows one to
generate pedestrian hypotheses. Then, these hypotheses are validated by using an SVM classifier. This
supervised classification technique is introduced in the next section.

4.2. SVM-Based Object Classification

In recent years, there has been considerable interest in combining image representation using a
codebook with SVM. We distinguish between two approaches: codebook combination with kernels
based on histograms [38–40,42] and respectively specialized local matching kernels, called LMK,
suitable for local feature matching [37]. Basically, histograms computed from the codebook matching
count how many feature points of each codebook cluster index occur. Then, the scalar product (linSVM),
Gaussian distance (RBF-SVM), χ2 similarity measure (χ2-RBF) [39] or histogram intersection
(HI-SVM) [40] between two histogram bins could be used within an SVM kernel. The definition of
these kernels is given in Table 1, where hi and h′i are the values taken on by the histogram-vector X and
Y at the bin numbered i.

Table 1. SVM kernels for classifying histogram features. HI, histogram intersection.

Kernel Definition

RBF-SVM K(X,Y ) = exp(−1

2
‖X−Y ‖2

σ2 )

HI-SVM K(X,Y ) =
∑

imin(|hi|β, |h′i|β),β ≥ 0

χ2 dχ2(X,Y ) =
1

2
×
∑

i
(hi−h′i)

2

(hi+h′i)

χ2-RBF K(X,Y ) = exp(−λ× dχ2(X,Y ))

A recipe for constructing kernels, suitable for object recognition with local features, was proposed
in [36]. These kernels were called local matching kernels (LMK), because the feature matching step
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is seen as a part of the kernel itself. The LMK kernels are performant, but present high computational
cost to compute feature matching. Let X and Y be two sets of local features with X = {−→xi}

n1
i=1 and

Y = {−→yi }
n2
j=1. Let A = {

−→
A1, . . . ,

−→
An1} be their corresponding codebook activations in the set of N

clusters where
−→
Ai = {a1, . . . , aN}. Thus, the complexity is O(n1 × n2 × N2). In fact, the LMK

approach evaluates all combinatorial possibilities to match local features from two objects. Therefore,
rather than an LMK approach, we prefer a codebook combination with kernels based on histograms.
Our proposal consists of using an original hierarchical codebook (HC)-SURF representation to feed a
RBF-SVM kernel. Experiments show that our method, when compared with all previous state-of-the-art
kernels, including LMK, allows for improvement of the classification performance.

After introducing the background of our system, we develop our proposal in the following sections.

5. Hierarchical Codebook of SURF

In our system, the variability of pedestrians is represented by learning, in the first step, a codebook of
local head appearances.

5.1. Hierarchical Codebook Generation

Clustering is a common method for learning a compact and discriminative codebook. We choose to
use reciprocal nearest neighbor (RNN) search [28] for SURF descriptor clustering in order to reduce
both time and space complexity [28,43]. Starting with each SURF descriptor seen as an unitary
cluster, agglomerative clustering is performed: the two most similar clusters are merged together if
the Euclidean distance between their descriptors is below a threshold. In order to solve the problem of
cluster thresholding, we propose an hierarchical structure where each level presents a specific clustering
threshold. This tree structure allows one to tolerate different degrees of local appearance variability. In
order to estimate the optimal tree structure and the level-specific thresholds, we propose an evaluation
function. Following, all SURF features extracted from pedestrian heads are represented in a tree
structure. Each tree level contains clusters, represented like nodes, resulted from a clustering with a
specific level threshold value. Each node i is characterized, besides its level on the tree, by:

• the centroid Ci, which is the mean of all SURF vector descriptors,
• the radius Ri, which represents the Euclidean distance from the center to the furthest feature in the

cluster i,
• the mean r̄i of the rik values corresponding to the descriptor k contained in the cluster i,
• the number of interest points ni contained in the cluster.

The radius of clusters in the bottom levels is below the initial clustering threshold t1, while the
top node radius is below tmax. This tmax value is fixed as the smallest value that allows one to
group all SURF descriptors together into a single cluster. We emphasize that the optimal values
of the initial clustering threshold t1 and then the number of tree levels (lθ) could be both obtained
by minimizing a unique clustering evaluation function F (t, l). Through a literature review, we found
that most of the evaluation methods, related to clustering purposes, introduced a criterion related to
multi-class tasks for heterogeneous data. A brief discussion of these methods, defining several evaluation
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criteria, is given in [44]. Our HC concerns homogeneous data, since it collects only head pedestrian
descriptors. For that, a typical evaluation function leads to minimizing the intra-cluster distance, as well
as maximizing the distance between clusters. We consider that this criterion is already inherent to the
RNN algorithm [28]. We propose to consider for our evaluation function another criteria related to the
hierarchical structure. This function F (t, l), given in Equation (1), allows one to minimize the number of
unitary clusters by presenting different clustering thresholds. Note that unitary clusters are those never
merged at any level of the tree, and thus, still remain only at the bottom level. Moreover, the function
F allows also to ensure that the resulting clusters are compact and, hence, to determine the optimal
hierarchical structure. Finally, this leads to automatic codebook generation via solving the problem of
cluster thresholding.

Let N1 be the total number of bottom codebook clusters located in the first level (l = 1). N1 includes
N1
u unitary clusters (ni = 1) and N1

nu non-unitary ones (ni > 1).

F (t, l) = (Q1)× (Q2) = (
N1
u

N1
)× (

maxi∈1..N1(ni)∑N1

i=1 ni
) (1)

t1 = arg min
t∈R

F (t, 1)

lθ = arg min
l∈N

F (t1, l)

where t1 is the optimal value of the initial clustering threshold and (lθ) the optimal number of tree levels.
Minimizing F is equivalent to minimizing Q1 and Q2. Q1 tends to minimize the number of unitary

clusters.Q2 is used to reinforce the balance between cluster sizes.
Once the optimal value t1 is estimated, the HC depth is increased iteratively until reaching a local

minimum F(t1, lθ). When incrementing tree levels, we choose to increase the threshold from bottom to
top by doubling the pitch between two consecutive levels. Once the tree is built, clusters that were never
merged in any level of the tree are removed from the codebook. This allows one to compact as much as
possible the pedestrian head signature without losing pertinent information.

5.2. Hierarchical Codebook Matching

Given a test image, we extract the SURF descriptors from light regions (having negative Laplacian
values), as shown in Figure 1, and match them to the HC. The process is accelerated by exploiting the
specificity of our hierarchical representation. In fact, the matching is performed by first computing the
Euclidean distance to the top node centroid. If the distance is smaller than the node radius, the match is
stored, and then, only the children of this node are explored. The search is continued down to the bottom
nodes with a recursive method.

For each extracted SURF point k, we propose to assign an activation value Ai,k to each matched cluster
with index i. Let fk be a particular SURF descriptor point; we propose to calculate the corresponding
activation of matched clusters according to this formula:

Ai,k = exp(−(
c× d(fk, Ci)

Ri

)2) (2)

where d is the Euclidean distance in descriptor space and c is an adjustment coefficient designed to
increase the convergence speed of Ai,k to zero. Ai,k is a decreasing function with respect to d(fk, Ci).
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This formulation is perfectly consistent with the principle of partial exploration of the tree, since we
assign zero activation values to unexplored nodes. This highlights the interest of the hierarchical structure
that has the potential to significantly speed up the codebook matching time.

It is important to note that the activation values were normalized by level. Let N l be the number
of clusters located at the same hierarchical level (l) as the cluster i; the activation value Ai,k is then
normalized by

∑N l

j=1 Aj,k:

ai,k =
Ai,k∑N l

j=1 Aj,k

(3)

In the next section, we will emphasize how the codebook activation values will be used as a common
tool for pedestrian head detecting and pedestrian body classification.

Figure 1. SURF extraction only from head regions (white circles).

6. Pedestrian Detection System

This section covers the details of our pedestrian detection system. Its architecture, illustrated in
Figure 2, is composed of the following three modules: ROI generation, hypothesis classification and
pedestrian tracking. The dotted lines highlight the importance of the learning phase involving both HC
construction and SVM training, while the red arrows indicate when they are used.

Figure 2. The architecture of our pedestrian detector.
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Within the ROI generation module, the SURF points are first detected all over the image, then matched
to the trained clusters of HC, and then, only the matching features with heads are used to generate the
candidate full-body BBs. In the classification module, designed for the validation of the candidate BBs,
local and global SURF-based features are classified by SVM. Finally, in the tracking module, two steps
are involved: temporal SURF feature matching and tracking validation for ROI generation improvement.

We decided to proceed with a head detecting step by using a codebook of head local appearances, but
unlike the method presented in [26], based on pixel classification, our solution is based on SURF local
features for matching and recognition. The SURF descriptor is particularly well suited for FIR data,
where pedestrian appearance variation is rather limited compared to both the NIR and VIS spectrum.
Moreover, it allows one to index and then to further consider only bright regions. The other relevant
characteristic of FIR images that we have exploited is that the pedestrian head is the only area that appears
usually as a light region whatever its scale and location in the image. This highlights the importance of
considering only the head local appearances in codebook building, unlike the ISM technique [2]. Hence,
the core part of our pedestrian detector is a highly flexible learned representation for pedestrian head
appearances. This representation combines the information observed in different training examples by
using a hierarchical codebook (HC). This hierarchical structure is inspired by [45], but does not require
a probabilistic framework. In fact, the majority of object detection approaches based on local features
formulate a voting system or detected parts assembled in a probabilistic framework [2,28,45,46]. The
incorporation of a such framework requires a particularly high computationally cost to maintain belief
estimates over the complete hypothesis set.

In our classification module, we investigate both local and global features based on SURF
representations combined with RBF-SVM in order to recognize pedestrians in FIR images. The
local features are extracted by reusing the results of codebook matching obtained in the stage
of ROI generation. In other words, both the ROI generation and the classification of pedestrian
hypotheses operate on a common codebook representation. Global features are also employed to provide
complementary information to local appearance descriptors by characterizing shapes and textures.
Finally, we propose an original tracking module, built on the mean shift algorithm [47], based on fast
temporal scale-invariant feature matching.

Figure 3 shows an example of pedestrian detection obtained after the ROI generation and the
classification modules.

Figure 3. Example of pedestrian detection obtained after the ROI generation and the
classification modules.
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6.1. ROI Generation with the Hierarchical Codebook

The first component of our system is ROI generation. The main idea is to exploit the specific
characteristics of FIR images where a pedestrian may vary in a large scale, but his head appears usually
as a light region. Thus, we retained only SURF points with a negative Laplacian value to build our
head codebook representation. The codebook is generated by collecting and then clustering, from head
regions, SURF features in the learning stage. The obtained group clusters similar SURF descriptors by
their Euclidean distance. In the testing stage, codebook matching with POI extracted from an image
allows one to generate pedestrian hypotheses. Accordingly, we propose a robust two-step method, based
on head HC code representation, where head detection is followed by full-body BB construction.

Codebook generation lies in collecting and then clustering SURF features extracted from pedestrian
head regions from the training set. For each retained interest point (having a negative Laplacian value),
we propose to record the ratio (r) between the descriptor size (ρ) and the distance d to the horizontal
distance to the nearest BB L/Rside, as described in Figure 1. This parameter will be further used in the
detection stage to suggest BB around interest points whose descriptors are similar to the centroid of the
corresponding cluster.

The most important stage of ROI generation is head-codebook matching with all SURF points
extracted from light regions. For each SURF point k, we select the codebook cluster clus that produces
the highest activation value:

clus = arg max
i∈[1,N ]

ai,k (4)

where the ai,k formula is given in Equation (3).
Then, an ROI of a pedestrian head, having the score of aclus,k, is generated by using the parameter

r̄clus and the scale ρk of the SURF point k. Since r̄clus represents the mean ratio between the scale and
the horizontal distance to the nearest BB L/R side, we set the width of the head ROI to 2 × r̄clus

ρk
, while

keeping empirically the height to the half-width value.
Since pedestrian head regions may include several POI, overlapping ROI are merged together by

using a fast agglomerative clustering. To perform that, we adapt the algorithm of RNN search, used for
codebook generation [28,41], to group overlapping ROI rather than similar descriptors (see Algorithm 1).
This clustering process allows us to achieve a good tradeoff between precision and recall with low
computational cost. The idea behind this process is to consider that the nearest neighbor of a head
ROI is the one that maximizes the percentage of overlap computed by using the intersection-over-union
criterion. Since the maximum percentage of occlusion considered is 50%, the clustering threshold of
overlap (toverlap) is fixed to 0.5. Below this threshold, an occlusion is likely to occur; above it, a new
ROI is defined, taking the weighted fusion on the pixels of the overlapping ROI, according to their scores.
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Algorithm 1 The reciprocal nearest neighbor (RNN) algorithm for overlapping ROI merging with
maximum overlapping area chains.

- Start the chain C1 with a random ROI ri ∈ R

{All remaining ROI are kept in C2}
last← 0; lastOverlap[0]← 0

C1[last]← ri ∈ R;C2 ← R\ri

while C2 6= ∅ do

{Search for the ROI that maximizes the overlap area}
(o, overlap)← getMaxOverlappingArea(C1[last], C2)

if overlap > lastOverlap[last] then
last← last+ 1

C1[last]← o;C2 ← C2\{o}
lastOverlap[last]← overlap

else
if lastOverlap[last] > toverlap then

o← merging(C1[last], C1[last− 1])

C2 ← C2 ∪ {o}
last← last− 2

else
{discard the current chain}
last← −1

end if
end if

if last < 0 then
{initialize a new chain with another ROI ri ∈ C2}
last← last+ 1

C1[last]← ri ∈ C2;C2 ← C2\{ri}
end if

end while

After ROI generation around head regions, pedestrian full-body BB is first roughly estimated based
on the width/heightratio average, determined on the training images. Then, a new examination starts
to refine the bottom edges of the BB containing the potential pedestrian by searching around the bottom
border, the line which contains most of the horizontal edge points. After the construction of the whole
BB, a score is given for each one based on SVM classification. Following, we remove the BB labeled
as “non-pedestrians” by the classifier and resolve ambiguities from remaining overlapping ones by
keeping only the BB having the highest SVM score. Our SVM classification module is described in
the following section.

6.2. Combining Local and Global Features for SVM Pedestrian Classification

The local features are extracted using the HC and represent the local appearances of pedestrians. We
have also considered several global features, since they provide complementary information by
characterizing shapes and textures. Because of the large number of features, we used several ranking
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algorithms to select the most relevant ones [48]. The results have allowed us to select from the codebook
the most effective clusters, corresponding to descriptors extracted from head regions. This finding
supports our supposition of building an HC of pedestrian head appearances and its exploitation for both
ROI generation and hypothesis classification. Moreover, the feature selection step allowed us to select
the most relevant global features and to emphasize the complementarity between local and global ones.
Finally, the combined representations are used to feed an SVM classifier.

6.2.1. HC-Based Local Features

We propose to extract local features by accumulating the activation values of the HC clusters.
Let B = {B1, ..., BM} be the codebook that encompasses pedestrian appearance clusters. Let
S = {k1, ..., knb} be a set of nb SURF points extracted within a given BB. We define a local feature
vector Xl with a function flocal : S × B → R that takes a set S of SURF points and a set of B clusters
and returns a real value:

flocal(S,Bi) =
nb∑
k=1

ai,k (5)

This formulation is equivalent to a histogram voting method where each bin accumulates the
activation values of a specific cluster. Finally, the local feature vector that acts as a part of the input
sample of SVM is:

Xl = (flocal(S,B1), flocal(S,B2), . . . , flocal(S,BM))

6.2.2. SURF-Based Global Features

Features extracted from the codebook characterize only the local appearance of pedestrians. In order
to improve the discriminative power of pedestrian representation for classification purposes, we choose to
add several fast-computing global features that provide complementary information by characterizing the
shape and the texture of objects. Global feature extraction concerns only SURF points whose descriptors
activate at least one cluster in the codebook.

We define a global feature vector Xg with a function fglobal : S → R that takes a set of SURF points
S as an argument and returns a real value. Let us split the set S of SURF points, in a subset SLR of points
extracted from light regions and, respectively, in a subset SDR of points extracted from dark ones. From
these two subsets, we determine the following features:

• Global shape features:
- The ratio: |SLR|

|SDR|
of light points over the dark ones.

- The standard deviations of SURF descriptor sizes from SLR and SDR. We consider that looking
at the scale of the SURF filter responses allows us to characterize patterns inside an object.
- The distance from the center of gravity of SLR and, respectively, of SDR to the center of the
BB. These two features provide symmetry information computed from interest point locations.
They were used to characterize the shape of an object by describing the spatial layout of
local descriptors.
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• Global texture features:
- The standard deviation, kurtosis and skewness of pixel intensities located inside S descriptors.
- The mean and standard deviation of Hessian values of SLR.

6.2.3. Pedestrian Hypotheses Validation Using SVM

The extracted local and global features are concatenated and then normalized to form a unique feature
vector for the SVM classifier, which has to discriminate between pedestrian (Ped) and non-pedestrians
(N-ped). Since all features are invariant to both the scale and the number of local features extracted from
a given BB, our system performs the classification task without resizing images, which significantly
reduces the processing time.

It is important to mention that the classification module attempts to reject false positive hypotheses
from both ROI generation and tracking prediction stages. In the next section, we will show how
tracking-based hypotheses are generated to further improve the robustness of our detection system.

6.3. Temporal Feature Matching for Tracking

This section presents the tracking module proposed to keep track of pedestrians in successive frames.
We propose a simple and fast algorithm based on temporal SURF feature matching. This algorithm has
two major steps: feature matching and hypotheses handling. The tracking algorithm is initialized for
each detected pedestrian in image t. The SURF POI within a given BB are considered as the tracking
features if their descriptors activate at least one HC cluster. Let F be the set of the tracking features of a
detected pedestrian in a given image t. The temporal matching process, as shown in Algorithm 2, uses
the method described in [34] based on nearest neighbor with ambiguity rejection method. The idea is to
validate a new match only if the ratio of distances corresponding to the first minima over the distance of
the second minima is lower than a threshold tm, determined by experiments.

Algorithm 2 Feature matching using the nearest neighbor with the ambiguity rejection method.
for each descriptor fk ∈ F of an interest point (x, y) do

- Define an ROI ri in the image t+ 1

{Search for the SURF POI that minimizes the Euclidean distance between descriptor vectors}
- Search an unused descriptor f ′

j ∈ F ′ localized in ri giving the minimum distance d1

- Search an unused POI localized in ri giving the second minimum distance d2

if d1

d2 < tm then
- Calculate the relative position (Pos) of (x, y) within the bounding box outlined in the image t

- Generate a pedestrian hypothesis in the image t + 1 {The hypothesis position and scale values are calculated
according to Pos and the difference in scale between ρk and ρ′k}
Tag fk and f ′

j as used
end if

end for

The feature matching component attempts to generate as many pedestrian hypotheses as the number
of matched features. For each detected pedestrian in image t, the hypotheses generated in image t + 1

are handled in a mean shift framework. Considering prediction hypotheses at t + 1 as 3D votes (2D
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position and 1D for the scale), a score is given for each vote depending on the distance between SURF
descriptor vectors. Finally, the mean shift algorithm is embedded into the 3D voting space [28] for
reliable prediction of pedestrian localization. Experimental results that validate our pedestrian system
are presented in the next section.

7. Experimental Evaluation

In this section, we present the experimental results of our system. The Tetravision image database
used for our experiments is provided by the Artificial Vision and Intelligent Systems Laboratory (VisLab)
of Parma University [3]. All of the images are taken with on-board stereo-vision cameras in the visible
and FIR spectrum and represent daytime road scenes.

From the Tetravision database, we annotated from the FIR images a total of 3900 objects,
distributed among learning, validation and testing dataset. The learning images were annotated manually
(987 examples) and used for HC generation and SVM learning. For the validation stage, we used
a disjoint dataset (2092 examples) for HC structure optimization and SVM parameter validation. In
order to perform the overall system evaluation, we used two different image sequences, Tetra1 and
Tetra2. Figure 4 describes the evaluation phases. System performances are illustrated by ROC curves
(true positive rate over the false positive rate), miss rate vs. false positive rate per image curve and/or
F-measures. We analyzed these performance measures using the confidence intervals (CI) at 95%,
according to the number of samples in our validation and, respectively, testing sets (see Table 2). A
system performs statistically better than another only if the confidence intervals associated with their
performance measures are disjoint.

Figure 4. Experimental methodology and evaluation of our system.

Table 2. Performance measures with confidence intervals at 95%.

Performance m. 10% 20% 30% 40% 50% 60% 70% 80% 85% 90% 95%

CI on validation set % ±1.3 ±1.7 ±2 ±2.1 ±2.1 ±2.1 ±2 ±1.7 ±1.5 ±1.3 ±0.9
CI on testing set % ±2.1 ±2.7 ±3.1 ±3.4 ±3.4 ±3.4 ±3.1 ±2.7 ±2.4 ±2.1 ±1.5

7.1. Learning Stage

First of all, we extracted a subset of representative examples from the learning database to build
the HC of pedestrian head appearances. This subset contains only entire (not occluded) pedestrians,
which present large variability in appearances, scales and view points. The optimal structure of
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the HC, corresponding to a tree of five levels, was determined by using our evaluation function
(Section 5.1). After HC generation, an SVM classifier was trained to discriminate between Ped and
N-Ped on the learning set, which contains 987 examples taken in several situations. Figure 5 shows some
examples of images used for SVM learning. One should notice that images presented in this figure are
resized just for a standard representation. As we mentioned before, our system performs the classification
task without resizing images.

The validation results for HC structure and SVM parameter optimization are presented in the
next section.

Figure 5. Positive and negative training examples.

7.2. Validation Stage

The validation stage involves optimizing the HC structure, choosing the appropriate kernel function
for SVM and evaluating the discriminative power of our local and global SURF-based features.
Moreover, we also compared results obtained with state-of-the-art features within the framework of
our pedestrian detection system, where those features were extracted from BB provided by our ROI
generation component. All of the results were determined by performing a 10-fold cross-validation
scheme in the learning stage to optimize the SVM hyper-parameters before using them on the
validation dataset.

7.2.1. HC Structure Optimization

Figure 6 highlights that SVM classification performance is largely dependent on the HC structure.
In fact, it can be seen in Figure 6b that both the AUC (area under the ROC curve) and F-measure
corresponding to the HC structure that we propose outperform those corresponding to a non-hierarchical
codebook. In accordance with our evaluation function F (t1, l), where t1 corresponds to the optimized
clustering threshold, the estimated structure of our HC corresponds to a tree of five levels (see Figure 6a).
The results given in Figure 6b show that our evaluation function allows one to predict the optimal
structure of our HC. Moreover, they show that the hierarchical structure allows one to improve the
classification results significantly. Note that above five levels, the results are not improved for continuous
increasing of the tree depth. This is due to the fact that increasing tree depth could generate irrelevant
features, like intermediate clusters similar to negative examples. These features could have less
discriminative power, which disturbs the SVM learning.
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7.2.2. Kernel and Local/Global SURF Feature Validation

In order to choose the appropriate kernel function for our HC-based local features, we implemented
classical (linear and RBF-SVM), histogram-based (HI-SVM and χ2-RBF) and local matching (as
introduced in [37]) kernels. The results obtained with kernels based on histograms, HI-SVM
(AUC = 92.1%) and χ2-RBF (AUC = 91.3%) are less satisfactory than those obtained with RBF-SVM
(AUC = 92.5%). This kernel function, involving significantly less complexity, performs pedestrian
classification much better than LMK. We emphasize the complementarity of local and global
SURF-based features, since combining those features yields a significant improvement of 5.1% in the
AUC value (from 92.5% to 97.6%). On the validation set, the better performance arises from combining
local and global SURF-based features by an RBF-SVM classifier.

(a) (b)

Figure 6. Experimental investigation of the hierarchical codebook (HC) generation. (a) F (l)

value vs. tree depth; (b) classification performance vs. tree depth.

7.2.3. Comparison of HC Local/Global SURF Features with the State-of-the-Art in FIR Images

After validating the kernel function for SVM, optimizing the HC structure and evaluating the
discriminative power of our HC SURF features (HCS), we compare in Table 3 the classification results
obtained with state-of-the-art features. Gabor, Haar, Haar-like and HOG features were extracted from
resized BB of 64 × 128 pixels in FIR images. We used four scales and four orientations to compute the
mean and the standard deviation of the magnitude of the Gabor transform coefficients. From the Haar
wavelet, we obtained a number of 64 features computed at the fourth-level decomposition. While the
coefficients of Gabor and Haar wavelets were used with RBF-SVM classifiers, the Haar-like features [17]
were trained on a cascade of boosted classifiers with 11 stages. For HOG features, histograms were
computed with nine bins on cells of 8 × 8 pixels, having a block size of 2 × 2 cells overlapping by one
cell size.

The results presented in Table 3 show that our HC local/global SURF-features achieve, on FIR images,
the highest F-measure. The improvement is statistically significant only when compared with Haar and
Gabor wavelet-based features, since the corresponding confidence intervals are disjoint.
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Table 3. Comparison with the state-of-the-art features. HOG, histogram of oriented
gradients; linSVM, linear SVM.

Features HC Surf Gabor Haar Haar-Like HOG

Classifiers RBF-SVM boosted cascade linSVM
F-measure % 96.2 87 91 95.43 95.7

One should recall that the presented results are obtained within our pedestrian detection framework,
since the features were extracted from the BB provided by our ROI generation component. For an overall
system comparison, we will consider in the testing stage the state-of-the-art pedestrian detectors, not in
the visible spectrum, where they have been proposed, but on FIR images, using Haar-like wavelets with
AdaBoost cascade [17], HOG/linSVM [1] and MultiFtr (combination of HOG and Haar) with linear
SVM [16].

(a)

(b)

Figure 7. Example of detections from Tetra1 (a) and Tetra2 (b) image sequences. All images
were processed at their original resolution of 320 × 240 pixels.

7.3. Testing Stage

In this section, we present experimental results for our overall detection system evaluation. The testing
procedure is conducted on two Tetravision image sequences. Statistics reveal a high pedestrian scale
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variability—Near (80 pixels or more), medium (between 30–80 pixels) and far (30 pixels or less)—And
denote an average occlusion rate of 15.5%.

Figure 7 presents several detection results. It can be seen that most of the pedestrians are correctly
detected. Besides, the figure shows that our system is able to detect pedestrians even if they are in the
far scale, close to each other or occluded, in the presence of a complex background and in particular
situations (sitting, running).

The experimental results, summarizing the performance of our pedestrian detection system in
FIR images, are given in Table 4. The results presented are promising and show that our detection
system achieves a suitable trade-off between the F-measure and time processing. Even though our
current implementation (without coding optimization or parallel computation) does not allow real-time
processing, we believe that it is fast, since it process on average more than nine frames per second.
The tracking phase improves the pedestrian detection performance in a statistically-significant manner
(average of +4.37%).

Table 4. The performance of our overall detection system on Tetravision test sequences.

Sequence Tracking Phase F-Measure % Time Processing (ms/Frame)

Tetra1 Included 88.07 92
Not included 83.88 91.2

Tetra2 Included 81.08 131
Not included 76.53 92.6

7.4. Benchmark with State-of-the-Art Pedestrian Detectors in FIR Images

We evaluate the performance of our pedestrian detector designed for FIR domain with that of the
top performing systems emphasized by recent surveys [10,11] on the Caltech dataset in the visible
spectrum. For a fair comparison, we implemented, trained and tested those systems on the same
FIR-image datasets and used our pedestrian detector without the tracking stage, since the considered
systems do not present such a module. Those state-of-the-art systems are based on the sliding-window
approach, and they are: Haar-like wavelets with AdaBoost cascade [17] (VJ), HOG/linSVM [1] (HOG)
and MultiFtr within linSVM [16]. Note that a fixed size window is used for the sliding window technique
to scan the test images with a scale factor of 1.2 and a step size of 10 pixels. We have found that
bootstrapping is essential for obtaining good performance with the HOG and MultiFtr systems. Thus,
the classifiers were re-trained on a different and increasingly more difficult set of negative samples, as
described in [10].

We use the evaluation methodology outlined in [11,12], plotting miss rate vs. false positives per-frame
(see Figure 8). The plotting results on our testing dataset show that our detector based on the HC of
SURF features (HCS) outperforms the state-of-the-art pedestrian detectors: VJ, HOG and MultiFtr. The
benchmark results show that the second best performing detector on our FIR database is MultiFtr with
bootstrapping, while the VJ detector shows poor performance. The obtained results demonstrate that
sliding-window-based techniques, widely used in the visible spectrum, generate a large number of false
positives on FIR data. It is to be noted that the average recall rates obtained by HOG (0.69) and MultiFtr
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(0.79) with bootstrapping are quite acceptable. On the Tetra1, HOG and MultiFtr with bootstrapping
achieves the best recall rate. However, our system achieves the best tradeoff between recall and precision
given by an average F-measure of 80.2%. When compared with the second best performing detector
(MultiFtr), we achieve a significant performance improvement of 11.4% in FIR images. It is interesting
to note that our comparison of state-of-the-art sliding-window pedestrian detectors on the Tetravision FIR
dataset are consistent with Dollar et al.’s benchmarks [11,12] conducted on the visible Caltech dataset.

(a) (b)

Figure 8. Miss rates vs. false positive per-image curves shown for Tetra1 (a) and Tetra2
(b) from the Tetravision FIR image sequences. Lower curves indicate better performance.

7.5. Discussion

In the experimental section, we have evaluated the performance of our pedestrian detection system
in FIR images by two different sets of experiments. The first set was involved in the validation stage
for choosing an appropriate SVM kernel function, optimizing the HC structure and evaluating the
discriminative power of our features. Our experiments show that the best performance arises from
combining local and global SURF-based features by an RBF-SVM classifier. Additionally, experiments
support the exploitation of the hierarchical structure to improve the SVM feature vector and classification
results. When compared with state-of-the-art features in FIR images, our SVM-based local/global SURF
features provide higher classification performance. This proves that features based on shape or texture
extracted by using all pixels within a BB may lose performance, especially if objects are less-textured,
not well-centered or occluded.

Our overall detection system was evaluated during the testing stage by a second set of experiments.
The results obtained prove the efficiency of our detection system and its potential to handle large-scale
and occlusion problems. According to the first set of experiments, the obtained results highlight also
the importance of our codebook structure. In fact, the hierarchical structure presents different clustering
thresholds, which allows tolerating different degrees of local appearance variability. It is true that this
flexibility tends to produce false positives, but SVM enforces stronger constraints and, thus, allows
improving the precision of our system. By combining pedestrian detection with tracking in a unified
detection system, the robustness was reinforced by increasing the F-measure rate (decreasing the number
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of false negatives). The system achieves an average F-measure of 84.57% and allows one to process more
than nine images per second. Our system is much faster than both HOG/linSVM and MultiFtr, but slower
than VJ, which processes 15 images/second. Nevertheless, the results obtained with our system are much
better then those provided by the Haar-like Adaboost cascade.

Note that, to the best of our knowledge, no public visible-FIR image dataset acquired with an onboard
vehicle camera is available to perform a pedestrian detection benchmark. Recently, [49] proposed a
dataset acquired with an Indigo Omega camera, divided into two parts: one that addresses the problem
of pedestrian classification and the other the problem of pedestrian detection. Unfortunately, it does not
contain any information in the visible spectrum, making a complete assessment of the FIR vs. visible
domains impossible.

The evaluation of state-of-the-art detectors on the Tetravision dataset reveals that our system is an
appropriate solution to the specific problem of detecting pedestrians in FIR images. A limitation of our
system is that it fails to detect a pedestrian if his or her head is not visible (i.e., hidden by umbrellas,
scarf). This problem is not observed in the dataset. However, we believe that our tracking algorithm can
handle the problem of occasional occlusion of pedestrian heads. Another point that we want to mention
is that our system is not applicable for high temperature scenes. On a hot summer day, human bodies can
appear darker than the background. Even so, our detection system may be applicable by replacing our
ROI generation component by a sliding-window algorithm. Further, it will be interesting to investigate
more appropriate POI than brightness-based blob detectors.

8. Conclusions

In this paper, we discuss and investigate a fast, scale-invariant and robust pedestrian detection
system according to the particular conditions of far-infrared daytime images. Our system includes ROI
generation, hypothesis classification and pedestrian tracking modules, based all on scale-invariant local
feature matching and recognition.

In the first step, pedestrian hypotheses are generated by using a hierarchical codebook, which
is a compact representation of the local appearance of pedestrian heads. Then, bounding boxes are
constructed and overlapping ones are merged together by using a new formulation of the RNN algorithm.
In the second step, we integrate an SVM-based discriminative verification stage that operates on the
same codebook representation as the detection stage. Finally, we use a tracking module based on the
combination of the mean-shift algorithm with inter-frame SURF features matching. It is to be noted
that the SVM classification component attempts to reject the false positive hypothesis from both ROI
generation and tracking prediction modules. By combining pedestrian detection and classification with
tracking in a unified detection system, our system raises reliability and reduces false alarms significantly.

In order to evaluate our system, we used a traditional training/validation/testing approach. Moreover,
we compare our results with the state-of-the-art features and overall pedestrian detectors, which outline
the effectiveness of our methodology. The evaluation results show that our detector performs well in
detecting pedestrians, even for medium and far scales, but also for partially occluded pedestrians.

The system can still be extended in several ways. For fully-occluded head pedestrian detection, it can
be advantageous to generate a second codebook or to include in our HC POI extracted from objects that
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may cover pedestrian heads. Another possible extensions includes the integration of a visible camera
in order to take advantage of the multimodal fusion systems. This solution could be implemented after
resolving the task of real-time self-calibration between moving cameras. Robust modality-invariant
feature matching for pedestrian detection in visible and FIR images will be a topic of future work.
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